Datasets:
Update README.md
#4
by
minyeah
- opened
README.md
CHANGED
@@ -61,21 +61,10 @@ input_ids: "A processed named entity corpus of news articles constructed in 2022
|
|
61 |
label: Identified a total of 151 entities, including the 0th label (not an entity). If counting both "B-entity" and "I-entity" labels for each entity, there are a total of 301 labels.
|
62 |
The labeling is done with numerical values.
|
63 |
The 151 types of labels are as follows:
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
'OGG_POLITICS': 40, 'OGG_FOOD': 41, 'OGG_HOTEL': 42, 'OGG_OTHERS': 43, 'LCP_COUNTRY': 44, 'LCP_PROVINCE': 45, 'LCP_COUNTY':46, 'LCP_CITY': 47, 'LCP_CAPITALCITY': 48, 'LCG_RIVER': 49,
|
69 |
-
'LCG_OCEAN': 50,'LCG_BAY': 51, 'LCG_MOUNTAIN':52, 'LCG_ISLAND': 53, 'LCG_CONTINENT': 54, 'LC_SPACE': 55, 'LC_OTHERS': 56, 'CV_CULTURE': 57, 'CV_TRIBE': 58, 'CV_LANGUAGE': 59,
|
70 |
-
'CV_POLICY': 60, 'CV_LAW': 61, 'CV_CURRENCY': 62, 'CV_TAX': 63, 'CV_FUNDS': 64, 'CV_ART': 65, 'CV_SPORTS': 66, 'CV_SPORTS_POSITION': 67, 'CV_SPORTS_INST': 68, 'CV_PRIZE': 69,
|
71 |
-
'CV_RELATION': 70, 'CV_OCCUPATION': 71, 'CV_POSITION': 72, 'CV_FOOD': 73, 'CV_DRINK': 74, 'CV_FOOD_STYLE': 75, 'CV_CLOTHING': 76, 'CV_BUILDING_TYPE': 77, 'DT_DURATION': 78, 'DT_DAY': 79,
|
72 |
-
'DT_WEEK':80, 'DT_MONTH': 81, 'DT_YEAR': 82, 'DT_SEASON': 83, 'DT_GEOAGE': 84, 'DT_DYNASTY': 85, 'DT_OTHERS': 86, 'TI_DURATION': 87, 'TI_HOUR':88, 'TI_MINUTE': 89,
|
73 |
-
'TI_SECOND': 90, 'TI_OTHERS': 91, 'QT_AGE': 92, 'QT_SIZE': 93, 'QT_LENGTH': 94, 'QT_COUNT': 95, 'QT_MAN_COUNT': 96, 'QT_WEIGHT': 97, 'QT_PERCENTAGE': 98, 'QT_SPEED': 99,
|
74 |
-
'QT_TEMPERATURE': 100,'QT_VOLUME': 101, 'QT_ORDER': 102, 'QT_PRICE': 103, 'QT_PHONE': 104, 'QT_SPORTS': 105, 'QT_CHANNEL': 106, 'QT_ALBUM': 107, 'QT_ADDRESS': 108, 'QT_OTHERS': 109,
|
75 |
-
'EV_ACTIVITY': 110, 'EV_WAR_REVOLUTION': 111, 'EV_SPORTS': 112, 'EV_FESTIVAL': 113, 'EV_OTHERS': 114, 'AM_INSECT': 115, 'AM_BIRD': 116, 'AM_FISH': 117, 'AM_MAMMALIA': 118, 'AM_AMPHIBIA': 119,
|
76 |
-
'AM_REPTILIA': 120, 'AM_TYPE': 121, 'AM_PART': 122, 'AM_OTHERS': 123, 'PT_FRUIT': 124, 'PT_FLOWER': 125, 'PT_TREE': 126, 'PT_GRASS': 127, 'PT_TYPE': 128, 'PT_PART': 129,
|
77 |
-
'PT_OTHERS': 130, 'MT_ELEMENT': 131, 'MT_METAL': 132, 'MT_ROCK':133, 'MT_CHEMICAL': 134, 'TM_COLOR': 135, 'TM_DIRECTION': 136, 'TM_CLIMATE': 137, 'TM_SHAPE': 138, 'TM_CELL_TISSUE_ORGAN': 139,
|
78 |
-
'TMM_DISEASE': 140, 'TMM_DRUG': 141, 'TMI_HW':142, 'TMI_SW': 143, 'TMI_SITE': 144, 'TMI_EMAIL': 145, 'TMI_MODEL': 146, 'TMI_SERVICE': 147, 'TMI_PROJECT': 148, 'TMIG_GENRE': 149, 'TM_SPORTS': 150
|
79 |
|
80 |
### Data Splits
|
81 |
The dataset, consisting of 150,142 sentences, has been split in a ratio of 8:2. There are 120,113 sentences in the training set and 3,029 sentences in the test set.
|
|
|
61 |
label: Identified a total of 151 entities, including the 0th label (not an entity). If counting both "B-entity" and "I-entity" labels for each entity, there are a total of 301 labels.
|
62 |
The labeling is done with numerical values.
|
63 |
The 151 types of labels are as follows:
|
64 |
+
|index|0|1|2|3|4|5|6|7|8|9|10|11|12|13|14|15|16|17|18|19|20|21|22|23|24|25|26|27|28|29|30|31|32|33|34|35|36|37|38|39|40|41|42|43|44|45|46|47|48|49|50|51|52|53|54|55|56|57|58|59|60|61|62|63|64|65|66|67|68|69|70|71|72|73|74|75|76|77|78|79|80|81|82|83|84|85|86|87|88|89|90|91|92|93|94|95|96|97|98|99|100|101|102|103|104|105|106|107|108|109|110|111|112|113|114|115|116|117|118|119|120|121|122|123|124|125|126|127|128|129|130|131|132|133|134|135|136|137|138|139|140|141|142|143|144|145|146|147|148|149|150|151|
|
65 |
+
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
66 |
+
|Label|O|IGN|PS\_NAME|PS\_CHARACTER|PS\_PET|FD\_SCIENCE|FD\_SOCIAL\_SCIENCE|FD\_MEDICINE|FD\_ART|FD\_HUMANITIES|FD\_OTHERS|TR\_SCIENCE|TR\_SOCIAL\_SCIENCE|TR\_MEDICINE|TR\_ART|TR\_HUMANITIES|TR\_OTHERS|AF\_BUILDING|AF\_CULTURAL\_ASSET|AF\_ROAD|AF\_TRANSPORT|AF\_MUSICAL\_INSTRUMENT|AF\_WEAPON|AFA\_DOCUMENT|AFA\_PERFORMANCE|AFA\_VIDEO|AFA\_ART\_CRAFT|AFA\_MUSIC|AFW\_SERVICE\_PRODUCTS|AFW\_OTHER\_PRODUCTS|OGG\_ECONOMY|OGG\_EDUCATION|OGG\_MILITARY|OGG\_MEDIA|OGG\_SPORTS|OGG\_ART|OGG\_MEDICINE|OGG\_RELIGION|OGG\_SCIENCE|OGG\_LIBRARY|OGG\_LAW|OGG\_POLITICS|OGG\_FOOD|OGG\_HOTEL|OGG\_OTHERS|LCP\_COUNTRY|LCP\_PROVINCE|LCP\_COUNTY|LCP\_CITY|LCP\_CAPITALCITY|LCG\_RIVER|LCG\_OCEAN|LCG\_BAY|LCG\_MOUNTAIN|LCG\_ISLAND|LCG\_CONTINENT|LC\_SPACE|LC\_OTHERS|CV\_CULTURE|CV\_TRIBE|CV\_LANGUAGE|CV\_POLICY|CV\_LAW|CV\_CURRENCY|CV\_TAX|CV\_FUNDS|CV\_ART|CV\_SPORTS|CV\_SPORTS\_POSITION|CV\_SPORTS\_INST|CV\_PRIZE|CV\_RELATION|CV\_OCCUPATION|CV\_POSITION|CV\_FOOD|CV\_DRINK|CV\_FOOD\_STYLE|CV\_CLOTHING|CV\_BUILDING\_TYPE|DT\_DURATION|DT\_DAY|DT\_WEEK|DT\_MONTH|DT\_YEAR|DT\_SEASON|DT\_GEOAGE|DT\_DYNASTY|DT\_OTHERS|TI\_DURATION|TI\_HOUR|TI\_MINUTE|TI\_SECOND|TI\_OTHERS|QT\_AGE|QT\_SIZE|QT\_LENGTH|QT\_COUNT|QT\_MAN\_COUNT|QT\_WEIGHT|QT\_PERCENTAGE|QT\_SPEED|QT\_TEMPERATURE|QT\_VOLUME|QT\_ORDER|QT\_PRICE|QT\_PHONE|QT\_SPORTS|QT\_CHANNEL|QT\_ALBUM|QT\_ADDRESS|QT\_OTHERS|EV\_ACTIVITY|EV\_WAR\_REVOLUTION|EV\_SPORTS|EV\_FESTIVAL|EV\_OTHERS|AM\_INSECT|AM\_BIRD|AM\_FISH|AM\_MAMMALIA|AM\_AMPHIBIA|AM\_REPTILIA|AM\_TYPE|AM\_PART|AM\_OTHERS|PT\_FRUIT|PT\_FLOWER|PT\_TREE|PT\_GRASS|PT\_TYPE|PT\_PART|PT\_OTHERS|MT\_ELEMENT|MT\_METAL|MT\_ROCK|MT\_CHEMICAL|TM\_COLOR|TM\_DIRECTION|TM\_CLIMATE|TM\_SHAPE|TM\_CELL\_TISSUE\_ORGAN|TMM\_DISEASE|TMM\_DRUG|TMI\_HW|TMI\_SW|TMI\_SITE|TMI\_EMAIL|TMI\_MODEL|TMI\_SERVICE|TMI\_PROJECT|TMIG\_GENRE|TM\_SPORTS|
|
67 |
+
|Number|0|-100|1|2|3|4|5|6|7|8|9|10|11|12|13|14|15|16|17|18|19|20|21|22|23|24|25|26|27|28|29|30|31|32|33|34|35|36|37|38|39|40|41|42|43|44|45|46|47|48|49|50|51|52|53|54|55|56|57|58|59|60|61|62|63|64|65|66|67|68|69|70|71|72|73|74|75|76|77|78|79|80|81|82|83|89|90|91|92|93|94|95|96|97|98|99|100|101|102|103|104|105|106|107|108|109|110|111|112|113|114|115|116|117|118|119|120|121|122|123|124|125|126|127|128|129|130|131|132|133|134|135|136|137|138|139|140|141|142|143|144|145|146|147|148|149|150|151|152|153|154|155|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
### Data Splits
|
70 |
The dataset, consisting of 150,142 sentences, has been split in a ratio of 8:2. There are 120,113 sentences in the training set and 3,029 sentences in the test set.
|