text
stringlengths
0
3.06M
meta
stringlengths
57
121
[GOAL] Ξ± : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 Mβ‚‚ : Type u_6 M₃ : Type u_7 ΞΉ : Type u_8 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M r s : R x✝ y : M a b : R h : a + b = 1 x : M ⊒ a β€’ x + b β€’ x = x [PROOFSTEP] rw [← add_smul, h, one_smul] [GOAL] Ξ± : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 Mβ‚‚ : Type u_6 M₃ : Type u_7 ΞΉ : Type u_8 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M r s : R x y : M ⊒ 2 β€’ x = x + x [PROOFSTEP] rw [← one_add_one_eq_two, add_smul, one_smul] [GOAL] Ξ± : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 Mβ‚‚ : Type u_6 M₃ : Type u_7 ΞΉ : Type u_8 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M r s : R x✝ y : M inst✝¹ : AddCommMonoid Mβ‚‚ inst✝ : SMul R Mβ‚‚ f : Mβ‚‚ β†’+ M hf : Injective ↑f smul : βˆ€ (c : R) (x : Mβ‚‚), ↑f (c β€’ x) = c β€’ ↑f x src✝ : DistribMulAction R Mβ‚‚ := Injective.distribMulAction f hf smul c₁ cβ‚‚ : R x : Mβ‚‚ ⊒ ↑f ((c₁ + cβ‚‚) β€’ x) = ↑f (c₁ β€’ x + cβ‚‚ β€’ x) [PROOFSTEP] simp only [smul, f.map_add, add_smul] [GOAL] Ξ± : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 Mβ‚‚ : Type u_6 M₃ : Type u_7 ΞΉ : Type u_8 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M r s : R x✝ y : M inst✝¹ : AddCommMonoid Mβ‚‚ inst✝ : SMul R Mβ‚‚ f : Mβ‚‚ β†’+ M hf : Injective ↑f smul : βˆ€ (c : R) (x : Mβ‚‚), ↑f (c β€’ x) = c β€’ ↑f x src✝ : DistribMulAction R Mβ‚‚ := Injective.distribMulAction f hf smul x : Mβ‚‚ ⊒ ↑f (0 β€’ x) = ↑f 0 [PROOFSTEP] simp only [smul, zero_smul, f.map_zero] [GOAL] Ξ± : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 Mβ‚‚ : Type u_6 M₃ : Type u_7 ΞΉ : Type u_8 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M r s : R x✝ y : M inst✝¹ : AddCommMonoid Mβ‚‚ inst✝ : SMul R Mβ‚‚ f : M β†’+ Mβ‚‚ hf : Surjective ↑f smul : βˆ€ (c : R) (x : M), ↑f (c β€’ x) = c β€’ ↑f x c₁ cβ‚‚ : R x : Mβ‚‚ ⊒ (c₁ + cβ‚‚) β€’ x = c₁ β€’ x + cβ‚‚ β€’ x [PROOFSTEP] rcases hf x with ⟨x, rfl⟩ [GOAL] case intro Ξ± : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 Mβ‚‚ : Type u_6 M₃ : Type u_7 ΞΉ : Type u_8 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M r s : R x✝ y : M inst✝¹ : AddCommMonoid Mβ‚‚ inst✝ : SMul R Mβ‚‚ f : M β†’+ Mβ‚‚ hf : Surjective ↑f smul : βˆ€ (c : R) (x : M), ↑f (c β€’ x) = c β€’ ↑f x c₁ cβ‚‚ : R x : M ⊒ (c₁ + cβ‚‚) β€’ ↑f x = c₁ β€’ ↑f x + cβ‚‚ β€’ ↑f x [PROOFSTEP] simp only [add_smul, ← smul, ← f.map_add] [GOAL] Ξ± : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 Mβ‚‚ : Type u_6 M₃ : Type u_7 ΞΉ : Type u_8 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M r s : R x✝ y : M inst✝¹ : AddCommMonoid Mβ‚‚ inst✝ : SMul R Mβ‚‚ f : M β†’+ Mβ‚‚ hf : Surjective ↑f smul : βˆ€ (c : R) (x : M), ↑f (c β€’ x) = c β€’ ↑f x x : Mβ‚‚ ⊒ 0 β€’ x = 0 [PROOFSTEP] rcases hf x with ⟨x, rfl⟩ [GOAL] case intro Ξ± : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 Mβ‚‚ : Type u_6 M₃ : Type u_7 ΞΉ : Type u_8 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M r s : R x✝ y : M inst✝¹ : AddCommMonoid Mβ‚‚ inst✝ : SMul R Mβ‚‚ f : M β†’+ Mβ‚‚ hf : Surjective ↑f smul : βˆ€ (c : R) (x : M), ↑f (c β€’ x) = c β€’ ↑f x x : M ⊒ 0 β€’ ↑f x = 0 [PROOFSTEP] rw [← f.map_zero, ← smul, zero_smul] [GOAL] Ξ± : Type u_1 R✝ : Type u_2 k : Type u_3 S✝ : Type u_4 M✝ : Type u_5 Mβ‚‚ : Type u_6 M₃ : Type u_7 ΞΉ : Type u_8 inst✝⁷ : Semiring R✝ inst✝⁢ : AddCommMonoid M✝ inst✝⁡ : Module R✝ M✝ r s : R✝ x✝ y : M✝ R : Type u_9 S : Type u_10 M : Type u_11 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : Semiring S inst✝ : SMul S M f : R β†’+* S hf : Surjective ↑f hsmul : βˆ€ (c : R) (x : M), ↑f c β€’ x = c β€’ x src✝ : DistribMulAction S M := distribMulActionLeft (↑f) hf hsmul a b : R x : M ⊒ (↑f a + ↑f b) β€’ x = ↑f a β€’ x + ↑f b β€’ x [PROOFSTEP] simp only [← f.map_add, hsmul, add_smul] [GOAL] Ξ± : Type u_1 R✝ : Type u_2 k : Type u_3 S✝ : Type u_4 M✝ : Type u_5 Mβ‚‚ : Type u_6 M₃ : Type u_7 ΞΉ : Type u_8 inst✝⁷ : Semiring R✝ inst✝⁢ : AddCommMonoid M✝ inst✝⁡ : Module R✝ M✝ r s : R✝ x✝ y : M✝ R : Type u_9 S : Type u_10 M : Type u_11 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : Semiring S inst✝ : SMul S M f : R β†’+* S hf : Surjective ↑f hsmul : βˆ€ (c : R) (x : M), ↑f c β€’ x = c β€’ x src✝ : DistribMulAction S M := distribMulActionLeft (↑f) hf hsmul x : M ⊒ 0 β€’ x = 0 [PROOFSTEP] rw [← f.map_zero, hsmul, zero_smul] [GOAL] Ξ± : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 Mβ‚‚ : Type u_6 M₃ : Type u_7 ΞΉ : Type u_8 inst✝³ : Semiring R inst✝² : AddCommMonoid M inst✝¹ : Module R M r✝ s✝ : R x✝ y : M inst✝ : Semiring S f : S β†’+* R src✝¹ : MulActionWithZero S M := MulActionWithZero.compHom M (RingHom.toMonoidWithZeroHom f) src✝ : DistribMulAction S M := DistribMulAction.compHom M ↑f r s : S x : M ⊒ ↑f (r + s) β€’ x = ↑f r β€’ x + ↑f s β€’ x [PROOFSTEP] simp [add_smul] [GOAL] Ξ± : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 Mβ‚‚ : Type u_6 M₃ : Type u_7 ΞΉ : Type u_8 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M r✝ s : R x y : M src✝ : R β†’* AddMonoid.End M := DistribMulAction.toAddMonoidEnd R M r : M ⊒ 0 β€’ r = 0 [PROOFSTEP] simp [GOAL] Ξ± : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 Mβ‚‚ : Type u_6 M₃ : Type u_7 ΞΉ : Type u_8 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M r✝ s : R x✝ y✝ : M src✝ : R β†’* AddMonoid.End M := DistribMulAction.toAddMonoidEnd R M x y : R r : M ⊒ (x + y) β€’ r = x β€’ r + y β€’ r [PROOFSTEP] simp [add_smul] [GOAL] Ξ± : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 Mβ‚‚ : Type u_6 M₃ : Type u_7 ΞΉ : Type u_8 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M r s : R x y : M zero_eq_one : 0 = 1 ⊒ x = 0 [PROOFSTEP] rw [← one_smul R x, ← zero_eq_one, zero_smul] [GOAL] Ξ± : Type u_1 R✝ : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 Mβ‚‚ : Type u_6 M₃ : Type u_7 ΞΉ : Type u_8 inst✝⁴ : Semiring R✝ inst✝³ : AddCommMonoid M inst✝² : Module R✝ M r✝ s : R✝ x y : M R : Type u_9 inst✝¹ : Ring R inst✝ : Module R M r : R m : M ⊒ r β€’ m + (1 - r) β€’ m = m [PROOFSTEP] rw [← add_smul, add_sub_cancel'_right, one_smul] [GOAL] Ξ± : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 Mβ‚‚ : Type u_6 M₃ : Type u_7 ΞΉ : Type u_8 inst✝² : Semiring R inst✝¹ : AddCommGroup M inst✝ : Module R M x y : M a b : R h : a + b = 1 ⊒ a β€’ x + b β€’ y = b β€’ y - b β€’ x + (a β€’ x + b β€’ x) [PROOFSTEP] abel [GOAL] Ξ± : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 Mβ‚‚ : Type u_6 M₃ : Type u_7 ΞΉ : Type u_8 inst✝² : Semiring R inst✝¹ : AddCommGroup M inst✝ : Module R M x y : M a b : R h : a + b = 1 ⊒ a β€’ x + b β€’ y = b β€’ y - b β€’ x + (a β€’ x + b β€’ x) [PROOFSTEP] abel [GOAL] Ξ± : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 Mβ‚‚ : Type u_6 M₃ : Type u_7 ΞΉ : Type u_8 inst✝² : Semiring R inst✝¹ : AddCommGroup M inst✝ : Module R M x y : M a b : R h : a + b = 1 ⊒ b β€’ y - b β€’ x + (a β€’ x + b β€’ x) = b β€’ (y - x) + x [PROOFSTEP] rw [smul_sub, Convex.combo_self h] [GOAL] Ξ± : Type u_1 R✝ : Type u_2 k : Type u_3 S : Type u_4 M✝ : Type u_5 Mβ‚‚ : Type u_6 M₃ : Type u_7 ΞΉ : Type u_8 R : Type u_9 inst✝¹ : Semiring R M : Type u_10 inst✝ : AddCommMonoid M P Q : Module R M w : βˆ€ (r : R) (m : M), r β€’ m = r β€’ m ⊒ P = Q [PROOFSTEP] ext [GOAL] case smul.h.h Ξ± : Type u_1 R✝ : Type u_2 k : Type u_3 S : Type u_4 M✝ : Type u_5 Mβ‚‚ : Type u_6 M₃ : Type u_7 ΞΉ : Type u_8 R : Type u_9 inst✝¹ : Semiring R M : Type u_10 inst✝ : AddCommMonoid M P Q : Module R M w : βˆ€ (r : R) (m : M), r β€’ m = r β€’ m x✝¹ : R x✝ : M ⊒ SMul.smul x✝¹ x✝ = SMul.smul x✝¹ x✝ [PROOFSTEP] exact w _ _ [GOAL] Ξ± : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 Mβ‚‚ : Type u_6 M₃ : Type u_7 ΞΉ : Type u_8 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M r s : R x y : M ⊒ -r β€’ x + r β€’ x = 0 [PROOFSTEP] rw [← add_smul, add_left_neg, zero_smul] [GOAL] Ξ± : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 Mβ‚‚ : Type u_6 M₃ : Type u_7 ΞΉ : Type u_8 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M r s : R x y : M ⊒ -r β€’ -x = r β€’ x [PROOFSTEP] rw [neg_smul, smul_neg, neg_neg] [GOAL] Ξ± : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 Mβ‚‚ : Type u_6 M₃ : Type u_7 ΞΉ : Type u_8 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M r s : R x✝ y : M u : RΛ£ x : M ⊒ -u β€’ x = -(u β€’ x) [PROOFSTEP] rw [Units.smul_def, Units.val_neg, _root_.neg_smul, Units.smul_def] [GOAL] Ξ± : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 Mβ‚‚ : Type u_6 M₃ : Type u_7 ΞΉ : Type u_8 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M r s : R x✝ y x : M ⊒ -1 β€’ x = -x [PROOFSTEP] simp [GOAL] Ξ± : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 Mβ‚‚ : Type u_6 M₃ : Type u_7 ΞΉ : Type u_8 inst✝² : Ring R inst✝¹ : AddCommGroup M inst✝ : Module R M r✝ s✝ : R x y✝ : M r s : R y : M ⊒ (r - s) β€’ y = r β€’ y - s β€’ y [PROOFSTEP] simp [add_smul, sub_eq_add_neg] [GOAL] Ξ± : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 Mβ‚‚ : Type u_6 M₃ : Type u_7 ΞΉ : Type u_8 inst✝² : Ring R inst✝¹ : AddCommMonoid M inst✝ : Module R M src✝ : AddCommMonoid M := inferInstance a : M ⊒ (fun z a => ↑z β€’ a) 0 a = 0 [PROOFSTEP] simpa only [Int.cast_zero] using zero_smul R a [GOAL] Ξ± : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 Mβ‚‚ : Type u_6 M₃ : Type u_7 ΞΉ : Type u_8 inst✝² : Ring R inst✝¹ : AddCommMonoid M inst✝ : Module R M src✝ : AddCommMonoid M := inferInstance z : β„• a : M ⊒ (fun z a => ↑z β€’ a) (Int.ofNat (Nat.succ z)) a = a + (fun z a => ↑z β€’ a) (Int.ofNat z) a [PROOFSTEP] simp [add_comm, add_smul] [GOAL] Ξ± : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 Mβ‚‚ : Type u_6 M₃ : Type u_7 ΞΉ : Type u_8 inst✝² : Ring R inst✝¹ : AddCommMonoid M inst✝ : Module R M src✝ : AddCommMonoid M := inferInstance z : β„• a : M ⊒ (fun z a => ↑z β€’ a) (Int.negSucc z) a = -(fun z a => ↑z β€’ a) (↑(Nat.succ z)) a [PROOFSTEP] simp [← smul_assoc, neg_one_smul] [GOAL] Ξ± : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 Mβ‚‚ : Type u_6 M₃ : Type u_7 ΞΉ : Type u_8 inst✝² : Ring R inst✝¹ : AddCommMonoid M inst✝ : Module R M src✝ : AddCommMonoid M := inferInstance a : M ⊒ -1 β€’ a + a = 0 [PROOFSTEP] nth_rw 2 [← one_smul R a] [GOAL] Ξ± : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 Mβ‚‚ : Type u_6 M₃ : Type u_7 ΞΉ : Type u_8 inst✝² : Ring R inst✝¹ : AddCommMonoid M inst✝ : Module R M src✝ : AddCommMonoid M := inferInstance a : M ⊒ -1 β€’ a + 1 β€’ a = 0 [PROOFSTEP] rw [← add_smul, add_left_neg, zero_smul] [GOAL] Ξ± : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 Mβ‚‚ : Type u_6 M₃ : Type u_7 ΞΉ : Type u_8 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M n : β„• b : M ⊒ n β€’ b = ↑n β€’ b [PROOFSTEP] induction' n with n ih [GOAL] case zero Ξ± : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 Mβ‚‚ : Type u_6 M₃ : Type u_7 ΞΉ : Type u_8 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M b : M ⊒ Nat.zero β€’ b = ↑Nat.zero β€’ b [PROOFSTEP] rw [Nat.zero_eq, Nat.cast_zero, zero_smul, zero_smul] [GOAL] case succ Ξ± : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 Mβ‚‚ : Type u_6 M₃ : Type u_7 ΞΉ : Type u_8 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M b : M n : β„• ih : n β€’ b = ↑n β€’ b ⊒ Nat.succ n β€’ b = ↑(Nat.succ n) β€’ b [PROOFSTEP] rw [Nat.succ_eq_add_one, Nat.cast_succ, add_smul, add_smul, one_smul, ih, one_smul] [GOAL] Ξ± : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 Mβ‚‚ : Type u_6 M₃ : Type u_7 ΞΉ : Type u_8 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M h : Module β„• M n : β„• x : M ⊒ SMul.smul n x = n β€’ x [PROOFSTEP] rw [nsmul_eq_smul_cast β„• n x, Nat.cast_id] [GOAL] Ξ± : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 Mβ‚‚ : Type u_6 M₃ : Type u_7 ΞΉ : Type u_8 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M h : Module β„• M n : β„• x : M ⊒ SMul.smul n x = n β€’ x [PROOFSTEP] rfl [GOAL] Ξ± : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 Mβ‚‚ : Type u_6 M₃ : Type u_7 ΞΉ : Type u_8 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M ⊒ Module β„• M [PROOFSTEP] infer_instance [GOAL] Ξ± : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 Mβ‚‚ : Type u_6 M₃ : Type u_7 ΞΉ : Type u_8 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M P : Module β„• M n : β„• ⊒ βˆ€ (m : M), n β€’ m = n β€’ m [PROOFSTEP] convert nat_smul_eq_nsmul P n [GOAL] Ξ± : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 Mβ‚‚ : Type u_6 M₃ : Type u_7 ΞΉ : Type u_8 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M n : β„• x : R y : M ⊒ (Nat.zero β€’ x) β€’ y = Nat.zero β€’ x β€’ y [PROOFSTEP] simp only [Nat.zero_eq, zero_smul] [GOAL] Ξ± : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 Mβ‚‚ : Type u_6 M₃ : Type u_7 ΞΉ : Type u_8 inst✝² : Semiring R inst✝¹ : AddCommMonoid M inst✝ : Module R M n✝ : β„• x : R y : M n : β„• ih : (n β€’ x) β€’ y = n β€’ x β€’ y ⊒ (Nat.succ n β€’ x) β€’ y = Nat.succ n β€’ x β€’ y [PROOFSTEP] simp only [Nat.succ_eq_add_one, add_smul, one_smul, ih] [GOAL] Ξ± : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 Mβ‚‚ : Type u_6 M₃ : Type u_7 ΞΉ : Type u_8 inst✝⁴ : Semiring S inst✝³ : Ring R inst✝² : AddCommGroup M inst✝¹ : Module S M inst✝ : Module R M n : β„€ b : M ⊒ ↑(AddMonoidHom.flip (smulAddHom β„€ M)) b = AddMonoidHom.comp (↑(AddMonoidHom.flip (smulAddHom R M)) b) (Int.castAddHom R) [PROOFSTEP] apply AddMonoidHom.ext_int [GOAL] case h1 Ξ± : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 Mβ‚‚ : Type u_6 M₃ : Type u_7 ΞΉ : Type u_8 inst✝⁴ : Semiring S inst✝³ : Ring R inst✝² : AddCommGroup M inst✝¹ : Module S M inst✝ : Module R M n : β„€ b : M ⊒ ↑(↑(AddMonoidHom.flip (smulAddHom β„€ M)) b) 1 = ↑(AddMonoidHom.comp (↑(AddMonoidHom.flip (smulAddHom R M)) b) (Int.castAddHom R)) 1 [PROOFSTEP] simp [GOAL] Ξ± : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 Mβ‚‚ : Type u_6 M₃ : Type u_7 ΞΉ : Type u_8 inst✝⁴ : Semiring S inst✝³ : Ring R inst✝² : AddCommGroup M inst✝¹ : Module S M inst✝ : Module R M h : Module β„€ M n : β„€ x : M ⊒ SMul.smul n x = n β€’ x [PROOFSTEP] rw [zsmul_eq_smul_cast β„€ n x, Int.cast_id] [GOAL] Ξ± : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 Mβ‚‚ : Type u_6 M₃ : Type u_7 ΞΉ : Type u_8 inst✝⁴ : Semiring S inst✝³ : Ring R inst✝² : AddCommGroup M inst✝¹ : Module S M inst✝ : Module R M h : Module β„€ M n : β„€ x : M ⊒ SMul.smul n x = n β€’ x [PROOFSTEP] rfl [GOAL] Ξ± : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 Mβ‚‚ : Type u_6 M₃ : Type u_7 ΞΉ : Type u_8 inst✝⁴ : Semiring S inst✝³ : Ring R inst✝² : AddCommGroup M inst✝¹ : Module S M inst✝ : Module R M ⊒ Module β„€ M [PROOFSTEP] infer_instance [GOAL] Ξ± : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 Mβ‚‚ : Type u_6 M₃ : Type u_7 ΞΉ : Type u_8 inst✝⁴ : Semiring S inst✝³ : Ring R inst✝² : AddCommGroup M inst✝¹ : Module S M inst✝ : Module R M P : Module β„€ M n : β„€ ⊒ βˆ€ (m : M), n β€’ m = n β€’ m [PROOFSTEP] convert int_smul_eq_zsmul P n [GOAL] Ξ± : Type u_1 R✝ : Type u_2 k : Type u_3 S✝ : Type u_4 M : Type u_5 Mβ‚‚ : Type u_6 M₃ : Type u_7 ΞΉ : Type u_8 inst✝⁢ : AddCommGroup M inst✝⁡ : AddCommGroup Mβ‚‚ F : Type u_9 inst✝⁴ : AddMonoidHomClass F M Mβ‚‚ f : F R : Type u_10 S : Type u_11 inst✝³ : Ring R inst✝² : Ring S inst✝¹ : Module R M inst✝ : Module S Mβ‚‚ x : β„€ a : M ⊒ ↑f (↑x β€’ a) = ↑x β€’ ↑f a [PROOFSTEP] simp only [← zsmul_eq_smul_cast, map_zsmul] [GOAL] Ξ± : Type u_1 R✝ : Type u_2 k : Type u_3 S✝ : Type u_4 M : Type u_5 Mβ‚‚ : Type u_6 M₃ : Type u_7 ΞΉ : Type u_8 inst✝⁢ : AddCommMonoid M inst✝⁡ : AddCommMonoid Mβ‚‚ F : Type u_9 inst✝⁴ : AddMonoidHomClass F M Mβ‚‚ f : F R : Type u_10 S : Type u_11 inst✝³ : Semiring R inst✝² : Semiring S inst✝¹ : Module R M inst✝ : Module S Mβ‚‚ x : β„• a : M ⊒ ↑f (↑x β€’ a) = ↑x β€’ ↑f a [PROOFSTEP] simp only [← nsmul_eq_smul_cast, AddMonoidHom.map_nsmul, map_nsmul] [GOAL] Ξ± : Type u_1 R✝ : Type u_2 k : Type u_3 S✝ : Type u_4 M : Type u_5 Mβ‚‚ : Type u_6 M₃ : Type u_7 ΞΉ : Type u_8 inst✝⁢ : AddCommMonoid M inst✝⁡ : AddCommMonoid Mβ‚‚ F : Type u_9 inst✝⁴ : AddMonoidHomClass F M Mβ‚‚ f : F R : Type u_10 S : Type u_11 inst✝³ : DivisionSemiring R inst✝² : DivisionSemiring S inst✝¹ : Module R M inst✝ : Module S Mβ‚‚ n : β„• x : M ⊒ ↑f ((↑n)⁻¹ β€’ x) = (↑n)⁻¹ β€’ ↑f x [PROOFSTEP] by_cases hR : (n : R) = 0 [GOAL] case pos Ξ± : Type u_1 R✝ : Type u_2 k : Type u_3 S✝ : Type u_4 M : Type u_5 Mβ‚‚ : Type u_6 M₃ : Type u_7 ΞΉ : Type u_8 inst✝⁢ : AddCommMonoid M inst✝⁡ : AddCommMonoid Mβ‚‚ F : Type u_9 inst✝⁴ : AddMonoidHomClass F M Mβ‚‚ f : F R : Type u_10 S : Type u_11 inst✝³ : DivisionSemiring R inst✝² : DivisionSemiring S inst✝¹ : Module R M inst✝ : Module S Mβ‚‚ n : β„• x : M hR : ↑n = 0 ⊒ ↑f ((↑n)⁻¹ β€’ x) = (↑n)⁻¹ β€’ ↑f x [PROOFSTEP] by_cases hS : (n : S) = 0 [GOAL] case neg Ξ± : Type u_1 R✝ : Type u_2 k : Type u_3 S✝ : Type u_4 M : Type u_5 Mβ‚‚ : Type u_6 M₃ : Type u_7 ΞΉ : Type u_8 inst✝⁢ : AddCommMonoid M inst✝⁡ : AddCommMonoid Mβ‚‚ F : Type u_9 inst✝⁴ : AddMonoidHomClass F M Mβ‚‚ f : F R : Type u_10 S : Type u_11 inst✝³ : DivisionSemiring R inst✝² : DivisionSemiring S inst✝¹ : Module R M inst✝ : Module S Mβ‚‚ n : β„• x : M hR : ¬↑n = 0 ⊒ ↑f ((↑n)⁻¹ β€’ x) = (↑n)⁻¹ β€’ ↑f x [PROOFSTEP] by_cases hS : (n : S) = 0 [GOAL] case pos Ξ± : Type u_1 R✝ : Type u_2 k : Type u_3 S✝ : Type u_4 M : Type u_5 Mβ‚‚ : Type u_6 M₃ : Type u_7 ΞΉ : Type u_8 inst✝⁢ : AddCommMonoid M inst✝⁡ : AddCommMonoid Mβ‚‚ F : Type u_9 inst✝⁴ : AddMonoidHomClass F M Mβ‚‚ f : F R : Type u_10 S : Type u_11 inst✝³ : DivisionSemiring R inst✝² : DivisionSemiring S inst✝¹ : Module R M inst✝ : Module S Mβ‚‚ n : β„• x : M hR : ↑n = 0 hS : ↑n = 0 ⊒ ↑f ((↑n)⁻¹ β€’ x) = (↑n)⁻¹ β€’ ↑f x [PROOFSTEP] simp [hR, hS, map_zero f] [GOAL] case neg Ξ± : Type u_1 R✝ : Type u_2 k : Type u_3 S✝ : Type u_4 M : Type u_5 Mβ‚‚ : Type u_6 M₃ : Type u_7 ΞΉ : Type u_8 inst✝⁢ : AddCommMonoid M inst✝⁡ : AddCommMonoid Mβ‚‚ F : Type u_9 inst✝⁴ : AddMonoidHomClass F M Mβ‚‚ f : F R : Type u_10 S : Type u_11 inst✝³ : DivisionSemiring R inst✝² : DivisionSemiring S inst✝¹ : Module R M inst✝ : Module S Mβ‚‚ n : β„• x : M hR : ↑n = 0 hS : ¬↑n = 0 ⊒ ↑f ((↑n)⁻¹ β€’ x) = (↑n)⁻¹ β€’ ↑f x [PROOFSTEP] suffices βˆ€ y, f y = 0 by rw [this, this, smul_zero] [GOAL] Ξ± : Type u_1 R✝ : Type u_2 k : Type u_3 S✝ : Type u_4 M : Type u_5 Mβ‚‚ : Type u_6 M₃ : Type u_7 ΞΉ : Type u_8 inst✝⁢ : AddCommMonoid M inst✝⁡ : AddCommMonoid Mβ‚‚ F : Type u_9 inst✝⁴ : AddMonoidHomClass F M Mβ‚‚ f : F R : Type u_10 S : Type u_11 inst✝³ : DivisionSemiring R inst✝² : DivisionSemiring S inst✝¹ : Module R M inst✝ : Module S Mβ‚‚ n : β„• x : M hR : ↑n = 0 hS : ¬↑n = 0 this : βˆ€ (y : M), ↑f y = 0 ⊒ ↑f ((↑n)⁻¹ β€’ x) = (↑n)⁻¹ β€’ ↑f x [PROOFSTEP] rw [this, this, smul_zero] [GOAL] case neg Ξ± : Type u_1 R✝ : Type u_2 k : Type u_3 S✝ : Type u_4 M : Type u_5 Mβ‚‚ : Type u_6 M₃ : Type u_7 ΞΉ : Type u_8 inst✝⁢ : AddCommMonoid M inst✝⁡ : AddCommMonoid Mβ‚‚ F : Type u_9 inst✝⁴ : AddMonoidHomClass F M Mβ‚‚ f : F R : Type u_10 S : Type u_11 inst✝³ : DivisionSemiring R inst✝² : DivisionSemiring S inst✝¹ : Module R M inst✝ : Module S Mβ‚‚ n : β„• x : M hR : ↑n = 0 hS : ¬↑n = 0 ⊒ βˆ€ (y : M), ↑f y = 0 [PROOFSTEP] clear x [GOAL] case neg Ξ± : Type u_1 R✝ : Type u_2 k : Type u_3 S✝ : Type u_4 M : Type u_5 Mβ‚‚ : Type u_6 M₃ : Type u_7 ΞΉ : Type u_8 inst✝⁢ : AddCommMonoid M inst✝⁡ : AddCommMonoid Mβ‚‚ F : Type u_9 inst✝⁴ : AddMonoidHomClass F M Mβ‚‚ f : F R : Type u_10 S : Type u_11 inst✝³ : DivisionSemiring R inst✝² : DivisionSemiring S inst✝¹ : Module R M inst✝ : Module S Mβ‚‚ n : β„• hR : ↑n = 0 hS : ¬↑n = 0 ⊒ βˆ€ (y : M), ↑f y = 0 [PROOFSTEP] intro x [GOAL] case neg Ξ± : Type u_1 R✝ : Type u_2 k : Type u_3 S✝ : Type u_4 M : Type u_5 Mβ‚‚ : Type u_6 M₃ : Type u_7 ΞΉ : Type u_8 inst✝⁢ : AddCommMonoid M inst✝⁡ : AddCommMonoid Mβ‚‚ F : Type u_9 inst✝⁴ : AddMonoidHomClass F M Mβ‚‚ f : F R : Type u_10 S : Type u_11 inst✝³ : DivisionSemiring R inst✝² : DivisionSemiring S inst✝¹ : Module R M inst✝ : Module S Mβ‚‚ n : β„• hR : ↑n = 0 hS : ¬↑n = 0 x : M ⊒ ↑f x = 0 [PROOFSTEP] rw [← inv_smul_smulβ‚€ hS (f x), ← map_nat_cast_smul f R S] [GOAL] case neg Ξ± : Type u_1 R✝ : Type u_2 k : Type u_3 S✝ : Type u_4 M : Type u_5 Mβ‚‚ : Type u_6 M₃ : Type u_7 ΞΉ : Type u_8 inst✝⁢ : AddCommMonoid M inst✝⁡ : AddCommMonoid Mβ‚‚ F : Type u_9 inst✝⁴ : AddMonoidHomClass F M Mβ‚‚ f : F R : Type u_10 S : Type u_11 inst✝³ : DivisionSemiring R inst✝² : DivisionSemiring S inst✝¹ : Module R M inst✝ : Module S Mβ‚‚ n : β„• hR : ↑n = 0 hS : ¬↑n = 0 x : M ⊒ (↑n)⁻¹ β€’ ↑f (↑n β€’ x) = 0 [PROOFSTEP] simp [hR, map_zero f] [GOAL] case pos Ξ± : Type u_1 R✝ : Type u_2 k : Type u_3 S✝ : Type u_4 M : Type u_5 Mβ‚‚ : Type u_6 M₃ : Type u_7 ΞΉ : Type u_8 inst✝⁢ : AddCommMonoid M inst✝⁡ : AddCommMonoid Mβ‚‚ F : Type u_9 inst✝⁴ : AddMonoidHomClass F M Mβ‚‚ f : F R : Type u_10 S : Type u_11 inst✝³ : DivisionSemiring R inst✝² : DivisionSemiring S inst✝¹ : Module R M inst✝ : Module S Mβ‚‚ n : β„• x : M hR : ¬↑n = 0 hS : ↑n = 0 ⊒ ↑f ((↑n)⁻¹ β€’ x) = (↑n)⁻¹ β€’ ↑f x [PROOFSTEP] suffices βˆ€ y, f y = 0 by simp [this] [GOAL] Ξ± : Type u_1 R✝ : Type u_2 k : Type u_3 S✝ : Type u_4 M : Type u_5 Mβ‚‚ : Type u_6 M₃ : Type u_7 ΞΉ : Type u_8 inst✝⁢ : AddCommMonoid M inst✝⁡ : AddCommMonoid Mβ‚‚ F : Type u_9 inst✝⁴ : AddMonoidHomClass F M Mβ‚‚ f : F R : Type u_10 S : Type u_11 inst✝³ : DivisionSemiring R inst✝² : DivisionSemiring S inst✝¹ : Module R M inst✝ : Module S Mβ‚‚ n : β„• x : M hR : ¬↑n = 0 hS : ↑n = 0 this : βˆ€ (y : M), ↑f y = 0 ⊒ ↑f ((↑n)⁻¹ β€’ x) = (↑n)⁻¹ β€’ ↑f x [PROOFSTEP] simp [this] [GOAL] case pos Ξ± : Type u_1 R✝ : Type u_2 k : Type u_3 S✝ : Type u_4 M : Type u_5 Mβ‚‚ : Type u_6 M₃ : Type u_7 ΞΉ : Type u_8 inst✝⁢ : AddCommMonoid M inst✝⁡ : AddCommMonoid Mβ‚‚ F : Type u_9 inst✝⁴ : AddMonoidHomClass F M Mβ‚‚ f : F R : Type u_10 S : Type u_11 inst✝³ : DivisionSemiring R inst✝² : DivisionSemiring S inst✝¹ : Module R M inst✝ : Module S Mβ‚‚ n : β„• x : M hR : ¬↑n = 0 hS : ↑n = 0 ⊒ βˆ€ (y : M), ↑f y = 0 [PROOFSTEP] clear x [GOAL] case pos Ξ± : Type u_1 R✝ : Type u_2 k : Type u_3 S✝ : Type u_4 M : Type u_5 Mβ‚‚ : Type u_6 M₃ : Type u_7 ΞΉ : Type u_8 inst✝⁢ : AddCommMonoid M inst✝⁡ : AddCommMonoid Mβ‚‚ F : Type u_9 inst✝⁴ : AddMonoidHomClass F M Mβ‚‚ f : F R : Type u_10 S : Type u_11 inst✝³ : DivisionSemiring R inst✝² : DivisionSemiring S inst✝¹ : Module R M inst✝ : Module S Mβ‚‚ n : β„• hR : ¬↑n = 0 hS : ↑n = 0 ⊒ βˆ€ (y : M), ↑f y = 0 [PROOFSTEP] intro x [GOAL] case pos Ξ± : Type u_1 R✝ : Type u_2 k : Type u_3 S✝ : Type u_4 M : Type u_5 Mβ‚‚ : Type u_6 M₃ : Type u_7 ΞΉ : Type u_8 inst✝⁢ : AddCommMonoid M inst✝⁡ : AddCommMonoid Mβ‚‚ F : Type u_9 inst✝⁴ : AddMonoidHomClass F M Mβ‚‚ f : F R : Type u_10 S : Type u_11 inst✝³ : DivisionSemiring R inst✝² : DivisionSemiring S inst✝¹ : Module R M inst✝ : Module S Mβ‚‚ n : β„• hR : ¬↑n = 0 hS : ↑n = 0 x : M ⊒ ↑f x = 0 [PROOFSTEP] rw [← smul_inv_smulβ‚€ hR x, map_nat_cast_smul f R S, hS, zero_smul] [GOAL] case neg Ξ± : Type u_1 R✝ : Type u_2 k : Type u_3 S✝ : Type u_4 M : Type u_5 Mβ‚‚ : Type u_6 M₃ : Type u_7 ΞΉ : Type u_8 inst✝⁢ : AddCommMonoid M inst✝⁡ : AddCommMonoid Mβ‚‚ F : Type u_9 inst✝⁴ : AddMonoidHomClass F M Mβ‚‚ f : F R : Type u_10 S : Type u_11 inst✝³ : DivisionSemiring R inst✝² : DivisionSemiring S inst✝¹ : Module R M inst✝ : Module S Mβ‚‚ n : β„• x : M hR : ¬↑n = 0 hS : ¬↑n = 0 ⊒ ↑f ((↑n)⁻¹ β€’ x) = (↑n)⁻¹ β€’ ↑f x [PROOFSTEP] rw [← inv_smul_smulβ‚€ hS (f _), ← map_nat_cast_smul f R S, smul_inv_smulβ‚€ hR] [GOAL] Ξ± : Type u_1 R✝ : Type u_2 k : Type u_3 S✝ : Type u_4 M : Type u_5 Mβ‚‚ : Type u_6 M₃ : Type u_7 ΞΉ : Type u_8 inst✝⁢ : AddCommGroup M inst✝⁡ : AddCommGroup Mβ‚‚ F : Type u_9 inst✝⁴ : AddMonoidHomClass F M Mβ‚‚ f : F R : Type u_10 S : Type u_11 inst✝³ : DivisionRing R inst✝² : DivisionRing S inst✝¹ : Module R M inst✝ : Module S Mβ‚‚ z : β„€ x : M ⊒ ↑f ((↑z)⁻¹ β€’ x) = (↑z)⁻¹ β€’ ↑f x [PROOFSTEP] obtain ⟨n, rfl | rfl⟩ := z.eq_nat_or_neg [GOAL] case intro.inl Ξ± : Type u_1 R✝ : Type u_2 k : Type u_3 S✝ : Type u_4 M : Type u_5 Mβ‚‚ : Type u_6 M₃ : Type u_7 ΞΉ : Type u_8 inst✝⁢ : AddCommGroup M inst✝⁡ : AddCommGroup Mβ‚‚ F : Type u_9 inst✝⁴ : AddMonoidHomClass F M Mβ‚‚ f : F R : Type u_10 S : Type u_11 inst✝³ : DivisionRing R inst✝² : DivisionRing S inst✝¹ : Module R M inst✝ : Module S Mβ‚‚ x : M n : β„• ⊒ ↑f ((↑↑n)⁻¹ β€’ x) = (↑↑n)⁻¹ β€’ ↑f x [PROOFSTEP] rw [Int.cast_Nat_cast, Int.cast_Nat_cast, map_inv_nat_cast_smul _ R S] [GOAL] case intro.inr Ξ± : Type u_1 R✝ : Type u_2 k : Type u_3 S✝ : Type u_4 M : Type u_5 Mβ‚‚ : Type u_6 M₃ : Type u_7 ΞΉ : Type u_8 inst✝⁢ : AddCommGroup M inst✝⁡ : AddCommGroup Mβ‚‚ F : Type u_9 inst✝⁴ : AddMonoidHomClass F M Mβ‚‚ f : F R : Type u_10 S : Type u_11 inst✝³ : DivisionRing R inst✝² : DivisionRing S inst✝¹ : Module R M inst✝ : Module S Mβ‚‚ x : M n : β„• ⊒ ↑f ((↑(-↑n))⁻¹ β€’ x) = (↑(-↑n))⁻¹ β€’ ↑f x [PROOFSTEP] simp_rw [Int.cast_neg, Int.cast_Nat_cast, inv_neg, neg_smul, map_neg, map_inv_nat_cast_smul _ R S] [GOAL] Ξ± : Type u_1 R✝ : Type u_2 k : Type u_3 S✝ : Type u_4 M : Type u_5 Mβ‚‚ : Type u_6 M₃ : Type u_7 ΞΉ : Type u_8 inst✝⁢ : AddCommGroup M inst✝⁡ : AddCommGroup Mβ‚‚ F : Type u_9 inst✝⁴ : AddMonoidHomClass F M Mβ‚‚ f : F R : Type u_10 S : Type u_11 inst✝³ : DivisionRing R inst✝² : DivisionRing S inst✝¹ : Module R M inst✝ : Module S Mβ‚‚ c : β„š x : M ⊒ ↑f (↑c β€’ x) = ↑c β€’ ↑f x [PROOFSTEP] rw [Rat.cast_def, Rat.cast_def, div_eq_mul_inv, div_eq_mul_inv, mul_smul, mul_smul, map_int_cast_smul f R S, map_inv_nat_cast_smul f R S] [GOAL] Ξ± : Type u_1 R✝ : Type u_2 k : Type u_3 S : Type u_4 M✝ : Type u_5 Mβ‚‚ : Type u_6 M₃ : Type u_7 ΞΉ : Type u_8 R : Type u_9 M : Type u_10 N : Type u_11 inst✝⁡ : Zero R inst✝⁴ : Zero M inst✝³ : Zero N inst✝² : SMul R M inst✝¹ : SMul R N inst✝ : NoZeroSMulDivisors R N f : M β†’ N hf : Injective f h0 : f 0 = 0 hs : βˆ€ (c : R) (x : M), f (c β€’ x) = c β€’ f x x✝¹ : R x✝ : M h : x✝¹ β€’ x✝ = 0 ⊒ x✝¹ β€’ f x✝ = 0 [PROOFSTEP] rw [← hs, h, h0] [GOAL] Ξ± : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 Mβ‚‚ : Type u_6 M₃ : Type u_7 ΞΉ : Type u_8 inst✝³ : Zero R inst✝² : Zero M inst✝¹ : SMulWithZero R M inst✝ : NoZeroSMulDivisors R M c : R x : M ⊒ c β€’ x β‰  0 ↔ c β‰  0 ∧ x β‰  0 [PROOFSTEP] rw [Ne.def, smul_eq_zero, not_or] [GOAL] Ξ± : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 Mβ‚‚ : Type u_6 M₃ : Type u_7 ΞΉ : Type u_8 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : NoZeroSMulDivisors R M inst✝ : CharZero R ⊒ βˆ€ {c : β„•} {x : M}, c β€’ x = 0 β†’ c = 0 ∨ x = 0 [PROOFSTEP] intro c x [GOAL] Ξ± : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 Mβ‚‚ : Type u_6 M₃ : Type u_7 ΞΉ : Type u_8 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : NoZeroSMulDivisors R M inst✝ : CharZero R c : β„• x : M ⊒ c β€’ x = 0 β†’ c = 0 ∨ x = 0 [PROOFSTEP] rw [nsmul_eq_smul_cast R, smul_eq_zero] [GOAL] Ξ± : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 Mβ‚‚ : Type u_6 M₃ : Type u_7 ΞΉ : Type u_8 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : NoZeroSMulDivisors R M inst✝ : CharZero R c : β„• x : M ⊒ ↑c = 0 ∨ x = 0 β†’ c = 0 ∨ x = 0 [PROOFSTEP] simp [GOAL] Ξ± : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 Mβ‚‚ : Type u_6 M₃ : Type u_7 ΞΉ : Type u_8 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : NoZeroSMulDivisors R M inst✝ : CharZero R v : M ⊒ 2 β€’ v = 0 ↔ v = 0 [PROOFSTEP] haveI := Nat.noZeroSMulDivisors R M [GOAL] Ξ± : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 Mβ‚‚ : Type u_6 M₃ : Type u_7 ΞΉ : Type u_8 inst✝⁴ : Semiring R inst✝³ : AddCommMonoid M inst✝² : Module R M inst✝¹ : NoZeroSMulDivisors R M inst✝ : CharZero R v : M this : NoZeroSMulDivisors β„• M ⊒ 2 β€’ v = 0 ↔ v = 0 [PROOFSTEP] simp [smul_eq_zero] [GOAL] Ξ± : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M✝ : Type u_5 Mβ‚‚ : Type u_6 M₃ : Type u_7 ΞΉ : Type u_8 inst✝⁡ : Semiring R inst✝⁴ : AddCommMonoid M✝ inst✝³ : Module R M✝ M : Type u_9 inst✝² : AddCommMonoidWithOne M inst✝¹ : CharZero M inst✝ : Module R M ⊒ CharZero R [PROOFSTEP] refine' ⟨fun m n h => @Nat.cast_injective M _ _ _ _ _⟩ [GOAL] Ξ± : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M✝ : Type u_5 Mβ‚‚ : Type u_6 M₃ : Type u_7 ΞΉ : Type u_8 inst✝⁡ : Semiring R inst✝⁴ : AddCommMonoid M✝ inst✝³ : Module R M✝ M : Type u_9 inst✝² : AddCommMonoidWithOne M inst✝¹ : CharZero M inst✝ : Module R M m n : β„• h : ↑m = ↑n ⊒ ↑m = ↑n [PROOFSTEP] rw [← nsmul_one, ← nsmul_one, nsmul_eq_smul_cast R m (1 : M), nsmul_eq_smul_cast R n (1 : M), h] [GOAL] Ξ± : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 Mβ‚‚ : Type u_6 M₃ : Type u_7 ΞΉ : Type u_8 inst✝⁴ : Semiring R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : NoZeroSMulDivisors R M inst✝ : CharZero R v : M ⊒ v = -v ↔ v = 0 [PROOFSTEP] rw [← two_nsmul_eq_zero R M, two_smul, add_eq_zero_iff_eq_neg] [GOAL] Ξ± : Type u_1 R : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 Mβ‚‚ : Type u_6 M₃ : Type u_7 ΞΉ : Type u_8 inst✝⁴ : Semiring R inst✝³ : AddCommGroup M inst✝² : Module R M inst✝¹ : NoZeroSMulDivisors R M inst✝ : CharZero R v : M ⊒ -v = v ↔ v = 0 [PROOFSTEP] rw [eq_comm, self_eq_neg R M] [GOAL] Ξ± : Type u_1 R : Type u_2 k✝ : Type u_3 S : Type u_4 M : Type u_5 Mβ‚‚ : Type u_6 M₃ : Type u_7 ΞΉ : Type u_8 inst✝¹ : AddCommGroup M inst✝ : Module β„š M k : β„€ x : M h : k β€’ x = 0 ⊒ k = 0 ∨ x = 0 [PROOFSTEP] simpa only [zsmul_eq_smul_cast β„š k x, smul_eq_zero, Rat.zero_iff_num_zero] using h [GOAL] Ξ± : Type u_1 R✝ : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 Mβ‚‚ : Type u_6 M₃ : Type u_7 ΞΉ : Type u_8 R : Type u_9 inst✝ : Semiring R m : β„• ⊒ m β€’ 1 = ↑m [PROOFSTEP] rw [nsmul_eq_mul, mul_one] [GOAL] Ξ± : Type u_1 R✝ : Type u_2 k : Type u_3 S : Type u_4 M : Type u_5 Mβ‚‚ : Type u_6 M₃ : Type u_7 ΞΉ : Type u_8 R : Type u_9 inst✝ : Ring R m : β„€ ⊒ m β€’ 1 = ↑m [PROOFSTEP] rw [zsmul_eq_mul, mul_one]
{"mathlib_filename": "Mathlib.Algebra.Module.Basic", "llama_tokens": 16226}
[GOAL] x : PGame ⊒ Numeric x ↔ (βˆ€ (i : LeftMoves x) (j : RightMoves x), moveLeft x i < moveRight x j) ∧ (βˆ€ (i : LeftMoves x), Numeric (moveLeft x i)) ∧ βˆ€ (j : RightMoves x), Numeric (moveRight x j) [PROOFSTEP] cases x [GOAL] case mk α✝ β✝ : Type u_1 a✝¹ : α✝ β†’ PGame a✝ : β✝ β†’ PGame ⊒ Numeric (mk α✝ β✝ a✝¹ a✝) ↔ (βˆ€ (i : LeftMoves (mk α✝ β✝ a✝¹ a✝)) (j : RightMoves (mk α✝ β✝ a✝¹ a✝)), moveLeft (mk α✝ β✝ a✝¹ a✝) i < moveRight (mk α✝ β✝ a✝¹ a✝) j) ∧ (βˆ€ (i : LeftMoves (mk α✝ β✝ a✝¹ a✝)), Numeric (moveLeft (mk α✝ β✝ a✝¹ a✝) i)) ∧ βˆ€ (j : RightMoves (mk α✝ β✝ a✝¹ a✝)), Numeric (moveRight (mk α✝ β✝ a✝¹ a✝) j) [PROOFSTEP] rfl [GOAL] x : PGame o : Numeric x i : LeftMoves x j : RightMoves x ⊒ moveLeft x i < moveRight x j [PROOFSTEP] cases x [GOAL] case mk α✝ β✝ : Type u_1 a✝¹ : α✝ β†’ PGame a✝ : β✝ β†’ PGame o : Numeric (PGame.mk α✝ β✝ a✝¹ a✝) i : LeftMoves (PGame.mk α✝ β✝ a✝¹ a✝) j : RightMoves (PGame.mk α✝ β✝ a✝¹ a✝) ⊒ moveLeft (PGame.mk α✝ β✝ a✝¹ a✝) i < moveRight (PGame.mk α✝ β✝ a✝¹ a✝) j [PROOFSTEP] exact o.1 i j [GOAL] x : PGame o : Numeric x i : LeftMoves x ⊒ Numeric (PGame.moveLeft x i) [PROOFSTEP] cases x [GOAL] case mk α✝ β✝ : Type u_1 a✝¹ : α✝ β†’ PGame a✝ : β✝ β†’ PGame o : Numeric (PGame.mk α✝ β✝ a✝¹ a✝) i : LeftMoves (PGame.mk α✝ β✝ a✝¹ a✝) ⊒ Numeric (PGame.moveLeft (PGame.mk α✝ β✝ a✝¹ a✝) i) [PROOFSTEP] exact o.2.1 i [GOAL] x : PGame o : Numeric x j : RightMoves x ⊒ Numeric (PGame.moveRight x j) [PROOFSTEP] cases x [GOAL] case mk α✝ β✝ : Type u_1 a✝¹ : α✝ β†’ PGame a✝ : β✝ β†’ PGame o : Numeric (PGame.mk α✝ β✝ a✝¹ a✝) j : RightMoves (PGame.mk α✝ β✝ a✝¹ a✝) ⊒ Numeric (PGame.moveRight (PGame.mk α✝ β✝ a✝¹ a✝) j) [PROOFSTEP] exact o.2.2 j [GOAL] x y : PGame r : x ≑r y ox : Numeric x ⊒ Numeric y [PROOFSTEP] induction' x using PGame.moveRecOn with x IHl IHr generalizing y [GOAL] case IH x✝ y✝ : PGame r✝ : x✝ ≑r y✝ ox✝ : Numeric x✝ x : PGame IHl : βˆ€ (i : LeftMoves x) {y : PGame}, PGame.moveLeft x i ≑r y β†’ Numeric (PGame.moveLeft x i) β†’ Numeric y IHr : βˆ€ (j : RightMoves x) {y : PGame}, PGame.moveRight x j ≑r y β†’ Numeric (PGame.moveRight x j) β†’ Numeric y y : PGame r : x ≑r y ox : Numeric x ⊒ Numeric y [PROOFSTEP] apply Numeric.mk (fun i j => ?_) (fun i => ?_) fun j => ?_ [GOAL] x✝ y✝ : PGame r✝ : x✝ ≑r y✝ ox✝ : Numeric x✝ x : PGame IHl : βˆ€ (i : LeftMoves x) {y : PGame}, PGame.moveLeft x i ≑r y β†’ Numeric (PGame.moveLeft x i) β†’ Numeric y IHr : βˆ€ (j : RightMoves x) {y : PGame}, PGame.moveRight x j ≑r y β†’ Numeric (PGame.moveRight x j) β†’ Numeric y y : PGame r : x ≑r y ox : Numeric x i : LeftMoves y j : RightMoves y ⊒ PGame.moveLeft y i < PGame.moveRight y j [PROOFSTEP] rw [← lt_congr (r.moveLeftSymm i).equiv (r.moveRightSymm j).equiv] [GOAL] x✝ y✝ : PGame r✝ : x✝ ≑r y✝ ox✝ : Numeric x✝ x : PGame IHl : βˆ€ (i : LeftMoves x) {y : PGame}, PGame.moveLeft x i ≑r y β†’ Numeric (PGame.moveLeft x i) β†’ Numeric y IHr : βˆ€ (j : RightMoves x) {y : PGame}, PGame.moveRight x j ≑r y β†’ Numeric (PGame.moveRight x j) β†’ Numeric y y : PGame r : x ≑r y ox : Numeric x i : LeftMoves y j : RightMoves y ⊒ PGame.moveLeft x (↑(leftMovesEquiv r).symm i) < PGame.moveRight x (↑(rightMovesEquiv r).symm j) [PROOFSTEP] apply ox.left_lt_right [GOAL] x✝ y✝ : PGame r✝ : x✝ ≑r y✝ ox✝ : Numeric x✝ x : PGame IHl : βˆ€ (i : LeftMoves x) {y : PGame}, PGame.moveLeft x i ≑r y β†’ Numeric (PGame.moveLeft x i) β†’ Numeric y IHr : βˆ€ (j : RightMoves x) {y : PGame}, PGame.moveRight x j ≑r y β†’ Numeric (PGame.moveRight x j) β†’ Numeric y y : PGame r : x ≑r y ox : Numeric x i : LeftMoves y ⊒ Numeric (PGame.moveLeft y i) [PROOFSTEP] exact IHl _ (r.moveLeftSymm i) (ox.moveLeft _) [GOAL] x✝ y✝ : PGame r✝ : x✝ ≑r y✝ ox✝ : Numeric x✝ x : PGame IHl : βˆ€ (i : LeftMoves x) {y : PGame}, PGame.moveLeft x i ≑r y β†’ Numeric (PGame.moveLeft x i) β†’ Numeric y IHr : βˆ€ (j : RightMoves x) {y : PGame}, PGame.moveRight x j ≑r y β†’ Numeric (PGame.moveRight x j) β†’ Numeric y y : PGame r : x ≑r y ox : Numeric x j : RightMoves y ⊒ Numeric (PGame.moveRight y j) [PROOFSTEP] exact IHr _ (r.moveRightSymm j) (ox.moveRight _) [GOAL] x y : PGame ox : Numeric x oy : Numeric y ⊒ x ⧏ y β†’ Β¬y ⧏ x [PROOFSTEP] refine' numeric_rec (C := fun x => βˆ€ z (_oz : Numeric z), x ⧏ z β†’ Β¬z ⧏ x) (fun xl xr xL xR hx _oxl _oxr IHxl IHxr => _) x ox y oy [GOAL] x y : PGame ox : Numeric x oy : Numeric y xl xr : Type u_1 xL : xl β†’ PGame xR : xr β†’ PGame hx : βˆ€ (i : xl) (j : xr), xL i < xR j _oxl : βˆ€ (i : xl), Numeric (xL i) _oxr : βˆ€ (i : xr), Numeric (xR i) IHxl : βˆ€ (i : xl), (fun x => βˆ€ (z : PGame), Numeric z β†’ x ⧏ z β†’ Β¬z ⧏ x) (xL i) IHxr : βˆ€ (i : xr), (fun x => βˆ€ (z : PGame), Numeric z β†’ x ⧏ z β†’ Β¬z ⧏ x) (xR i) ⊒ (fun x => βˆ€ (z : PGame), Numeric z β†’ x ⧏ z β†’ Β¬z ⧏ x) (mk xl xr xL xR) [PROOFSTEP] refine' numeric_rec fun yl yr yL yR hy oyl oyr _IHyl _IHyr => _ [GOAL] x y : PGame ox : Numeric x oy : Numeric y xl xr : Type u_1 xL : xl β†’ PGame xR : xr β†’ PGame hx : βˆ€ (i : xl) (j : xr), xL i < xR j _oxl : βˆ€ (i : xl), Numeric (xL i) _oxr : βˆ€ (i : xr), Numeric (xR i) IHxl : βˆ€ (i : xl), (fun x => βˆ€ (z : PGame), Numeric z β†’ x ⧏ z β†’ Β¬z ⧏ x) (xL i) IHxr : βˆ€ (i : xr), (fun x => βˆ€ (z : PGame), Numeric z β†’ x ⧏ z β†’ Β¬z ⧏ x) (xR i) yl yr : Type u_1 yL : yl β†’ PGame yR : yr β†’ PGame hy : βˆ€ (i : yl) (j : yr), yL i < yR j oyl : βˆ€ (i : yl), Numeric (yL i) oyr : βˆ€ (i : yr), Numeric (yR i) _IHyl : βˆ€ (i : yl), mk xl xr xL xR ⧏ yL i β†’ Β¬yL i ⧏ mk xl xr xL xR _IHyr : βˆ€ (i : yr), mk xl xr xL xR ⧏ yR i β†’ Β¬yR i ⧏ mk xl xr xL xR ⊒ mk xl xr xL xR ⧏ mk yl yr yL yR β†’ Β¬mk yl yr yL yR ⧏ mk xl xr xL xR [PROOFSTEP] rw [mk_lf_mk, mk_lf_mk] [GOAL] x y : PGame ox : Numeric x oy : Numeric y xl xr : Type u_1 xL : xl β†’ PGame xR : xr β†’ PGame hx : βˆ€ (i : xl) (j : xr), xL i < xR j _oxl : βˆ€ (i : xl), Numeric (xL i) _oxr : βˆ€ (i : xr), Numeric (xR i) IHxl : βˆ€ (i : xl), (fun x => βˆ€ (z : PGame), Numeric z β†’ x ⧏ z β†’ Β¬z ⧏ x) (xL i) IHxr : βˆ€ (i : xr), (fun x => βˆ€ (z : PGame), Numeric z β†’ x ⧏ z β†’ Β¬z ⧏ x) (xR i) yl yr : Type u_1 yL : yl β†’ PGame yR : yr β†’ PGame hy : βˆ€ (i : yl) (j : yr), yL i < yR j oyl : βˆ€ (i : yl), Numeric (yL i) oyr : βˆ€ (i : yr), Numeric (yR i) _IHyl : βˆ€ (i : yl), mk xl xr xL xR ⧏ yL i β†’ Β¬yL i ⧏ mk xl xr xL xR _IHyr : βˆ€ (i : yr), mk xl xr xL xR ⧏ yR i β†’ Β¬yR i ⧏ mk xl xr xL xR ⊒ ((βˆƒ i, mk xl xr xL xR ≀ yL i) ∨ βˆƒ j, xR j ≀ mk yl yr yL yR) β†’ Β¬((βˆƒ i, mk yl yr yL yR ≀ xL i) ∨ βˆƒ j, yR j ≀ mk xl xr xL xR) [PROOFSTEP] rintro (⟨i, hβ‚βŸ© | ⟨j, hβ‚βŸ©) (⟨i, hβ‚‚βŸ© | ⟨j, hβ‚‚βŸ©) [GOAL] case inl.intro.inl.intro x y : PGame ox : Numeric x oy : Numeric y xl xr : Type u_1 xL : xl β†’ PGame xR : xr β†’ PGame hx : βˆ€ (i : xl) (j : xr), xL i < xR j _oxl : βˆ€ (i : xl), Numeric (xL i) _oxr : βˆ€ (i : xr), Numeric (xR i) IHxl : βˆ€ (i : xl), (fun x => βˆ€ (z : PGame), Numeric z β†’ x ⧏ z β†’ Β¬z ⧏ x) (xL i) IHxr : βˆ€ (i : xr), (fun x => βˆ€ (z : PGame), Numeric z β†’ x ⧏ z β†’ Β¬z ⧏ x) (xR i) yl yr : Type u_1 yL : yl β†’ PGame yR : yr β†’ PGame hy : βˆ€ (i : yl) (j : yr), yL i < yR j oyl : βˆ€ (i : yl), Numeric (yL i) oyr : βˆ€ (i : yr), Numeric (yR i) _IHyl : βˆ€ (i : yl), mk xl xr xL xR ⧏ yL i β†’ Β¬yL i ⧏ mk xl xr xL xR _IHyr : βˆ€ (i : yr), mk xl xr xL xR ⧏ yR i β†’ Β¬yR i ⧏ mk xl xr xL xR i✝ : yl h₁ : mk xl xr xL xR ≀ yL i✝ i : xl hβ‚‚ : mk yl yr yL yR ≀ xL i ⊒ False [PROOFSTEP] exact IHxl _ _ (oyl _) (h₁.moveLeft_lf _) (hβ‚‚.moveLeft_lf _) [GOAL] case inl.intro.inr.intro x y : PGame ox : Numeric x oy : Numeric y xl xr : Type u_1 xL : xl β†’ PGame xR : xr β†’ PGame hx : βˆ€ (i : xl) (j : xr), xL i < xR j _oxl : βˆ€ (i : xl), Numeric (xL i) _oxr : βˆ€ (i : xr), Numeric (xR i) IHxl : βˆ€ (i : xl), (fun x => βˆ€ (z : PGame), Numeric z β†’ x ⧏ z β†’ Β¬z ⧏ x) (xL i) IHxr : βˆ€ (i : xr), (fun x => βˆ€ (z : PGame), Numeric z β†’ x ⧏ z β†’ Β¬z ⧏ x) (xR i) yl yr : Type u_1 yL : yl β†’ PGame yR : yr β†’ PGame hy : βˆ€ (i : yl) (j : yr), yL i < yR j oyl : βˆ€ (i : yl), Numeric (yL i) oyr : βˆ€ (i : yr), Numeric (yR i) _IHyl : βˆ€ (i : yl), mk xl xr xL xR ⧏ yL i β†’ Β¬yL i ⧏ mk xl xr xL xR _IHyr : βˆ€ (i : yr), mk xl xr xL xR ⧏ yR i β†’ Β¬yR i ⧏ mk xl xr xL xR i : yl h₁ : mk xl xr xL xR ≀ yL i j : yr hβ‚‚ : yR j ≀ mk xl xr xL xR ⊒ False [PROOFSTEP] exact (le_trans hβ‚‚ h₁).not_gf (lf_of_lt (hy _ _)) [GOAL] case inr.intro.inl.intro x y : PGame ox : Numeric x oy : Numeric y xl xr : Type u_1 xL : xl β†’ PGame xR : xr β†’ PGame hx : βˆ€ (i : xl) (j : xr), xL i < xR j _oxl : βˆ€ (i : xl), Numeric (xL i) _oxr : βˆ€ (i : xr), Numeric (xR i) IHxl : βˆ€ (i : xl), (fun x => βˆ€ (z : PGame), Numeric z β†’ x ⧏ z β†’ Β¬z ⧏ x) (xL i) IHxr : βˆ€ (i : xr), (fun x => βˆ€ (z : PGame), Numeric z β†’ x ⧏ z β†’ Β¬z ⧏ x) (xR i) yl yr : Type u_1 yL : yl β†’ PGame yR : yr β†’ PGame hy : βˆ€ (i : yl) (j : yr), yL i < yR j oyl : βˆ€ (i : yl), Numeric (yL i) oyr : βˆ€ (i : yr), Numeric (yR i) _IHyl : βˆ€ (i : yl), mk xl xr xL xR ⧏ yL i β†’ Β¬yL i ⧏ mk xl xr xL xR _IHyr : βˆ€ (i : yr), mk xl xr xL xR ⧏ yR i β†’ Β¬yR i ⧏ mk xl xr xL xR j : xr h₁ : xR j ≀ mk yl yr yL yR i : xl hβ‚‚ : mk yl yr yL yR ≀ xL i ⊒ False [PROOFSTEP] exact (le_trans h₁ hβ‚‚).not_gf (lf_of_lt (hx _ _)) [GOAL] case inr.intro.inr.intro x y : PGame ox : Numeric x oy : Numeric y xl xr : Type u_1 xL : xl β†’ PGame xR : xr β†’ PGame hx : βˆ€ (i : xl) (j : xr), xL i < xR j _oxl : βˆ€ (i : xl), Numeric (xL i) _oxr : βˆ€ (i : xr), Numeric (xR i) IHxl : βˆ€ (i : xl), (fun x => βˆ€ (z : PGame), Numeric z β†’ x ⧏ z β†’ Β¬z ⧏ x) (xL i) IHxr : βˆ€ (i : xr), (fun x => βˆ€ (z : PGame), Numeric z β†’ x ⧏ z β†’ Β¬z ⧏ x) (xR i) yl yr : Type u_1 yL : yl β†’ PGame yR : yr β†’ PGame hy : βˆ€ (i : yl) (j : yr), yL i < yR j oyl : βˆ€ (i : yl), Numeric (yL i) oyr : βˆ€ (i : yr), Numeric (yR i) _IHyl : βˆ€ (i : yl), mk xl xr xL xR ⧏ yL i β†’ Β¬yL i ⧏ mk xl xr xL xR _IHyr : βˆ€ (i : yr), mk xl xr xL xR ⧏ yR i β†’ Β¬yR i ⧏ mk xl xr xL xR j✝ : xr h₁ : xR j✝ ≀ mk yl yr yL yR j : yr hβ‚‚ : yR j ≀ mk xl xr xL xR ⊒ False [PROOFSTEP] exact IHxr _ _ (oyr _) (h₁.lf_moveRight _) (hβ‚‚.lf_moveRight _) [GOAL] x y : PGame ox : Numeric x oy : Numeric y ⊒ x ≀ y ↔ (βˆ€ (i : LeftMoves x), moveLeft x i < y) ∧ βˆ€ (j : RightMoves y), x < moveRight y j [PROOFSTEP] refine' le_iff_forall_lf.trans (and_congr _ _) [GOAL] case refine'_1 x y : PGame ox : Numeric x oy : Numeric y ⊒ (βˆ€ (i : LeftMoves x), moveLeft x i ⧏ y) ↔ βˆ€ (i : LeftMoves x), moveLeft x i < y [PROOFSTEP] refine' forall_congr' fun i => lf_iff_lt _ _ [GOAL] case refine'_2 x y : PGame ox : Numeric x oy : Numeric y ⊒ (βˆ€ (j : RightMoves y), x ⧏ moveRight y j) ↔ βˆ€ (j : RightMoves y), x < moveRight y j [PROOFSTEP] refine' forall_congr' fun i => lf_iff_lt _ _ [GOAL] case refine'_1.refine'_1 x y : PGame ox : Numeric x oy : Numeric y i : LeftMoves x ⊒ Numeric (moveLeft x i) [PROOFSTEP] apply_rules [Numeric.moveLeft, Numeric.moveRight] [GOAL] case refine'_1.refine'_2 x y : PGame ox : Numeric x oy : Numeric y i : LeftMoves x ⊒ Numeric y [PROOFSTEP] apply_rules [Numeric.moveLeft, Numeric.moveRight] [GOAL] case refine'_2.refine'_1 x y : PGame ox : Numeric x oy : Numeric y i : RightMoves y ⊒ Numeric x [PROOFSTEP] apply_rules [Numeric.moveLeft, Numeric.moveRight] [GOAL] case refine'_2.refine'_2 x y : PGame ox : Numeric x oy : Numeric y i : RightMoves y ⊒ Numeric (moveRight y i) [PROOFSTEP] apply_rules [Numeric.moveLeft, Numeric.moveRight] [GOAL] x y : PGame ox : Numeric x oy : Numeric y ⊒ x < y ↔ (βˆƒ i, x ≀ moveLeft y i) ∨ βˆƒ j, moveRight x j ≀ y [PROOFSTEP] rw [← lf_iff_lt ox oy, lf_iff_exists_le] [GOAL] x y : PGame ox : Numeric x oy : Numeric y ⊒ x < y ↔ (βˆƒ i, (βˆ€ (i' : LeftMoves x), moveLeft x i' < moveLeft y i) ∧ βˆ€ (j : RightMoves (moveLeft y i)), x < moveRight (moveLeft y i) j) ∨ βˆƒ j, (βˆ€ (i : LeftMoves (moveRight x j)), moveLeft (moveRight x j) i < y) ∧ βˆ€ (j' : RightMoves y), moveRight x j < moveRight y j' [PROOFSTEP] rw [← lf_iff_lt ox oy, lf_def] [GOAL] x y : PGame ox : Numeric x oy : Numeric y ⊒ ((βˆƒ i, (βˆ€ (i' : LeftMoves x), moveLeft x i' ⧏ moveLeft y i) ∧ βˆ€ (j : RightMoves (moveLeft y i)), x ⧏ moveRight (moveLeft y i) j) ∨ βˆƒ j, (βˆ€ (i : LeftMoves (moveRight x j)), moveLeft (moveRight x j) i ⧏ y) ∧ βˆ€ (j' : RightMoves y), moveRight x j ⧏ moveRight y j') ↔ (βˆƒ i, (βˆ€ (i' : LeftMoves x), moveLeft x i' < moveLeft y i) ∧ βˆ€ (j : RightMoves (moveLeft y i)), x < moveRight (moveLeft y i) j) ∨ βˆƒ j, (βˆ€ (i : LeftMoves (moveRight x j)), moveLeft (moveRight x j) i < y) ∧ βˆ€ (j' : RightMoves y), moveRight x j < moveRight y j' [PROOFSTEP] refine' or_congr _ _ [GOAL] case refine'_1 x y : PGame ox : Numeric x oy : Numeric y ⊒ (βˆƒ i, (βˆ€ (i' : LeftMoves x), moveLeft x i' ⧏ moveLeft y i) ∧ βˆ€ (j : RightMoves (moveLeft y i)), x ⧏ moveRight (moveLeft y i) j) ↔ βˆƒ i, (βˆ€ (i' : LeftMoves x), moveLeft x i' < moveLeft y i) ∧ βˆ€ (j : RightMoves (moveLeft y i)), x < moveRight (moveLeft y i) j [PROOFSTEP] refine' exists_congr fun x_1 => _ [GOAL] case refine'_2 x y : PGame ox : Numeric x oy : Numeric y ⊒ (βˆƒ j, (βˆ€ (i : LeftMoves (moveRight x j)), moveLeft (moveRight x j) i ⧏ y) ∧ βˆ€ (j' : RightMoves y), moveRight x j ⧏ moveRight y j') ↔ βˆƒ j, (βˆ€ (i : LeftMoves (moveRight x j)), moveLeft (moveRight x j) i < y) ∧ βˆ€ (j' : RightMoves y), moveRight x j < moveRight y j' [PROOFSTEP] refine' exists_congr fun x_1 => _ [GOAL] case refine'_1 x y : PGame ox : Numeric x oy : Numeric y x_1 : LeftMoves y ⊒ ((βˆ€ (i' : LeftMoves x), moveLeft x i' ⧏ moveLeft y x_1) ∧ βˆ€ (j : RightMoves (moveLeft y x_1)), x ⧏ moveRight (moveLeft y x_1) j) ↔ (βˆ€ (i' : LeftMoves x), moveLeft x i' < moveLeft y x_1) ∧ βˆ€ (j : RightMoves (moveLeft y x_1)), x < moveRight (moveLeft y x_1) j [PROOFSTEP] refine' and_congr _ _ [GOAL] case refine'_2 x y : PGame ox : Numeric x oy : Numeric y x_1 : RightMoves x ⊒ ((βˆ€ (i : LeftMoves (moveRight x x_1)), moveLeft (moveRight x x_1) i ⧏ y) ∧ βˆ€ (j' : RightMoves y), moveRight x x_1 ⧏ moveRight y j') ↔ (βˆ€ (i : LeftMoves (moveRight x x_1)), moveLeft (moveRight x x_1) i < y) ∧ βˆ€ (j' : RightMoves y), moveRight x x_1 < moveRight y j' [PROOFSTEP] refine' and_congr _ _ [GOAL] case refine'_1.refine'_1 x y : PGame ox : Numeric x oy : Numeric y x_1 : LeftMoves y ⊒ (βˆ€ (i' : LeftMoves x), moveLeft x i' ⧏ moveLeft y x_1) ↔ βˆ€ (i' : LeftMoves x), moveLeft x i' < moveLeft y x_1 [PROOFSTEP] refine' forall_congr' fun i => lf_iff_lt _ _ [GOAL] case refine'_1.refine'_2 x y : PGame ox : Numeric x oy : Numeric y x_1 : LeftMoves y ⊒ (βˆ€ (j : RightMoves (moveLeft y x_1)), x ⧏ moveRight (moveLeft y x_1) j) ↔ βˆ€ (j : RightMoves (moveLeft y x_1)), x < moveRight (moveLeft y x_1) j [PROOFSTEP] refine' forall_congr' fun i => lf_iff_lt _ _ [GOAL] case refine'_2.refine'_1 x y : PGame ox : Numeric x oy : Numeric y x_1 : RightMoves x ⊒ (βˆ€ (i : LeftMoves (moveRight x x_1)), moveLeft (moveRight x x_1) i ⧏ y) ↔ βˆ€ (i : LeftMoves (moveRight x x_1)), moveLeft (moveRight x x_1) i < y [PROOFSTEP] refine' forall_congr' fun i => lf_iff_lt _ _ [GOAL] case refine'_2.refine'_2 x y : PGame ox : Numeric x oy : Numeric y x_1 : RightMoves x ⊒ (βˆ€ (j' : RightMoves y), moveRight x x_1 ⧏ moveRight y j') ↔ βˆ€ (j' : RightMoves y), moveRight x x_1 < moveRight y j' [PROOFSTEP] refine' forall_congr' fun i => lf_iff_lt _ _ [GOAL] case refine'_1.refine'_1.refine'_1 x y : PGame ox : Numeric x oy : Numeric y x_1 : LeftMoves y i : LeftMoves x ⊒ Numeric (moveLeft x i) [PROOFSTEP] apply_rules [Numeric.moveLeft, Numeric.moveRight] [GOAL] case refine'_1.refine'_1.refine'_2 x y : PGame ox : Numeric x oy : Numeric y x_1 : LeftMoves y i : LeftMoves x ⊒ Numeric (moveLeft y x_1) [PROOFSTEP] apply_rules [Numeric.moveLeft, Numeric.moveRight] [GOAL] case refine'_1.refine'_2.refine'_1 x y : PGame ox : Numeric x oy : Numeric y x_1 : LeftMoves y i : RightMoves (moveLeft y x_1) ⊒ Numeric x [PROOFSTEP] apply_rules [Numeric.moveLeft, Numeric.moveRight] [GOAL] case refine'_1.refine'_2.refine'_2 x y : PGame ox : Numeric x oy : Numeric y x_1 : LeftMoves y i : RightMoves (moveLeft y x_1) ⊒ Numeric (moveRight (moveLeft y x_1) i) [PROOFSTEP] apply_rules [Numeric.moveLeft, Numeric.moveRight] [GOAL] case refine'_2.refine'_1.refine'_1 x y : PGame ox : Numeric x oy : Numeric y x_1 : RightMoves x i : LeftMoves (moveRight x x_1) ⊒ Numeric (moveLeft (moveRight x x_1) i) [PROOFSTEP] apply_rules [Numeric.moveLeft, Numeric.moveRight] [GOAL] case refine'_2.refine'_1.refine'_2 x y : PGame ox : Numeric x oy : Numeric y x_1 : RightMoves x i : LeftMoves (moveRight x x_1) ⊒ Numeric y [PROOFSTEP] apply_rules [Numeric.moveLeft, Numeric.moveRight] [GOAL] case refine'_2.refine'_2.refine'_1 x y : PGame ox : Numeric x oy : Numeric y x_1 : RightMoves x i : RightMoves y ⊒ Numeric (moveRight x x_1) [PROOFSTEP] apply_rules [Numeric.moveLeft, Numeric.moveRight] [GOAL] case refine'_2.refine'_2.refine'_2 x y : PGame ox : Numeric x oy : Numeric y x_1 : RightMoves x i : RightMoves y ⊒ Numeric (moveRight y i) [PROOFSTEP] apply_rules [Numeric.moveLeft, Numeric.moveRight] [GOAL] xl xr : Type u_1 xL : xl β†’ PGame xR : xr β†’ PGame yl yr : Type u_1 yL : yl β†’ PGame yR : yr β†’ PGame ox : Numeric (PGame.mk xl xr xL xR) oy : Numeric (PGame.mk yl yr yL yR) ⊒ βˆ€ (i : xl βŠ• yl) (j : xr βŠ• yr), (fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame β†’ PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl βŠ• yl) (xr βŠ• yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xL a)) i (PGame.mk yl yr yL yR)) (fun a => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl βŠ• yl) (xr βŠ• yr) (fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame β†’ PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl βŠ• yl) (xr βŠ• yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xL a)) i y) IHyl t) fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame β†’ PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl βŠ• yl) (xr βŠ• yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xR a)) i y) IHyr t) (yL a)) t) i < (fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame β†’ PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl βŠ• yl) (xr βŠ• yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xR a)) i (PGame.mk yl yr yL yR)) (fun a => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl βŠ• yl) (xr βŠ• yr) (fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame β†’ PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl βŠ• yl) (xr βŠ• yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xL a)) i y) IHyl t) fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame β†’ PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl βŠ• yl) (xr βŠ• yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xR a)) i y) IHyr t) (yR a)) t) j [PROOFSTEP] rintro (ix | iy) (jx | jy) [GOAL] case inl.inl xl xr : Type u_1 xL : xl β†’ PGame xR : xr β†’ PGame yl yr : Type u_1 yL : yl β†’ PGame yR : yr β†’ PGame ox : Numeric (PGame.mk xl xr xL xR) oy : Numeric (PGame.mk yl yr yL yR) ix : xl jx : xr ⊒ (fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame β†’ PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl βŠ• yl) (xr βŠ• yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xL a)) i (PGame.mk yl yr yL yR)) (fun a => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl βŠ• yl) (xr βŠ• yr) (fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame β†’ PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl βŠ• yl) (xr βŠ• yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xL a)) i y) IHyl t) fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame β†’ PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl βŠ• yl) (xr βŠ• yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xR a)) i y) IHyr t) (yL a)) t) (Sum.inl ix) < (fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame β†’ PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl βŠ• yl) (xr βŠ• yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xR a)) i (PGame.mk yl yr yL yR)) (fun a => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl βŠ• yl) (xr βŠ• yr) (fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame β†’ PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl βŠ• yl) (xr βŠ• yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xL a)) i y) IHyl t) fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame β†’ PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl βŠ• yl) (xr βŠ• yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xR a)) i y) IHyr t) (yR a)) t) (Sum.inl jx) [PROOFSTEP] exact add_lt_add_right (ox.1 ix jx) _ [GOAL] case inl.inr xl xr : Type u_1 xL : xl β†’ PGame xR : xr β†’ PGame yl yr : Type u_1 yL : yl β†’ PGame yR : yr β†’ PGame ox : Numeric (PGame.mk xl xr xL xR) oy : Numeric (PGame.mk yl yr yL yR) ix : xl jy : yr ⊒ (fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame β†’ PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl βŠ• yl) (xr βŠ• yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xL a)) i (PGame.mk yl yr yL yR)) (fun a => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl βŠ• yl) (xr βŠ• yr) (fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame β†’ PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl βŠ• yl) (xr βŠ• yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xL a)) i y) IHyl t) fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame β†’ PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl βŠ• yl) (xr βŠ• yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xR a)) i y) IHyr t) (yL a)) t) (Sum.inl ix) < (fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame β†’ PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl βŠ• yl) (xr βŠ• yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xR a)) i (PGame.mk yl yr yL yR)) (fun a => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl βŠ• yl) (xr βŠ• yr) (fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame β†’ PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl βŠ• yl) (xr βŠ• yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xL a)) i y) IHyl t) fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame β†’ PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl βŠ• yl) (xr βŠ• yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xR a)) i y) IHyr t) (yR a)) t) (Sum.inr jy) [PROOFSTEP] exact (add_lf_add_of_lf_of_le (lf_mk _ _ ix) (oy.le_moveRight jy)).lt ((ox.moveLeft ix).add oy) (ox.add (oy.moveRight jy)) [GOAL] case inr.inl xl xr : Type u_1 xL : xl β†’ PGame xR : xr β†’ PGame yl yr : Type u_1 yL : yl β†’ PGame yR : yr β†’ PGame ox : Numeric (PGame.mk xl xr xL xR) oy : Numeric (PGame.mk yl yr yL yR) iy : yl jx : xr ⊒ (fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame β†’ PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl βŠ• yl) (xr βŠ• yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xL a)) i (PGame.mk yl yr yL yR)) (fun a => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl βŠ• yl) (xr βŠ• yr) (fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame β†’ PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl βŠ• yl) (xr βŠ• yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xL a)) i y) IHyl t) fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame β†’ PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl βŠ• yl) (xr βŠ• yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xR a)) i y) IHyr t) (yL a)) t) (Sum.inr iy) < (fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame β†’ PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl βŠ• yl) (xr βŠ• yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xR a)) i (PGame.mk yl yr yL yR)) (fun a => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl βŠ• yl) (xr βŠ• yr) (fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame β†’ PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl βŠ• yl) (xr βŠ• yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xL a)) i y) IHyl t) fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame β†’ PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl βŠ• yl) (xr βŠ• yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xR a)) i y) IHyr t) (yR a)) t) (Sum.inl jx) [PROOFSTEP] exact (add_lf_add_of_lf_of_le (mk_lf _ _ jx) (oy.moveLeft_le iy)).lt (ox.add (oy.moveLeft iy)) ((ox.moveRight jx).add oy) [GOAL] case inr.inr xl xr : Type u_1 xL : xl β†’ PGame xR : xr β†’ PGame yl yr : Type u_1 yL : yl β†’ PGame yR : yr β†’ PGame ox : Numeric (PGame.mk xl xr xL xR) oy : Numeric (PGame.mk yl yr yL yR) iy : yl jy : yr ⊒ (fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame β†’ PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl βŠ• yl) (xr βŠ• yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xL a)) i (PGame.mk yl yr yL yR)) (fun a => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl βŠ• yl) (xr βŠ• yr) (fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame β†’ PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl βŠ• yl) (xr βŠ• yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xL a)) i y) IHyl t) fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame β†’ PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl βŠ• yl) (xr βŠ• yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xR a)) i y) IHyr t) (yL a)) t) (Sum.inr iy) < (fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame β†’ PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl βŠ• yl) (xr βŠ• yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xR a)) i (PGame.mk yl yr yL yR)) (fun a => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl βŠ• yl) (xr βŠ• yr) (fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame β†’ PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl βŠ• yl) (xr βŠ• yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xL a)) i y) IHyl t) fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame β†’ PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl βŠ• yl) (xr βŠ• yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xR a)) i y) IHyr t) (yR a)) t) (Sum.inr jy) [PROOFSTEP] exact add_lt_add_left (oy.1 iy jy) ⟨xl, xr, xL, xR⟩ [GOAL] xl xr : Type u_1 xL : xl β†’ PGame xR : xr β†’ PGame yl yr : Type u_1 yL : yl β†’ PGame yR : yr β†’ PGame ox : Numeric (PGame.mk xl xr xL xR) oy : Numeric (PGame.mk yl yr yL yR) ⊒ (βˆ€ (i : xl βŠ• yl), Numeric ((fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame β†’ PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl βŠ• yl) (xr βŠ• yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xL a)) i (PGame.mk yl yr yL yR)) (fun a => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl βŠ• yl) (xr βŠ• yr) (fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame β†’ PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl βŠ• yl) (xr βŠ• yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xL a)) i y) IHyl t) fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame β†’ PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl βŠ• yl) (xr βŠ• yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xR a)) i y) IHyr t) (yL a)) t) i)) ∧ βˆ€ (j : xr βŠ• yr), Numeric ((fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame β†’ PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl βŠ• yl) (xr βŠ• yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xR a)) i (PGame.mk yl yr yL yR)) (fun a => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl βŠ• yl) (xr βŠ• yr) (fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame β†’ PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl βŠ• yl) (xr βŠ• yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xL a)) i y) IHyl t) fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame β†’ PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl βŠ• yl) (xr βŠ• yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xR a)) i y) IHyr t) (yR a)) t) j) [PROOFSTEP] constructor [GOAL] case left xl xr : Type u_1 xL : xl β†’ PGame xR : xr β†’ PGame yl yr : Type u_1 yL : yl β†’ PGame yR : yr β†’ PGame ox : Numeric (PGame.mk xl xr xL xR) oy : Numeric (PGame.mk yl yr yL yR) ⊒ βˆ€ (i : xl βŠ• yl), Numeric ((fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame β†’ PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl βŠ• yl) (xr βŠ• yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xL a)) i (PGame.mk yl yr yL yR)) (fun a => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl βŠ• yl) (xr βŠ• yr) (fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame β†’ PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl βŠ• yl) (xr βŠ• yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xL a)) i y) IHyl t) fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame β†’ PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl βŠ• yl) (xr βŠ• yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xR a)) i y) IHyr t) (yL a)) t) i) [PROOFSTEP] rintro (ix | iy) [GOAL] case left.inl xl xr : Type u_1 xL : xl β†’ PGame xR : xr β†’ PGame yl yr : Type u_1 yL : yl β†’ PGame yR : yr β†’ PGame ox : Numeric (PGame.mk xl xr xL xR) oy : Numeric (PGame.mk yl yr yL yR) ix : xl ⊒ Numeric ((fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame β†’ PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl βŠ• yl) (xr βŠ• yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xL a)) i (PGame.mk yl yr yL yR)) (fun a => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl βŠ• yl) (xr βŠ• yr) (fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame β†’ PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl βŠ• yl) (xr βŠ• yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xL a)) i y) IHyl t) fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame β†’ PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl βŠ• yl) (xr βŠ• yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xR a)) i y) IHyr t) (yL a)) t) (Sum.inl ix)) [PROOFSTEP] exact (ox.moveLeft ix).add oy [GOAL] case left.inr xl xr : Type u_1 xL : xl β†’ PGame xR : xr β†’ PGame yl yr : Type u_1 yL : yl β†’ PGame yR : yr β†’ PGame ox : Numeric (PGame.mk xl xr xL xR) oy : Numeric (PGame.mk yl yr yL yR) iy : yl ⊒ Numeric ((fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame β†’ PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl βŠ• yl) (xr βŠ• yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xL a)) i (PGame.mk yl yr yL yR)) (fun a => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl βŠ• yl) (xr βŠ• yr) (fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame β†’ PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl βŠ• yl) (xr βŠ• yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xL a)) i y) IHyl t) fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame β†’ PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl βŠ• yl) (xr βŠ• yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xR a)) i y) IHyr t) (yL a)) t) (Sum.inr iy)) [PROOFSTEP] exact ox.add (oy.moveLeft iy) [GOAL] case right xl xr : Type u_1 xL : xl β†’ PGame xR : xr β†’ PGame yl yr : Type u_1 yL : yl β†’ PGame yR : yr β†’ PGame ox : Numeric (PGame.mk xl xr xL xR) oy : Numeric (PGame.mk yl yr yL yR) ⊒ βˆ€ (j : xr βŠ• yr), Numeric ((fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame β†’ PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl βŠ• yl) (xr βŠ• yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xR a)) i (PGame.mk yl yr yL yR)) (fun a => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl βŠ• yl) (xr βŠ• yr) (fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame β†’ PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl βŠ• yl) (xr βŠ• yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xL a)) i y) IHyl t) fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame β†’ PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl βŠ• yl) (xr βŠ• yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xR a)) i y) IHyr t) (yR a)) t) j) [PROOFSTEP] rintro (jx | jy) [GOAL] case right.inl xl xr : Type u_1 xL : xl β†’ PGame xR : xr β†’ PGame yl yr : Type u_1 yL : yl β†’ PGame yR : yr β†’ PGame ox : Numeric (PGame.mk xl xr xL xR) oy : Numeric (PGame.mk yl yr yL yR) jx : xr ⊒ Numeric ((fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame β†’ PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl βŠ• yl) (xr βŠ• yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xR a)) i (PGame.mk yl yr yL yR)) (fun a => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl βŠ• yl) (xr βŠ• yr) (fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame β†’ PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl βŠ• yl) (xr βŠ• yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xL a)) i y) IHyl t) fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame β†’ PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl βŠ• yl) (xr βŠ• yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xR a)) i y) IHyr t) (yR a)) t) (Sum.inl jx)) [PROOFSTEP] apply (ox.moveRight jx).add oy [GOAL] case right.inr xl xr : Type u_1 xL : xl β†’ PGame xR : xr β†’ PGame yl yr : Type u_1 yL : yl β†’ PGame yR : yr β†’ PGame ox : Numeric (PGame.mk xl xr xL xR) oy : Numeric (PGame.mk yl yr yL yR) jy : yr ⊒ Numeric ((fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame β†’ PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl βŠ• yl) (xr βŠ• yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xR a)) i (PGame.mk yl yr yL yR)) (fun a => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl βŠ• yl) (xr βŠ• yr) (fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame β†’ PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl βŠ• yl) (xr βŠ• yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xL a)) i y) IHyl t) fun t => Sum.rec (fun i => (fun a => rec (motive := fun x => PGame β†’ PGame) (fun xl xr a a IHxl IHxr y => rec (fun yl yr yL yR IHyl IHyr => let_fun y := PGame.mk yl yr yL yR; PGame.mk (xl βŠ• yl) (xr βŠ• yr) (fun t => Sum.rec (fun i => IHxl i y) IHyl t) fun t => Sum.rec (fun i => IHxr i y) IHyr t) y) (xR a)) i y) IHyr t) (yR a)) t) (Sum.inr jy)) [PROOFSTEP] apply ox.add (oy.moveRight jy) [GOAL] xl xr : Type u_1 xL : xl β†’ PGame xR : xr β†’ PGame yl yr : Type u_1 yL : yl β†’ PGame yR : yr β†’ PGame ox : Numeric (PGame.mk xl xr xL xR) oy : Numeric (PGame.mk yl yr yL yR) x✝ : βˆ€ (y : (x : PGame) Γ—' (x_1 : PGame) Γ—' (_ : Numeric x) Γ—' Numeric x_1), (invImage (fun a => PSigma.casesOn a fun x snd => PSigma.casesOn snd fun y snd => PSigma.casesOn snd fun x_1 snd => (x, y)) Prod.instWellFoundedRelationProd).1 y { fst := PGame.mk xl xr xL xR, snd := { fst := PGame.mk yl yr yL yR, snd := { fst := ox, snd := oy } } } β†’ Numeric (y.1 + y.2.1) ix : xl ⊒ (invImage (fun a => PSigma.casesOn a fun x snd => PSigma.casesOn snd fun y snd => PSigma.casesOn snd fun x_1 snd => (x, y)) Prod.instWellFoundedRelationProd).1 { fst := PGame.moveLeft (PGame.mk xl xr xL xR) ix, snd := { fst := PGame.mk yl yr yL yR, snd := { fst := (_ : Numeric (PGame.moveLeft (PGame.mk xl xr xL xR) ix)), snd := oy } } } { fst := PGame.mk xl xr xL xR, snd := { fst := PGame.mk yl yr yL yR, snd := { fst := ox, snd := oy } } } [PROOFSTEP] pgame_wf_tac [GOAL] xl xr : Type u_1 xL : xl β†’ PGame xR : xr β†’ PGame yl yr : Type u_1 yL : yl β†’ PGame yR : yr β†’ PGame ox : Numeric (PGame.mk xl xr xL xR) oy : Numeric (PGame.mk yl yr yL yR) x✝ : βˆ€ (y : (x : PGame) Γ—' (x_1 : PGame) Γ—' (_ : Numeric x) Γ—' Numeric x_1), (invImage (fun a => PSigma.casesOn a fun x snd => PSigma.casesOn snd fun y snd => PSigma.casesOn snd fun x_1 snd => (x, y)) Prod.instWellFoundedRelationProd).1 y { fst := PGame.mk xl xr xL xR, snd := { fst := PGame.mk yl yr yL yR, snd := { fst := ox, snd := oy } } } β†’ Numeric (y.1 + y.2.1) jy : yr ⊒ (invImage (fun a => PSigma.casesOn a fun x snd => PSigma.casesOn snd fun y snd => PSigma.casesOn snd fun x_1 snd => (x, y)) Prod.instWellFoundedRelationProd).1 { fst := PGame.mk xl xr xL xR, snd := { fst := PGame.moveRight (PGame.mk yl yr yL yR) jy, snd := { fst := ox, snd := (_ : Numeric (PGame.moveRight (PGame.mk yl yr yL yR) jy)) } } } { fst := PGame.mk xl xr xL xR, snd := { fst := PGame.mk yl yr yL yR, snd := { fst := ox, snd := oy } } } [PROOFSTEP] pgame_wf_tac [GOAL] xl xr : Type u_1 xL : xl β†’ PGame xR : xr β†’ PGame yl yr : Type u_1 yL : yl β†’ PGame yR : yr β†’ PGame ox : Numeric (PGame.mk xl xr xL xR) oy : Numeric (PGame.mk yl yr yL yR) x✝ : βˆ€ (y : (x : PGame) Γ—' (x_1 : PGame) Γ—' (_ : Numeric x) Γ—' Numeric x_1), (invImage (fun a => PSigma.casesOn a fun x snd => PSigma.casesOn snd fun y snd => PSigma.casesOn snd fun x_1 snd => (x, y)) Prod.instWellFoundedRelationProd).1 y { fst := PGame.mk xl xr xL xR, snd := { fst := PGame.mk yl yr yL yR, snd := { fst := ox, snd := oy } } } β†’ Numeric (y.1 + y.2.1) iy : yl ⊒ (invImage (fun a => PSigma.casesOn a fun x snd => PSigma.casesOn snd fun y snd => PSigma.casesOn snd fun x_1 snd => (x, y)) Prod.instWellFoundedRelationProd).1 { fst := PGame.mk xl xr xL xR, snd := { fst := PGame.moveLeft (PGame.mk yl yr yL yR) iy, snd := { fst := ox, snd := (_ : Numeric (PGame.moveLeft (PGame.mk yl yr yL yR) iy)) } } } { fst := PGame.mk xl xr xL xR, snd := { fst := PGame.mk yl yr yL yR, snd := { fst := ox, snd := oy } } } [PROOFSTEP] pgame_wf_tac [GOAL] xl xr : Type u_1 xL : xl β†’ PGame xR : xr β†’ PGame yl yr : Type u_1 yL : yl β†’ PGame yR : yr β†’ PGame ox : Numeric (PGame.mk xl xr xL xR) oy : Numeric (PGame.mk yl yr yL yR) x✝ : βˆ€ (y : (x : PGame) Γ—' (x_1 : PGame) Γ—' (_ : Numeric x) Γ—' Numeric x_1), (invImage (fun a => PSigma.casesOn a fun x snd => PSigma.casesOn snd fun y snd => PSigma.casesOn snd fun x_1 snd => (x, y)) Prod.instWellFoundedRelationProd).1 y { fst := PGame.mk xl xr xL xR, snd := { fst := PGame.mk yl yr yL yR, snd := { fst := ox, snd := oy } } } β†’ Numeric (y.1 + y.2.1) jx : xr ⊒ (invImage (fun a => PSigma.casesOn a fun x snd => PSigma.casesOn snd fun y snd => PSigma.casesOn snd fun x_1 snd => (x, y)) Prod.instWellFoundedRelationProd).1 { fst := PGame.moveRight (PGame.mk xl xr xL xR) jx, snd := { fst := PGame.mk yl yr yL yR, snd := { fst := (_ : Numeric (PGame.moveRight (PGame.mk xl xr xL xR) jx)), snd := oy } } } { fst := PGame.mk xl xr xL xR, snd := { fst := PGame.mk yl yr yL yR, snd := { fst := ox, snd := oy } } } [PROOFSTEP] pgame_wf_tac [GOAL] xl xr : Type u_1 xL : xl β†’ PGame xR : xr β†’ PGame yl yr : Type u_1 yL : yl β†’ PGame yR : yr β†’ PGame ox : Numeric (PGame.mk xl xr xL xR) oy : Numeric (PGame.mk yl yr yL yR) x✝ : βˆ€ (y : (x : PGame) Γ—' (x_1 : PGame) Γ—' (_ : Numeric x) Γ—' Numeric x_1), (invImage (fun a => PSigma.casesOn a fun x snd => PSigma.casesOn snd fun y snd => PSigma.casesOn snd fun x_1 snd => (x, y)) Prod.instWellFoundedRelationProd).1 y { fst := PGame.mk xl xr xL xR, snd := { fst := PGame.mk yl yr yL yR, snd := { fst := ox, snd := oy } } } β†’ Numeric (y.1 + y.2.1) ix : xl ⊒ (invImage (fun a => PSigma.casesOn a fun x snd => PSigma.casesOn snd fun y snd => PSigma.casesOn snd fun x_1 snd => (x, y)) Prod.instWellFoundedRelationProd).1 { fst := PGame.moveLeft (PGame.mk xl xr xL xR) ix, snd := { fst := PGame.mk yl yr yL yR, snd := { fst := (_ : Numeric (PGame.moveLeft (PGame.mk xl xr xL xR) ix)), snd := oy } } } { fst := PGame.mk xl xr xL xR, snd := { fst := PGame.mk yl yr yL yR, snd := { fst := ox, snd := oy } } } [PROOFSTEP] pgame_wf_tac [GOAL] xl xr : Type u_1 xL : xl β†’ PGame xR : xr β†’ PGame yl yr : Type u_1 yL : yl β†’ PGame yR : yr β†’ PGame ox : Numeric (PGame.mk xl xr xL xR) oy : Numeric (PGame.mk yl yr yL yR) x✝ : βˆ€ (y : (x : PGame) Γ—' (x_1 : PGame) Γ—' (_ : Numeric x) Γ—' Numeric x_1), (invImage (fun a => PSigma.casesOn a fun x snd => PSigma.casesOn snd fun y snd => PSigma.casesOn snd fun x_1 snd => (x, y)) Prod.instWellFoundedRelationProd).1 y { fst := PGame.mk xl xr xL xR, snd := { fst := PGame.mk yl yr yL yR, snd := { fst := ox, snd := oy } } } β†’ Numeric (y.1 + y.2.1) iy : yl ⊒ (invImage (fun a => PSigma.casesOn a fun x snd => PSigma.casesOn snd fun y snd => PSigma.casesOn snd fun x_1 snd => (x, y)) Prod.instWellFoundedRelationProd).1 { fst := PGame.mk xl xr xL xR, snd := { fst := yL iy, snd := { fst := ox, snd := (_ : Numeric (PGame.moveLeft (PGame.mk yl yr yL yR) iy)) } } } { fst := PGame.mk xl xr xL xR, snd := { fst := PGame.mk yl yr yL yR, snd := { fst := ox, snd := oy } } } [PROOFSTEP] pgame_wf_tac [GOAL] xl xr : Type u_1 xL : xl β†’ PGame xR : xr β†’ PGame yl yr : Type u_1 yL : yl β†’ PGame yR : yr β†’ PGame ox : Numeric (PGame.mk xl xr xL xR) oy : Numeric (PGame.mk yl yr yL yR) x✝ : βˆ€ (y : (x : PGame) Γ—' (x_1 : PGame) Γ—' (_ : Numeric x) Γ—' Numeric x_1), (invImage (fun a => PSigma.casesOn a fun x snd => PSigma.casesOn snd fun y snd => PSigma.casesOn snd fun x_1 snd => (x, y)) Prod.instWellFoundedRelationProd).1 y { fst := PGame.mk xl xr xL xR, snd := { fst := PGame.mk yl yr yL yR, snd := { fst := ox, snd := oy } } } β†’ Numeric (y.1 + y.2.1) jx : xr ⊒ (invImage (fun a => PSigma.casesOn a fun x snd => PSigma.casesOn snd fun y snd => PSigma.casesOn snd fun x_1 snd => (x, y)) Prod.instWellFoundedRelationProd).1 { fst := PGame.moveRight (PGame.mk xl xr xL xR) jx, snd := { fst := PGame.mk yl yr yL yR, snd := { fst := (_ : Numeric (PGame.moveRight (PGame.mk xl xr xL xR) jx)), snd := oy } } } { fst := PGame.mk xl xr xL xR, snd := { fst := PGame.mk yl yr yL yR, snd := { fst := ox, snd := oy } } } [PROOFSTEP] pgame_wf_tac [GOAL] xl xr : Type u_1 xL : xl β†’ PGame xR : xr β†’ PGame yl yr : Type u_1 yL : yl β†’ PGame yR : yr β†’ PGame ox : Numeric (PGame.mk xl xr xL xR) oy : Numeric (PGame.mk yl yr yL yR) x✝ : βˆ€ (y : (x : PGame) Γ—' (x_1 : PGame) Γ—' (_ : Numeric x) Γ—' Numeric x_1), (invImage (fun a => PSigma.casesOn a fun x snd => PSigma.casesOn snd fun y snd => PSigma.casesOn snd fun x_1 snd => (x, y)) Prod.instWellFoundedRelationProd).1 y { fst := PGame.mk xl xr xL xR, snd := { fst := PGame.mk yl yr yL yR, snd := { fst := ox, snd := oy } } } β†’ Numeric (y.1 + y.2.1) jy : yr ⊒ (invImage (fun a => PSigma.casesOn a fun x snd => PSigma.casesOn snd fun y snd => PSigma.casesOn snd fun x_1 snd => (x, y)) Prod.instWellFoundedRelationProd).1 { fst := PGame.mk xl xr xL xR, snd := { fst := PGame.moveRight (PGame.mk yl yr yL yR) jy, snd := { fst := ox, snd := (_ : Numeric (PGame.moveRight (PGame.mk yl yr yL yR) jy)) } } } { fst := PGame.mk xl xr xL xR, snd := { fst := PGame.mk yl yr yL yR, snd := { fst := ox, snd := oy } } } [PROOFSTEP] pgame_wf_tac [GOAL] o : Ordinal.{u_1} ⊒ Numeric (Ordinal.toPGame o) [PROOFSTEP] induction' o using Ordinal.induction with o IH [GOAL] case h o : Ordinal.{u_1} IH : βˆ€ (k : Ordinal.{u_1}), k < o β†’ Numeric (Ordinal.toPGame k) ⊒ Numeric (Ordinal.toPGame o) [PROOFSTEP] apply numeric_of_isEmpty_rightMoves [GOAL] case h.H o : Ordinal.{u_1} IH : βˆ€ (k : Ordinal.{u_1}), k < o β†’ Numeric (Ordinal.toPGame k) ⊒ βˆ€ (i : LeftMoves (Ordinal.toPGame o)), Numeric (moveLeft (Ordinal.toPGame o) i) [PROOFSTEP] simpa using fun i => IH _ (Ordinal.toLeftMovesToPGame_symm_lt i) [GOAL] ⊒ βˆ€ (a b c : Surreal), a + b + c = a + (b + c) [PROOFSTEP] rintro ⟨_⟩ ⟨_⟩ ⟨_⟩ [GOAL] case mk.mk.mk a✝³ : Surreal a✝² : Subtype Numeric b✝ : Surreal a✝¹ : Subtype Numeric c✝ : Surreal a✝ : Subtype Numeric ⊒ Quot.mk Setoid.r a✝² + Quot.mk Setoid.r a✝¹ + Quot.mk Setoid.r a✝ = Quot.mk Setoid.r a✝² + (Quot.mk Setoid.r a✝¹ + Quot.mk Setoid.r a✝) [PROOFSTEP] exact Quotient.sound add_assoc_equiv [GOAL] ⊒ βˆ€ (a : Surreal), 0 + a = a [PROOFSTEP] rintro ⟨a⟩ [GOAL] case mk a✝ : Surreal a : Subtype Numeric ⊒ 0 + Quot.mk Setoid.r a = Quot.mk Setoid.r a [PROOFSTEP] exact Quotient.sound (zero_add_equiv a) [GOAL] ⊒ βˆ€ (a : Surreal), a + 0 = a [PROOFSTEP] rintro ⟨a⟩ [GOAL] case mk a✝ : Surreal a : Subtype Numeric ⊒ Quot.mk Setoid.r a + 0 = Quot.mk Setoid.r a [PROOFSTEP] exact Quotient.sound (add_zero_equiv a) [GOAL] ⊒ βˆ€ (a : Surreal), -a + a = 0 [PROOFSTEP] rintro ⟨a⟩ [GOAL] case mk a✝ : Surreal a : Subtype Numeric ⊒ -Quot.mk Setoid.r a + Quot.mk Setoid.r a = 0 [PROOFSTEP] exact Quotient.sound (add_left_neg_equiv a) [GOAL] ⊒ βˆ€ (a b : Surreal), a + b = b + a [PROOFSTEP] rintro ⟨_⟩ ⟨_⟩ [GOAL] case mk.mk a✝² : Surreal a✝¹ : Subtype Numeric b✝ : Surreal a✝ : Subtype Numeric ⊒ Quot.mk Setoid.r a✝¹ + Quot.mk Setoid.r a✝ = Quot.mk Setoid.r a✝ + Quot.mk Setoid.r a✝¹ [PROOFSTEP] exact Quotient.sound add_comm_equiv [GOAL] ⊒ βˆ€ (a : Surreal), a ≀ a [PROOFSTEP] rintro ⟨_⟩ [GOAL] case mk a✝¹ : Surreal a✝ : Subtype Numeric ⊒ Quot.mk Setoid.r a✝ ≀ Quot.mk Setoid.r a✝ [PROOFSTEP] apply @le_rfl PGame [GOAL] ⊒ βˆ€ (a b c : Surreal), a ≀ b β†’ b ≀ c β†’ a ≀ c [PROOFSTEP] rintro ⟨_⟩ ⟨_⟩ ⟨_⟩ [GOAL] case mk.mk.mk a✝³ : Surreal a✝² : Subtype Numeric b✝ : Surreal a✝¹ : Subtype Numeric c✝ : Surreal a✝ : Subtype Numeric ⊒ Quot.mk Setoid.r a✝² ≀ Quot.mk Setoid.r a✝¹ β†’ Quot.mk Setoid.r a✝¹ ≀ Quot.mk Setoid.r a✝ β†’ Quot.mk Setoid.r a✝² ≀ Quot.mk Setoid.r a✝ [PROOFSTEP] apply @le_trans PGame [GOAL] ⊒ βˆ€ (a b : Surreal), a < b ↔ a ≀ b ∧ Β¬b ≀ a [PROOFSTEP] rintro ⟨_, ox⟩ ⟨_, oy⟩ [GOAL] case mk.mk.mk.mk a✝ : Surreal val✝¹ : PGame ox : Numeric val✝¹ b✝ : Surreal val✝ : PGame oy : Numeric val✝ ⊒ Quot.mk Setoid.r { val := val✝¹, property := ox } < Quot.mk Setoid.r { val := val✝, property := oy } ↔ Quot.mk Setoid.r { val := val✝¹, property := ox } ≀ Quot.mk Setoid.r { val := val✝, property := oy } ∧ Β¬Quot.mk Setoid.r { val := val✝, property := oy } ≀ Quot.mk Setoid.r { val := val✝¹, property := ox } [PROOFSTEP] apply @lt_iff_le_not_le PGame [GOAL] ⊒ βˆ€ (a b : Surreal), a ≀ b β†’ b ≀ a β†’ a = b [PROOFSTEP] rintro ⟨_⟩ ⟨_⟩ h₁ hβ‚‚ [GOAL] case mk.mk a✝² : Surreal a✝¹ : Subtype Numeric b✝ : Surreal a✝ : Subtype Numeric h₁ : Quot.mk Setoid.r a✝¹ ≀ Quot.mk Setoid.r a✝ hβ‚‚ : Quot.mk Setoid.r a✝ ≀ Quot.mk Setoid.r a✝¹ ⊒ Quot.mk Setoid.r a✝¹ = Quot.mk Setoid.r a✝ [PROOFSTEP] exact Quotient.sound ⟨h₁, hβ‚‚βŸ© [GOAL] ⊒ βˆ€ (a b : Surreal), a ≀ b β†’ βˆ€ (c : Surreal), c + a ≀ c + b [PROOFSTEP] rintro ⟨_⟩ ⟨_⟩ hx ⟨_⟩ [GOAL] case mk.mk.mk a✝³ : Surreal a✝² : Subtype Numeric b✝ : Surreal a✝¹ : Subtype Numeric hx : Quot.mk Setoid.r a✝² ≀ Quot.mk Setoid.r a✝¹ c✝ : Surreal a✝ : Subtype Numeric ⊒ Quot.mk Setoid.r a✝ + Quot.mk Setoid.r a✝² ≀ Quot.mk Setoid.r a✝ + Quot.mk Setoid.r a✝¹ [PROOFSTEP] exact @add_le_add_left PGame _ _ _ _ _ hx _ [GOAL] src✝ : OrderedAddCommGroup Surreal := orderedAddCommGroup ⊒ βˆ€ (a b : Surreal), a ≀ b ∨ b ≀ a [PROOFSTEP] rintro ⟨⟨x, ox⟩⟩ ⟨⟨y, oy⟩⟩ [GOAL] case mk.mk.mk.mk src✝ : OrderedAddCommGroup Surreal := orderedAddCommGroup a✝ : Surreal x : PGame ox : Numeric x b✝ : Surreal y : PGame oy : Numeric y ⊒ Quot.mk Setoid.r { val := x, property := ox } ≀ Quot.mk Setoid.r { val := y, property := oy } ∨ Quot.mk Setoid.r { val := y, property := oy } ≀ Quot.mk Setoid.r { val := x, property := ox } [PROOFSTEP] exact or_iff_not_imp_left.2 fun h => (PGame.not_le.1 h).le oy ox [GOAL] ⊒ βˆ€ (x y : Surreal), ZeroHom.toFun { toFun := lift (fun x x_1 => Quotient.mk setoid x) (_ : βˆ€ {x y : PGame}, Numeric x β†’ Numeric y β†’ PGame.Equiv x y β†’ Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y), map_zero' := (_ : lift (fun x x_1 => Quotient.mk setoid x) (_ : βˆ€ {x y : PGame}, Numeric x β†’ Numeric y β†’ PGame.Equiv x y β†’ Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y) 0 = lift (fun x x_1 => Quotient.mk setoid x) (_ : βˆ€ {x y : PGame}, Numeric x β†’ Numeric y β†’ PGame.Equiv x y β†’ Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y) 0) } (x + y) = ZeroHom.toFun { toFun := lift (fun x x_1 => Quotient.mk setoid x) (_ : βˆ€ {x y : PGame}, Numeric x β†’ Numeric y β†’ PGame.Equiv x y β†’ Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y), map_zero' := (_ : lift (fun x x_1 => Quotient.mk setoid x) (_ : βˆ€ {x y : PGame}, Numeric x β†’ Numeric y β†’ PGame.Equiv x y β†’ Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y) 0 = lift (fun x x_1 => Quotient.mk setoid x) (_ : βˆ€ {x y : PGame}, Numeric x β†’ Numeric y β†’ PGame.Equiv x y β†’ Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y) 0) } x + ZeroHom.toFun { toFun := lift (fun x x_1 => Quotient.mk setoid x) (_ : βˆ€ {x y : PGame}, Numeric x β†’ Numeric y β†’ PGame.Equiv x y β†’ Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y), map_zero' := (_ : lift (fun x x_1 => Quotient.mk setoid x) (_ : βˆ€ {x y : PGame}, Numeric x β†’ Numeric y β†’ PGame.Equiv x y β†’ Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y) 0 = lift (fun x x_1 => Quotient.mk setoid x) (_ : βˆ€ {x y : PGame}, Numeric x β†’ Numeric y β†’ PGame.Equiv x y β†’ Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y) 0) } y [PROOFSTEP] rintro ⟨_, _⟩ ⟨_, _⟩ [GOAL] case mk.mk.mk.mk x✝ : Surreal val✝¹ : PGame property✝¹ : Numeric val✝¹ y✝ : Surreal val✝ : PGame property✝ : Numeric val✝ ⊒ ZeroHom.toFun { toFun := lift (fun x x_1 => Quotient.mk setoid x) (_ : βˆ€ {x y : PGame}, Numeric x β†’ Numeric y β†’ PGame.Equiv x y β†’ Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y), map_zero' := (_ : lift (fun x x_1 => Quotient.mk setoid x) (_ : βˆ€ {x y : PGame}, Numeric x β†’ Numeric y β†’ PGame.Equiv x y β†’ Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y) 0 = lift (fun x x_1 => Quotient.mk setoid x) (_ : βˆ€ {x y : PGame}, Numeric x β†’ Numeric y β†’ PGame.Equiv x y β†’ Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y) 0) } (Quot.mk Setoid.r { val := val✝¹, property := property✝¹ } + Quot.mk Setoid.r { val := val✝, property := property✝ }) = ZeroHom.toFun { toFun := lift (fun x x_1 => Quotient.mk setoid x) (_ : βˆ€ {x y : PGame}, Numeric x β†’ Numeric y β†’ PGame.Equiv x y β†’ Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y), map_zero' := (_ : lift (fun x x_1 => Quotient.mk setoid x) (_ : βˆ€ {x y : PGame}, Numeric x β†’ Numeric y β†’ PGame.Equiv x y β†’ Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y) 0 = lift (fun x x_1 => Quotient.mk setoid x) (_ : βˆ€ {x y : PGame}, Numeric x β†’ Numeric y β†’ PGame.Equiv x y β†’ Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y) 0) } (Quot.mk Setoid.r { val := val✝¹, property := property✝¹ }) + ZeroHom.toFun { toFun := lift (fun x x_1 => Quotient.mk setoid x) (_ : βˆ€ {x y : PGame}, Numeric x β†’ Numeric y β†’ PGame.Equiv x y β†’ Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y), map_zero' := (_ : lift (fun x x_1 => Quotient.mk setoid x) (_ : βˆ€ {x y : PGame}, Numeric x β†’ Numeric y β†’ PGame.Equiv x y β†’ Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y) 0 = lift (fun x x_1 => Quotient.mk setoid x) (_ : βˆ€ {x y : PGame}, Numeric x β†’ Numeric y β†’ PGame.Equiv x y β†’ Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y) 0) } (Quot.mk Setoid.r { val := val✝, property := property✝ }) [PROOFSTEP] rfl [GOAL] ⊒ Monotone (↑{ toZeroHom := { toFun := lift (fun x x_1 => Quotient.mk setoid x) (_ : βˆ€ {x y : PGame}, Numeric x β†’ Numeric y β†’ PGame.Equiv x y β†’ Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y), map_zero' := (_ : lift (fun x x_1 => Quotient.mk setoid x) (_ : βˆ€ {x y : PGame}, Numeric x β†’ Numeric y β†’ PGame.Equiv x y β†’ Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y) 0 = lift (fun x x_1 => Quotient.mk setoid x) (_ : βˆ€ {x y : PGame}, Numeric x β†’ Numeric y β†’ PGame.Equiv x y β†’ Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y) 0) }, map_add' := (_ : βˆ€ (x y : Surreal), ZeroHom.toFun { toFun := lift (fun x x_1 => Quotient.mk setoid x) (_ : βˆ€ {x y : PGame}, Numeric x β†’ Numeric y β†’ PGame.Equiv x y β†’ Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y), map_zero' := (_ : lift (fun x x_1 => Quotient.mk setoid x) (_ : βˆ€ {x y : PGame}, Numeric x β†’ Numeric y β†’ PGame.Equiv x y β†’ Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y) 0 = lift (fun x x_1 => Quotient.mk setoid x) (_ : βˆ€ {x y : PGame}, Numeric x β†’ Numeric y β†’ PGame.Equiv x y β†’ Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y) 0) } (x + y) = ZeroHom.toFun { toFun := lift (fun x x_1 => Quotient.mk setoid x) (_ : βˆ€ {x y : PGame}, Numeric x β†’ Numeric y β†’ PGame.Equiv x y β†’ Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y), map_zero' := (_ : lift (fun x x_1 => Quotient.mk setoid x) (_ : βˆ€ {x y : PGame}, Numeric x β†’ Numeric y β†’ PGame.Equiv x y β†’ Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y) 0 = lift (fun x x_1 => Quotient.mk setoid x) (_ : βˆ€ {x y : PGame}, Numeric x β†’ Numeric y β†’ PGame.Equiv x y β†’ Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y) 0) } x + ZeroHom.toFun { toFun := lift (fun x x_1 => Quotient.mk setoid x) (_ : βˆ€ {x y : PGame}, Numeric x β†’ Numeric y β†’ PGame.Equiv x y β†’ Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y), map_zero' := (_ : lift (fun x x_1 => Quotient.mk setoid x) (_ : βˆ€ {x y : PGame}, Numeric x β†’ Numeric y β†’ PGame.Equiv x y β†’ Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y) 0 = lift (fun x x_1 => Quotient.mk setoid x) (_ : βˆ€ {x y : PGame}, Numeric x β†’ Numeric y β†’ PGame.Equiv x y β†’ Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y) 0) } y) }).toFun [PROOFSTEP] rintro ⟨_, _⟩ ⟨_, _⟩ [GOAL] case mk.mk.mk.mk a✝ : Surreal val✝¹ : PGame property✝¹ : Numeric val✝¹ b✝ : Surreal val✝ : PGame property✝ : Numeric val✝ ⊒ Quot.mk Setoid.r { val := val✝¹, property := property✝¹ } ≀ Quot.mk Setoid.r { val := val✝, property := property✝ } β†’ ZeroHom.toFun (↑{ toZeroHom := { toFun := lift (fun x x_1 => Quotient.mk setoid x) (_ : βˆ€ {x y : PGame}, Numeric x β†’ Numeric y β†’ PGame.Equiv x y β†’ Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y), map_zero' := (_ : lift (fun x x_1 => Quotient.mk setoid x) (_ : βˆ€ {x y : PGame}, Numeric x β†’ Numeric y β†’ PGame.Equiv x y β†’ Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y) 0 = lift (fun x x_1 => Quotient.mk setoid x) (_ : βˆ€ {x y : PGame}, Numeric x β†’ Numeric y β†’ PGame.Equiv x y β†’ Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y) 0) }, map_add' := (_ : βˆ€ (x y : Surreal), ZeroHom.toFun { toFun := lift (fun x x_1 => Quotient.mk setoid x) (_ : βˆ€ {x y : PGame}, Numeric x β†’ Numeric y β†’ PGame.Equiv x y β†’ Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y), map_zero' := (_ : lift (fun x x_1 => Quotient.mk setoid x) (_ : βˆ€ {x y : PGame}, Numeric x β†’ Numeric y β†’ PGame.Equiv x y β†’ Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y) 0 = lift (fun x x_1 => Quotient.mk setoid x) (_ : βˆ€ {x y : PGame}, Numeric x β†’ Numeric y β†’ PGame.Equiv x y β†’ Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y) 0) } (x + y) = ZeroHom.toFun { toFun := lift (fun x x_1 => Quotient.mk setoid x) (_ : βˆ€ {x y : PGame}, Numeric x β†’ Numeric y β†’ PGame.Equiv x y β†’ Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y), map_zero' := (_ : lift (fun x x_1 => Quotient.mk setoid x) (_ : βˆ€ {x y : PGame}, Numeric x β†’ Numeric y β†’ PGame.Equiv x y β†’ Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y) 0 = lift (fun x x_1 => Quotient.mk setoid x) (_ : βˆ€ {x y : PGame}, Numeric x β†’ Numeric y β†’ PGame.Equiv x y β†’ Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y) 0) } x + ZeroHom.toFun { toFun := lift (fun x x_1 => Quotient.mk setoid x) (_ : βˆ€ {x y : PGame}, Numeric x β†’ Numeric y β†’ PGame.Equiv x y β†’ Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y), map_zero' := (_ : lift (fun x x_1 => Quotient.mk setoid x) (_ : βˆ€ {x y : PGame}, Numeric x β†’ Numeric y β†’ PGame.Equiv x y β†’ Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y) 0 = lift (fun x x_1 => Quotient.mk setoid x) (_ : βˆ€ {x y : PGame}, Numeric x β†’ Numeric y β†’ PGame.Equiv x y β†’ Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y) 0) } y) }) (Quot.mk Setoid.r { val := val✝¹, property := property✝¹ }) ≀ ZeroHom.toFun (↑{ toZeroHom := { toFun := lift (fun x x_1 => Quotient.mk setoid x) (_ : βˆ€ {x y : PGame}, Numeric x β†’ Numeric y β†’ PGame.Equiv x y β†’ Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y), map_zero' := (_ : lift (fun x x_1 => Quotient.mk setoid x) (_ : βˆ€ {x y : PGame}, Numeric x β†’ Numeric y β†’ PGame.Equiv x y β†’ Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y) 0 = lift (fun x x_1 => Quotient.mk setoid x) (_ : βˆ€ {x y : PGame}, Numeric x β†’ Numeric y β†’ PGame.Equiv x y β†’ Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y) 0) }, map_add' := (_ : βˆ€ (x y : Surreal), ZeroHom.toFun { toFun := lift (fun x x_1 => Quotient.mk setoid x) (_ : βˆ€ {x y : PGame}, Numeric x β†’ Numeric y β†’ PGame.Equiv x y β†’ Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y), map_zero' := (_ : lift (fun x x_1 => Quotient.mk setoid x) (_ : βˆ€ {x y : PGame}, Numeric x β†’ Numeric y β†’ PGame.Equiv x y β†’ Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y) 0 = lift (fun x x_1 => Quotient.mk setoid x) (_ : βˆ€ {x y : PGame}, Numeric x β†’ Numeric y β†’ PGame.Equiv x y β†’ Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y) 0) } (x + y) = ZeroHom.toFun { toFun := lift (fun x x_1 => Quotient.mk setoid x) (_ : βˆ€ {x y : PGame}, Numeric x β†’ Numeric y β†’ PGame.Equiv x y β†’ Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y), map_zero' := (_ : lift (fun x x_1 => Quotient.mk setoid x) (_ : βˆ€ {x y : PGame}, Numeric x β†’ Numeric y β†’ PGame.Equiv x y β†’ Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y) 0 = lift (fun x x_1 => Quotient.mk setoid x) (_ : βˆ€ {x y : PGame}, Numeric x β†’ Numeric y β†’ PGame.Equiv x y β†’ Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y) 0) } x + ZeroHom.toFun { toFun := lift (fun x x_1 => Quotient.mk setoid x) (_ : βˆ€ {x y : PGame}, Numeric x β†’ Numeric y β†’ PGame.Equiv x y β†’ Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y), map_zero' := (_ : lift (fun x x_1 => Quotient.mk setoid x) (_ : βˆ€ {x y : PGame}, Numeric x β†’ Numeric y β†’ PGame.Equiv x y β†’ Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y) 0 = lift (fun x x_1 => Quotient.mk setoid x) (_ : βˆ€ {x y : PGame}, Numeric x β†’ Numeric y β†’ PGame.Equiv x y β†’ Quot.mk PGame.Equiv x = Quot.mk PGame.Equiv y) 0) } y) }) (Quot.mk Setoid.r { val := val✝, property := property✝ }) [PROOFSTEP] exact id [GOAL] a b : Ordinal.{?u.73448} h : (fun o => Surreal.mk (toPGame o) (_ : Numeric (toPGame o))) a = (fun o => Surreal.mk (toPGame o) (_ : Numeric (toPGame o))) b ⊒ toPGame a β‰ˆ toPGame b [PROOFSTEP] apply Quotient.exact h
{"mathlib_filename": "Mathlib.SetTheory.Surreal.Basic", "llama_tokens": 35676}
[GOAL] p : β„• pp : Prime p m : β„• hm : m ∣ p ⊒ m = 1 ∨ m = p [PROOFSTEP] obtain ⟨n, hn⟩ := hm [GOAL] case intro p : β„• pp : Prime p m n : β„• hn : p = m * n ⊒ m = 1 ∨ m = p [PROOFSTEP] have := pp.isUnit_or_isUnit hn [GOAL] case intro p : β„• pp : Prime p m n : β„• hn : p = m * n this : IsUnit m ∨ IsUnit n ⊒ m = 1 ∨ m = p [PROOFSTEP] rw [Nat.isUnit_iff, Nat.isUnit_iff] at this [GOAL] case intro p : β„• pp : Prime p m n : β„• hn : p = m * n this : m = 1 ∨ n = 1 ⊒ m = 1 ∨ m = p [PROOFSTEP] apply Or.imp_right _ this [GOAL] p : β„• pp : Prime p m n : β„• hn : p = m * n this : m = 1 ∨ n = 1 ⊒ n = 1 β†’ m = p [PROOFSTEP] rintro rfl [GOAL] p : β„• pp : Prime p m : β„• hn : p = m * 1 this : m = 1 ∨ 1 = 1 ⊒ m = p [PROOFSTEP] rw [hn, mul_one] [GOAL] p : β„• ⊒ Prime p ↔ 2 ≀ p ∧ βˆ€ (m : β„•), m ∣ p β†’ m = 1 ∨ m = p [PROOFSTEP] refine' ⟨fun h => ⟨h.two_le, h.eq_one_or_self_of_dvd⟩, fun h => _⟩ -- Porting note: needed to make β„• explicit [GOAL] p : β„• h : 2 ≀ p ∧ βˆ€ (m : β„•), m ∣ p β†’ m = 1 ∨ m = p ⊒ Prime p [PROOFSTEP] have h1 := (@one_lt_two β„• ..).trans_le h.1 [GOAL] p : β„• h : 2 ≀ p ∧ βˆ€ (m : β„•), m ∣ p β†’ m = 1 ∨ m = p h1 : 1 < p ⊒ Prime p [PROOFSTEP] refine' ⟨mt Nat.isUnit_iff.mp h1.ne', fun a b hab => _⟩ [GOAL] p : β„• h : 2 ≀ p ∧ βˆ€ (m : β„•), m ∣ p β†’ m = 1 ∨ m = p h1 : 1 < p a b : β„• hab : p = a * b ⊒ IsUnit a ∨ IsUnit b [PROOFSTEP] simp only [Nat.isUnit_iff] [GOAL] p : β„• h : 2 ≀ p ∧ βˆ€ (m : β„•), m ∣ p β†’ m = 1 ∨ m = p h1 : 1 < p a b : β„• hab : p = a * b ⊒ a = 1 ∨ b = 1 [PROOFSTEP] apply Or.imp_right _ (h.2 a _) [GOAL] p : β„• h : 2 ≀ p ∧ βˆ€ (m : β„•), m ∣ p β†’ m = 1 ∨ m = p h1 : 1 < p a b : β„• hab : p = a * b ⊒ a = p β†’ b = 1 [PROOFSTEP] rintro rfl [GOAL] a b : β„• h : 2 ≀ a ∧ βˆ€ (m : β„•), m ∣ a β†’ m = 1 ∨ m = a h1 : 1 < a hab : a = a * b ⊒ b = 1 [PROOFSTEP] rw [← mul_right_inj' (pos_of_gt h1).ne', ← hab, mul_one] [GOAL] p : β„• h : 2 ≀ p ∧ βˆ€ (m : β„•), m ∣ p β†’ m = 1 ∨ m = p h1 : 1 < p a b : β„• hab : p = a * b ⊒ a ∣ p [PROOFSTEP] rw [hab] [GOAL] p : β„• h : 2 ≀ p ∧ βˆ€ (m : β„•), m ∣ p β†’ m = 1 ∨ m = p h1 : 1 < p a b : β„• hab : p = a * b ⊒ a ∣ a * b [PROOFSTEP] exact dvd_mul_right _ _ [GOAL] p : β„• p2 : 2 ≀ p m : β„• h : m < p β†’ m ∣ p β†’ m = 1 m2 : 2 ≀ m l : m < p d : m ∣ p ⊒ 1 < 2 [PROOFSTEP] decide [GOAL] p : β„• p2 : 2 ≀ p m : β„• h : 2 ≀ m β†’ m < p β†’ Β¬m ∣ p l : m < p d : m ∣ p ⊒ m = 1 [PROOFSTEP] rcases m with (_ | _ | m) [GOAL] case zero p : β„• p2 : 2 ≀ p h : 2 ≀ zero β†’ zero < p β†’ Β¬zero ∣ p l : zero < p d : zero ∣ p ⊒ zero = 1 [PROOFSTEP] rw [eq_zero_of_zero_dvd d] at p2 [GOAL] case zero p : β„• p2 : 2 ≀ 0 h : 2 ≀ zero β†’ zero < p β†’ Β¬zero ∣ p l : zero < p d : zero ∣ p ⊒ zero = 1 [PROOFSTEP] revert p2 [GOAL] case zero p : β„• h : 2 ≀ zero β†’ zero < p β†’ Β¬zero ∣ p l : zero < p d : zero ∣ p ⊒ 2 ≀ 0 β†’ zero = 1 [PROOFSTEP] decide [GOAL] case succ.zero p : β„• p2 : 2 ≀ p h : 2 ≀ succ zero β†’ succ zero < p β†’ Β¬succ zero ∣ p l : succ zero < p d : succ zero ∣ p ⊒ succ zero = 1 [PROOFSTEP] rfl [GOAL] case succ.succ p : β„• p2 : 2 ≀ p m : β„• h : 2 ≀ succ (succ m) β†’ succ (succ m) < p β†’ Β¬succ (succ m) ∣ p l : succ (succ m) < p d : succ (succ m) ∣ p ⊒ succ (succ m) = 1 [PROOFSTEP] exact (h le_add_self l).elim d [GOAL] p : β„• p2 : 2 ≀ p a : βˆ€ (m : β„•), 2 ≀ m β†’ m ≀ sqrt p β†’ Β¬m ∣ p this : βˆ€ {m k : β„•}, m ≀ k β†’ 1 < m β†’ p β‰  m * k m : β„• m2 : 2 ≀ m l : m < p x✝ : m ∣ p k : β„• e : p = m * k ⊒ False [PROOFSTEP] cases' le_total m k with mk km [GOAL] case inl p : β„• p2 : 2 ≀ p a : βˆ€ (m : β„•), 2 ≀ m β†’ m ≀ sqrt p β†’ Β¬m ∣ p this : βˆ€ {m k : β„•}, m ≀ k β†’ 1 < m β†’ p β‰  m * k m : β„• m2 : 2 ≀ m l : m < p x✝ : m ∣ p k : β„• e : p = m * k mk : m ≀ k ⊒ False [PROOFSTEP] exact this mk m2 e [GOAL] case inr p : β„• p2 : 2 ≀ p a : βˆ€ (m : β„•), 2 ≀ m β†’ m ≀ sqrt p β†’ Β¬m ∣ p this : βˆ€ {m k : β„•}, m ≀ k β†’ 1 < m β†’ p β‰  m * k m : β„• m2 : 2 ≀ m l : m < p x✝ : m ∣ p k : β„• e : p = m * k km : k ≀ m ⊒ False [PROOFSTEP] rw [mul_comm] at e [GOAL] case inr p : β„• p2 : 2 ≀ p a : βˆ€ (m : β„•), 2 ≀ m β†’ m ≀ sqrt p β†’ Β¬m ∣ p this : βˆ€ {m k : β„•}, m ≀ k β†’ 1 < m β†’ p β‰  m * k m : β„• m2 : 2 ≀ m l : m < p x✝ : m ∣ p k : β„• e : p = k * m km : k ≀ m ⊒ False [PROOFSTEP] refine' this km (lt_of_mul_lt_mul_right _ (zero_le m)) e [GOAL] case inr p : β„• p2 : 2 ≀ p a : βˆ€ (m : β„•), 2 ≀ m β†’ m ≀ sqrt p β†’ Β¬m ∣ p this : βˆ€ {m k : β„•}, m ≀ k β†’ 1 < m β†’ p β‰  m * k m : β„• m2 : 2 ≀ m l : m < p x✝ : m ∣ p k : β„• e : p = k * m km : k ≀ m ⊒ 1 * m < k * m [PROOFSTEP] rwa [one_mul, ← e] [GOAL] n : β„• h1 : 1 < n h : βˆ€ (m : β„•), m < n β†’ m β‰  0 β†’ coprime n m ⊒ Prime n [PROOFSTEP] refine' prime_def_lt.mpr ⟨h1, fun m mlt mdvd => _⟩ [GOAL] n : β„• h1 : 1 < n h : βˆ€ (m : β„•), m < n β†’ m β‰  0 β†’ coprime n m m : β„• mlt : m < n mdvd : m ∣ n ⊒ m = 1 [PROOFSTEP] have hm : m β‰  0 := by rintro rfl rw [zero_dvd_iff] at mdvd exact mlt.ne' mdvd [GOAL] n : β„• h1 : 1 < n h : βˆ€ (m : β„•), m < n β†’ m β‰  0 β†’ coprime n m m : β„• mlt : m < n mdvd : m ∣ n ⊒ m β‰  0 [PROOFSTEP] rintro rfl [GOAL] n : β„• h1 : 1 < n h : βˆ€ (m : β„•), m < n β†’ m β‰  0 β†’ coprime n m mlt : 0 < n mdvd : 0 ∣ n ⊒ False [PROOFSTEP] rw [zero_dvd_iff] at mdvd [GOAL] n : β„• h1 : 1 < n h : βˆ€ (m : β„•), m < n β†’ m β‰  0 β†’ coprime n m mlt : 0 < n mdvd : n = 0 ⊒ False [PROOFSTEP] exact mlt.ne' mdvd [GOAL] n : β„• h1 : 1 < n h : βˆ€ (m : β„•), m < n β†’ m β‰  0 β†’ coprime n m m : β„• mlt : m < n mdvd : m ∣ n hm : m β‰  0 ⊒ m = 1 [PROOFSTEP] exact (h m mlt hm).symm.eq_one_of_dvd mdvd [GOAL] ⊒ Prime 2 [PROOFSTEP] decide [GOAL] ⊒ Prime 3 [PROOFSTEP] decide [GOAL] p : β„• hp : Prime p h_two : p β‰  2 h_three : p β‰  3 ⊒ 5 ≀ p [PROOFSTEP] by_contra' h [GOAL] p : β„• hp : Prime p h_two : p β‰  2 h_three : p β‰  3 h : p < 5 ⊒ False [PROOFSTEP] revert h_two h_three hp [GOAL] p : β„• h : p < 5 ⊒ Prime p β†’ p β‰  2 β†’ p β‰  3 β†’ False [PROOFSTEP] match p with | 0 => decide | 1 => decide | 2 => decide | 3 => decide | 4 => decide | n + 5 => exact (h.not_le le_add_self).elim [GOAL] p : β„• h : 0 < 5 ⊒ Prime 0 β†’ 0 β‰  2 β†’ 0 β‰  3 β†’ False [PROOFSTEP] decide [GOAL] p : β„• h : 1 < 5 ⊒ Prime 1 β†’ 1 β‰  2 β†’ 1 β‰  3 β†’ False [PROOFSTEP] decide [GOAL] p : β„• h : 2 < 5 ⊒ Prime 2 β†’ 2 β‰  2 β†’ 2 β‰  3 β†’ False [PROOFSTEP] decide [GOAL] p : β„• h : 3 < 5 ⊒ Prime 3 β†’ 3 β‰  2 β†’ 3 β‰  3 β†’ False [PROOFSTEP] decide [GOAL] p : β„• h : 4 < 5 ⊒ Prime 4 β†’ 4 β‰  2 β†’ 4 β‰  3 β†’ False [PROOFSTEP] decide [GOAL] p n : β„• h : n + 5 < 5 ⊒ Prime (n + 5) β†’ n + 5 β‰  2 β†’ n + 5 β‰  3 β†’ False [PROOFSTEP] exact (h.not_le le_add_self).elim [GOAL] a b : β„• a1 : 1 < a b1 : 1 < b h : Prime (a * b) ⊒ a * 1 = a * b [PROOFSTEP] simpa using (dvd_prime_two_le h a1).1 (dvd_mul_right _ _) [GOAL] a b n : β„• h : a * b = n h₁ : 1 < a hβ‚‚ : 1 < b ⊒ Β¬Prime n [PROOFSTEP] rw [← h] [GOAL] a b n : β„• h : a * b = n h₁ : 1 < a hβ‚‚ : 1 < b ⊒ Β¬Prime (a * b) [PROOFSTEP] exact not_prime_mul h₁ hβ‚‚ [GOAL] a b : β„• ⊒ Prime (a * b) ↔ Prime a ∧ b = 1 ∨ Prime b ∧ a = 1 [PROOFSTEP] simp only [iff_self_iff, irreducible_mul_iff, ← irreducible_iff_nat_prime, Nat.isUnit_iff] [GOAL] p a : β„• hp : Prime p a1 : a β‰  1 ⊒ a ∣ p ↔ p = a [PROOFSTEP] refine' ⟨_, by rintro rfl rfl⟩ [GOAL] p a : β„• hp : Prime p a1 : a β‰  1 ⊒ p = a β†’ a ∣ p [PROOFSTEP] rintro rfl [GOAL] p : β„• hp : Prime p a1 : p β‰  1 ⊒ p ∣ p [PROOFSTEP] rfl [GOAL] p a : β„• hp : Prime p a1 : a β‰  1 ⊒ a ∣ p β†’ p = a [PROOFSTEP] rintro ⟨j, rfl⟩ [GOAL] case intro a : β„• a1 : a β‰  1 j : β„• hp : Prime (a * j) ⊒ a * j = a [PROOFSTEP] rcases prime_mul_iff.mp hp with (⟨_, rfl⟩ | ⟨_, rfl⟩) [GOAL] case intro.inl.intro a : β„• a1 : a β‰  1 left✝ : Prime a hp : Prime (a * 1) ⊒ a * 1 = a [PROOFSTEP] exact mul_one _ [GOAL] case intro.inr.intro j : β„• left✝ : Prime j a1 : 1 β‰  1 hp : Prime (1 * j) ⊒ 1 * j = 1 [PROOFSTEP] exact (a1 rfl).elim [GOAL] n k : β„• h : Β¬n < k * k ⊒ 0 < 2 [PROOFSTEP] decide [GOAL] n : β„• n2 : 2 ≀ n x✝ : β„• k : β„• := x✝ i : β„• e : x✝ = 2 * i + 3 a : βˆ€ (m : β„•), 2 ≀ m β†’ m ∣ n β†’ x✝ ≀ m ⊒ Nat.minFacProp n (minFacAux n x✝) [PROOFSTEP] rw [minFacAux] [GOAL] n : β„• n2 : 2 ≀ n x✝ : β„• k : β„• := x✝ i : β„• e : x✝ = 2 * i + 3 a : βˆ€ (m : β„•), 2 ≀ m β†’ m ∣ n β†’ x✝ ≀ m ⊒ Nat.minFacProp n (if h : n < x✝ * x✝ then n else if x✝ ∣ n then x✝ else let_fun this := (_ : sqrt n - x✝ < sqrt n + 2 - x✝); minFacAux n (x✝ + 2)) [PROOFSTEP] by_cases h : n < k * k [GOAL] case pos n : β„• n2 : 2 ≀ n x✝ : β„• k : β„• := x✝ i : β„• e : x✝ = 2 * i + 3 a : βˆ€ (m : β„•), 2 ≀ m β†’ m ∣ n β†’ x✝ ≀ m h : n < k * k ⊒ Nat.minFacProp n (if h : n < x✝ * x✝ then n else if x✝ ∣ n then x✝ else let_fun this := (_ : sqrt n - x✝ < sqrt n + 2 - x✝); minFacAux n (x✝ + 2)) [PROOFSTEP] simp [h] [GOAL] case neg n : β„• n2 : 2 ≀ n x✝ : β„• k : β„• := x✝ i : β„• e : x✝ = 2 * i + 3 a : βˆ€ (m : β„•), 2 ≀ m β†’ m ∣ n β†’ x✝ ≀ m h : Β¬n < k * k ⊒ Nat.minFacProp n (if h : n < x✝ * x✝ then n else if x✝ ∣ n then x✝ else let_fun this := (_ : sqrt n - x✝ < sqrt n + 2 - x✝); minFacAux n (x✝ + 2)) [PROOFSTEP] simp [h] [GOAL] case pos n : β„• n2 : 2 ≀ n x✝ : β„• k : β„• := x✝ i : β„• e : x✝ = 2 * i + 3 a : βˆ€ (m : β„•), 2 ≀ m β†’ m ∣ n β†’ x✝ ≀ m h : n < k * k ⊒ Nat.minFacProp n n [PROOFSTEP] have pp : Prime n := prime_def_le_sqrt.2 ⟨n2, fun m m2 l d => not_lt_of_ge l <| lt_of_lt_of_le (sqrt_lt.2 h) (a m m2 d)⟩ [GOAL] case pos n : β„• n2 : 2 ≀ n x✝ : β„• k : β„• := x✝ i : β„• e : x✝ = 2 * i + 3 a : βˆ€ (m : β„•), 2 ≀ m β†’ m ∣ n β†’ x✝ ≀ m h : n < k * k pp : Prime n ⊒ Nat.minFacProp n n [PROOFSTEP] exact ⟨n2, dvd_rfl, fun m m2 d => le_of_eq ((dvd_prime_two_le pp m2).1 d).symm⟩ [GOAL] case neg n : β„• n2 : 2 ≀ n x✝ : β„• k : β„• := x✝ i : β„• e : x✝ = 2 * i + 3 a : βˆ€ (m : β„•), 2 ≀ m β†’ m ∣ n β†’ x✝ ≀ m h : Β¬n < k * k ⊒ Nat.minFacProp n (if x✝ ∣ n then x✝ else minFacAux n (x✝ + 2)) [PROOFSTEP] have k2 : 2 ≀ k := by subst e apply Nat.le_add_left [GOAL] n : β„• n2 : 2 ≀ n x✝ : β„• k : β„• := x✝ i : β„• e : x✝ = 2 * i + 3 a : βˆ€ (m : β„•), 2 ≀ m β†’ m ∣ n β†’ x✝ ≀ m h : Β¬n < k * k ⊒ 2 ≀ k [PROOFSTEP] subst e [GOAL] n : β„• n2 : 2 ≀ n i : β„• k : β„• := 2 * i + 3 a : βˆ€ (m : β„•), 2 ≀ m β†’ m ∣ n β†’ 2 * i + 3 ≀ m h : Β¬n < k * k ⊒ 2 ≀ k [PROOFSTEP] apply Nat.le_add_left [GOAL] case neg n : β„• n2 : 2 ≀ n x✝ : β„• k : β„• := x✝ i : β„• e : x✝ = 2 * i + 3 a : βˆ€ (m : β„•), 2 ≀ m β†’ m ∣ n β†’ x✝ ≀ m h : Β¬n < k * k k2 : 2 ≀ k ⊒ Nat.minFacProp n (if x✝ ∣ n then x✝ else minFacAux n (x✝ + 2)) [PROOFSTEP] by_cases dk : k ∣ n [GOAL] case pos n : β„• n2 : 2 ≀ n x✝ : β„• k : β„• := x✝ i : β„• e : x✝ = 2 * i + 3 a : βˆ€ (m : β„•), 2 ≀ m β†’ m ∣ n β†’ x✝ ≀ m h : Β¬n < k * k k2 : 2 ≀ k dk : k ∣ n ⊒ Nat.minFacProp n (if x✝ ∣ n then x✝ else minFacAux n (x✝ + 2)) [PROOFSTEP] simp [dk] [GOAL] case neg n : β„• n2 : 2 ≀ n x✝ : β„• k : β„• := x✝ i : β„• e : x✝ = 2 * i + 3 a : βˆ€ (m : β„•), 2 ≀ m β†’ m ∣ n β†’ x✝ ≀ m h : Β¬n < k * k k2 : 2 ≀ k dk : Β¬k ∣ n ⊒ Nat.minFacProp n (if x✝ ∣ n then x✝ else minFacAux n (x✝ + 2)) [PROOFSTEP] simp [dk] [GOAL] case pos n : β„• n2 : 2 ≀ n x✝ : β„• k : β„• := x✝ i : β„• e : x✝ = 2 * i + 3 a : βˆ€ (m : β„•), 2 ≀ m β†’ m ∣ n β†’ x✝ ≀ m h : Β¬n < k * k k2 : 2 ≀ k dk : k ∣ n ⊒ Nat.minFacProp n x✝ [PROOFSTEP] exact ⟨k2, dk, a⟩ [GOAL] case neg n : β„• n2 : 2 ≀ n x✝ : β„• k : β„• := x✝ i : β„• e : x✝ = 2 * i + 3 a : βˆ€ (m : β„•), 2 ≀ m β†’ m ∣ n β†’ x✝ ≀ m h : Β¬n < k * k k2 : 2 ≀ k dk : Β¬k ∣ n ⊒ Nat.minFacProp n (minFacAux n (x✝ + 2)) [PROOFSTEP] refine' have := minFac_lemma n k h minFacAux_has_prop n2 (k + 2) (i + 1) (by simp [e, left_distrib]) fun m m2 d => _ [GOAL] n : β„• n2 : 2 ≀ n x✝ : β„• k : β„• := x✝ i : β„• e : x✝ = 2 * i + 3 a : βˆ€ (m : β„•), 2 ≀ m β†’ m ∣ n β†’ x✝ ≀ m h : Β¬n < k * k k2 : 2 ≀ k dk : Β¬k ∣ n this : sqrt n - k < sqrt n + 2 - k ⊒ k + 2 = 2 * (i + 1) + 3 [PROOFSTEP] simp [e, left_distrib] [GOAL] case neg n : β„• n2 : 2 ≀ n x✝ : β„• k : β„• := x✝ i : β„• e : x✝ = 2 * i + 3 a : βˆ€ (m : β„•), 2 ≀ m β†’ m ∣ n β†’ x✝ ≀ m h : Β¬n < k * k k2 : 2 ≀ k dk : Β¬k ∣ n this : sqrt n - k < sqrt n + 2 - k m : β„• m2 : 2 ≀ m d : m ∣ n ⊒ k + 2 ≀ m [PROOFSTEP] cases' Nat.eq_or_lt_of_le (a m m2 d) with me ml [GOAL] case neg.inl n : β„• n2 : 2 ≀ n x✝ : β„• k : β„• := x✝ i : β„• e : x✝ = 2 * i + 3 a : βˆ€ (m : β„•), 2 ≀ m β†’ m ∣ n β†’ x✝ ≀ m h : Β¬n < k * k k2 : 2 ≀ k dk : Β¬k ∣ n this : sqrt n - k < sqrt n + 2 - k m : β„• m2 : 2 ≀ m d : m ∣ n me : x✝ = m ⊒ k + 2 ≀ m [PROOFSTEP] subst me [GOAL] case neg.inl n : β„• n2 : 2 ≀ n x✝ : β„• k : β„• := x✝ i : β„• e : x✝ = 2 * i + 3 a : βˆ€ (m : β„•), 2 ≀ m β†’ m ∣ n β†’ x✝ ≀ m h : Β¬n < k * k k2 : 2 ≀ k dk : Β¬k ∣ n this : sqrt n - k < sqrt n + 2 - k m2 : 2 ≀ x✝ d : x✝ ∣ n ⊒ k + 2 ≀ x✝ [PROOFSTEP] contradiction [GOAL] case neg.inr n : β„• n2 : 2 ≀ n x✝ : β„• k : β„• := x✝ i : β„• e : x✝ = 2 * i + 3 a : βˆ€ (m : β„•), 2 ≀ m β†’ m ∣ n β†’ x✝ ≀ m h : Β¬n < k * k k2 : 2 ≀ k dk : Β¬k ∣ n this : sqrt n - k < sqrt n + 2 - k m : β„• m2 : 2 ≀ m d : m ∣ n ml : x✝ < m ⊒ k + 2 ≀ m [PROOFSTEP] apply (Nat.eq_or_lt_of_le ml).resolve_left [GOAL] case neg.inr n : β„• n2 : 2 ≀ n x✝ : β„• k : β„• := x✝ i : β„• e : x✝ = 2 * i + 3 a : βˆ€ (m : β„•), 2 ≀ m β†’ m ∣ n β†’ x✝ ≀ m h : Β¬n < k * k k2 : 2 ≀ k dk : Β¬k ∣ n this : sqrt n - k < sqrt n + 2 - k m : β„• m2 : 2 ≀ m d : m ∣ n ml : x✝ < m ⊒ Β¬succ x✝ = m [PROOFSTEP] intro me [GOAL] case neg.inr n : β„• n2 : 2 ≀ n x✝ : β„• k : β„• := x✝ i : β„• e : x✝ = 2 * i + 3 a : βˆ€ (m : β„•), 2 ≀ m β†’ m ∣ n β†’ x✝ ≀ m h : Β¬n < k * k k2 : 2 ≀ k dk : Β¬k ∣ n this : sqrt n - k < sqrt n + 2 - k m : β„• m2 : 2 ≀ m d : m ∣ n ml : x✝ < m me : succ x✝ = m ⊒ False [PROOFSTEP] rw [← me, e] at d [GOAL] case neg.inr n : β„• n2 : 2 ≀ n x✝ : β„• k : β„• := x✝ i : β„• e : x✝ = 2 * i + 3 a : βˆ€ (m : β„•), 2 ≀ m β†’ m ∣ n β†’ x✝ ≀ m h : Β¬n < k * k k2 : 2 ≀ k dk : Β¬k ∣ n this : sqrt n - k < sqrt n + 2 - k m : β„• m2 : 2 ≀ m d : succ (2 * i + 3) ∣ n ml : x✝ < m me : succ x✝ = m ⊒ False [PROOFSTEP] have d' : 2 * (i + 2) ∣ n := d [GOAL] case neg.inr n : β„• n2 : 2 ≀ n x✝ : β„• k : β„• := x✝ i : β„• e : x✝ = 2 * i + 3 a : βˆ€ (m : β„•), 2 ≀ m β†’ m ∣ n β†’ x✝ ≀ m h : Β¬n < k * k k2 : 2 ≀ k dk : Β¬k ∣ n this : sqrt n - k < sqrt n + 2 - k m : β„• m2 : 2 ≀ m d : succ (2 * i + 3) ∣ n ml : x✝ < m me : succ x✝ = m d' : 2 * (i + 2) ∣ n ⊒ False [PROOFSTEP] have := a _ le_rfl (dvd_of_mul_right_dvd d') [GOAL] case neg.inr n : β„• n2 : 2 ≀ n x✝ : β„• k : β„• := x✝ i : β„• e : x✝ = 2 * i + 3 a : βˆ€ (m : β„•), 2 ≀ m β†’ m ∣ n β†’ x✝ ≀ m h : Β¬n < k * k k2 : 2 ≀ k dk : Β¬k ∣ n this✝ : sqrt n - k < sqrt n + 2 - k m : β„• m2 : 2 ≀ m d : succ (2 * i + 3) ∣ n ml : x✝ < m me : succ x✝ = m d' : 2 * (i + 2) ∣ n this : x✝ ≀ 2 ⊒ False [PROOFSTEP] rw [e] at this [GOAL] case neg.inr n : β„• n2 : 2 ≀ n x✝ : β„• k : β„• := x✝ i : β„• e : x✝ = 2 * i + 3 a : βˆ€ (m : β„•), 2 ≀ m β†’ m ∣ n β†’ x✝ ≀ m h : Β¬n < k * k k2 : 2 ≀ k dk : Β¬k ∣ n this✝ : sqrt n - k < sqrt n + 2 - k m : β„• m2 : 2 ≀ m d : succ (2 * i + 3) ∣ n ml : x✝ < m me : succ x✝ = m d' : 2 * (i + 2) ∣ n this : 2 * i + 3 ≀ 2 ⊒ False [PROOFSTEP] exact absurd this (by contradiction) [GOAL] n : β„• n2 : 2 ≀ n x✝ : β„• k : β„• := x✝ i : β„• e : x✝ = 2 * i + 3 a : βˆ€ (m : β„•), 2 ≀ m β†’ m ∣ n β†’ x✝ ≀ m h : Β¬n < k * k k2 : 2 ≀ k dk : Β¬k ∣ n this✝ : sqrt n - k < sqrt n + 2 - k m : β„• m2 : 2 ≀ m d : succ (2 * i + 3) ∣ n ml : x✝ < m me : succ x✝ = m d' : 2 * (i + 2) ∣ n this : 2 * i + 3 ≀ 2 ⊒ Β¬2 * i + 3 ≀ 2 [PROOFSTEP] contradiction [GOAL] n : β„• n1 : n β‰  1 ⊒ Nat.minFacProp n (minFac n) [PROOFSTEP] by_cases n0 : n = 0 [GOAL] case pos n : β„• n1 : n β‰  1 n0 : n = 0 ⊒ Nat.minFacProp n (minFac n) [PROOFSTEP] simp [n0, minFacProp, GE.ge] [GOAL] case neg n : β„• n1 : n β‰  1 n0 : Β¬n = 0 ⊒ Nat.minFacProp n (minFac n) [PROOFSTEP] have n2 : 2 ≀ n := by revert n0 n1 rcases n with (_ | _ | _) <;> simp [succ_le_succ] [GOAL] n : β„• n1 : n β‰  1 n0 : Β¬n = 0 ⊒ 2 ≀ n [PROOFSTEP] revert n0 n1 [GOAL] n : β„• ⊒ n β‰  1 β†’ Β¬n = 0 β†’ 2 ≀ n [PROOFSTEP] rcases n with (_ | _ | _) [GOAL] case zero ⊒ zero β‰  1 β†’ Β¬zero = 0 β†’ 2 ≀ zero [PROOFSTEP] simp [succ_le_succ] [GOAL] case succ.zero ⊒ succ zero β‰  1 β†’ Β¬succ zero = 0 β†’ 2 ≀ succ zero [PROOFSTEP] simp [succ_le_succ] [GOAL] case succ.succ n✝ : β„• ⊒ succ (succ n✝) β‰  1 β†’ Β¬succ (succ n✝) = 0 β†’ 2 ≀ succ (succ n✝) [PROOFSTEP] simp [succ_le_succ] [GOAL] case neg n : β„• n1 : n β‰  1 n0 : Β¬n = 0 n2 : 2 ≀ n ⊒ Nat.minFacProp n (minFac n) [PROOFSTEP] simp [minFac_eq] [GOAL] case neg n : β„• n1 : n β‰  1 n0 : Β¬n = 0 n2 : 2 ≀ n ⊒ Nat.minFacProp n (if 2 ∣ n then 2 else minFacAux n 3) [PROOFSTEP] by_cases d2 : 2 ∣ n [GOAL] case pos n : β„• n1 : n β‰  1 n0 : Β¬n = 0 n2 : 2 ≀ n d2 : 2 ∣ n ⊒ Nat.minFacProp n (if 2 ∣ n then 2 else minFacAux n 3) [PROOFSTEP] simp [d2] [GOAL] case neg n : β„• n1 : n β‰  1 n0 : Β¬n = 0 n2 : 2 ≀ n d2 : Β¬2 ∣ n ⊒ Nat.minFacProp n (if 2 ∣ n then 2 else minFacAux n 3) [PROOFSTEP] simp [d2] [GOAL] case pos n : β„• n1 : n β‰  1 n0 : Β¬n = 0 n2 : 2 ≀ n d2 : 2 ∣ n ⊒ Nat.minFacProp n 2 [PROOFSTEP] exact ⟨le_rfl, d2, fun k k2 _ => k2⟩ [GOAL] case neg n : β„• n1 : n β‰  1 n0 : Β¬n = 0 n2 : 2 ≀ n d2 : Β¬2 ∣ n ⊒ Nat.minFacProp n (minFacAux n 3) [PROOFSTEP] refine' minFacAux_has_prop n2 3 0 rfl fun m m2 d => (Nat.eq_or_lt_of_le m2).resolve_left (mt _ d2) [GOAL] case neg n : β„• n1 : n β‰  1 n0 : Β¬n = 0 n2 : 2 ≀ n d2 : Β¬2 ∣ n m : β„• m2 : 2 ≀ m d : m ∣ n ⊒ 2 = m β†’ 2 ∣ n [PROOFSTEP] exact fun e => e.symm β–Έ d [GOAL] n : β„• n1 : n = 1 ⊒ minFac n ∣ n [PROOFSTEP] simp [n1] [GOAL] n : β„• ⊒ βˆ€ {m : β„•}, 2 ≀ m β†’ m ∣ n β†’ minFac n ≀ m [PROOFSTEP] by_cases n1 : n = 1 <;> [exact fun m2 _ => n1.symm β–Έ le_trans (by decide) m2; apply (minFac_has_prop n1).2.2] [GOAL] n : β„• ⊒ βˆ€ {m : β„•}, 2 ≀ m β†’ m ∣ n β†’ minFac n ≀ m [PROOFSTEP] by_cases n1 : n = 1 [GOAL] case pos n m✝ : β„• n1 : n = 1 ⊒ 2 ≀ m✝ β†’ m✝ ∣ n β†’ minFac n ≀ m✝ [PROOFSTEP] exact fun m2 _ => n1.symm β–Έ le_trans (by decide) m2 [GOAL] n m✝ : β„• n1 : n = 1 m2 : 2 ≀ m✝ x✝ : m✝ ∣ n ⊒ minFac 1 ≀ 2 [PROOFSTEP] decide [GOAL] case neg n m✝ : β„• n1 : Β¬n = 1 ⊒ 2 ≀ m✝ β†’ m✝ ∣ n β†’ minFac n ≀ m✝ [PROOFSTEP] apply (minFac_has_prop n1).2.2 [GOAL] n : β„• ⊒ 0 < minFac n [PROOFSTEP] by_cases n1 : n = 1 <;> [exact n1.symm β–Έ (by decide); exact (minFac_prime n1).pos] [GOAL] n : β„• ⊒ 0 < minFac n [PROOFSTEP] by_cases n1 : n = 1 [GOAL] case pos n : β„• n1 : n = 1 ⊒ 0 < minFac n [PROOFSTEP] exact n1.symm β–Έ (by decide) [GOAL] n : β„• n1 : n = 1 ⊒ 0 < minFac 1 [PROOFSTEP] decide [GOAL] case neg n : β„• n1 : Β¬n = 1 ⊒ 0 < minFac n [PROOFSTEP] exact (minFac_prime n1).pos [GOAL] m n : β„• h : n = 1 ∨ m ≀ minFac n p : β„• pp : Prime p d : p ∣ n ⊒ n = 1 β†’ m ≀ p [PROOFSTEP] rintro rfl [GOAL] m p : β„• pp : Prime p h : 1 = 1 ∨ m ≀ minFac 1 d : p ∣ 1 ⊒ m ≀ p [PROOFSTEP] cases pp.not_dvd_one d [GOAL] m n : β„• h : n = 1 ∨ m ≀ minFac n p : β„• pp : 1 < p d : p ∣ n ⊒ n = 1 β†’ m ≀ p [PROOFSTEP] rintro rfl [GOAL] m p : β„• pp : 1 < p h : 1 = 1 ∨ m ≀ minFac 1 d : p ∣ 1 ⊒ m ≀ p [PROOFSTEP] cases not_le_of_lt pp (le_of_dvd (by decide) d) [GOAL] m p : β„• pp : 1 < p h : 1 = 1 ∨ m ≀ minFac 1 d : p ∣ 1 ⊒ 0 < 1 [PROOFSTEP] decide [GOAL] n : β„• pos : 0 < n np : Β¬Prime n h0 : n = minFac n * 0 ⊒ Β¬0 < n [PROOFSTEP] rw [h0, mul_zero] [GOAL] n : β„• pos : 0 < n np : Β¬Prime n h0 : n = minFac n * 0 ⊒ Β¬0 < 0 [PROOFSTEP] exact by decide [GOAL] n : β„• pos : 0 < n np : Β¬Prime n h0 : n = minFac n * 0 ⊒ Β¬0 < 0 [PROOFSTEP] decide [GOAL] n : β„• pos : 0 < n np : Β¬Prime n h1 : n = minFac n * 1 ⊒ minFac n ≀ n / minFac n [PROOFSTEP] rw [mul_one] at h1 [GOAL] n : β„• pos : 0 < n np : Β¬Prime n h1 : n = minFac n ⊒ minFac n ≀ n / minFac n [PROOFSTEP] rw [prime_def_minFac, not_and_or, ← h1, eq_self_iff_true, _root_.not_true, or_false_iff, not_le] at np [GOAL] n : β„• pos : 0 < n np : n < 2 h1 : n = minFac n ⊒ minFac n ≀ n / minFac n [PROOFSTEP] rw [le_antisymm (le_of_lt_succ np) (succ_le_of_lt pos), minFac_one, Nat.div_one] [GOAL] n : β„• pos : 0 < n np : Β¬Prime n x : β„• hx : n = minFac n * (x + 2) ⊒ minFac n ≀ n / minFac n [PROOFSTEP] conv_rhs => congr rw [hx] [GOAL] n : β„• pos : 0 < n np : Β¬Prime n x : β„• hx : n = minFac n * (x + 2) | n / minFac n [PROOFSTEP] congr rw [hx] [GOAL] n : β„• pos : 0 < n np : Β¬Prime n x : β„• hx : n = minFac n * (x + 2) | n / minFac n [PROOFSTEP] congr rw [hx] [GOAL] n : β„• pos : 0 < n np : Β¬Prime n x : β„• hx : n = minFac n * (x + 2) | n / minFac n [PROOFSTEP] congr [GOAL] case a n : β„• pos : 0 < n np : Β¬Prime n x : β„• hx : n = minFac n * (x + 2) | n case a n : β„• pos : 0 < n np : Β¬Prime n x : β„• hx : n = minFac n * (x + 2) | minFac n [PROOFSTEP] rw [hx] [GOAL] n : β„• pos : 0 < n np : Β¬Prime n x : β„• hx : n = minFac n * (x + 2) ⊒ minFac n ≀ minFac n * (x + 2) / minFac n [PROOFSTEP] rw [Nat.mul_div_cancel_left _ (minFac_pos _)] [GOAL] n : β„• pos : 0 < n np : Β¬Prime n x : β„• hx : n = minFac n * (x + 2) ⊒ minFac n ≀ x + 2 [PROOFSTEP] exact minFac_le_of_dvd (le_add_left 2 x) ⟨minFac n, by rwa [mul_comm]⟩ [GOAL] n : β„• pos : 0 < n np : Β¬Prime n x : β„• hx : n = minFac n * (x + 2) ⊒ n = (x + 2) * minFac n [PROOFSTEP] rwa [mul_comm] [GOAL] n : β„• ⊒ minFac n = 1 ↔ n = 1 [PROOFSTEP] constructor [GOAL] case mp n : β„• ⊒ minFac n = 1 β†’ n = 1 [PROOFSTEP] intro h [GOAL] case mp n : β„• h : minFac n = 1 ⊒ n = 1 [PROOFSTEP] by_contra hn [GOAL] case mp n : β„• h : minFac n = 1 hn : Β¬n = 1 ⊒ False [PROOFSTEP] have := minFac_prime hn [GOAL] case mp n : β„• h : minFac n = 1 hn : Β¬n = 1 this : Prime (minFac n) ⊒ False [PROOFSTEP] rw [h] at this [GOAL] case mp n : β„• h : minFac n = 1 hn : Β¬n = 1 this : Prime 1 ⊒ False [PROOFSTEP] exact not_prime_one this [GOAL] case mpr n : β„• ⊒ n = 1 β†’ minFac n = 1 [PROOFSTEP] rintro rfl [GOAL] case mpr ⊒ minFac 1 = 1 [PROOFSTEP] rfl [GOAL] n : β„• ⊒ minFac n = 2 ↔ 2 ∣ n [PROOFSTEP] constructor [GOAL] case mp n : β„• ⊒ minFac n = 2 β†’ 2 ∣ n [PROOFSTEP] intro h [GOAL] case mp n : β„• h : minFac n = 2 ⊒ 2 ∣ n [PROOFSTEP] rw [← h] [GOAL] case mp n : β„• h : minFac n = 2 ⊒ minFac n ∣ n [PROOFSTEP] exact minFac_dvd n [GOAL] case mpr n : β„• ⊒ 2 ∣ n β†’ minFac n = 2 [PROOFSTEP] intro h [GOAL] case mpr n : β„• h : 2 ∣ n ⊒ minFac n = 2 [PROOFSTEP] have ub := minFac_le_of_dvd (le_refl 2) h [GOAL] case mpr n : β„• h : 2 ∣ n ub : minFac n ≀ 2 ⊒ minFac n = 2 [PROOFSTEP] have lb := minFac_pos n [GOAL] case mpr n : β„• h : 2 ∣ n ub : minFac n ≀ 2 lb : 0 < minFac n ⊒ minFac n = 2 [PROOFSTEP] refine ub.eq_or_lt.resolve_right fun h' => ?_ [GOAL] case mpr n : β„• h : 2 ∣ n ub : minFac n ≀ 2 lb : 0 < minFac n h' : minFac n < 2 ⊒ False [PROOFSTEP] have := le_antisymm (Nat.succ_le_of_lt lb) (lt_succ_iff.mp h') [GOAL] case mpr n : β„• h : 2 ∣ n ub : minFac n ≀ 2 lb : 0 < minFac n h' : minFac n < 2 this : succ 0 = minFac n ⊒ False [PROOFSTEP] rw [eq_comm, Nat.minFac_eq_one_iff] at this [GOAL] case mpr n : β„• h : 2 ∣ n ub : minFac n ≀ 2 lb : 0 < minFac n h' : minFac n < 2 this : n = 1 ⊒ False [PROOFSTEP] subst this [GOAL] case mpr h : 2 ∣ 1 ub : minFac 1 ≀ 2 lb : 0 < minFac 1 h' : minFac 1 < 2 ⊒ False [PROOFSTEP] exact not_lt_of_le (le_of_dvd zero_lt_one h) one_lt_two [GOAL] a b : β„• hdvd : βˆ€ (p : β„•), Prime p β†’ p ∣ a β†’ p * a ∣ b ⊒ a ∣ b [PROOFSTEP] obtain rfl | ha := eq_or_ne a 1 [GOAL] case inl b : β„• hdvd : βˆ€ (p : β„•), Prime p β†’ p ∣ 1 β†’ p * 1 ∣ b ⊒ 1 ∣ b [PROOFSTEP] apply one_dvd [GOAL] case inr a b : β„• hdvd : βˆ€ (p : β„•), Prime p β†’ p ∣ a β†’ p * a ∣ b ha : a β‰  1 ⊒ a ∣ b [PROOFSTEP] obtain ⟨p, hp⟩ := exists_prime_and_dvd ha [GOAL] case inr.intro a b : β„• hdvd : βˆ€ (p : β„•), Prime p β†’ p ∣ a β†’ p * a ∣ b ha : a β‰  1 p : β„• hp : Prime p ∧ p ∣ a ⊒ a ∣ b [PROOFSTEP] exact _root_.trans (dvd_mul_left a p) (hdvd p hp.1 hp.2) [GOAL] ⊒ Β¬BddAbove {p | Prime p} [PROOFSTEP] rw [not_bddAbove_iff] [GOAL] ⊒ βˆ€ (x : β„•), βˆƒ y, y ∈ {p | Prime p} ∧ x < y [PROOFSTEP] intro n [GOAL] n : β„• ⊒ βˆƒ y, y ∈ {p | Prime p} ∧ n < y [PROOFSTEP] obtain ⟨p, hi, hp⟩ := exists_infinite_primes n.succ [GOAL] case intro.intro n p : β„• hi : succ n ≀ p hp : Prime p ⊒ βˆƒ y, y ∈ {p | Prime p} ∧ n < y [PROOFSTEP] exact ⟨p, hp, hi⟩ [GOAL] p : β„• hp : Prime p h : p % 2 = 0 ⊒ Β¬2 = 1 [PROOFSTEP] decide [GOAL] p : β„• hp : Prime p ⊒ Even p ↔ p = 2 [PROOFSTEP] rw [even_iff_two_dvd, prime_dvd_prime_iff_eq prime_two hp, eq_comm] [GOAL] p : β„• hp : Prime p h2 : p β‰  2 n : β„• hn : p = 2 * n + 1 ⊒ p - 1 = n + n [PROOFSTEP] rw [hn, Nat.add_sub_cancel, two_mul] [GOAL] p : β„• inst✝ : Fact (Prime p) ⊒ p % 2 = 1 ↔ p β‰  2 [PROOFSTEP] refine' ⟨fun h hf => _, (Nat.Prime.eq_two_or_odd <| @Fact.out p.Prime _).resolve_left⟩ [GOAL] p : β„• inst✝ : Fact (Prime p) h : p % 2 = 1 hf : p = 2 ⊒ False [PROOFSTEP] rw [hf] at h [GOAL] p : β„• inst✝ : Fact (Prime p) h : 2 % 2 = 1 hf : p = 2 ⊒ False [PROOFSTEP] simp at h [GOAL] m n : β„• H : βˆ€ (k : β„•), Prime k β†’ k ∣ m β†’ Β¬k ∣ n ⊒ coprime m n [PROOFSTEP] rw [coprime_iff_gcd_eq_one] [GOAL] m n : β„• H : βˆ€ (k : β„•), Prime k β†’ k ∣ m β†’ Β¬k ∣ n ⊒ gcd m n = 1 [PROOFSTEP] by_contra g2 [GOAL] m n : β„• H : βˆ€ (k : β„•), Prime k β†’ k ∣ m β†’ Β¬k ∣ n g2 : Β¬gcd m n = 1 ⊒ False [PROOFSTEP] obtain ⟨p, hp, hpdvd⟩ := exists_prime_and_dvd g2 [GOAL] case intro.intro m n : β„• H : βˆ€ (k : β„•), Prime k β†’ k ∣ m β†’ Β¬k ∣ n g2 : Β¬gcd m n = 1 p : β„• hp : Prime p hpdvd : p ∣ gcd m n ⊒ False [PROOFSTEP] apply H p hp [GOAL] case intro.intro.a m n : β„• H : βˆ€ (k : β„•), Prime k β†’ k ∣ m β†’ Β¬k ∣ n g2 : Β¬gcd m n = 1 p : β„• hp : Prime p hpdvd : p ∣ gcd m n ⊒ p ∣ m [PROOFSTEP] apply dvd_trans hpdvd [GOAL] case intro.intro.a m n : β„• H : βˆ€ (k : β„•), Prime k β†’ k ∣ m β†’ Β¬k ∣ n g2 : Β¬gcd m n = 1 p : β„• hp : Prime p hpdvd : p ∣ gcd m n ⊒ p ∣ n [PROOFSTEP] apply dvd_trans hpdvd [GOAL] case intro.intro.a m n : β„• H : βˆ€ (k : β„•), Prime k β†’ k ∣ m β†’ Β¬k ∣ n g2 : Β¬gcd m n = 1 p : β„• hp : Prime p hpdvd : p ∣ gcd m n ⊒ gcd m n ∣ m [PROOFSTEP] exact gcd_dvd_left _ _ [GOAL] case intro.intro.a m n : β„• H : βˆ€ (k : β„•), Prime k β†’ k ∣ m β†’ Β¬k ∣ n g2 : Β¬gcd m n = 1 p : β„• hp : Prime p hpdvd : p ∣ gcd m n ⊒ gcd m n ∣ n [PROOFSTEP] exact gcd_dvd_right _ _ [GOAL] k : β„• ⊒ k + 2 β‰  1 [PROOFSTEP] apply Nat.ne_of_gt [GOAL] case h k : β„• ⊒ 1 < k + 2 [PROOFSTEP] apply Nat.succ_lt_succ [GOAL] case h.a k : β„• ⊒ 0 < k + 1 [PROOFSTEP] apply Nat.zero_lt_succ [GOAL] p n : β„• pp : Prime p co : coprime p n d : p ∣ n ⊒ p ∣ n * 1 [PROOFSTEP] simp [d] [GOAL] m n : β„• ⊒ Β¬coprime m n ↔ βˆƒ p, Prime p ∧ p ∣ m ∧ p ∣ n [PROOFSTEP] apply Iff.intro [GOAL] case mp m n : β„• ⊒ Β¬coprime m n β†’ βˆƒ p, Prime p ∧ p ∣ m ∧ p ∣ n [PROOFSTEP] intro h [GOAL] case mp m n : β„• h : Β¬coprime m n ⊒ βˆƒ p, Prime p ∧ p ∣ m ∧ p ∣ n [PROOFSTEP] exact ⟨minFac (gcd m n), minFac_prime h, (minFac_dvd (gcd m n)).trans (gcd_dvd_left m n), (minFac_dvd (gcd m n)).trans (gcd_dvd_right m n)⟩ [GOAL] case mpr m n : β„• ⊒ (βˆƒ p, Prime p ∧ p ∣ m ∧ p ∣ n) β†’ Β¬coprime m n [PROOFSTEP] intro h [GOAL] case mpr m n : β„• h : βˆƒ p, Prime p ∧ p ∣ m ∧ p ∣ n ⊒ Β¬coprime m n [PROOFSTEP] cases' h with p hp [GOAL] case mpr.intro m n p : β„• hp : Prime p ∧ p ∣ m ∧ p ∣ n ⊒ Β¬coprime m n [PROOFSTEP] apply Nat.not_coprime_of_dvd_of_dvd (Prime.one_lt hp.1) hp.2.1 hp.2.2 [GOAL] p m n : β„• pp : Prime p Hm : Β¬p ∣ m Hn : Β¬p ∣ n ⊒ Β¬(p ∣ m ∨ p ∣ n) [PROOFSTEP] simp [Hm, Hn] [GOAL] p m n : β„• pp : Prime p h : p ∣ m ^ n ⊒ p ∣ m [PROOFSTEP] induction' n with n IH [GOAL] case zero p m n : β„• pp : Prime p h✝ : p ∣ m ^ n h : p ∣ m ^ zero ⊒ p ∣ m [PROOFSTEP] exact pp.not_dvd_one.elim h [GOAL] case succ p m n✝ : β„• pp : Prime p h✝ : p ∣ m ^ n✝ n : β„• IH : p ∣ m ^ n β†’ p ∣ m h : p ∣ m ^ succ n ⊒ p ∣ m [PROOFSTEP] rw [pow_succ] at h [GOAL] case succ p m n✝ : β„• pp : Prime p h✝ : p ∣ m ^ n✝ n : β„• IH : p ∣ m ^ n β†’ p ∣ m h : p ∣ m ^ n * m ⊒ p ∣ m [PROOFSTEP] exact (pp.dvd_mul.1 h).elim IH id [GOAL] p a k : β„• hp : Prime p ⊒ a ^ k = p ↔ a = p ∧ k = 1 [PROOFSTEP] refine' ⟨fun h => _, fun h => by rw [h.1, h.2, pow_one]⟩ [GOAL] p a k : β„• hp : Prime p h : a = p ∧ k = 1 ⊒ a ^ k = p [PROOFSTEP] rw [h.1, h.2, pow_one] [GOAL] p a k : β„• hp : Prime p h : a ^ k = p ⊒ a = p ∧ k = 1 [PROOFSTEP] rw [← h] at hp [GOAL] p a k : β„• hp : Prime (a ^ k) h : a ^ k = p ⊒ a = p ∧ k = 1 [PROOFSTEP] rw [← h, hp.eq_one_of_pow, eq_self_iff_true, and_true_iff, pow_one] [GOAL] n k : β„• hk : k β‰  0 ⊒ minFac (n ^ k) = minFac n [PROOFSTEP] rcases eq_or_ne n 1 with (rfl | hn) [GOAL] case inl k : β„• hk : k β‰  0 ⊒ minFac (1 ^ k) = minFac 1 [PROOFSTEP] simp [GOAL] case inr n k : β„• hk : k β‰  0 hn : n β‰  1 ⊒ minFac (n ^ k) = minFac n [PROOFSTEP] have hnk : n ^ k β‰  1 := fun hk' => hn ((pow_eq_one_iff hk).1 hk') [GOAL] case inr n k : β„• hk : k β‰  0 hn : n β‰  1 hnk : n ^ k β‰  1 ⊒ minFac (n ^ k) = minFac n [PROOFSTEP] apply (minFac_le_of_dvd (minFac_prime hn).two_le ((minFac_dvd n).pow hk)).antisymm [GOAL] case inr n k : β„• hk : k β‰  0 hn : n β‰  1 hnk : n ^ k β‰  1 ⊒ minFac n ≀ minFac (n ^ k) [PROOFSTEP] apply minFac_le_of_dvd (minFac_prime hnk).two_le ((minFac_prime hnk).dvd_of_dvd_pow (minFac_dvd _)) [GOAL] p k : β„• hp : Prime p hk : k β‰  0 ⊒ minFac (p ^ k) = p [PROOFSTEP] rw [Nat.pow_minFac hk, hp.minFac_eq] [GOAL] x y p : β„• hp : Prime p hx : x β‰  1 hy : y β‰  1 ⊒ x * y = p ^ 2 ↔ x = p ∧ y = p [PROOFSTEP] refine' ⟨fun h => _, fun ⟨h₁, hβ‚‚βŸ© => h₁.symm β–Έ hβ‚‚.symm β–Έ (sq _).symm⟩ [GOAL] x y p : β„• hp : Prime p hx : x β‰  1 hy : y β‰  1 h : x * y = p ^ 2 ⊒ x = p ∧ y = p [PROOFSTEP] have pdvdxy : p ∣ x * y := by rw [h]; simp [sq] -- Could be `wlog := hp.dvd_mul.1 pdvdxy using x y`, but that imports more than we want. [GOAL] x y p : β„• hp : Prime p hx : x β‰  1 hy : y β‰  1 h : x * y = p ^ 2 ⊒ p ∣ x * y [PROOFSTEP] rw [h] [GOAL] x y p : β„• hp : Prime p hx : x β‰  1 hy : y β‰  1 h : x * y = p ^ 2 ⊒ p ∣ p ^ 2 [PROOFSTEP] simp [sq] -- Could be `wlog := hp.dvd_mul.1 pdvdxy using x y`, but that imports more than we want. [GOAL] x y p : β„• hp : Prime p hx : x β‰  1 hy : y β‰  1 h : x * y = p ^ 2 pdvdxy : p ∣ x * y ⊒ x = p ∧ y = p [PROOFSTEP] suffices βˆ€ x' y' : β„•, x' β‰  1 β†’ y' β‰  1 β†’ x' * y' = p ^ 2 β†’ p ∣ x' β†’ x' = p ∧ y' = p by obtain hx | hy := hp.dvd_mul.1 pdvdxy <;> [skip; rw [And.comm]] <;> [skip; rw [mul_comm] at h pdvdxy ] <;> apply this <;> assumption [GOAL] x y p : β„• hp : Prime p hx : x β‰  1 hy : y β‰  1 h : x * y = p ^ 2 pdvdxy : p ∣ x * y this : βˆ€ (x' y' : β„•), x' β‰  1 β†’ y' β‰  1 β†’ x' * y' = p ^ 2 β†’ p ∣ x' β†’ x' = p ∧ y' = p ⊒ x = p ∧ y = p [PROOFSTEP] obtain hx | hy := hp.dvd_mul.1 pdvdxy <;> [skip; rw [And.comm]] <;> [skip; rw [mul_comm] at h pdvdxy ] [GOAL] x y p : β„• hp : Prime p hx : x β‰  1 hy : y β‰  1 h : x * y = p ^ 2 pdvdxy : p ∣ x * y this : βˆ€ (x' y' : β„•), x' β‰  1 β†’ y' β‰  1 β†’ x' * y' = p ^ 2 β†’ p ∣ x' β†’ x' = p ∧ y' = p ⊒ x = p ∧ y = p [PROOFSTEP] obtain hx | hy := hp.dvd_mul.1 pdvdxy <;> [skip; rw [And.comm]] [GOAL] x y p : β„• hp : Prime p hx : x β‰  1 hy : y β‰  1 h : x * y = p ^ 2 pdvdxy : p ∣ x * y this : βˆ€ (x' y' : β„•), x' β‰  1 β†’ y' β‰  1 β†’ x' * y' = p ^ 2 β†’ p ∣ x' β†’ x' = p ∧ y' = p ⊒ x = p ∧ y = p [PROOFSTEP] obtain hx | hy := hp.dvd_mul.1 pdvdxy [GOAL] case inl x y p : β„• hp : Prime p hx✝ : x β‰  1 hy : y β‰  1 h : x * y = p ^ 2 pdvdxy : p ∣ x * y this : βˆ€ (x' y' : β„•), x' β‰  1 β†’ y' β‰  1 β†’ x' * y' = p ^ 2 β†’ p ∣ x' β†’ x' = p ∧ y' = p hx : p ∣ x ⊒ x = p ∧ y = p [PROOFSTEP] skip [GOAL] case inr x y p : β„• hp : Prime p hx : x β‰  1 hy✝ : y β‰  1 h : x * y = p ^ 2 pdvdxy : p ∣ x * y this : βˆ€ (x' y' : β„•), x' β‰  1 β†’ y' β‰  1 β†’ x' * y' = p ^ 2 β†’ p ∣ x' β†’ x' = p ∧ y' = p hy : p ∣ y ⊒ x = p ∧ y = p [PROOFSTEP] rw [And.comm] [GOAL] case inl x y p : β„• hp : Prime p hx✝ : x β‰  1 hy : y β‰  1 h : x * y = p ^ 2 pdvdxy : p ∣ x * y this : βˆ€ (x' y' : β„•), x' β‰  1 β†’ y' β‰  1 β†’ x' * y' = p ^ 2 β†’ p ∣ x' β†’ x' = p ∧ y' = p hx : p ∣ x ⊒ x = p ∧ y = p [PROOFSTEP] skip [GOAL] case inr x y p : β„• hp : Prime p hx : x β‰  1 hy✝ : y β‰  1 h : x * y = p ^ 2 pdvdxy : p ∣ x * y this : βˆ€ (x' y' : β„•), x' β‰  1 β†’ y' β‰  1 β†’ x' * y' = p ^ 2 β†’ p ∣ x' β†’ x' = p ∧ y' = p hy : p ∣ y ⊒ y = p ∧ x = p [PROOFSTEP] rw [mul_comm] at h pdvdxy [GOAL] case inl x y p : β„• hp : Prime p hx✝ : x β‰  1 hy : y β‰  1 h : x * y = p ^ 2 pdvdxy : p ∣ x * y this : βˆ€ (x' y' : β„•), x' β‰  1 β†’ y' β‰  1 β†’ x' * y' = p ^ 2 β†’ p ∣ x' β†’ x' = p ∧ y' = p hx : p ∣ x ⊒ x = p ∧ y = p [PROOFSTEP] apply this [GOAL] case inr x y p : β„• hp : Prime p hx : x β‰  1 hy✝ : y β‰  1 h : y * x = p ^ 2 pdvdxy : p ∣ y * x this : βˆ€ (x' y' : β„•), x' β‰  1 β†’ y' β‰  1 β†’ x' * y' = p ^ 2 β†’ p ∣ x' β†’ x' = p ∧ y' = p hy : p ∣ y ⊒ y = p ∧ x = p [PROOFSTEP] apply this [GOAL] case inl.a x y p : β„• hp : Prime p hx✝ : x β‰  1 hy : y β‰  1 h : x * y = p ^ 2 pdvdxy : p ∣ x * y this : βˆ€ (x' y' : β„•), x' β‰  1 β†’ y' β‰  1 β†’ x' * y' = p ^ 2 β†’ p ∣ x' β†’ x' = p ∧ y' = p hx : p ∣ x ⊒ x β‰  1 [PROOFSTEP] assumption [GOAL] case inl.a x y p : β„• hp : Prime p hx✝ : x β‰  1 hy : y β‰  1 h : x * y = p ^ 2 pdvdxy : p ∣ x * y this : βˆ€ (x' y' : β„•), x' β‰  1 β†’ y' β‰  1 β†’ x' * y' = p ^ 2 β†’ p ∣ x' β†’ x' = p ∧ y' = p hx : p ∣ x ⊒ y β‰  1 [PROOFSTEP] assumption [GOAL] case inl.a x y p : β„• hp : Prime p hx✝ : x β‰  1 hy : y β‰  1 h : x * y = p ^ 2 pdvdxy : p ∣ x * y this : βˆ€ (x' y' : β„•), x' β‰  1 β†’ y' β‰  1 β†’ x' * y' = p ^ 2 β†’ p ∣ x' β†’ x' = p ∧ y' = p hx : p ∣ x ⊒ x * y = p ^ 2 [PROOFSTEP] assumption [GOAL] case inl.a x y p : β„• hp : Prime p hx✝ : x β‰  1 hy : y β‰  1 h : x * y = p ^ 2 pdvdxy : p ∣ x * y this : βˆ€ (x' y' : β„•), x' β‰  1 β†’ y' β‰  1 β†’ x' * y' = p ^ 2 β†’ p ∣ x' β†’ x' = p ∧ y' = p hx : p ∣ x ⊒ p ∣ x [PROOFSTEP] assumption [GOAL] case inr.a x y p : β„• hp : Prime p hx : x β‰  1 hy✝ : y β‰  1 h : y * x = p ^ 2 pdvdxy : p ∣ y * x this : βˆ€ (x' y' : β„•), x' β‰  1 β†’ y' β‰  1 β†’ x' * y' = p ^ 2 β†’ p ∣ x' β†’ x' = p ∧ y' = p hy : p ∣ y ⊒ y β‰  1 [PROOFSTEP] assumption [GOAL] case inr.a x y p : β„• hp : Prime p hx : x β‰  1 hy✝ : y β‰  1 h : y * x = p ^ 2 pdvdxy : p ∣ y * x this : βˆ€ (x' y' : β„•), x' β‰  1 β†’ y' β‰  1 β†’ x' * y' = p ^ 2 β†’ p ∣ x' β†’ x' = p ∧ y' = p hy : p ∣ y ⊒ x β‰  1 [PROOFSTEP] assumption [GOAL] case inr.a x y p : β„• hp : Prime p hx : x β‰  1 hy✝ : y β‰  1 h : y * x = p ^ 2 pdvdxy : p ∣ y * x this : βˆ€ (x' y' : β„•), x' β‰  1 β†’ y' β‰  1 β†’ x' * y' = p ^ 2 β†’ p ∣ x' β†’ x' = p ∧ y' = p hy : p ∣ y ⊒ y * x = p ^ 2 [PROOFSTEP] assumption [GOAL] case inr.a x y p : β„• hp : Prime p hx : x β‰  1 hy✝ : y β‰  1 h : y * x = p ^ 2 pdvdxy : p ∣ y * x this : βˆ€ (x' y' : β„•), x' β‰  1 β†’ y' β‰  1 β†’ x' * y' = p ^ 2 β†’ p ∣ x' β†’ x' = p ∧ y' = p hy : p ∣ y ⊒ p ∣ y [PROOFSTEP] assumption [GOAL] x y p : β„• hp : Prime p hx : x β‰  1 hy : y β‰  1 h : x * y = p ^ 2 pdvdxy : p ∣ x * y ⊒ βˆ€ (x' y' : β„•), x' β‰  1 β†’ y' β‰  1 β†’ x' * y' = p ^ 2 β†’ p ∣ x' β†’ x' = p ∧ y' = p [PROOFSTEP] rintro x y hx hy h ⟨a, ha⟩ [GOAL] case intro x✝ y✝ p : β„• hp : Prime p hx✝ : x✝ β‰  1 hy✝ : y✝ β‰  1 h✝ : x✝ * y✝ = p ^ 2 pdvdxy : p ∣ x✝ * y✝ x y : β„• hx : x β‰  1 hy : y β‰  1 h : x * y = p ^ 2 a : β„• ha : x = p * a ⊒ x = p ∧ y = p [PROOFSTEP] have : a ∣ p := ⟨y, by rwa [ha, sq, mul_assoc, mul_right_inj' hp.ne_zero, eq_comm] at h ⟩ [GOAL] x✝ y✝ p : β„• hp : Prime p hx✝ : x✝ β‰  1 hy✝ : y✝ β‰  1 h✝ : x✝ * y✝ = p ^ 2 pdvdxy : p ∣ x✝ * y✝ x y : β„• hx : x β‰  1 hy : y β‰  1 h : x * y = p ^ 2 a : β„• ha : x = p * a ⊒ p = a * y [PROOFSTEP] rwa [ha, sq, mul_assoc, mul_right_inj' hp.ne_zero, eq_comm] at h [GOAL] case intro x✝ y✝ p : β„• hp : Prime p hx✝ : x✝ β‰  1 hy✝ : y✝ β‰  1 h✝ : x✝ * y✝ = p ^ 2 pdvdxy : p ∣ x✝ * y✝ x y : β„• hx : x β‰  1 hy : y β‰  1 h : x * y = p ^ 2 a : β„• ha : x = p * a this : a ∣ p ⊒ x = p ∧ y = p [PROOFSTEP] obtain ha1 | hap := (Nat.dvd_prime hp).mp β€Ήa ∣ pβ€Ί [GOAL] case intro.inl x✝ y✝ p : β„• hp : Prime p hx✝ : x✝ β‰  1 hy✝ : y✝ β‰  1 h✝ : x✝ * y✝ = p ^ 2 pdvdxy : p ∣ x✝ * y✝ x y : β„• hx : x β‰  1 hy : y β‰  1 h : x * y = p ^ 2 a : β„• ha : x = p * a this : a ∣ p ha1 : a = 1 ⊒ x = p ∧ y = p [PROOFSTEP] subst ha1 [GOAL] case intro.inl x✝ y✝ p : β„• hp : Prime p hx✝ : x✝ β‰  1 hy✝ : y✝ β‰  1 h✝ : x✝ * y✝ = p ^ 2 pdvdxy : p ∣ x✝ * y✝ x y : β„• hx : x β‰  1 hy : y β‰  1 h : x * y = p ^ 2 ha : x = p * 1 this : 1 ∣ p ⊒ x = p ∧ y = p [PROOFSTEP] rw [mul_one] at ha [GOAL] case intro.inl x✝ y✝ p : β„• hp : Prime p hx✝ : x✝ β‰  1 hy✝ : y✝ β‰  1 h✝ : x✝ * y✝ = p ^ 2 pdvdxy : p ∣ x✝ * y✝ x y : β„• hx : x β‰  1 hy : y β‰  1 h : x * y = p ^ 2 ha : x = p this : 1 ∣ p ⊒ x = p ∧ y = p [PROOFSTEP] subst ha [GOAL] case intro.inl x✝ y✝ : β„• hx✝ : x✝ β‰  1 hy✝ : y✝ β‰  1 x y : β„• hx : x β‰  1 hy : y β‰  1 hp : Prime x h✝ : x✝ * y✝ = x ^ 2 pdvdxy : x ∣ x✝ * y✝ h : x * y = x ^ 2 this : 1 ∣ x ⊒ x = x ∧ y = x [PROOFSTEP] simp only [sq, mul_right_inj' hp.ne_zero] at h [GOAL] case intro.inl x✝ y✝ : β„• hx✝ : x✝ β‰  1 hy✝ : y✝ β‰  1 x y : β„• hx : x β‰  1 hy : y β‰  1 hp : Prime x h✝ : x✝ * y✝ = x ^ 2 pdvdxy : x ∣ x✝ * y✝ this : 1 ∣ x h : y = x ⊒ x = x ∧ y = x [PROOFSTEP] subst h [GOAL] case intro.inl x y✝ : β„• hx✝ : x β‰  1 hy✝ : y✝ β‰  1 y : β„• hy hx : y β‰  1 hp : Prime y h : x * y✝ = y ^ 2 pdvdxy : y ∣ x * y✝ this : 1 ∣ y ⊒ y = y ∧ y = y [PROOFSTEP] exact ⟨rfl, rfl⟩ [GOAL] case intro.inr x✝ y✝ p : β„• hp : Prime p hx✝ : x✝ β‰  1 hy✝ : y✝ β‰  1 h✝ : x✝ * y✝ = p ^ 2 pdvdxy : p ∣ x✝ * y✝ x y : β„• hx : x β‰  1 hy : y β‰  1 h : x * y = p ^ 2 a : β„• ha : x = p * a this : a ∣ p hap : a = p ⊒ x = p ∧ y = p [PROOFSTEP] refine' (hy ?_).elim [GOAL] case intro.inr x✝ y✝ p : β„• hp : Prime p hx✝ : x✝ β‰  1 hy✝ : y✝ β‰  1 h✝ : x✝ * y✝ = p ^ 2 pdvdxy : p ∣ x✝ * y✝ x y : β„• hx : x β‰  1 hy : y β‰  1 h : x * y = p ^ 2 a : β„• ha : x = p * a this : a ∣ p hap : a = p ⊒ y = 1 [PROOFSTEP] subst hap [GOAL] case intro.inr x✝ y✝ : β„• hx✝ : x✝ β‰  1 hy✝ : y✝ β‰  1 x y : β„• hx : x β‰  1 hy : y β‰  1 a : β„• hp : Prime a h✝ : x✝ * y✝ = a ^ 2 pdvdxy : a ∣ x✝ * y✝ h : x * y = a ^ 2 ha : x = a * a this : a ∣ a ⊒ y = 1 [PROOFSTEP] subst ha [GOAL] case intro.inr x y✝ : β„• hx✝ : x β‰  1 hy✝ : y✝ β‰  1 y : β„• hy : y β‰  1 a : β„• hp : Prime a h✝ : x * y✝ = a ^ 2 pdvdxy : a ∣ x * y✝ this : a ∣ a hx : a * a β‰  1 h : a * a * y = a ^ 2 ⊒ y = 1 [PROOFSTEP] rw [sq, Nat.mul_right_eq_self_iff (Nat.mul_pos hp.pos hp.pos : 0 < a * a)] at h [GOAL] case intro.inr x y✝ : β„• hx✝ : x β‰  1 hy✝ : y✝ β‰  1 y : β„• hy : y β‰  1 a : β„• hp : Prime a h✝ : x * y✝ = a ^ 2 pdvdxy : a ∣ x * y✝ this : a ∣ a hx : a * a β‰  1 h : y = 1 ⊒ y = 1 [PROOFSTEP] exact h [GOAL] n p : β„• hp : Prime p ⊒ p ∣ (n + 1)! ↔ p ≀ n + 1 [PROOFSTEP] rw [factorial_succ, hp.dvd_mul, Prime.dvd_factorial hp] [GOAL] n p : β„• hp : Prime p ⊒ p ∣ n + 1 ∨ p ≀ n ↔ p ≀ n + 1 [PROOFSTEP] exact ⟨fun h => h.elim (le_of_dvd (succ_pos _)) le_succ_of_le, fun h => (_root_.lt_or_eq_of_le h).elim (Or.inr ∘ le_of_lt_succ) fun h => Or.inl <| by rw [h]⟩ [GOAL] n p : β„• hp : Prime p h✝ : p ≀ n + 1 h : p = n + 1 ⊒ p ∣ n + 1 [PROOFSTEP] rw [h] [GOAL] p : β„• pp : Prime p i : β„• ⊒ coprime p i ∨ p ∣ i [PROOFSTEP] rw [pp.dvd_iff_not_coprime] [GOAL] p : β„• pp : Prime p i : β„• ⊒ coprime p i ∨ Β¬coprime p i [PROOFSTEP] apply em [GOAL] p : β„• pp : Prime p m i : β„• ⊒ i ∣ p ^ m ↔ βˆƒ k, k ≀ m ∧ i = p ^ k [PROOFSTEP] simp_rw [_root_.dvd_prime_pow (prime_iff.mp pp) m, associated_eq_eq] [GOAL] a p k : β„• pp : Prime p h₁ : Β¬a ∣ p ^ k hβ‚‚ : a ∣ p ^ (k + 1) ⊒ a = p ^ (k + 1) [PROOFSTEP] obtain ⟨l, ⟨h, rfl⟩⟩ := (dvd_prime_pow pp).1 hβ‚‚ [GOAL] case intro.intro p k : β„• pp : Prime p l : β„• h : l ≀ k + 1 h₁ : Β¬p ^ l ∣ p ^ k hβ‚‚ : p ^ l ∣ p ^ (k + 1) ⊒ p ^ l = p ^ (k + 1) [PROOFSTEP] congr [GOAL] case intro.intro.e_a p k : β„• pp : Prime p l : β„• h : l ≀ k + 1 h₁ : Β¬p ^ l ∣ p ^ k hβ‚‚ : p ^ l ∣ p ^ (k + 1) ⊒ l = k + 1 [PROOFSTEP] exact le_antisymm h (not_le.1 ((not_congr (pow_dvd_pow_iff_le_right (Prime.one_lt pp))).1 h₁)) [GOAL] ⊒ 0 β‰  1 ↔ βˆƒ p, Prime p ∧ p ∣ 0 [PROOFSTEP] simpa using Exists.intro 2 Nat.prime_two [GOAL] ⊒ 1 β‰  1 ↔ βˆƒ p, Prime p ∧ p ∣ 1 [PROOFSTEP] simp [Nat.not_prime_one] [GOAL] n : β„• ⊒ n + 2 β‰  1 ↔ βˆƒ p, Prime p ∧ p ∣ n + 2 [PROOFSTEP] let a := n + 2 [GOAL] n : β„• a : β„• := n + 2 ⊒ n + 2 β‰  1 ↔ βˆƒ p, Prime p ∧ p ∣ n + 2 [PROOFSTEP] let ha : a β‰  1 := Nat.succ_succ_ne_one n [GOAL] n : β„• a : β„• := n + 2 ha : a β‰  1 := succ_succ_ne_one n ⊒ n + 2 β‰  1 ↔ βˆƒ p, Prime p ∧ p ∣ n + 2 [PROOFSTEP] simp only [true_iff_iff, Ne.def, not_false_iff, ha] [GOAL] n : β„• a : β„• := n + 2 ha : a β‰  1 := succ_succ_ne_one n ⊒ βˆƒ p, Prime p ∧ p ∣ n + 2 [PROOFSTEP] exact ⟨a.minFac, Nat.minFac_prime ha, a.minFac_dvd⟩ [GOAL] n : β„• ⊒ n = 1 ↔ βˆ€ (p : β„•), Prime p β†’ Β¬p ∣ n [PROOFSTEP] simpa using not_iff_not.mpr ne_one_iff_exists_prime_dvd [GOAL] p : β„• p_prime : Prime p m n k l : β„• hpm : p ^ k ∣ m hpn : p ^ l ∣ n hpmn : p ^ (k + l + 1) ∣ m * n ⊒ p ^ (k + 1) ∣ m ∨ p ^ (l + 1) ∣ n [PROOFSTEP] have hpd : p ^ (k + l) * p ∣ m * n := by let hpmn' : p ^ (succ (k + l)) ∣ m * n := hpmn rwa [pow_succ'] at hpmn' [GOAL] p : β„• p_prime : Prime p m n k l : β„• hpm : p ^ k ∣ m hpn : p ^ l ∣ n hpmn : p ^ (k + l + 1) ∣ m * n ⊒ p ^ (k + l) * p ∣ m * n [PROOFSTEP] let hpmn' : p ^ (succ (k + l)) ∣ m * n := hpmn [GOAL] p : β„• p_prime : Prime p m n k l : β„• hpm : p ^ k ∣ m hpn : p ^ l ∣ n hpmn : p ^ (k + l + 1) ∣ m * n hpmn' : p ^ succ (k + l) ∣ m * n := hpmn ⊒ p ^ (k + l) * p ∣ m * n [PROOFSTEP] rwa [pow_succ'] at hpmn' [GOAL] p : β„• p_prime : Prime p m n k l : β„• hpm : p ^ k ∣ m hpn : p ^ l ∣ n hpmn : p ^ (k + l + 1) ∣ m * n hpd : p ^ (k + l) * p ∣ m * n ⊒ p ^ (k + 1) ∣ m ∨ p ^ (l + 1) ∣ n [PROOFSTEP] have hpd2 : p ∣ m * n / p ^ (k + l) := dvd_div_of_mul_dvd hpd [GOAL] p : β„• p_prime : Prime p m n k l : β„• hpm : p ^ k ∣ m hpn : p ^ l ∣ n hpmn : p ^ (k + l + 1) ∣ m * n hpd : p ^ (k + l) * p ∣ m * n hpd2 : p ∣ m * n / p ^ (k + l) ⊒ p ^ (k + 1) ∣ m ∨ p ^ (l + 1) ∣ n [PROOFSTEP] have hpd3 : p ∣ m * n / (p ^ k * p ^ l) := by simpa [pow_add] using hpd2 [GOAL] p : β„• p_prime : Prime p m n k l : β„• hpm : p ^ k ∣ m hpn : p ^ l ∣ n hpmn : p ^ (k + l + 1) ∣ m * n hpd : p ^ (k + l) * p ∣ m * n hpd2 : p ∣ m * n / p ^ (k + l) ⊒ p ∣ m * n / (p ^ k * p ^ l) [PROOFSTEP] simpa [pow_add] using hpd2 [GOAL] p : β„• p_prime : Prime p m n k l : β„• hpm : p ^ k ∣ m hpn : p ^ l ∣ n hpmn : p ^ (k + l + 1) ∣ m * n hpd : p ^ (k + l) * p ∣ m * n hpd2 : p ∣ m * n / p ^ (k + l) hpd3 : p ∣ m * n / (p ^ k * p ^ l) ⊒ p ^ (k + 1) ∣ m ∨ p ^ (l + 1) ∣ n [PROOFSTEP] have hpd4 : p ∣ m / p ^ k * (n / p ^ l) := by simpa [Nat.div_mul_div_comm hpm hpn] using hpd3 [GOAL] p : β„• p_prime : Prime p m n k l : β„• hpm : p ^ k ∣ m hpn : p ^ l ∣ n hpmn : p ^ (k + l + 1) ∣ m * n hpd : p ^ (k + l) * p ∣ m * n hpd2 : p ∣ m * n / p ^ (k + l) hpd3 : p ∣ m * n / (p ^ k * p ^ l) ⊒ p ∣ m / p ^ k * (n / p ^ l) [PROOFSTEP] simpa [Nat.div_mul_div_comm hpm hpn] using hpd3 [GOAL] p : β„• p_prime : Prime p m n k l : β„• hpm : p ^ k ∣ m hpn : p ^ l ∣ n hpmn : p ^ (k + l + 1) ∣ m * n hpd : p ^ (k + l) * p ∣ m * n hpd2 : p ∣ m * n / p ^ (k + l) hpd3 : p ∣ m * n / (p ^ k * p ^ l) hpd4 : p ∣ m / p ^ k * (n / p ^ l) ⊒ p ^ (k + 1) ∣ m ∨ p ^ (l + 1) ∣ n [PROOFSTEP] have hpd5 : p ∣ m / p ^ k ∨ p ∣ n / p ^ l := (Prime.dvd_mul p_prime).1 hpd4 [GOAL] p : β„• p_prime : Prime p m n k l : β„• hpm : p ^ k ∣ m hpn : p ^ l ∣ n hpmn : p ^ (k + l + 1) ∣ m * n hpd : p ^ (k + l) * p ∣ m * n hpd2 : p ∣ m * n / p ^ (k + l) hpd3 : p ∣ m * n / (p ^ k * p ^ l) hpd4 : p ∣ m / p ^ k * (n / p ^ l) hpd5 : p ∣ m / p ^ k ∨ p ∣ n / p ^ l ⊒ p ^ (k + 1) ∣ m ∨ p ^ (l + 1) ∣ n [PROOFSTEP] suffices p ^ k * p ∣ m ∨ p ^ l * p ∣ n by rwa [_root_.pow_succ', _root_.pow_succ'] [GOAL] p : β„• p_prime : Prime p m n k l : β„• hpm : p ^ k ∣ m hpn : p ^ l ∣ n hpmn : p ^ (k + l + 1) ∣ m * n hpd : p ^ (k + l) * p ∣ m * n hpd2 : p ∣ m * n / p ^ (k + l) hpd3 : p ∣ m * n / (p ^ k * p ^ l) hpd4 : p ∣ m / p ^ k * (n / p ^ l) hpd5 : p ∣ m / p ^ k ∨ p ∣ n / p ^ l this : p ^ k * p ∣ m ∨ p ^ l * p ∣ n ⊒ p ^ (k + 1) ∣ m ∨ p ^ (l + 1) ∣ n [PROOFSTEP] rwa [_root_.pow_succ', _root_.pow_succ'] [GOAL] p : β„• p_prime : Prime p m n k l : β„• hpm : p ^ k ∣ m hpn : p ^ l ∣ n hpmn : p ^ (k + l + 1) ∣ m * n hpd : p ^ (k + l) * p ∣ m * n hpd2 : p ∣ m * n / p ^ (k + l) hpd3 : p ∣ m * n / (p ^ k * p ^ l) hpd4 : p ∣ m / p ^ k * (n / p ^ l) hpd5 : p ∣ m / p ^ k ∨ p ∣ n / p ^ l ⊒ p ^ k * p ∣ m ∨ p ^ l * p ∣ n [PROOFSTEP] exact hpd5.elim (fun h : p ∣ m / p ^ k => Or.inl <| mul_dvd_of_dvd_div hpm h) fun h : p ∣ n / p ^ l => Or.inr <| mul_dvd_of_dvd_div hpn h [GOAL] p : β„• hp : Prime p a b : β„€ h : ↑p ∣ a * b ⊒ ↑p ∣ a ∨ ↑p ∣ b [PROOFSTEP] rw [← Int.dvd_natAbs, Int.coe_nat_dvd, Int.natAbs_mul, hp.dvd_mul] at h [GOAL] p : β„• hp : Prime p a b : β„€ h : p ∣ Int.natAbs a ∨ p ∣ Int.natAbs b ⊒ ↑p ∣ a ∨ ↑p ∣ b [PROOFSTEP] rwa [← Int.dvd_natAbs, Int.coe_nat_dvd, ← Int.dvd_natAbs, Int.coe_nat_dvd] [GOAL] p : β„• hp : _root_.Prime ↑p h : p = 1 ⊒ False [PROOFSTEP] simp [h, not_prime_one] at hp [GOAL] p : β„• hp : _root_.Prime ↑p a b : β„• ⊒ p ∣ a * b β†’ p ∣ a ∨ p ∣ b [PROOFSTEP] simpa only [Int.coe_nat_dvd, (Int.ofNat_mul _ _).symm] using hp.2.2 a b
{"mathlib_filename": "Mathlib.Data.Nat.Prime", "llama_tokens": 26491}
[GOAL] x y : ℝβ‰₯0 ⊒ 0 ^ 2 = x ↔ x = 0 [PROOFSTEP] rw [eq_comm, sq, zero_mul] [GOAL] x✝ y x : ℝβ‰₯0 ⊒ ↑sqrt x * ↑sqrt x = x [PROOFSTEP] rw [← sq, sq_sqrt] [GOAL] x✝ y x : ℝβ‰₯0 ⊒ ↑sqrt (x * x) = x [PROOFSTEP] rw [← sq, sqrt_sq x] [GOAL] x✝ y✝ x y : ℝβ‰₯0 ⊒ ↑sqrt (x * y) = ↑sqrt x * ↑sqrt y [PROOFSTEP] rw [sqrt_eq_iff_sq_eq, mul_pow, sq_sqrt, sq_sqrt] [GOAL] x y : ℝβ‰₯0 ⊒ 0 < ↑sqrt x ↔ 0 < x [PROOFSTEP] simp [pos_iff_ne_zero] [GOAL] f : CauSeq β„š abs ⊒ 0 ≀ sqrtAux f 0 [PROOFSTEP] rw [sqrtAux, Rat.mkRat_eq, Rat.divInt_eq_div] [GOAL] f : CauSeq β„š abs ⊒ 0 ≀ ↑↑(Nat.sqrt (Int.toNat (↑f 0).num)) / ↑↑(Nat.sqrt (↑f 0).den) [PROOFSTEP] apply div_nonneg [GOAL] case ha f : CauSeq β„š abs ⊒ 0 ≀ ↑↑(Nat.sqrt (Int.toNat (↑f 0).num)) [PROOFSTEP] exact Int.cast_nonneg.2 (Int.ofNat_nonneg _) [GOAL] case hb f : CauSeq β„š abs ⊒ 0 ≀ ↑↑(Nat.sqrt (↑f 0).den) [PROOFSTEP] exact Int.cast_nonneg.2 (Int.ofNat_nonneg _) [GOAL] x✝ y : ℝ x : ℝβ‰₯0 ⊒ ↑(↑NNReal.sqrt x) = sqrt ↑x [PROOFSTEP] rw [Real.sqrt, Real.toNNReal_coe] [GOAL] x y : ℝ h : x ≀ 0 ⊒ sqrt x = 0 [PROOFSTEP] simp [sqrt, Real.toNNReal_eq_zero.2 h] [GOAL] x y : ℝ h : 0 ≀ x ⊒ sqrt x * sqrt x = x [PROOFSTEP] rw [sqrt, ← NNReal.coe_mul, NNReal.mul_self_sqrt, Real.coe_toNNReal _ h] [GOAL] x y : ℝ ⊒ sqrt x = y ↔ y * y = x ∧ 0 ≀ y ∨ x < 0 ∧ y = 0 [PROOFSTEP] constructor [GOAL] case mp x y : ℝ ⊒ sqrt x = y β†’ y * y = x ∧ 0 ≀ y ∨ x < 0 ∧ y = 0 [PROOFSTEP] rintro rfl [GOAL] case mp x : ℝ ⊒ sqrt x * sqrt x = x ∧ 0 ≀ sqrt x ∨ x < 0 ∧ sqrt x = 0 [PROOFSTEP] cases' le_or_lt 0 x with hle hlt [GOAL] case mp.inl x : ℝ hle : 0 ≀ x ⊒ sqrt x * sqrt x = x ∧ 0 ≀ sqrt x ∨ x < 0 ∧ sqrt x = 0 [PROOFSTEP] exact Or.inl ⟨mul_self_sqrt hle, sqrt_nonneg x⟩ [GOAL] case mp.inr x : ℝ hlt : x < 0 ⊒ sqrt x * sqrt x = x ∧ 0 ≀ sqrt x ∨ x < 0 ∧ sqrt x = 0 [PROOFSTEP] exact Or.inr ⟨hlt, sqrt_eq_zero_of_nonpos hlt.le⟩ [GOAL] case mpr x y : ℝ ⊒ y * y = x ∧ 0 ≀ y ∨ x < 0 ∧ y = 0 β†’ sqrt x = y [PROOFSTEP] rintro (⟨rfl, hy⟩ | ⟨hx, rfl⟩) [GOAL] case mpr.inl.intro y : ℝ hy : 0 ≀ y ⊒ sqrt (y * y) = y case mpr.inr.intro x : ℝ hx : x < 0 ⊒ sqrt x = 0 [PROOFSTEP] exacts [sqrt_mul_self hy, sqrt_eq_zero_of_nonpos hx.le] [GOAL] x y : ℝ hx : 0 ≀ x hy : 0 ≀ y h : sqrt x = y ⊒ y * y = x [PROOFSTEP] rw [← h, mul_self_sqrt hx] [GOAL] x y : ℝ hx : 0 ≀ x hy : 0 ≀ y h : y * y = x ⊒ sqrt x = y [PROOFSTEP] rw [← h, sqrt_mul_self hy] [GOAL] x y : ℝ h : 0 < y ⊒ sqrt x = y ↔ y * y = x [PROOFSTEP] simp [sqrt_eq_cases, h.ne', h.le] [GOAL] x y : ℝ ⊒ 1 * 1 = x ↔ x = 1 [PROOFSTEP] rw [eq_comm, mul_one] [GOAL] x y : ℝ h : 0 ≀ x ⊒ sqrt x ^ 2 = x [PROOFSTEP] rw [sq, mul_self_sqrt h] [GOAL] x y : ℝ h : 0 ≀ x ⊒ sqrt (x ^ 2) = x [PROOFSTEP] rw [sq, sqrt_mul_self h] [GOAL] x y : ℝ hx : 0 ≀ x hy : 0 ≀ y ⊒ sqrt x = y ↔ y ^ 2 = x [PROOFSTEP] rw [sq, sqrt_eq_iff_mul_self_eq hx hy] [GOAL] x✝ y x : ℝ ⊒ sqrt (x * x) = |x| [PROOFSTEP] rw [← abs_mul_abs_self x, sqrt_mul_self (abs_nonneg _)] [GOAL] x✝ y x : ℝ ⊒ sqrt (x ^ 2) = |x| [PROOFSTEP] rw [sq, sqrt_mul_self_eq_abs] [GOAL] x y : ℝ ⊒ sqrt 0 = 0 [PROOFSTEP] simp [sqrt] [GOAL] x y : ℝ ⊒ sqrt 1 = 1 [PROOFSTEP] simp [sqrt] [GOAL] x y : ℝ hy : 0 ≀ y ⊒ sqrt x ≀ sqrt y ↔ x ≀ y [PROOFSTEP] rw [sqrt, sqrt, NNReal.coe_le_coe, NNReal.sqrt_le_sqrt_iff, Real.toNNReal_le_toNNReal_iff hy] [GOAL] x y : ℝ hy : 0 < y ⊒ sqrt x < sqrt y ↔ x < y [PROOFSTEP] rw [sqrt, sqrt, NNReal.coe_lt_coe, NNReal.sqrt_lt_sqrt_iff, toNNReal_lt_toNNReal_iff hy] [GOAL] x y : ℝ h : x ≀ y ⊒ sqrt x ≀ sqrt y [PROOFSTEP] rw [sqrt, sqrt, NNReal.coe_le_coe, NNReal.sqrt_le_sqrt_iff] [GOAL] x y : ℝ h : x ≀ y ⊒ toNNReal x ≀ toNNReal y [PROOFSTEP] exact toNNReal_le_toNNReal h [GOAL] x y : ℝ hy : 0 ≀ y ⊒ sqrt x ≀ y ↔ x ≀ y ^ 2 [PROOFSTEP] rw [sqrt, ← Real.le_toNNReal_iff_coe_le hy, NNReal.sqrt_le_iff, sq, ← Real.toNNReal_mul hy, Real.toNNReal_le_toNNReal_iff (mul_self_nonneg y), sq] [GOAL] x y : ℝ ⊒ sqrt x ≀ y ↔ 0 ≀ y ∧ x ≀ y ^ 2 [PROOFSTEP] rw [← and_iff_right_of_imp fun h => (sqrt_nonneg x).trans h, and_congr_right_iff] [GOAL] x y : ℝ ⊒ 0 ≀ y β†’ (sqrt x ≀ y ↔ x ≀ y ^ 2) [PROOFSTEP] exact sqrt_le_left [GOAL] x y : ℝ hx : 0 ≀ x hy : 0 ≀ y ⊒ sqrt x < y ↔ x < y ^ 2 [PROOFSTEP] rw [← sqrt_lt_sqrt_iff hx, sqrt_sq hy] [GOAL] x y : ℝ hy : 0 < y ⊒ sqrt x < y ↔ x < y ^ 2 [PROOFSTEP] rw [← sqrt_lt_sqrt_iff_of_pos (pow_pos hy _), sqrt_sq hy.le] [GOAL] x y : ℝ h : x ^ 2 ≀ y ⊒ |x| ≀ sqrt y [PROOFSTEP] rw [← sqrt_sq_eq_abs] [GOAL] x y : ℝ h : x ^ 2 ≀ y ⊒ sqrt (x ^ 2) ≀ sqrt y [PROOFSTEP] exact sqrt_le_sqrt h [GOAL] x y : ℝ h : 0 ≀ y ⊒ x ^ 2 ≀ y ↔ -sqrt y ≀ x ∧ x ≀ sqrt y [PROOFSTEP] constructor [GOAL] case mp x y : ℝ h : 0 ≀ y ⊒ x ^ 2 ≀ y β†’ -sqrt y ≀ x ∧ x ≀ sqrt y [PROOFSTEP] simpa only [abs_le] using abs_le_sqrt [GOAL] case mpr x y : ℝ h : 0 ≀ y ⊒ -sqrt y ≀ x ∧ x ≀ sqrt y β†’ x ^ 2 ≀ y [PROOFSTEP] rw [← abs_le, ← sq_abs] [GOAL] case mpr x y : ℝ h : 0 ≀ y ⊒ |x| ≀ sqrt y β†’ |x| ^ 2 ≀ y [PROOFSTEP] exact (le_sqrt (abs_nonneg x) h).mp [GOAL] x y : ℝ hx : 0 ≀ x hy : 0 ≀ y ⊒ sqrt x = sqrt y ↔ x = y [PROOFSTEP] simp [le_antisymm_iff, hx, hy] [GOAL] x y : ℝ h : 0 ≀ x ⊒ sqrt x = 0 ↔ x = 0 [PROOFSTEP] simpa using sqrt_inj h le_rfl [GOAL] x y : ℝ ⊒ sqrt x = 0 ↔ x ≀ 0 [PROOFSTEP] rw [sqrt, NNReal.coe_eq_zero, NNReal.sqrt_eq_zero, Real.toNNReal_eq_zero] [GOAL] x y : ℝ h : 0 ≀ x ⊒ sqrt x β‰  0 ↔ x β‰  0 [PROOFSTEP] rw [not_iff_not, sqrt_eq_zero h] [GOAL] x y : ℝ ⊒ sqrt x β‰  0 ↔ 0 < x [PROOFSTEP] rw [← not_le, not_iff_not, sqrt_eq_zero'] [GOAL] x y : ℝ ⊒ sqrt x ≀ 0 ↔ sqrt x = 0 [PROOFSTEP] simp [le_antisymm_iff, sqrt_nonneg] [GOAL] x : ℝ hx : 0 ≀ x y : ℝ ⊒ sqrt (x * y) = sqrt x * sqrt y [PROOFSTEP] simp_rw [sqrt, ← NNReal.coe_mul, NNReal.coe_eq, Real.toNNReal_mul hx, NNReal.sqrt_mul] [GOAL] x y : ℝ hy : 0 ≀ y ⊒ sqrt (x * y) = sqrt x * sqrt y [PROOFSTEP] rw [mul_comm, sqrt_mul hy, mul_comm] [GOAL] x : ℝ ⊒ sqrt x⁻¹ = (sqrt x)⁻¹ [PROOFSTEP] rw [sqrt, Real.toNNReal_inv, NNReal.sqrt_inv, NNReal.coe_inv, sqrt] [GOAL] x : ℝ hx : 0 ≀ x y : ℝ ⊒ sqrt (x / y) = sqrt x / sqrt y [PROOFSTEP] rw [division_def, sqrt_mul hx, sqrt_inv, division_def] [GOAL] x y : ℝ hy : 0 ≀ y ⊒ sqrt (x / y) = sqrt x / sqrt y [PROOFSTEP] rw [division_def, sqrt_mul' x (inv_nonneg.2 hy), sqrt_inv, division_def] [GOAL] x : ℝ ⊒ x / sqrt x = sqrt x [PROOFSTEP] cases' le_or_lt x 0 with h h [GOAL] case inl x : ℝ h : x ≀ 0 ⊒ x / sqrt x = sqrt x [PROOFSTEP] rw [sqrt_eq_zero'.mpr h, div_zero] [GOAL] case inr x : ℝ h : 0 < x ⊒ x / sqrt x = sqrt x [PROOFSTEP] rw [div_eq_iff (sqrt_ne_zero'.mpr h), mul_self_sqrt h.le] [GOAL] x : ℝ ⊒ sqrt x / x = 1 / sqrt x [PROOFSTEP] rw [← div_sqrt, one_div_div, div_sqrt] [GOAL] x : ℝ ⊒ sqrt x / x = (sqrt x)⁻¹ [PROOFSTEP] rw [sqrt_div_self', one_div] [GOAL] x y : ℝ hx : 0 ≀ x ⊒ x < sqrt y ↔ x ^ 2 < y [PROOFSTEP] rw [← sqrt_lt_sqrt_iff (sq_nonneg _), sqrt_sq hx] [GOAL] x y : ℝ ⊒ x ^ 2 < y ↔ -sqrt y < x ∧ x < sqrt y [PROOFSTEP] rw [← abs_lt, ← sq_abs, lt_sqrt (abs_nonneg _)] [GOAL] x y : ℝ h : sqrt x < y ⊒ x < y ^ 2 [PROOFSTEP] have hy := x.sqrt_nonneg.trans_lt h [GOAL] x y : ℝ h : sqrt x < y hy : 0 < y ⊒ x < y ^ 2 [PROOFSTEP] rwa [← sqrt_lt_sqrt_iff_of_pos (sq_pos_of_pos hy), sqrt_sq hy.le] [GOAL] a : β„• ⊒ ↑(Nat.sqrt a) ≀ sqrt ↑a [PROOFSTEP] rw [Real.le_sqrt (Nat.cast_nonneg _) (Nat.cast_nonneg _)] [GOAL] a : β„• ⊒ ↑(Nat.sqrt a) ^ 2 ≀ ↑a [PROOFSTEP] norm_cast [GOAL] a : β„• ⊒ Nat.sqrt a ^ 2 ≀ a [PROOFSTEP] exact Nat.sqrt_le' a [GOAL] a : β„• ⊒ sqrt ↑a ≀ ↑(Nat.sqrt a) + 1 [PROOFSTEP] rw [Real.sqrt_le_iff] [GOAL] a : β„• ⊒ 0 ≀ ↑(Nat.sqrt a) + 1 ∧ ↑a ≀ (↑(Nat.sqrt a) + 1) ^ 2 [PROOFSTEP] constructor [GOAL] case left a : β„• ⊒ 0 ≀ ↑(Nat.sqrt a) + 1 [PROOFSTEP] norm_cast [GOAL] case left a : β„• ⊒ 0 ≀ Nat.sqrt a + 1 [PROOFSTEP] apply zero_le [GOAL] case right a : β„• ⊒ ↑a ≀ (↑(Nat.sqrt a) + 1) ^ 2 [PROOFSTEP] norm_cast [GOAL] case right a : β„• ⊒ a ≀ (Nat.sqrt a + 1) ^ 2 [PROOFSTEP] exact le_of_lt (Nat.lt_succ_sqrt' a) [GOAL] r : ℝ ⊒ 0 ≀ r ↔ βˆƒ s, r = star s * s [PROOFSTEP] refine ⟨fun hr => ⟨sqrt r, (mul_self_sqrt hr).symm⟩, ?_⟩ [GOAL] r : ℝ ⊒ (βˆƒ s, r = star s * s) β†’ 0 ≀ r [PROOFSTEP] rintro ⟨s, rfl⟩ [GOAL] case intro s : ℝ ⊒ 0 ≀ star s * s [PROOFSTEP] exact mul_self_nonneg s
{"mathlib_filename": "Mathlib.Data.Real.Sqrt", "llama_tokens": 4710}
{"mathlib_filename": "Mathlib.RingTheory.Subring.Pointwise", "llama_tokens": 0}
"[GOAL]\nx : ℝ\nh : 0 < x\n⊒ sin x < x\n[PROOFSTEP]\ncases' lt_or_le 1 x with h' h'\n[GOAL]\ncas(...TRUNCATED)
"{\"mathlib_filename\": \"Mathlib.Analysis.SpecialFunctions.Trigonometric.Bounds\", \"llama_tokens\"(...TRUNCATED)
{"mathlib_filename": "Mathlib.Analysis.Calculus.Deriv.Linear", "llama_tokens": 0}
"[GOAL]\nE : Type u_1\ni : SeminormedAddCommGroup E\nr : ℝ\nw : E\n⊒ w ∈ sphere 0 r β†’ -w ∈(...TRUNCATED)
{"mathlib_filename": "Mathlib.Analysis.Normed.Group.BallSphere", "llama_tokens": 189}
"[GOAL]\nF : Type uβ‚€ β†’ Type u₁ β†’ Type uβ‚‚\ninst✝¹ : Bifunctor F\ninst✝ : LawfulBifunct(...TRUNCATED)
{"mathlib_filename": "Mathlib.Control.Bifunctor", "llama_tokens": 5802}
{"mathlib_filename": "Mathlib.Tactic.SimpRw", "llama_tokens": 0}

Proofsteps data from Proof-Pile-2

includes proofsteps for Lean and Isabelle

from datasets import load_dataset
ds = load_dataset(
    "xu3kev/proof-pile-2-proofsteps"
)

ds
DatasetDict({
    lean_proofsteps: Dataset({
        features: ['text', 'meta'],
        num_rows: 3432
    })
    isa_proofsteps: Dataset({
        features: ['text', 'meta'],
        num_rows: 260726
    })
})

Quoting from appendix of LLEMMA: AN OPEN LANGUAGE MODEL FOR MATHEMATICS

B.1.2 LEAN PROOFSTEPS
We extract a dataset of (tactic state, next tactic) pairs from Mathlib 4 (mathlib Community, 2020)
using the lean-training-data (Morrison, 2023) tool. We use Mathlib 4 commit c779bd5,
which was created on August 20th 2023.
B.1.3 ISABELLE PROOFSTEPS
We construct a dataset of Isabelle proofs, building upon the PISA dataset Jiang et al. (2021). Isabelle
Proofsteps comprises proofs from the Archive of Formal Proofs and Isabelle Standard Library, scraped
with PISA Jiang et al. (2021). Each entry in the dataset includes the theorem statement, the proof
states and the proof steps, separated by specific tags. To maintain the integrity of evaluations using
the PISA test set, we decontaminate Isabelle Proofsteps by removing theorems whose names overlap
with those in the PISA test set. Although this approach results in a strict filtering – removing more
than 10,000 theorems although there are only 3600 in the PISA test set – we consider it acceptable in
order to mitigate data contamination. After filtering, Isabelle Proofsteps contains 251,000 theorems.
Downloads last month
69