|
import os |
|
import gzip |
|
import json |
|
import numpy as np |
|
import rasterio |
|
import re |
|
from torch.utils.data import Dataset, DataLoader |
|
import torch |
|
|
|
from kornia.augmentation import AugmentationSequential |
|
import kornia |
|
import argparse |
|
|
|
|
|
class SSL4EO_S(Dataset): |
|
def __init__(self, fnames_path, root_dir, modality=['s1_grd', 's2_toa', 's3_olci', 's5p_co', 's5p_no2', 's5p_so2', 's5p_o3', 'dem'], transform_s1=None, transform_s2=None, transform_s3=None, transform_s5p=None, transform_dem=None): |
|
with gzip.open(fnames_path, 'rt', encoding='utf-8') as gz_file: |
|
self.fnames_json = json.load(gz_file) |
|
self.grid_ids = list(self.fnames_json.keys()) |
|
self.root_dir = root_dir |
|
self.transform_s1 = transform_s1 |
|
self.transform_s2 = transform_s2 |
|
self.transform_s3 = transform_s3 |
|
self.transform_s5p = transform_s5p |
|
self.transform_dem = transform_dem |
|
self.modality = modality |
|
|
|
def __len__(self): |
|
return len(self.grid_ids) |
|
|
|
def get_s1_s2(self,grid_id,modality): |
|
arrays = [] |
|
meta_data = [] |
|
local_grids = list(self.fnames_json[grid_id][modality].keys()) |
|
grid_id_coord = self.fnames_json[grid_id]['grid_id_coord'] |
|
for local_grid in local_grids: |
|
local_fpaths = self.fnames_json[grid_id][modality][local_grid] |
|
imgs = [] |
|
meta = [] |
|
for local_fpath in local_fpaths: |
|
with rasterio.open(os.path.join(self.root_dir, local_fpath)) as src: |
|
img = src.read() |
|
if modality=='s1_grd' and self.transform_s1: |
|
|
|
img = torch.from_numpy(img).unsqueeze(0) |
|
img = self.transform_s1(img).squeeze(0) |
|
elif modality=='s2_toa' and self.transform_s2: |
|
|
|
img = torch.from_numpy(img.astype(np.int16)).unsqueeze(0) |
|
img = self.transform_s2(img.to(torch.float16)).squeeze(0) |
|
imgs.append(img) |
|
fname = local_fpath.split('/')[-1] |
|
date = re.search(r'(\d{8})T', fname).group(1) |
|
meta_info = f"{grid_id_coord}/{local_grid}/{date}" |
|
meta.append(meta_info) |
|
arrays.append(imgs) |
|
meta_data.append(meta) |
|
return arrays, meta_data |
|
|
|
def get_s3(self,grid_id): |
|
arrays = [] |
|
meta_data = [] |
|
fpaths = self.fnames_json[grid_id]['s3_olci'] |
|
grid_id_coord = self.fnames_json[grid_id]['grid_id_coord'] |
|
for fpath in fpaths: |
|
with rasterio.open(os.path.join(self.root_dir, fpath)) as src: |
|
img = src.read() |
|
if self.transform_s3: |
|
|
|
img = torch.from_numpy(img).unsqueeze(0) |
|
img = self.transform_s3(img).squeeze(0) |
|
arrays.append(img) |
|
fname = fpath.split('/')[-1] |
|
date = re.search(r'(\d{8})T', fname).group(1) |
|
meta_info = f"{grid_id_coord}/{date}" |
|
meta_data.append(meta_info) |
|
return arrays, meta_data |
|
|
|
def get_s5p(self,grid_id,modality): |
|
arrays = [] |
|
meta_data = [] |
|
fpaths = self.fnames_json[grid_id][modality] |
|
grid_id_coord = self.fnames_json[grid_id]['grid_id_coord'] |
|
for fpath in fpaths: |
|
with rasterio.open(os.path.join(self.root_dir, fpath)) as src: |
|
img = src.read() |
|
if self.transform_s5p: |
|
|
|
img = torch.from_numpy(img).unsqueeze(0) |
|
img = self.transform_s5p(img).squeeze(0) |
|
arrays.append(img) |
|
fname = fpath.split('/')[-1] |
|
match = re.search(r'(\d{4})-(\d{2})-(\d{2})', fname) |
|
date = f"{match.group(1)}{match.group(2)}{match.group(3)}" |
|
meta_info = f"{grid_id_coord}/{date}" |
|
meta_data.append(meta_info) |
|
return arrays, meta_data |
|
|
|
def get_dem(self,grid_id): |
|
fpath = self.fnames_json[grid_id]['dem'][0] |
|
with rasterio.open(os.path.join(self.root_dir, fpath)) as src: |
|
img = src.read() |
|
if self.transform_dem: |
|
|
|
img = torch.from_numpy(img).unsqueeze(0) |
|
img = self.transform_dem(img).squeeze(0) |
|
return img |
|
|
|
def __getitem__(self, idx): |
|
grid_id = self.grid_ids[idx] |
|
grid_id_coord = self.fnames_json[grid_id]['grid_id_coord'] |
|
sample = {} |
|
meta_data = {} |
|
|
|
if 's1_grd' in self.modality: |
|
arr_s1, meta_s1 = self.get_s1_s2(grid_id,'s1_grd') |
|
sample['s1_grd'] = arr_s1 |
|
meta_data['s1_grd'] = meta_s1 |
|
|
|
if 's2_toa' in self.modality: |
|
arr_s2, meta_s2 = self.get_s1_s2(grid_id,'s2_toa') |
|
sample['s2_toa'] = arr_s2 |
|
meta_data['s2_toa'] = meta_s2 |
|
|
|
if 's3_olci' in self.modality: |
|
arr_s3, meta_s3 = self.get_s3(grid_id) |
|
sample['s3_olci'] = arr_s3 |
|
meta_data['s3_olci'] = meta_s3 |
|
|
|
if 's5p_co' in self.modality: |
|
arr_s5p_co, meta_s5p_co = self.get_s5p(grid_id,'s5p_co') |
|
sample['s5p_co'] = arr_s5p_co |
|
meta_data['s5p_co'] = meta_s5p_co |
|
|
|
if 's5p_no2' in self.modality: |
|
arr_s5p_no2, meta_s5p_no2 = self.get_s5p(grid_id,'s5p_no2') |
|
sample['s5p_no2'] = arr_s5p_no2 |
|
meta_data['s5p_no2'] = meta_s5p_no2 |
|
|
|
if 's5p_o3' in self.modality: |
|
arr_s5p_o3, meta_s5p_o3 = self.get_s5p(grid_id,'s5p_o3') |
|
sample['s5p_o3'] = arr_s5p_o3 |
|
meta_data['s5p_o3'] = meta_s5p_o3 |
|
|
|
if 's5p_so2' in self.modality: |
|
arr_s5p_so2, meta_s5p_so2 = self.get_s5p(grid_id,'s5p_so2') |
|
sample['s5p_so2'] = arr_s5p_so2 |
|
meta_data['s5p_so2'] = meta_s5p_so2 |
|
|
|
if 'dem' in self.modality: |
|
arr_dem = self.get_dem(grid_id) |
|
sample['dem'] = arr_dem |
|
meta_data['dem'] = grid_id_coord |
|
|
|
return sample, meta_data |
|
|
|
|
|
if __name__ == '__main__': |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--fnames_path', type=str, default='data_loading/fnames.json.gz') |
|
parser.add_argument('--root_dir', type=str, default='data_loading/data') |
|
args = parser.parse_args() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
transform_s1 = AugmentationSequential( |
|
|
|
kornia.augmentation.CenterCrop(224), |
|
) |
|
transform_s2 = AugmentationSequential( |
|
|
|
kornia.augmentation.CenterCrop(224), |
|
) |
|
transform_s3 = AugmentationSequential( |
|
kornia.augmentation.SmallestMaxSize(96), |
|
kornia.augmentation.CenterCrop(96), |
|
) |
|
transform_s5p = AugmentationSequential( |
|
kornia.augmentation.SmallestMaxSize(28), |
|
kornia.augmentation.CenterCrop(28), |
|
) |
|
transform_dem = AugmentationSequential( |
|
kornia.augmentation.SmallestMaxSize(960), |
|
kornia.augmentation.CenterCrop(960), |
|
) |
|
|
|
|
|
ssl4eo_s = SSL4EO_S(args.fnames_path, args.root_dir, transform_s1=transform_s1, transform_s2=transform_s2, transform_s3=transform_s3, transform_s5p=transform_s5p, transform_dem=transform_dem) |
|
dataloader = DataLoader(ssl4eo_s, batch_size=1, shuffle=True, num_workers=0) |
|
|
|
for i, (sample, meta_data) in enumerate(dataloader): |
|
|
|
print('Grid ID:', meta_data['dem'][0]) |
|
print(sample.keys()) |
|
print(meta_data.keys()) |
|
|
|
|
|
print('### S1 GRD ###') |
|
print('Number of s1 local patches:', len(meta_data['s1_grd']), ' ', 'Number of time stamps for first local patch:', len(meta_data['s1_grd'][0])) |
|
print('Example for one image:', sample['s1_grd'][0][0].shape, meta_data['s1_grd'][0][0]) |
|
print('### S2 TOA ###') |
|
print('Number of s2 local patches:', len(meta_data['s2_toa']), ' ', 'Number of time stamps for first local patch:', len(meta_data['s2_toa'][0])) |
|
print('Example for one image:', sample['s2_toa'][0][0].shape, meta_data['s2_toa'][0][0]) |
|
print('### S3 OLCI ###') |
|
print('Number of s3 time stamps:', len(meta_data['s3_olci'])) |
|
print('Example for one image:', sample['s3_olci'][0].shape, meta_data['s3_olci'][0]) |
|
print('### S5P ###') |
|
print('Number of s5p time stamps for CO/NO2/O3/SO2:', len(meta_data['s5p_co']), len(meta_data['s5p_no2']), len(meta_data['s5p_o3']), len(meta_data['s5p_so2'])) |
|
print('Example for one CO image:', sample['s5p_co'][0].shape, meta_data['s5p_co'][0]) |
|
print('Example for one NO2 image:', sample['s5p_no2'][0].shape, meta_data['s5p_no2'][0]) |
|
print('Example for one O3 image:', sample['s5p_o3'][0].shape, meta_data['s5p_o3'][0]) |
|
print('Example for one SO2 image:', sample['s5p_so2'][0].shape, meta_data['s5p_so2'][0]) |
|
print('### DEM ###') |
|
print('One DEM image for the grid:', sample['dem'].shape, meta_data['dem'][0]) |
|
|
|
break |