File size: 10,075 Bytes
e2d8f44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import os
import gzip
import json
import numpy as np
import rasterio
import re
from torch.utils.data import Dataset, DataLoader
import torch
#from cvtorchvision import cvtransforms
from kornia.augmentation import AugmentationSequential
import kornia
import argparse


class SSL4EO_S(Dataset):
    def __init__(self, fnames_path, root_dir, modality=['s1_grd', 's2_toa', 's3_olci', 's5p_co', 's5p_no2', 's5p_so2', 's5p_o3', 'dem'], transform_s1=None, transform_s2=None, transform_s3=None, transform_s5p=None, transform_dem=None):
        with gzip.open(fnames_path, 'rt', encoding='utf-8') as gz_file:
            self.fnames_json = json.load(gz_file)
        self.grid_ids = list(self.fnames_json.keys())
        self.root_dir = root_dir
        self.transform_s1 = transform_s1
        self.transform_s2 = transform_s2
        self.transform_s3 = transform_s3
        self.transform_s5p = transform_s5p
        self.transform_dem = transform_dem
        self.modality = modality

    def __len__(self):
        return len(self.grid_ids)

    def get_s1_s2(self,grid_id,modality):
        arrays = []
        meta_data = []
        local_grids = list(self.fnames_json[grid_id][modality].keys())
        grid_id_coord = self.fnames_json[grid_id]['grid_id_coord']
        for local_grid in local_grids:
            local_fpaths = self.fnames_json[grid_id][modality][local_grid]
            imgs = []
            meta = []
            for local_fpath in local_fpaths:
                with rasterio.open(os.path.join(self.root_dir, local_fpath)) as src:
                    img = src.read()
                if modality=='s1_grd' and self.transform_s1:
                    #img = self.transform_s1(np.transpose(img, (1, 2, 0)))
                    img = torch.from_numpy(img).unsqueeze(0)
                    img = self.transform_s1(img).squeeze(0)
                elif modality=='s2_toa' and self.transform_s2:
                    #img = self.transform_s2(np.transpose(img.astype(np.int16), (1, 2, 0)))
                    img = torch.from_numpy(img.astype(np.int16)).unsqueeze(0)
                    img = self.transform_s2(img.to(torch.float16)).squeeze(0)
                imgs.append(img)
                fname = local_fpath.split('/')[-1]
                date = re.search(r'(\d{8})T', fname).group(1)
                meta_info = f"{grid_id_coord}/{local_grid}/{date}"
                meta.append(meta_info)
            arrays.append(imgs)
            meta_data.append(meta)
        return arrays, meta_data

    def get_s3(self,grid_id):
        arrays = []
        meta_data = []
        fpaths = self.fnames_json[grid_id]['s3_olci']
        grid_id_coord = self.fnames_json[grid_id]['grid_id_coord']
        for fpath in fpaths:
            with rasterio.open(os.path.join(self.root_dir, fpath)) as src:
                img = src.read()
            if self.transform_s3:
                #img = self.transform_s3(np.transpose(img, (1, 2, 0)))
                img = torch.from_numpy(img).unsqueeze(0)
                img = self.transform_s3(img).squeeze(0)
            arrays.append(img)
            fname = fpath.split('/')[-1]
            date = re.search(r'(\d{8})T', fname).group(1)
            meta_info = f"{grid_id_coord}/{date}"
            meta_data.append(meta_info)
        return arrays, meta_data

    def get_s5p(self,grid_id,modality):
        arrays = []
        meta_data = []
        fpaths = self.fnames_json[grid_id][modality]
        grid_id_coord = self.fnames_json[grid_id]['grid_id_coord']
        for fpath in fpaths:
            with rasterio.open(os.path.join(self.root_dir, fpath)) as src:
                img = src.read()
            if self.transform_s5p:
                #img = self.transform_s5p(np.transpose(img, (1, 2, 0)))
                img = torch.from_numpy(img).unsqueeze(0)
                img = self.transform_s5p(img).squeeze(0)
            arrays.append(img)
            fname = fpath.split('/')[-1]
            match = re.search(r'(\d{4})-(\d{2})-(\d{2})', fname)
            date = f"{match.group(1)}{match.group(2)}{match.group(3)}"
            meta_info = f"{grid_id_coord}/{date}"
            meta_data.append(meta_info)
        return arrays, meta_data

    def get_dem(self,grid_id):
        fpath = self.fnames_json[grid_id]['dem'][0]
        with rasterio.open(os.path.join(self.root_dir, fpath)) as src:
            img = src.read()
        if self.transform_dem:
            #img = self.transform_dem(np.transpose(img, (1, 2, 0)))
            img = torch.from_numpy(img).unsqueeze(0)
            img = self.transform_dem(img).squeeze(0)
        return img

    def __getitem__(self, idx):
        grid_id = self.grid_ids[idx]
        grid_id_coord = self.fnames_json[grid_id]['grid_id_coord']
        sample = {}
        meta_data = {}
        # s1
        if 's1_grd' in self.modality:
            arr_s1, meta_s1 = self.get_s1_s2(grid_id,'s1_grd')
            sample['s1_grd'] = arr_s1
            meta_data['s1_grd'] = meta_s1
        # s2
        if 's2_toa' in self.modality:
            arr_s2, meta_s2 = self.get_s1_s2(grid_id,'s2_toa')
            sample['s2_toa'] = arr_s2
            meta_data['s2_toa'] = meta_s2
        # s3
        if 's3_olci' in self.modality:
            arr_s3, meta_s3 = self.get_s3(grid_id)
            sample['s3_olci'] = arr_s3
            meta_data['s3_olci'] = meta_s3
        # s5p_co
        if 's5p_co' in self.modality:
            arr_s5p_co, meta_s5p_co = self.get_s5p(grid_id,'s5p_co')
            sample['s5p_co'] = arr_s5p_co
            meta_data['s5p_co'] = meta_s5p_co
        # s5p_no2
        if 's5p_no2' in self.modality:
            arr_s5p_no2, meta_s5p_no2 = self.get_s5p(grid_id,'s5p_no2')
            sample['s5p_no2'] = arr_s5p_no2
            meta_data['s5p_no2'] = meta_s5p_no2
        # s5p_o3
        if 's5p_o3' in self.modality:
            arr_s5p_o3, meta_s5p_o3 = self.get_s5p(grid_id,'s5p_o3')
            sample['s5p_o3'] = arr_s5p_o3
            meta_data['s5p_o3'] = meta_s5p_o3
        # s5p_so2
        if 's5p_so2' in self.modality:
            arr_s5p_so2, meta_s5p_so2 = self.get_s5p(grid_id,'s5p_so2')
            sample['s5p_so2'] = arr_s5p_so2
            meta_data['s5p_so2'] = meta_s5p_so2
        # dem
        if 'dem' in self.modality:
            arr_dem = self.get_dem(grid_id)
            sample['dem'] = arr_dem
            meta_data['dem'] = grid_id_coord

        return sample, meta_data


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--fnames_path', type=str, default='data_loading/fnames.json.gz')
    parser.add_argument('--root_dir', type=str, default='data_loading/data')
    args = parser.parse_args()

    # transform_s1 = cvtransforms.Compose([
    #     cvtransforms.CenterCrop(224),
    #     cvtransforms.ToTensor()
    # ])
    # transform_s2 = cvtransforms.Compose([
    #     cvtransforms.CenterCrop(224),
    #     cvtransforms.ToTensor()
    # ])
    # transform_s3 = cvtransforms.Compose([
    #     cvtransforms.CenterCrop(96),
    #     cvtransforms.ToTensor()
    # ])
    # transform_s5p = cvtransforms.Compose([
    #     cvtransforms.CenterCrop(28),
    #     cvtransforms.ToTensor()
    # ])
    # transform_dem = cvtransforms.Compose([
    #     cvtransforms.CenterCrop(960),
    #     cvtransforms.ToTensor()
    # ])
    transform_s1 = AugmentationSequential(
        #kornia.augmentation.SmallestMaxSize(264),
        kornia.augmentation.CenterCrop(224),
    )
    transform_s2 = AugmentationSequential(
        #kornia.augmentation.SmallestMaxSize(264),
        kornia.augmentation.CenterCrop(224),
    )
    transform_s3 = AugmentationSequential(
        kornia.augmentation.SmallestMaxSize(96),
        kornia.augmentation.CenterCrop(96),
    )
    transform_s5p = AugmentationSequential(
        kornia.augmentation.SmallestMaxSize(28),
        kornia.augmentation.CenterCrop(28),
    )
    transform_dem = AugmentationSequential(
        kornia.augmentation.SmallestMaxSize(960),
        kornia.augmentation.CenterCrop(960),
    )


    ssl4eo_s = SSL4EO_S(args.fnames_path, args.root_dir, transform_s1=transform_s1, transform_s2=transform_s2, transform_s3=transform_s3, transform_s5p=transform_s5p, transform_dem=transform_dem)
    dataloader = DataLoader(ssl4eo_s, batch_size=1, shuffle=True, num_workers=0) # batch size can only be 1 because of varying number of images per grid

    for i, (sample, meta_data) in enumerate(dataloader):
        #print(i)
        print('Grid ID:', meta_data['dem'][0])
        print(sample.keys())
        print(meta_data.keys())

        
        print('### S1 GRD ###')
        print('Number of s1 local patches:', len(meta_data['s1_grd']), '  ', 'Number of time stamps for first local patch:', len(meta_data['s1_grd'][0]))
        print('Example for one image:', sample['s1_grd'][0][0].shape, meta_data['s1_grd'][0][0])
        print('### S2 TOA ###')
        print('Number of s2 local patches:', len(meta_data['s2_toa']), '  ', 'Number of time stamps for first local patch:', len(meta_data['s2_toa'][0]))
        print('Example for one image:', sample['s2_toa'][0][0].shape, meta_data['s2_toa'][0][0])
        print('### S3 OLCI ###')
        print('Number of s3 time stamps:', len(meta_data['s3_olci']))
        print('Example for one image:', sample['s3_olci'][0].shape, meta_data['s3_olci'][0])
        print('### S5P ###')
        print('Number of s5p time stamps for CO/NO2/O3/SO2:', len(meta_data['s5p_co']), len(meta_data['s5p_no2']), len(meta_data['s5p_o3']), len(meta_data['s5p_so2']))
        print('Example for one CO image:', sample['s5p_co'][0].shape, meta_data['s5p_co'][0])
        print('Example for one NO2 image:', sample['s5p_no2'][0].shape, meta_data['s5p_no2'][0])
        print('Example for one O3 image:', sample['s5p_o3'][0].shape, meta_data['s5p_o3'][0])
        print('Example for one SO2 image:', sample['s5p_so2'][0].shape, meta_data['s5p_so2'][0])
        print('### DEM ###')
        print('One DEM image for the grid:', sample['dem'].shape, meta_data['dem'][0])

        break