metadata
dataset_info:
features:
- name: query
dtype: string
- name: image_filename
dtype: string
- name: image
dtype: image
- name: answer
dtype: string
- name: answer_type
dtype: string
- name: page
dtype: string
- name: model
dtype: string
- name: prompt
dtype: string
- name: source
dtype: string
splits:
- name: test
num_bytes: 774039186.125
num_examples: 1663
download_size: 136066416
dataset_size: 774039186.125
configs:
- config_name: default
data_files:
- split: test
path: data/test-*
license: cc-by-4.0
task_categories:
- visual-question-answering
- question-answering
language:
- en
tags:
- Document Retrieval
- VisualQA
- QA
size_categories:
- 1K<n<10K
Dataset Description
This is the test set taken from the TAT-DQA dataset. TAT-DQA is a large-scale Document VQA dataset that was constructed from publicly available real-world financial reports. It focuses on rich tabular and textual content requiring numerical reasoning. Questions and answers were manually annotated by human experts in finance.
Example of data (see viewer)
Data Curation
Unlike other 'academic' datasets, we kept the full test set as this dataset closely represents our use case of document retrieval. There are 1,663 image-query pairs.
Load the dataset
from datasets import load_dataset
ds = load_dataset("vidore/tatdqa_test", split="test")
Dataset Structure
Here is an example of a dataset instance structure:
features:
- name: questionId
dtype: string
- name: query
dtype: string
- name: question_types
dtype: 'null'
- name: image
dtype: image
- name: docId
dtype: int64
- name: image_filename
dtype: string
- name: page
dtype: string
- name: answer
dtype: 'null'
- name: data_split
dtype: string
- name: source
dtype: string
Citation Information
If you use this dataset in your research, please cite the original dataset as follows:
@inproceedings{zhu-etal-2021-tat,
title = "{TAT}-{QA}: A Question Answering Benchmark on a Hybrid of Tabular and Textual Content in Finance",
author = "Zhu, Fengbin and
Lei, Wenqiang and
Huang, Youcheng and
Wang, Chao and
Zhang, Shuo and
Lv, Jiancheng and
Feng, Fuli and
Chua, Tat-Seng",
booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.acl-long.254",
doi = "10.18653/v1/2021.acl-long.254",
pages = "3277--3287"
}
@inproceedings{zhu2022towards,
title={Towards complex document understanding by discrete reasoning},
author={Zhu, Fengbin and Lei, Wenqiang and Feng, Fuli and Wang, Chao and Zhang, Haozhou and Chua, Tat-Seng},
booktitle={Proceedings of the 30th ACM International Conference on Multimedia},
pages={4857--4866},
year={2022}
}