seed
stringlengths 25
2.89k
| seed_api
stringlengths 14
102
| index
int64 0
14.8k
|
---|---|---|
import tensorflow as tf
def fc_layer(layer_name, x, out_nodes):
'''
Wrapper for fully connected layers with RELU activation as default
'''
shape = x.get_shape()
if len(shape) == 5: # FC 3D
size = shape[1].value*shape[2].value*shape[3].value*shape[4].value
elif len(shape) == 4:
size = shape[1].value*shape[2].value*shape[3].value
else:
size = shape[-1].value
with tf.variable_scope(layer_name):
w = tf.get_variable(name='weight',
shape=[size, out_nodes],
initializer=tf.constant_initializer(0.0))
b = tf.get_variable(name='bias',
shape=[out_nodes],
initializer=tf.constant_initializer(0.0))
# batch?
flat_x = tf.reshape(x, [-1,size])
x = tf.nn.bias_add(tf.matmul(flat_x,w), b)
x = tf.nn.relu(x)
| tensorflow.variable_scope | 0 |
import tensorflow as tf
ch_emb = tf.reshape(tf.nn.embedding_lookup(
self.char_mat, self.ch), [N * PL, CL, dc])
qh_emb = tf.reshape(tf.nn.embedding_lookup(
self.char_mat, self.qh), [N * QL, CL, dc])
ch_emb = tf.nn.dropout(ch_emb, 1.0 - 0.5 * self.dropout)
qh_emb = tf.nn.dropout(qh_emb, 1.0 - 0.5 * self.dropout)
# Bidaf style conv-highway encoder
ch_emb = conv(ch_emb, d,
bias = True, activation = tf.nn.relu, kernel_size = 5, name = "char_conv", reuse = None)
qh_emb = conv(qh_emb, d,
bias = True, activation = tf.nn.relu, kernel_size = 5, name = "char_conv", reuse = True)
ch_emb = tf.reduce_max(ch_emb, axis = 1)
qh_emb = tf.reduce_max(qh_emb, axis = 1)
ch_emb = tf.reshape(ch_emb, [N, PL, ch_emb.shape[-1]])
qh_emb = tf.reshape(qh_emb, [N, QL, ch_emb.shape[-1]])
c_emb = tf.nn.dropout(tf.nn.embedding_lookup(self.word_mat, self.c), 1.0 - self.dropout)
q_emb = tf.nn.dropout(tf.nn.embedding_lookup(self.word_mat, self.q), 1.0 - self.dropout)
c_emb = tf.concat([c_emb, ch_emb], axis=2)
q_emb = tf.concat([q_emb, qh_emb], axis=2)
c_emb = highway(c_emb, size = d, scope = "highway", dropout = self.dropout, reuse = None)
| tensorflow.reduce_max | 1 |
import tensorflow as tf
def testGPU(self):
if not tf.test.is_built_with_cuda():
return
save_path = os.path.join(self.get_temp_dir(), "gpu")
with tf.Session("", graph=tf.Graph()) as sess:
with sess.graph.device("/gpu:0"):
v0_1 = tf.Variable(123.45)
save = tf.train.Saver({"v0": v0_1})
tf.initialize_all_variables().run()
save.save(sess, save_path)
with tf.Session("", graph=tf.Graph()) as sess:
with sess.graph.device("/gpu:0"):
v0_2 = tf.Variable(543.21)
save = tf.train.Saver({"v0": v0_2})
tf.initialize_all_variables().run()
self.assertAllClose(543.21, v0_2.eval())
save.restore(sess, save_path)
self.assertAllClose(123.45, v0_2.eval())
def testVariables(self):
save_path = os.path.join(self.get_temp_dir(), "variables")
with tf.Session("", graph=tf.Graph()) as sess:
one = tf.Variable(1.0)
twos = tf.Variable([2.0, 2.0, 2.0])
init = tf.initialize_all_variables()
save = tf.train.Saver(tf.all_variables())
init.run()
save.save(sess, save_path)
| tensorflow.initialize_all_variables | 2 |
import tensorflow as tf
'learning_rate', tf.reduce_mean(learning_rate),
step=global_step)
return tf.contrib.summary.all_summary_ops()
# To log the loss, current learning rate, and epoch for Tensorboard, the
# summary op needs to be run on the host CPU via host_call. host_call
# expects [batch_size, ...] Tensors, thus reshape to introduce a batch
# dimension. These Tensors are implicitly concatenated to
# [params['batch_size']].
global_step_t = tf.reshape(global_step, [1])
total_loss_t = tf.reshape(total_loss, [1])
total_rpn_loss_t = tf.reshape(total_rpn_loss, [1])
rpn_score_loss_t = tf.reshape(rpn_score_loss, [1])
rpn_box_loss_t = tf.reshape(rpn_box_loss, [1])
total_fast_rcnn_loss_t = tf.reshape(total_fast_rcnn_loss, [1])
fast_rcnn_class_loss_t = tf.reshape(fast_rcnn_class_loss, [1])
fast_rcnn_box_loss_t = tf.reshape(fast_rcnn_box_loss, [1])
mask_loss_t = tf.reshape(mask_loss, [1])
learning_rate_t = tf.reshape(learning_rate, [1])
host_call = (host_call_fn,
[global_step_t, total_loss_t, total_rpn_loss_t,
rpn_score_loss_t, rpn_box_loss_t, total_fast_rcnn_loss_t,
fast_rcnn_class_loss_t, fast_rcnn_box_loss_t,
| tensorflow.reshape | 3 |
import tensorflow as tf
b1 = tf.matmul(state, hyper_b_1)
w1_reshaped = tf.reshape(w1, [-1, n_agents, n_h_mixer]) # reshape into batch of matrices
b1_reshaped = tf.reshape(b1, [-1, 1, n_h_mixer])
# [batch, 1, n_h_mixer]
hidden = tf.nn.elu(tf.matmul(agent_qs_reshaped, w1_reshaped) + b1_reshaped)
# Second layer
w_final = tf.abs(tf.matmul(state, hyper_w_final))
| tensorflow.matmul | 4 |
from tensorflow.contrib.boosted_trees.proto import learner_pb2
num_trees=1,
examples_per_layer=3,
model_dir=model_dir,
config=config,
feature_columns=[core_feature_column.numeric_column("x")],
use_core_libs=True)
model.fit(input_fn=_train_input_fn, steps=15)
model.evaluate(input_fn=_eval_input_fn, steps=1)
model.export(self._export_dir_base)
def testFitAndEvaluateDontThrowExceptionWithCoreForClassifier(self):
learner_config = learner_pb2.LearnerConfig()
learner_config.num_classes = 2
learner_config.constraints.max_tree_depth = 1
model_dir = tempfile.mkdtemp()
config = run_config.RunConfig()
classifier = estimator.GradientBoostedDecisionTreeClassifier(
learner_config=learner_config,
num_trees=1,
examples_per_layer=3,
model_dir=model_dir,
config=config,
| tensorflow.contrib.boosted_trees.proto.learner_pb2.LearnerConfig | 5 |
import tensorflow as tf
"below 1.1.0")
soft_placement = False
if FLAGS.num_gpus > 1:
soft_placement = True
util.auto_parallel(metagraph, m)
with tf.Graph().as_default():
tf.train.import_meta_graph(metagraph)
for model in models.values():
model.import_ops()
sv = tf.train.Supervisor(logdir=FLAGS.save_path)
config_proto = tf.ConfigProto(allow_soft_placement=soft_placement)
| tensorflow.Graph | 6 |
import tensorflow as tf
transpose=transpose)
if w_project is not None:
x = tf.conv2d(x, w_project, strides, padding='SAME')
# Set shape for BN in the residual function.
| tensorflow.conv2d | 7 |
import tensorflow as tf
if FLAGS.use_tpu:
estimator = tf.contrib.tpu.TPUEstimator(
| tensorflow.contrib.tpu.TPUEstimator | 8 |
from tensorflow.python.ops.rnn_cell_impl import _Linear
[inputs, state],
2 * self._num_units,
True,
bias_initializer=bias_ones,
kernel_initializer=self._kernel_initializer)
value = math_ops.sigmoid(self._gate_linear([inputs, state]))
r, u = array_ops.split(value=value, num_or_size_splits=2, axis=1)
r_state = r * state
if self._candidate_linear is None:
with vs.variable_scope("candidate"):
self._candidate_linear = _Linear(
[inputs, r_state],
self._num_units,
True,
bias_initializer=self._bias_initializer,
kernel_initializer=self._kernel_initializer)
c = self._activation(self._candidate_linear([inputs, r_state]))
u = (1.0 - att_score) * u
new_h = u * state + (1 - u) * c
return new_h, new_h
def prelu(_x, scope=''):
| tensorflow.python.ops.rnn_cell_impl._Linear | 9 |
from tensorflow.contrib.layers.python.layers import utils
# Only make the ops if we know that `is_training=True`, or the value of
# `is_training` is unknown.
is_training_const = utils.constant_value(is_training)
if is_training_const is None or is_training_const:
update_mean_op, update_second_moment_op = utils.smart_cond(
is_training,
build_update_ops,
build_no_ops,
| tensorflow.contrib.layers.python.layers.utils.smart_cond | 10 |
import tensorflow as tf
self._train_op = optimizer.apply_gradients(
zip(grads, tvars),
global_step=tf.train.get_or_create_global_step())
self._new_lr = tf.placeholder(
tf.float32, shape=[], name="new_learning_rate")
self._lr_update = tf.assign(self._lr, self._new_lr)
| tensorflow.placeholder | 11 |
import tensorflow as tf
with self.test_session() as session:
@dynamic_batching.batch_fn
def f(a, b):
return a + b
output0 = f(tf.constant([1]), tf.constant([2]))
output1 = f(tf.constant([[2]]), tf.constant([3]))
tp = pool.ThreadPool(2)
f0 = tp.apply_async(session.run, [output0])
f1 = tp.apply_async(session.run, [output1])
time.sleep(_SLEEP_TIME)
coord = tf.train.Coordinator()
tf.train.start_queue_runners(coord=coord)
with self.assertRaises(tf.errors.CancelledError):
f0.get()
f1.get()
with self.assertRaisesRegexp(tf.errors.InvalidArgumentError,
'Shapes of inputs much be equal'):
coord.join()
def test_output_must_have_batch_dimension(self):
with self.test_session() as session:
@dynamic_batching.batch_fn
def f(_):
| tensorflow.train.Coordinator | 12 |
import tensorflow as tf
if tf.version.VERSION[0]=="2":
gpus = tf.config.experimental.list_physical_devices('GPU')
tf.config.experimental.set_memory_growth(gpus[0], True)
tf.config.experimental.set_virtual_device_configuration(gpus[0],
[tf.config.experimental.VirtualDeviceConfiguration(memory_limit=memory_limit)])
else:
gpu_options = tf.GPUOptions(allow_growth=allow_growth,
per_process_gpu_memory_fraction=fraction)
config = tf.ConfigProto(gpu_options=gpu_options)
session = tf.Session(config=config)
K.set_session(session)
def multi_gpu(model, gpus=None, cpu_merge=True, cpu_relocation=False):
'''Takes as input the model, and returns a model
| tensorflow.ConfigProto | 13 |
import tensorflow as tf
stochastic_ph = tf.placeholder(tf.bool, (), name="stochastic")
update_eps_ph = tf.placeholder(tf.float32, (), name="update_eps")
update_param_noise_threshold_ph = tf.placeholder(tf.float32, (), name="update_param_noise_threshold")
update_param_noise_scale_ph = tf.placeholder(tf.bool, (), name="update_param_noise_scale")
reset_ph = tf.placeholder(tf.bool, (), name="reset")
eps = tf.get_variable("eps", (), initializer=tf.constant_initializer(0))
param_noise_scale = tf.get_variable("param_noise_scale", (), initializer=tf.constant_initializer(0.01), trainable=False)
param_noise_threshold = tf.get_variable("param_noise_threshold", (), initializer=tf.constant_initializer(0.05), trainable=False)
# Unmodified Q.
q_values = q_func(observations_ph.get(), num_actions, scope="q_func")
# Perturbable Q used for the actual rollout.
q_values_perturbed = q_func(observations_ph.get(), num_actions, scope="perturbed_q_func")
# We have to wrap this code into a function due to the way tf.cond() works. See
| tensorflow.constant_initializer | 14 |
import tensorflow as tf
with tf.variable_scope(name):
filt = self.get_conv_filter(name)
conv = tf.nn.conv2d(bottom, filt, [1, 1, 1, 1], padding='SAME')
conv_biases = self.get_bias(name)
bias = tf.nn.bias_add(conv, conv_biases)
relu = tf.nn.relu(bias)
return relu
def fc_layer(self, bottom, name):
| tensorflow.nn.bias_add | 15 |
import tensorflow as tf
gru_fw = tf.contrib.cudnn_rnn.CudnnGRU(1, num_units)
gru_bw = tf.contrib.cudnn_rnn.CudnnGRU(1, num_units)
init_fw = tf.tile(tf.Variable(
tf.zeros([1, 1, num_units])), [1, batch_size, 1])
init_bw = tf.tile(tf.Variable(
tf.zeros([1, 1, num_units])), [1, batch_size, 1])
mask_fw = dropout(tf.ones([1, batch_size, input_size_], dtype=tf.float32),
keep_prob=keep_prob, is_train=is_train, mode=None)
mask_bw = dropout(tf.ones([1, batch_size, input_size_], dtype=tf.float32),
keep_prob=keep_prob, is_train=is_train, mode=None)
self.grus.append((gru_fw, gru_bw, ))
self.inits.append((init_fw, init_bw, ))
| tensorflow.ones | 16 |
import tensorflow as tf
x = tf.nn.conv2d(input, filters, strides=[1, stride, stride, 1], padding=padding, name='zero-conv_' + id,
dilations=(1, dilation, dilation, 1))
if use_bias:
bias = tf.get_variable("bias", [channels], initializer=tf.constant_initializer(0.0))
x = tf.nn.bias_add(x, bias)
return x
def t_conv(self, id, input, channels, size=3, stride=1, use_bias=True, padding="SAME", init_stddev=-1.0):
# good old t-conv. I love it!
| tensorflow.nn.bias_add | 17 |
import tensorflow as tf
raise ValueError('Variables to load is empty.')
return tf.train.Scaffold()
| tensorflow.train.Scaffold | 18 |
import tensorflow as tf
def find_hard_distances(distance_matrix, indicator_matrix):
distance_matrix = tf.where(
tf.stop_gradient(indicator_matrix), distance_matrix,
tf.fill(tf.shape(distance_matrix), distance_matrix.dtype.max))
hard_distances = tf.math.reduce_min(distance_matrix, axis=-1)
return hard_distances
hard_negative_mining_distances = find_hard_distances(
anchor_match_mining_distance_matrix, indicators)
indicators &= tf.math.equal(
anchor_match_mining_distance_matrix,
tf.expand_dims(hard_negative_mining_distances, axis=-1))
hard_negative_distances = find_hard_distances(anchor_match_distance_matrix,
indicators)
return hard_negative_distances, hard_negative_mining_distances
def compute_hard_negative_triplet_loss(
anchor_positive_distances,
anchor_match_distance_matrix,
anchor_match_negative_indicator_matrix,
| tensorflow.expand_dims | 19 |
import tensorflow as tf
lambda: param_noise_scale.assign(param_noise_scale * 1.01),
lambda: param_noise_scale.assign(param_noise_scale / 1.01),
)
return update_scale_expr
# Functionality to update the threshold for parameter space noise.
update_param_noise_threshold_expr = param_noise_threshold.assign(tf.cond(update_param_noise_threshold_ph >= 0,
lambda: update_param_noise_threshold_ph, lambda: param_noise_threshold))
# Put everything together.
deterministic_actions = tf.argmax(q_values_perturbed, axis=1)
batch_size = tf.shape(observations_ph.get())[0]
| tensorflow.cond | 20 |
import tensorflow as tf
y += dense(hidden, encoder.attn_size, use_bias=False, name='U_a')
if encoder.position_bias and input_length is not None and time is not None:
src_pos = tf.tile(tf.expand_dims(tf.range(time_steps), axis=0), [batch_size, 1])
trg_pos = tf.tile(tf.reshape(time, [1, 1]), [batch_size, time_steps])
src_len = tf.tile(tf.expand_dims(input_length, axis=1), [1, time_steps]) # - 1
pos_feats = tf.to_float(tf.stack([src_pos, trg_pos, src_len], axis=2))
pos_feats = tf.log(1 + pos_feats)
y += dense(pos_feats, encoder.attn_size, use_bias=False, name='P_a')
| tensorflow.expand_dims | 21 |
import tensorflow as tf
filename = _DATA_URL.split('/')[-1]
filepath = os.path.join(dataset_dir, filename)
tf.gfile.Remove(filepath)
| tensorflow.gfile.Remove | 22 |
import tensorflow as tf
elif self.hidden_init == 'zeros':
l1_h2 = tf.zeros(x_shape, dtype=self.dtype)
l2_h2 = tf.zeros(l2_shape, dtype=self.dtype)
l3_h2 = tf.zeros(l3_shape, dtype=self.dtype)
else:
raise RuntimeError
| tensorflow.zeros | 23 |
import tensorflow as tf
def main(argv=None):
start1 = time.time()
import os
os.environ['CUDA_VISIBLE_DEVICES'] = FLAGS.gpu_list
if not tf.gfile.Exists(FLAGS.checkpoint_path):
tf.gfile.MkDir(FLAGS.checkpoint_path)
else:
if not FLAGS.restore:
tf.gfile.DeleteRecursively(FLAGS.checkpoint_path)
tf.gfile.MkDir(FLAGS.checkpoint_path)
input_images = tf.placeholder(tf.float32, shape=[None, None, None, 3], name='input_images')
input_score_maps = tf.placeholder(tf.float32, shape=[None, None, None, 1], name='input_score_maps')
if FLAGS.geometry == 'RBOX':
input_geo_maps = tf.placeholder(tf.float32, shape=[None, None, None, 5], name='input_geo_maps')
else:
input_geo_maps = tf.placeholder(tf.float32, shape=[None, None, None, 8], name='input_geo_maps')
| tensorflow.gfile.DeleteRecursively | 24 |
import tensorflow as tf
"""
mean, var = tf.nn.moments(
x, reduction_axes, shift=None, name=None, keep_dims=False)
if sorted(reduction_axes) == range(ndim(x))[:-1]:
normed = tf.nn.batch_normalization(x, mean, var, beta, gamma, epsilon)
else:
# need broadcasting
target_shape = []
for axis in range(get_ndim(x)):
if axis in reduction_axes:
target_shape.append(1)
else:
target_shape.append(tf.shape(x)[axis])
target_shape = stack(target_shape)
broadcast_mean = tf.reshape(mean, target_shape)
broadcast_var = tf.reshape(var, target_shape)
broadcast_gamma = tf.reshape(gamma, target_shape)
broadcast_beta = tf.reshape(beta, target_shape)
normed = tf.nn.batch_normalization(x, broadcast_mean, broadcast_var,
broadcast_beta, broadcast_gamma, epsilon)
return normed, mean, var
def ones(shape, dtype=None, name=None):
"""Instantiates an all-ones tensor variable and returns it.
Parameters
----------
shape: Tuple of integers, shape of returned Keras variable.
| tensorflow.reshape | 25 |
import tensorflow as tf
Arguments:
- *indicator*: a 1-dimensional boolean tensor indicating which elements
are allowed to be sampled and which are not.
- *num_samples*: int32 scalar tensor
Returns:
A boolean tensor with the same shape as input (indicator) tensor
"""
indices = tf.where(indicator)
indices = tf.random.shuffle(indices)
indices = tf.reshape(indices, [-1])
num_samples = tf.minimum(tf.size(indices), num_samples)
selected_indices = tf.slice(indices, [0], tf.reshape(num_samples, [1]))
selected_indicator = ops.indices_to_dense_vector(selected_indices, tf.shape(indicator)[0])
return tf.equal(selected_indicator, 1)
def sample_balanced_positive_negative(indicator, sample_size, labels, positive_fraction=0.5):
"""Subsamples minibatches to a desired balance of positives and negatives.
Arguments:
- *indicator*: boolean tensor of shape [N] whose True entries can be sampled.
- *sample_size*: desired batch size. If None, keeps all positive samples and
| tensorflow.size | 26 |
import tensorflow as tf
pos_weight = pos_weight,
norm = norm)
# Normalization and preprocessing on adjacency matrix
adj_norm = preprocess_graph(adj)
adj_label = sparse_to_tuple(adj + sp.eye(adj.shape[0]))
# Initialize TF session
sess = tf.Session()
sess.run(tf.global_variables_initializer())
# Model training
print(f"Training {model_name}...")
t = time.time()
print_every = 50
| tensorflow.Session | 27 |
import tensorflow as tf
e_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=self.name + '/eval_net')
e_params += tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=self.name + '/mixing_net' + '/eval_hyper')
t_params += tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=self.name + '/mixing_net' + '/target_hyper')
with tf.variable_scope('soft_replacement'):
self.target_replace_op = [tf.assign(t, e) for t, e in zip(t_params, e_params)]
self.sess = tf.Session()
self.sess.run(tf.global_variables_initializer())
current_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
train_log_dir = 'logs/' + current_time
self.summary_writer = tf.summary.FileWriter(train_log_dir, self.sess.graph)
def _build_net(self): # we use parameter sharing among agents
with tf.variable_scope(self.name):
# ------------------ all inputs ------------------------
self.S = tf.placeholder(tf.float32, [None, self.num_global_s], name='S') # input Global State
self.s = tf.placeholder(tf.float32, [None, self.num_s], name='s1') # input state for agent1
self.S_ = tf.placeholder(tf.float32, [None, self.num_global_s], name='S_') # input Next Global State
self.s_ = tf.placeholder(tf.float32, [None, self.num_s], name='s1_') # input next state for agent1
self.R = tf.placeholder(tf.float32, [None, ], name='R') # input Reward
self.a = tf.placeholder(tf.float32, [None, self.num_a], name='a') # input Action onehot for agent1
self.done = tf.placeholder(tf.float32, [None, ], name='done') # input Done info ???
| tensorflow.summary.FileWriter | 28 |
import tensorflow as tf
self.num_replicas = num_replicas
self.name = name
self._create_params()
arc_seq_1, entropy_1, log_prob_1, c, h = self._build_sampler(use_bias=True)
arc_seq_2, entropy_2, log_prob_2, _, _ = self._build_sampler(prev_c=c, prev_h=h)
self.sample_arc = (arc_seq_1, arc_seq_2)
self.sample_entropy = entropy_1 + entropy_2
self.sample_log_prob = log_prob_1 + log_prob_2
def _create_params(self):
initializer = tf.random_uniform_initializer(minval=-0.1, maxval=0.1)
with tf.variable_scope(self.name, initializer=initializer):
with tf.variable_scope("lstm"):
self.w_lstm = []
for layer_id in range(self.lstm_num_layers):
with tf.variable_scope("layer_{}".format(layer_id)):
w = tf.get_variable("w", [2 * self.lstm_size, 4 * self.lstm_size])
self.w_lstm.append(w)
self.g_emb = tf.get_variable("g_emb", [1, self.lstm_size])
with tf.variable_scope("emb"):
self.w_emb = tf.get_variable("w", [self.num_branches, self.lstm_size])
with tf.variable_scope("softmax"):
self.w_soft = tf.get_variable("w", [self.lstm_size, self.num_branches])
b_init = np.array([10.0, 10.0] + [0] * (self.num_branches - 2),
| tensorflow.variable_scope | 29 |
import tensorflow as tf
if self.multiplicative_excitation:
if self.lesion_kappa:
setattr(
self,
'kappa_%s' % layer,
tf.constant(0.))
else:
setattr(
self,
'kappa_%s' % layer,
| tensorflow.constant | 30 |
import tensorflow as tf
def conv3d(layer_name, x, out_channels, kernel_size=[1,3,3], strides=[1,1,1,1,1], data_format='NDHWC', is_pretrain=True):
'''
Convolution 3D op wrapper, use RELU activation after convolution
'''
in_channels = x.get_shape()[-1].value
with tf.variable_scope(layer_name):
w = tf.get_variable(name='weight',
trainable=is_pretrain,
shape=[kernel_size[0],kernel_size[1],kernel_size[2],in_channels,out_channels],
initializer=tf.contrib.layers.xavier_initializer())
b = tf.get_variable(name='bias',
trainable=is_pretrain,
shape=[out_channels],
initializer=tf.contrib.layers.xavier_initializer())
x = tf.nn.conv3d(x, w, strides=strides, padding='SAME', data_format=data_format, name='conv3d')
x = tf.nn.bias_add(x, b, name='bias_add')
x = tf.nn.relu(x, name='relu')
return x
def conv(layer_name, x, out_channels, kernel_size=[3,3], strides=[1,1,1,1], is_pretrain=True):
'''
Convolution op wrapper, use RELU activation after convolution
Args:
layer_name:
x: input tensor
| tensorflow.contrib.layers.xavier_initializer | 31 |
import tensorflow as tf
filter_size[1] - input_.get_shape().as_list()[2], 0
], [-1, -1, -1, -1])
if bias:
biases = variable_on_cpu("biases", [dim_out], tf.constant_initializer(0.))
res = tf.nn.bias_add(res, biases)
if nonlinearity is not None:
res = nonlinearity(res)
return res
def max_pool_2x2(input_):
"""Max pooling."""
return tf.nn.max_pool(
input_, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME")
def depool_2x2(input_, stride=2):
"""Depooling."""
shape = input_.get_shape().as_list()
batch_size = shape[0]
height = shape[1]
width = shape[2]
channels = shape[3]
res = tf.reshape(input_, [batch_size, height, 1, width, 1, channels])
res = tf.concat(
axis=2, values=[res, tf.zeros([batch_size, height, stride - 1, width, 1, channels])])
| tensorflow.nn.max_pool | 32 |
import tensorflow as tf
# Make a matrix where each row contains [0, 1, ..., max_sequence_len]
r = tf.range(0, max_sequence_len, 1)
range_row = tf.expand_dims(r, 0)
range_tiled = tf.tile(range_row, [batch_size, 1])
# Use the logical operations to create a mask
| tensorflow.tile | 33 |
import tensorflow as tf
# I.e., 0.1 dropout
output_layer = tf.nn.dropout(output_layer, keep_prob=0.9)
logits = tf.matmul(output_layer, output_weights, transpose_b=True)
logits = tf.nn.bias_add(logits, output_bias)
probabilities = tf.nn.softmax(logits, axis=-1)
log_probs = tf.nn.log_softmax(logits, axis=-1)
one_hot_labels = tf.one_hot(labels, depth=num_labels, dtype=tf.float32)
per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1)
loss = tf.reduce_mean(per_example_loss)
return (loss, per_example_loss, logits, probabilities)
def model_fn_builder(bert_config, num_labels, init_checkpoint, learning_rate,
num_train_steps, num_warmup_steps, use_tpu,
use_one_hot_embeddings):
"""Returns `model_fn` closure for TPUEstimator."""
def model_fn(features, labels, mode, params): # pylint: disable=unused-argument
| tensorflow.reduce_mean | 34 |
import tensorflow as tf
vocab_path = self.vocabulary_file_by_name(vocab_filename)
if not vocab_path:
raise ValueError(
'Could not compute vocabulary size for {}, does not exist'.format(
vocab_filename))
elif vocab_path.endswith('tfrecord.gz'):
dataset = tf.data.TFRecordDataset(vocab_path, compression_type='GZIP')
def reduce_fn(accum, elem):
return tf.size(elem, out_type=tf.int64, name='vocabulary_size') + accum
return _get_tensor_value(
dataset.batch(tf.int32.max).reduce(
tf.constant(0, tf.int64), reduce_fn))
else:
with tf.io.gfile.GFile(vocab_path, 'rb') as f:
return sum(1 for _ in f)
def vocabulary_by_name(self, vocab_filename: str) -> List[bytes]:
| tensorflow.size | 35 |
import tensorflow as tf
def get_assignment_map_from_checkpoint(tvars, init_checkpoint, num_of_group=0):
"""Compute the union of the current variables and checkpoint variables."""
assignment_map = {}
initialized_variable_names = {}
name_to_variable = collections.OrderedDict()
for var in tvars:
name = var.name
m = re.match("^(.*):\\d+$", name)
if m is not None:
name = m.group(1)
name_to_variable[name] = var
init_vars = tf.train.list_variables(init_checkpoint)
init_vars_name = [name for (name, _) in init_vars]
if num_of_group > 0:
assignment_map = []
for gid in range(num_of_group):
assignment_map.append(collections.OrderedDict())
else:
assignment_map = collections.OrderedDict()
for name in name_to_variable:
if name in init_vars_name:
tvar_name = name
elif (re.sub(r"/group_\d+/", "/group_0/",
| tensorflow.train.list_variables | 36 |
import tensorflow as tf
x = tf.placeholder(tf.float32, [None, shape[0]])
w = tf.Variable(tf.zeros(shape))
b = tf.Variable(tf.zeros(shape[1]))
self.x = x
self.w = w
self.b = b
y = tf.nn.softmax(tf.matmul(x, w) + b)
y_ = tf.placeholder(tf.float32, [None, shape[1]])
self.y_ = y_
cross_entropy = tf.reduce_mean(
-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1])
)
| tensorflow.matmul | 37 |
import tensorflow as tf
target_label = sess.run(labels)
adv = attack_carlini.attack(input_data, target_label)
(logits_part_nor, logits_part_adv, labels_part) = sess.run([logits_nor, logits_adv, tf.argmax(labels, 1)],
feed_dict={adv_image: adv})
logits_all = np.concatenate((logits_all, logits_part_nor), axis=0)
| tensorflow.argmax | 38 |
import tensorflow as tf
stddev=0.02, data_format='NDHWC') :
with tf.variable_scope(name) :
assert(data_format == 'NDHWC')
self.w = tf.get_variable('w', [k_t, k_h, k_w, input_dim, output_dim],
initializer=tf.truncated_normal_initializer(stddev=stddev))
self.b = tf.get_variable('b',[output_dim], initializer=tf.constant_initializer(0.0))
self.strides = [1,1,1]
self.dilates = [d_t, d_h, d_w]
| tensorflow.truncated_normal_initializer | 39 |
import tensorflow as tf
loss = None
with tf.name_scope(name, "softmax_loss",[output]):
label_dis = labels / tf.reduce_sum(labels, 1, keep_dims=True)
loss = tf.nn.softmax_cross_entropy_with_logits(logits=output, labels=label_dis) * tf.reduce_sum(labels, 1)
return tf.reduce_sum(loss) / tf.reduce_sum(labels)
def get_normalized_weights(self, propensity):
| tensorflow.reduce_sum | 40 |
import tensorflow as tf
print('===== Decompress =====')
# load model.
model = importlib.import_module(model)
synthesis_transform = model.SynthesisTransform(latent_points)
hyper_encoder = model.HyperEncoder()
hyper_decoder = model.HyperDecoder()
entropy_bottleneck = EntropyBottleneck()
conditional_entropy_model = SymmetricConditional()
checkpoint = tf.train.Checkpoint(synthesis_transform=synthesis_transform,
hyper_encoder=hyper_encoder,
hyper_decoder=hyper_decoder,
estimator=entropy_bottleneck)
status = checkpoint.restore(tf.train.latest_checkpoint(ckpt_dir))
zs = entropy_bottleneck.decompress(z_strings, z_min_v, z_max_v, z_shape, z_shape[-1])
print("Entropy Decoder (Hyper)")
def loop_hyper_deocder(z):
z = tf.expand_dims(z, 0)
loc, scale = hyper_decoder(z)
return tf.squeeze(loc, [0]), tf.squeeze(scale, [0])
locs, scales = tf.map_fn(loop_hyper_deocder, zs, dtype=(tf.float32, tf.float32),
parallel_iterations=1, back_prop=False)
lower_bound = 1e-9# TODO
| tensorflow.train.latest_checkpoint | 41 |
import tensorflow as tf
const_var = tf.Variable(tf.constant([8, 6, 7, 5, 3, 0, 9]))
const_fill_var = tf.Variable(tf.constant(-1, shape=[row_dim, col_dim]))
sess.run(const_var.initializer)
| tensorflow.constant | 42 |
import tensorflow as tf
def testStrWorksCorrectlyScalar(self):
# Usually we'd write np.float(X) here, but a recent Eager bug would
# erroneously coerce the value to float32 anyway. We therefore use constants
# here, until the bug is resolved in TensorFlow 1.12.
normal = tfd.Normal(loc=tf.constant(0, tf.float16),
scale=tf.constant(1, tf.float16))
self.assertEqual(
str(normal),
"tfp.distributions.Normal("
| tensorflow.constant | 43 |
import tensorflow as tf
'`rightmost_transposed_ndims` and `perm`.')
if rightmost_transposed_ndims is not None:
rightmost_transposed_ndims = tf.convert_to_tensor(
value=rightmost_transposed_ndims,
dtype=np.int32,
name='rightmost_transposed_ndims')
rightmost_transposed_ndims_ = tf.get_static_value(
rightmost_transposed_ndims)
with tf.control_dependencies(_maybe_validate_rightmost_transposed_ndims(
rightmost_transposed_ndims, validate_args)):
rightmost_transposed_ndims = tf.identity(rightmost_transposed_ndims)
perm = tf.range(
start=rightmost_transposed_ndims - 1,
limit=-1,
delta=-1,
name='perm')
else: # perm is not None:
perm = tf.convert_to_tensor(value=perm, dtype=np.int32, name='perm')
rightmost_transposed_ndims = tf.size(
input=perm, name='rightmost_transposed_ndims')
rightmost_transposed_ndims_ = tf.get_static_value(
rightmost_transposed_ndims)
| tensorflow.range | 44 |
import tensorflow as tf
def hgru_ops(self, i0, x, h2, layer, layer_idx):
"""hGRU body."""
var_scope = '%s_hgru_weights' % layer
# Circuit input receives recurrent output h2
c1, g1 = self.circuit_input(
h2=h2,
layer=layer,
var_scope=var_scope,
layer_idx=layer_idx)
with tf.variable_scope(
'%s/c1_bn' % var_scope,
reuse=self.scope_reuse) as scope:
c1 = tf.contrib.layers.batch_norm(
inputs=c1,
scale=True,
center=False,
fused=True,
renorm=False,
| tensorflow.variable_scope | 45 |
import tensorflow as tf
act: (tf.Variable, bool, float, bool, float, bool) -> tf.Variable
function to select and action given observation.
` See the top of the file for details.
"""
if param_noise_filter_func is None:
param_noise_filter_func = default_param_noise_filter
with tf.variable_scope(scope, reuse=reuse):
observations_ph = U.ensure_tf_input(make_obs_ph("observation"))
stochastic_ph = tf.placeholder(tf.bool, (), name="stochastic")
update_eps_ph = tf.placeholder(tf.float32, (), name="update_eps")
update_param_noise_threshold_ph = tf.placeholder(tf.float32, (), name="update_param_noise_threshold")
update_param_noise_scale_ph = tf.placeholder(tf.bool, (), name="update_param_noise_scale")
reset_ph = tf.placeholder(tf.bool, (), name="reset")
eps = tf.get_variable("eps", (), initializer=tf.constant_initializer(0))
param_noise_scale = tf.get_variable("param_noise_scale", (), initializer=tf.constant_initializer(0.01), trainable=False)
param_noise_threshold = tf.get_variable("param_noise_threshold", (), initializer=tf.constant_initializer(0.05), trainable=False)
# Unmodified Q.
q_values = q_func(observations_ph.get(), num_actions, scope="q_func")
| tensorflow.placeholder | 46 |
import tensorflow as tf
super(TweetSeqModel, self).__init__(batch_size, max_sequence_len,
out_vocab_size, c2v,
dropout_keep_prob)
weights = tf.constant(weights, dtype=tf.float32, name='class_weights')
def GetCell():
"""Creates an LSTM cell with dropout."""
c = tf.nn.rnn_cell.LSTMCell(hidden_size,
use_peepholes=model_params['peepholes'],
num_proj=proj_size)
if dropout_keep_prob is not None:
c = tf.nn.rnn_cell.DropoutWrapper(c, input_keep_prob=dropout_keep_prob)
return c
# Create the bi-directional LSTM
with tf.variable_scope('wordrnn'):
| tensorflow.nn.rnn_cell.LSTMCell | 47 |
import tensorflow as tf
'image/object/bbox/xmax':
tf.io.VarLenFeature(tf.float32),
'image/object/bbox/ymin':
tf.io.VarLenFeature(tf.float32),
'image/object/bbox/ymax':
tf.io.VarLenFeature(tf.float32),
'image/object/class/label':
tf.io.VarLenFeature(tf.int64),
'image/object/area':
tf.io.VarLenFeature(tf.float32),
'image/object/is_crowd':
tf.io.VarLenFeature(tf.int64),
}
if include_mask:
self._keys_to_features.update({
'image/object/mask':
tf.io.VarLenFeature(tf.string),
})
def _decode_image(self, parsed_tensors):
"""Decodes the image and set its static shape."""
image = tf.io.decode_image(parsed_tensors['image/encoded'], channels=3)
| tensorflow.io.VarLenFeature | 48 |
import tensorflow as tf
total_loss = tf.reduce_sum(lm_loss * tgt_mask) / tf.reduce_sum(tgt_mask)
monitor_dict["total_loss"] = total_loss
return total_loss, new_mems, monitor_dict
def get_loss(FLAGS, features, labels, mems, is_training):
"""Pretraining loss with two-stream attention Transformer-XL."""
if FLAGS.use_bfloat16:
with tf.tpu.bfloat16_scope():
return two_stream_loss(FLAGS, features, labels, mems, is_training)
else:
return two_stream_loss(FLAGS, features, labels, mems, is_training)
def get_classification_loss(
FLAGS, features, n_class, is_training):
"""Loss for downstream classification tasks."""
| tensorflow.tpu.bfloat16_scope | 49 |
import tensorflow as tf
raise Exception("The input dimension must be rank 2")
n_in = int(self.inputs.get_shape()[-1])
self.n_units = n_units
with tf.variable_scope(name):
W = tf.get_variable(name='W', shape=(n_in, n_units), initializer=W_init, dtype=LayersConfig.tf_dtype, **W_init_args)
b = tf.get_variable(name='b', shape=(n_units), initializer=b_init, dtype=LayersConfig.tf_dtype, **b_init_args)
# self.outputs = act(tf.matmul(self.inputs, W) + b)
LayersConfig.set_keep[name] = tf.placeholder(tf.float32)
W_dropcon = tf.nn.dropout(W, LayersConfig.set_keep[name])
self.outputs = act(tf.matmul(self.inputs, W_dropcon) + b)
# self.all_layers = list(layer.all_layers)
# self.all_params = list(layer.all_params)
# self.all_drop = dict(layer.all_drop)
self.all_drop.update({LayersConfig.set_keep[name]: keep})
self.all_layers.append(self.outputs)
self.all_params.extend([W, b])
| tensorflow.matmul | 50 |
import tensorflow as tf
elif isinstance(ob_space, Box):
input_shape = (batch_size,) + ob_space.shape
input_x = tf.placeholder(shape=input_shape, dtype=ob_space.dtype, name=name)
processed_x = tf.to_float(input_x)
return input_x, processed_x
else:
| tensorflow.to_float | 51 |
import tensorflow as tf
scope='BoxEncodingPredictor')
if self._use_dropout:
net = slim.dropout(net, keep_prob=self._dropout_keep_prob)
class_predictions_with_background = slim.conv2d(
net, num_predictions_per_location * num_class_slots,
[self._kernel_size, self._kernel_size], scope='ClassPredictor',
biases_initializer=tf.constant_initializer(
self._class_prediction_bias_init))
if self._apply_sigmoid_to_scores:
class_predictions_with_background = tf.sigmoid(
class_predictions_with_background)
combined_feature_map_shape = shape_utils.combined_static_and_dynamic_shape(
image_features)
box_encodings = tf.reshape(
box_encodings, tf.stack([combined_feature_map_shape[0],
combined_feature_map_shape[1] *
combined_feature_map_shape[2] *
| tensorflow.sigmoid | 52 |
import tensorflow as tf
# TODO: move to ops
def _rank(x):
return len(x.get_shape())
def _apply_dropout_mask(tensor_shape, keep_prob=1.0, normalize=True):
random_tensor = keep_prob + tf.random_uniform(tensor_shape, dtype=tf.float32)
binary_mask = tf.floor(random_tensor)
if normalize:
binary_mask = tf.reciprocal(keep_prob) * binary_mask
return binary_mask
def _global_keep_prob(keep_prob):
keep_prob = tf.convert_to_tensor(keep_prob, dtype=tf.float32)
keep_prob = tf.cond(_phase, lambda: keep_prob, lambda: keep_prob * 0.0 + 1.0)
return keep_prob
def layer(func):
class Layer(object):
def __init__(self, *args, **kwargs):
self.func = func
self.args = args
self.kwargs = kwargs
self.name = self.kwargs.get("name", self.func.__name__)
| tensorflow.convert_to_tensor | 53 |
import tensorflow as tf
input_props.append((tf.int32, [None])) # Gold ends.
input_props.append((tf.int32, [None])) # Cluster ids.
self.queue_input_tensors = [tf.placeholder(dtype, shape) for dtype, shape in input_props]
dtypes, shapes = zip(*input_props)
queue = tf.PaddingFIFOQueue(capacity=10, dtypes=dtypes, shapes=shapes)
self.enqueue_op = queue.enqueue(self.queue_input_tensors)
self.input_tensors = queue.dequeue()
self.predictions, self.loss = self.get_predictions_and_loss(*self.input_tensors)
self.global_step = tf.Variable(0, name="global_step", trainable=False)
self.reset_global_step = tf.assign(self.global_step, 0)
learning_rate = tf.train.exponential_decay(self.config["learning_rate"], self.global_step,
self.config["decay_frequency"], self.config["decay_rate"], staircase=True)
trainable_params = tf.trainable_variables()
gradients = tf.gradients(self.loss, trainable_params)
gradients, _ = tf.clip_by_global_norm(gradients, self.config["max_gradient_norm"])
optimizers = {
"adam" : tf.train.AdamOptimizer,
"sgd" : tf.train.GradientDescentOptimizer
}
optimizer = optimizers[self.config["optimizer"]](learning_rate)
self.train_op = optimizer.apply_gradients(zip(gradients, trainable_params), global_step=self.global_step)
def start_enqueue_thread(self, session):
with open(self.config["train_path"]) as f:
train_examples = [json.loads(jsonline) for jsonline in f.readlines()]
def _enqueue_loop():
| tensorflow.trainable_variables | 54 |
import tensorflow as tf
def call(self, inputs):
"""Evaluates the QNode on input data using the initialized weights.
Args:
inputs (tensor): data to be processed
Returns:
tensor: output data
"""
if len(tf.shape(inputs)) > 1:
# If the input size is not 1-dimensional, unstack the input along its first dimension,
# recursively call the forward pass on each of the yielded tensors, and then stack the
# outputs back into the correct shape
reconstructor = []
for x in tf.unstack(inputs):
reconstructor.append(self.call(x))
return tf.stack(reconstructor)
return self._evaluate_qnode(inputs)
def _evaluate_qnode(self, x):
"""Evaluates a QNode for a single input datapoint.
Args:
x (tensor): the datapoint
Returns:
tensor: output datapoint
| tensorflow.unstack | 55 |
import tensorflow as tf
# Only make the ops if we know that `is_training=True`, or the value of
# `is_training` is unknown.
is_training_const = utils.constant_value(is_training)
if is_training_const is None or is_training_const:
update_mean_op, update_variance_op = utils.smart_cond(
is_training,
build_update_ops,
build_no_ops,
)
# Every new connection creates a new op which adds its contribution
# to the running average when ran.
tf.add_to_collection(tf.GraphKeys.UPDATE_OPS, update_mean_op)
tf.add_to_collection(tf.GraphKeys.UPDATE_OPS, update_variance_op)
def _build_update_ops_second_moment(self, mean, second_moment, is_training):
"""Builds the moving average update ops when using the moving second moment.
Args:
mean: The mean value to update with.
second_moment: The second_moment value to update with.
is_training: Boolean Tensor to indicate if we're currently in
training mode.
"""
def build_update_ops():
"""Builds the exponential moving average update ops."""
| tensorflow.add_to_collection | 56 |
import tensorflow as tf
return_dict["end_top_index"] = end_top_index
# an additional layer to predict answerability
with tf.variable_scope("answer_class"):
# get the representation of CLS
cls_index = tf.one_hot(cls_index, seq_len, axis=-1, dtype=tf.float32)
cls_feature = tf.einsum("lbh,bl->bh", output, cls_index)
# get the representation of START
start_p = tf.nn.softmax(start_logits_masked, axis=-1,
name="softmax_start")
start_feature = tf.einsum("lbh,bl->bh", output, start_p)
# note(zhiliny): no dependency on end_feature so that we can obtain
# one single `cls_logits` for each sample
ans_feature = tf.concat([start_feature, cls_feature], -1)
ans_feature = tf.layers.dense(
ans_feature,
xlnet_config.d_model,
activation=tf.tanh,
kernel_initializer=initializer, name="dense_0")
ans_feature = tf.layers.dropout(ans_feature, FLAGS.dropout,
training=is_training)
cls_logits = tf.layers.dense(
ans_feature,
1,
kernel_initializer=initializer,
name="dense_1",
use_bias=False)
cls_logits = tf.squeeze(cls_logits, -1)
| tensorflow.concat | 57 |
import tensorflow.contrib.graph_editor as ge
d_xs_new = dv[len(checkpoints_other):]
for j in range(len(xs)):
if d_xs_new[j] is not None:
if d_xs[j] is None:
d_xs[j] = _unsparsify(d_xs_new[j])
else:
d_xs[j] += _unsparsify(d_xs_new[j])
return d_xs
def tf_toposort(ts, within_ops=None):
all_ops = ge.get_forward_walk_ops([x.op for x in ts], within_ops=within_ops)
deps = {}
for op in all_ops:
for o in op.outputs:
deps[o] = set(op.inputs)
sorted_ts = toposort(deps)
# only keep the tensors from our original list
ts_sorted_lists = []
for l in sorted_ts:
keep = list(set(l).intersection(ts))
| tensorflow.contrib.graph_editor.get_forward_walk_ops | 58 |
import tensorflow as tf
def build_trainer(self, child_model):
child_model.build_valid_rl()
self.valid_acc = (tf.to_float(child_model.valid_shuffle_acc) /
tf.to_float(child_model.batch_size))
self.reward = self.valid_acc
if self.entropy_weight is not None:
self.reward += self.entropy_weight * self.sample_entropy
self.sample_log_prob = tf.reduce_sum(self.sample_log_prob)
self.baseline = tf.Variable(0.0, dtype=tf.float32, trainable=False)
baseline_update = tf.assign_sub(
self.baseline, (1 - self.bl_dec) * (self.baseline - self.reward))
with tf.control_dependencies([baseline_update]):
self.reward = tf.identity(self.reward)
self.loss = self.sample_log_prob * (self.reward - self.baseline)
self.train_step = tf.Variable(0, dtype=tf.int32, trainable=False, name="train_step")
tf_variables = [var for var in tf.trainable_variables() if var.name.startswith(self.name)]
print("-" * 80)
| tensorflow.assign_sub | 59 |
import tensorflow as tf
def deconv2d(input_, output_shape,
k_h=5, k_w=5, d_h=2, d_w=2, stddev=0.02,
name="deconv2d", with_w=False):
with tf.variable_scope(name):
# filter : [height, width, output_channels, in_channels]
w = tf.get_variable('w', [k_h, k_w, output_shape[-1], input_.get_shape()[-1]],
| tensorflow.variable_scope | 60 |
import tensorflow as tf
vz_keys = tf.reshape(tf.Variable([], collections=[], dtype=tf.string), (-1, 1))
x_t = tf.gather(x, l)
x_t_len = tf.strings.length(x_t)
x_t = tf.string_split([x_t], delimiter='').values
z_t = tf.gather(y, m)
z_t_len = tf.strings.length(z_t)
z_t = tf.string_split([z_t], delimiter='').values
for i in tf.range(start=0, limit=x_t_len - self._p + 1, delta=1, dtype=None, name='range'):
u = tf.string_join(x_t[i:i + self._p], '')
vx_keys, r = tf.cond(
tf.greater(vx.lookup(u), -1),
true_fn=lambda: (vx_keys, tf.add(vx.lookup(u), 1)),
false_fn=lambda: (tf.concat([vx_keys, tf.reshape(u, (-1, 1))], axis=0),
tf.constant(1, dtype=tf.int64, name='constant'))
)
vx.insert(u, r)
for i in tf.range(start=0, limit=z_t_len - self._p + 1, delta=1, dtype=None, name='range'):
u = tf.string_join(z_t[i:i + self._p], '')
| tensorflow.string_join | 61 |
import tensorflow as tf
# now to upscale to actual image size
deconv_shape1 = image_net["pool4"].get_shape()
W_t1 = utils.weight_variable([4, 4, deconv_shape1[3].value, NUM_OF_CLASSESS], name="W_t1")
b_t1 = utils.bias_variable([deconv_shape1[3].value], name="b_t1")
conv_t1 = utils.conv2d_transpose_strided(conv8, W_t1, b_t1, output_shape=tf.shape(image_net["pool4"]))
fuse_1 = tf.add(conv_t1, image_net["pool4"], name="fuse_1")
deconv_shape2 = image_net["pool3"].get_shape()
W_t2 = utils.weight_variable([4, 4, deconv_shape2[3].value, deconv_shape1[3].value], name="W_t2")
| tensorflow.shape | 62 |
from tensorflow.python.framework import ops
name or 'root_mean_squared_error')
root_mean_squared_error = math_ops.sqrt(value_tensor)
with ops.control_dependencies([update_op]):
update_op = math_ops.sqrt(update_op)
| tensorflow.python.framework.ops.control_dependencies | 63 |
import tensorflow as tf
TRAIN_STEPS = 1
CONFIG = tf.ConfigProto(device_count={"GPU": 0})
class UnidirectionalSequenceLstmTest(test_util.TensorFlowTestCase):
def setUp(self):
tf.reset_default_graph()
# Import MNIST dataset
self.mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
# Define constants
# Unrolled through 28 time steps
self.time_steps = 28
# Rows of 28 pixels
| tensorflow.reset_default_graph | 64 |
import tensorflow as tf
# Date: 2018/12/22 下午4:06
# 10.3 TensorFlow的并发执行
# 1. 为了能够找到TensorFlow的什么操作正在使用什么设备,我们在计算图会话中传入一个config参数,将log_device_placement设为True。当我们在命令行运行脚本时,会看到指定设备输出
import tensorflow as tf
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
a = tf.constant_initializer([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')
b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b')
c = tf.matmul(a, b)
# Runs the op.
print(sess.run(c))
# 2. 从控制台运行下面的命令
| tensorflow.constant_initializer | 65 |
import tensorflow as tf
param_eta = tf.placeholder(dtype=tf.float32, shape=[], name="param_eta")
| tensorflow.placeholder | 66 |
import tensorflow as tf
tvars = tf.trainable_variables()
initialized_variable_names = {}
scaffold_fn = None
if init_checkpoint:
(assignment_map, initialized_variable_names
) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint)
if use_tpu:
def tpu_scaffold():
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
return tf.train.Scaffold()
scaffold_fn = tpu_scaffold
else:
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
tf.logging.info("**** Trainable Variables ****")
for var in tvars:
init_string = ""
| tensorflow.train.init_from_checkpoint | 67 |
import tensorflow as tf
# Creates a graph.
v0 = tf.Variable(0.0)
var = tf.Variable(10.0)
tf.add(v0, var)
@function.Defun(x=tf.float32)
def minus_one(x):
return x - 1
minus_one(tf.identity(v0))
save = tf.train.Saver({"v0": v0})
tf.initialize_all_variables()
# Generates MetaGraphDef.
meta_graph_def = save.export_meta_graph()
ops = [o.name for o in meta_graph_def.meta_info_def.stripped_op_list.op]
| tensorflow.identity | 68 |
import tensorflow as tf
tf.OpError, lambda e: "uninitialized value v0" in e.message):
sess.run(v0)
with self.assertRaisesWithPredicateMatch(
tf.OpError, lambda e: "uninitialized value v1" in e.message):
sess.run(v1)
# Restore the saved values in the parameter nodes.
save.restore(sess, save_path)
# Check that the parameter nodes have been restored.
self.assertEqual(10.0, v0.eval())
self.assertEqual(20.0, v1.eval())
# Build another graph with 2 nodes, initialized
# differently, and a Restore node for them.
with self.test_session() as sess:
v0_2 = tf.Variable(1000.0, name="v0")
v1_2 = tf.Variable(2000.0, name="v1")
save2 = tf.train.Saver({"v0": v0_2, "v1": v1_2})
tf.initialize_all_variables().run()
# Check that the parameter nodes have been initialized.
self.assertEqual(1000.0, v0_2.eval())
self.assertEqual(2000.0, v1_2.eval())
# Restore the values saved earlier in the parameter nodes.
save2.restore(sess, save_path)
# Check that the parameter nodes have been restored.
self.assertEqual(10.0, v0_2.eval())
self.assertEqual(20.0, v1_2.eval())
def testInt64(self):
| tensorflow.Variable | 69 |
import tensorflow as tf
def to_ids(example):
sentence = tf.reshape(example['tokens'], shape=[1])
words = tf.strings.split(sentence, sep=' ').values
truncated_words = words[:max_seq_len]
| tensorflow.strings.split | 70 |
import tensorflow as tf
tf.summary.scalar('cross_entropy_loss', cross_entropy)
loc_loss = tf.cond(n_positives > 0., lambda: modified_smooth_l1(location_pred, tf.stop_gradient(gtargets), sigma=1.), lambda: tf.zeros_like(location_pred))
#loc_loss = modified_smooth_l1(location_pred, tf.stop_gradient(gtargets))
loc_loss = tf.reduce_mean(tf.reduce_sum(loc_loss, axis=-1))
loc_loss = tf.identity(loc_loss, name='location_loss')
tf.summary.scalar('location_loss', loc_loss)
tf.losses.add_loss(loc_loss)
# Add weight decay to the loss. We exclude the batch norm variables because
# doing so leads to a small improvement in accuracy.
loss = cross_entropy + loc_loss + params['weight_decay'] * tf.add_n(
[tf.nn.l2_loss(v) for v in tf.trainable_variables()
if 'batch_normalization' not in v.name])
total_loss = tf.identity(loss, name='total_loss')
if mode == tf.estimator.ModeKeys.TRAIN:
global_step = tf.train.get_or_create_global_step()
lr_values = [params['learning_rate'] * decay for decay in params['lr_decay_factors']]
learning_rate = tf.train.piecewise_constant(tf.cast(global_step, tf.int32),
[int(_) for _ in params['decay_boundaries']],
lr_values)
truncated_learning_rate = tf.maximum(learning_rate, tf.constant(params['end_learning_rate'], dtype=learning_rate.dtype))
| tensorflow.nn.l2_loss | 71 |
import tensorflow as tf
return model_utils.update_exponential_moving_average(
rl_step_baseline, momentum=rl_baseline_momentum)
rl_baseline = update_rl_baseline()
rl_advantage = rl_reward - rl_baseline
rl_empirical_loss = -tf.stop_gradient(rl_advantage) * log_prob
rl_entropy_loss = -rl_entropy_regularization * rl_entropy
enable_rl_optimizer = tf.cast(
tf.greater_equal(target_global_step, FLAGS.first_pretrain_steps),
tf.float32)
rl_learning_rate = FLAGS.rl_learning_rate * enable_rl_optimizer
rl_learning_rate = tf.train.piecewise_constant(
target_global_step, [800,],
[rl_learning_rate, rl_learning_rate * 0.1])
optimizer = tf.train.AdamOptimizer(rl_learning_rate)
target_train_op = optimizer.minimize(
rl_empirical_loss,
target_global_step,
| tensorflow.greater_equal | 72 |
import tensorflow as tf
decided to use the (x_min, y_min, x_max, y_min), forcing use to switch to
TensorFlow's every time we want to use a std function that handles bounding
boxes.
Args:
bboxes: A Tensor of shape (total_bboxes, 4)
Returns:
bboxes: A Tensor of shape (total_bboxes, 4) with the order swaped.
"""
with tf.name_scope('BoundingBoxTransform/change_order'):
first_min, second_min, first_max, second_max = tf.unstack(
bboxes, axis=1
)
bboxes = tf.stack(
[second_min, first_min, second_max, first_max], axis=1
)
return bboxes
| tensorflow.name_scope | 73 |
import tensorflow as tf
variables_averages_op = variable_averages.apply(tf.trainable_variables())
# batch norm updates
with tf.control_dependencies([variables_averages_op, apply_gradient_op, batch_norm_updates_op]):
train_op = tf.no_op(name='train_op')
saver = tf.train.Saver(tf.global_variables())
summary_writer = tf.summary.FileWriter(FLAGS.checkpoint_path, tf.get_default_graph())
init = tf.global_variables_initializer()
if FLAGS.pretrained_model_path is not None:
variable_restore_op = slim.assign_from_checkpoint_fn(FLAGS.pretrained_model_path, slim.get_trainable_variables(),
ignore_missing_vars=True)
config = tf.ConfigProto()
custom_op = config.graph_options.rewrite_options.custom_optimizers.add()
custom_op.name = "NpuOptimizer"
custom_op.parameter_map["use_off_line"].b = True # 在昇腾AI处理器执行训练
config.graph_options.rewrite_options.remapping = RewriterConfig.OFF # 关闭remap开关
if FLAGS.allow_mix_precision:
custom_op.parameter_map["precision_mode"].s = tf.compat.as_bytes("allow_mix_precision")
if FLAGS.auto_tune:
custom_op.parameter_map["auto_tune_mode"].s = tf.compat.as_bytes("RL,GA")
with tf.Session(config=config) as sess:
if FLAGS.restore:
print('continue training from previous checkpoint')
ckpt = tf.train.latest_checkpoint(FLAGS.checkpoint_path)
| tensorflow.ConfigProto | 74 |
import tensorflow as tf
input_images = tf.placeholder(tf.float32, shape=[None, None, None, 3], name='input_images')
| tensorflow.placeholder | 75 |
import tensorflow as tf
(assignment_map, initialized_variable_names
) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint)
if use_tpu:
def tpu_scaffold():
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
return tf.train.Scaffold()
scaffold_fn = tpu_scaffold
else:
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
tf.logging.info("**** Trainable Variables ****")
for var in tvars:
init_string = ""
if var.name in initialized_variable_names:
init_string = ", *INIT_FROM_CKPT*"
tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape,
init_string)
| tensorflow.train.init_from_checkpoint | 76 |
import tensorflow as tf
if coeff <= 0:
return y
x = np.zeros(y.shape[0], dtype=np.float32)
x[0] = y[0]
for n in range(1, y.shape[0], 1):
x[n] = coeff * x[n - 1] + y[n]
return x
def read_and_decode(filename_queue, canvas_size, preemph=0.):
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue)
features = tf.parse_single_example(
serialized_example,
features={
'wav_raw': tf.FixedLenFeature([], tf.string),
'noisy_raw': tf.FixedLenFeature([], tf.string),
})
wave = tf.decode_raw(features['wav_raw'], tf.int32)
| tensorflow.TFRecordReader | 77 |
import tensorflow as tf
tf.equal(phase, 'train'),
datasets.train.get_next,
datasets.test.get_next)
if not isinstance(data, dict):
data = {'data': data}
if 'length' not in data:
example = data[list(data.keys())[0]]
data['length'] = (
tf.zeros((tf.shape(example)[0],), tf.int32) + tf.shape(example)[1])
return data
def train(model_fn, datasets, logdir, config):
"""Train a model on a datasets.
The model function receives the following arguments: data batch, trainer
| tensorflow.shape | 78 |
import tensorflow as tf
resnet_size=18, num_classes=class_num, mode='se', data_format=None)
inputs= network(inputs=inputs, is_training=training)
feat = tf.nn.l2_normalize(inputs, 1, 1e-10, name='feat')
inputs = tf.layers.dense(inputs=inputs, units=class_num)
# inputs = tf.layers.dense(inputs=feat, units=class_num)
inputs = tf.identity(inputs, 'final_dense')
return inputs, feat
# image_size = 32, img_channels = 3, class_num = 10 in cifar10
x = tf.placeholder(tf.float32, shape=[None, image_size, image_size, img_channels])
label = tf.placeholder(tf.float32, shape=[None,])
one_hot_labels = tf.one_hot(indices=tf.cast(label, tf.int32), depth=class_num)
training_flag = tf.placeholder(tf.bool)
learning_rate = tf.placeholder(tf.float32, name='learning_rate')
logits, feat = resnet_model_fn(x, training=training_flag)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=one_hot_labels, logits=logits))
| tensorflow.placeholder | 79 |
import tensorflow as tf
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# pylint: disable=missing-docstring
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import control_flow_ops
def conv(inpOp, nIn, nOut, kH, kW, dH, dW, padType, name, phase_train=True, use_batch_norm=True, weight_decay=0.0):
with tf.variable_scope(name):
l2_regularizer = lambda t: l2_loss(t, weight=weight_decay)
kernel = tf.get_variable("weights", [kH, kW, nIn, nOut],
initializer=tf.truncated_normal_initializer(stddev=1e-1),
regularizer=l2_regularizer, dtype=inpOp.dtype)
cnv = tf.nn.conv2d(inpOp, kernel, [1, dH, dW, 1], padding=padType)
if use_batch_norm:
conv_bn = batch_norm(cnv, phase_train)
else:
conv_bn = cnv
biases = tf.get_variable("biases", [nOut], initializer=tf.constant_initializer(), dtype=inpOp.dtype)
bias = tf.nn.bias_add(conv_bn, biases)
conv1 = tf.nn.relu(bias)
return conv1
| tensorflow.variable_scope | 80 |
import tensorflow as tf
tf.app.flags.DEFINE_string('eval_data_path', '',
'Filepattern for eval data')
tf.app.flags.DEFINE_string('train_dir', '',
'Directory to keep training outputs.')
tf.app.flags.DEFINE_string('eval_dir', '',
'Directory to keep eval outputs.')
tf.app.flags.DEFINE_integer('eval_batch_count', 10,
'Number of batches to eval.')
tf.app.flags.DEFINE_bool('eval_once', False,
'Whether evaluate the model only once.')
tf.app.flags.DEFINE_string('log_root', '',
'Directory to keep the checkpoints. Should be a '
'parent directory of FLAGS.train_dir/eval_dir.')
tf.app.flags.DEFINE_integer('num_gpus', 0,
'Number of gpus used for training. (0 or 1)')
tf.app.flags.DEFINE_integer('num_residual_units', 5,
| tensorflow.app.flags.DEFINE_bool | 81 |
import tensorflow as tf
l3=tf.matmul(l2, self.w3)+self.b3
l3=tf.nn.relu(l3)
out=tf.matmul(l3, self.w4)+self.b4
return out
def valid_inference(self,images):
images=tf.cast(images,tf.float32)/255.0
l1 = tf.matmul(images, self.w1)+self.b1
l1=tf.nn.relu(l1)
l2 = tf.matmul(l1, self.w2)+self.b2
l2=tf.nn.relu(l2)
l3=tf.matmul(l2, self.w3)+self.b3
l3=tf.nn.relu(l3)
out=tf.matmul(l3, self.w4)+self.b4
return out
def softmax_loss(self,predicts,labels):
predicts=tf.nn.softmax(predicts)
labels=tf.one_hot(labels,classnum)
loss=-tf.reduce_sum(labels*tf.log(predicts))
return loss
| tensorflow.matmul | 82 |
import tensorflow as tf
row_norms = tf.sqrt(tf.reduce_sum(tf.square(var_matrix), 1))
scaling = maxnorm / tf.maximum(row_norms, maxnorm)
| tensorflow.maximum | 83 |
from tensorflow.python.framework import ops
"""
with ops.op_scope([value, bias], name, "BiasAddV1") as name:
value = ops.convert_to_tensor(value, name="input")
bias = ops.convert_to_tensor(bias, dtype=value.dtype, name="bias")
return gen_nn_ops._bias_add_v1(value, bias, name=name)
ops.RegisterShape("BiasAddV1")(common_shapes.bias_add_shape)
ops.RegisterShape("BiasAddGradV1")(common_shapes.bias_add_grad_shape)
def relu6(features, name=None):
"""Computes Rectified Linear 6: `min(max(features, 0), 6)`.
Args:
features: A `Tensor` with type `float`, `double`, `int32`, `int64`, `uint8`,
`int16`, or `int8`.
| tensorflow.python.framework.ops.RegisterShape | 84 |
from tensorflow.python.ops import math_ops
# Create slots for the global solution.
for v in var_list:
self._zeros_slot(v, "vstar", self._name)
self._zeros_slot(v, "gold", self._name)
def _apply_dense(self, grad, var):
lr_t = math_ops.cast(self._lr_t, var.dtype.base_dtype)
mu_t = math_ops.cast(self._mu_t, var.dtype.base_dtype)
vstar = self.get_slot(var, "vstar")
gold = self.get_slot(var, "gold")
| tensorflow.python.ops.math_ops.cast | 85 |
import tensorflow as tf
if modality.top_is_pointwise:
return tf.squeeze(logits, axis=[1, 2, 3])
# -1 due to the pad above.
current_output_position = common_layers.shape_list(ids)[1] - 1
logits = logits[:, current_output_position, :, :]
return tf.squeeze(logits, axis=[1, 2])
initial_ids = tf.zeros([batch_size], dtype=tf.int32)
if self.has_input:
| tensorflow.squeeze | 86 |
import tensorflow as tf
x = tf.transpose(x, perm=[3, 1, 2, 0]) # (batch_size, num_nodes, input_size, order)
x = tf.reshape(x, shape=[batch_size * self._num_nodes, input_size * num_matrices])
weights = tf.get_variable(
'weights', [input_size * num_matrices, output_size],
dtype=dtype,
initializer=tf.contrib.layers.xavier_initializer())
x = tf.matmul(
x, weights) # (batch_size * self._num_nodes, output_size)
biases = tf.get_variable("biases", [output_size],
dtype=dtype,
initializer=tf.constant_initializer(
bias_start, dtype=dtype))
x = tf.nn.bias_add(x, biases)
# Reshape res back to: (batch_size, num_node, state_dim)
return tf.reshape(x, [batch_size, self._num_nodes, output_size]) | tensorflow.constant_initializer | 87 |
import tensorflow as tf
print('logit: {}'.format(logits.get_shape()))
# Compute loss
if mode != 'gen':
neg_log_lhoods = tf.nn.sigmoid_cross_entropy_with_logits(logits=logits, labels=targets)
if target_weight_strategy == 'rect':
avg_neg_log_lhood = tf.reduce_mean(neg_log_lhoods)
else:
neg_log_lhoods = tf.multiply(neg_log_lhoods, target_weights)
# be careful to have at least one weight be nonzero
# should we be taking the mean elem-wise by batch? i think this is a big bug
avg_neg_log_lhood = tf.reduce_sum(neg_log_lhoods) / tf.reduce_sum(target_weights)
neg_log_lhoods_inspect = tf.reshape(neg_log_lhoods, [batch_size, rnn_nunroll])
# Train op
if mode == 'train':
lr = tf.Variable(0.0, trainable=False)
self._lr = lr
self._lr_summary = tf.summary.scalar('learning_rate', self._lr)
tvars = tf.trainable_variables()
grads = tf.gradients(avg_neg_log_lhood, tvars)
| tensorflow.reduce_sum | 88 |
import tensorflow as tf
for i in range (dim):
dg_i = tf.gradients(flat_grads[i], par) #for each element of grads evaluate the gradients
dg_i_flat = flatten(dg_i) #flatten the resulting hessian onto a 1 d array
| tensorflow.gradients | 89 |
import tensorflow as tf
return choices
samples = multinomial_squeeze(logits, self.hparams.sampling_temp)
return samples, logits, losses
def _shard_features(self, features): # pylint: disable=missing-docstring
sharded_features = dict()
for k, v in six.iteritems(features):
v = tf.convert_to_tensor(v)
v_shape = common_layers.shape_list(v)
if not v_shape:
v = tf.expand_dims(v, axis=-1)
v_shape = [1]
if v_shape == [1]:
v = tf.tile(v, [self._num_datashards])
sharded_features[k] = self._data_parallelism(tf.identity,
tf.split(
v, self._num_datashards,
0))
return sharded_features
def _to_features_per_datashard(self, features):
datashard_features = []
| tensorflow.expand_dims | 90 |
import tensorflow as tf
random_actions = tf.random_uniform(tf.stack([batch_size]), minval=0, maxval=n_actions, dtype=tf.int64)
chose_random = tf.random_uniform(tf.stack([batch_size]), minval=0, maxval=1, dtype=tf.float32) < eps
perturbed_stochastic_actions = tf.where(chose_random, random_actions, perturbed_deterministic_actions)
stochastic_actions = tf.where(chose_random, random_actions, deterministic_actions)
perturbed_output_actions = tf.cond(stochastic_ph, lambda: perturbed_stochastic_actions,
lambda: deterministic_actions)
output_actions = tf.cond(stochastic_ph, lambda: stochastic_actions, lambda: deterministic_actions)
update_eps_expr = eps.assign(tf.cond(update_eps_ph >= 0, lambda: update_eps_ph, lambda: eps))
updates = [
update_eps_expr,
tf.cond(reset_ph, lambda: perturb_vars(original_scope="model", perturbed_scope="perturbed_model/model"),
lambda: tf.group(*[])),
tf.cond(update_param_noise_scale_ph, lambda: update_scale(), lambda: tf.Variable(0., trainable=False)),
update_param_noise_thres_expr,
]
| tensorflow.cond | 91 |
import tensorflow as tf
return tf.clip_by_value(combined_idx, 0, 9)
def get_slow_antecedent_scores(self, top_span_emb, top_antecedents, top_antecedent_emb, top_antecedent_offsets, top_span_speaker_ids, genre_emb):
k = util.shape(top_span_emb, 0)
c = util.shape(top_antecedents, 1)
feature_emb_list = []
if self.config["use_metadata"]:
top_antecedent_speaker_ids = tf.gather(top_span_speaker_ids, top_antecedents) # [k, c]
same_speaker = tf.equal(tf.expand_dims(top_span_speaker_ids, 1), top_antecedent_speaker_ids) # [k, c]
speaker_pair_emb = tf.gather(tf.get_variable("same_speaker_emb", [2, self.config["feature_size"]]), tf.to_int32(same_speaker)) # [k, c, emb]
feature_emb_list.append(speaker_pair_emb)
tiled_genre_emb = tf.tile(tf.expand_dims(tf.expand_dims(genre_emb, 0), 0), [k, c, 1]) # [k, c, emb]
feature_emb_list.append(tiled_genre_emb)
if self.config["use_features"]:
antecedent_distance_buckets = self.bucket_distance(top_antecedent_offsets) # [k, c]
antecedent_distance_emb = tf.gather(tf.get_variable("antecedent_distance_emb", [10, self.config["feature_size"]]), antecedent_distance_buckets) # [k, c]
feature_emb_list.append(antecedent_distance_emb)
| tensorflow.get_variable | 92 |
import tensorflow as tf
if data_format_ == 'NHWC':
inputs = tf.transpose(inputs, [0, 2, 3, 1])
ksize = int(6 * sigma + 1.)
x = tf.expand_dims(tf.range(ksize, delta=1, dtype=tf.float32), axis=1)
y = tf.transpose(x, [1, 0])
kernel_matrix = tf.exp(- ((x - ksize/2.) ** 2 + (y - ksize/2.) ** 2) / (2 * sigma ** 2))
#print(kernel_matrix)
kernel_filter = tf.reshape(kernel_matrix, [ksize, ksize, 1, 1])
kernel_filter = tf.tile(kernel_filter, [1, 1, inputs_filters, 1])
#kernel_filter = tf.transpose(kernel_filter, [1, 0, 2, 3])
outputs = tf.nn.depthwise_conv2d(inputs, kernel_filter, strides=[1, 1, 1, 1], padding='SAME', data_format=data_format_, name='blur')
if data_format_ == 'NHWC':
outputs = tf.transpose(outputs, [0, 3, 1, 2])
return outputs
cpn_backbone = cpn.cascaded_pyramid_net
if 'seresnext50' in FLAGS.backbone:
cpn_backbone = cpn.xt_cascaded_pyramid_net
def keypoint_model_fn(features, labels, mode, params):
| tensorflow.nn.depthwise_conv2d | 93 |
import tensorflow as tf
start_x = tf.random.uniform(shape=(1,), minval=0, maxval=im_width, dtype=tf.int32)
start_y = tf.random.uniform(shape=(1,), minval=0, maxval=im_height, dtype=tf.int32)
mask = tf.pad(mask, [[cutout_size + start_y[0], im_height - start_y[0]],
[cutout_size + start_x[0], im_width - start_x[0]]])
mask = mask[cutout_size: cutout_size + im_height,
cutout_size: cutout_size + im_width]
mask = tf.tile(tf.reshape(mask, (im_height, im_width, 1)), (1, 1, 3))
image = tf.where(tf.equal(mask, 0), x=image, y=tf.zeros_like(image))
return image
def _add_drop_path(self, X, keep_prob):
with tf.variable_scope('drop_path'):
| tensorflow.reshape | 94 |
import tensorflow as tf
def regularization(self):
return self.model_lam * (
self.model_prob * tf.reduce_sum(tf.square(self.model_W)) +
tf.reduce_sum(tf.square(self.model_b))
| tensorflow.square | 95 |
import tensorflow.contrib as contrib
dropout3_1 = contrib.layers.dropout(stitch3_1, keep_prob=keep_prob, is_training=is_training,
scope="dropout3_1")
dropout3_2 = contrib.layers.dropout(stitch3_2, keep_prob=keep_prob, is_training=is_training,
scope="dropout3_2")
| tensorflow.contrib.layers.dropout | 96 |
import tensorflow as tf
"""Step the batch of environments.
The results of the step can be accessed from the variables defined below.
Args:
action: Tensor holding the batch of actions to apply.
Returns:
Operation.
"""
with tf.name_scope('environment/simulate'):
if action.dtype in (tf.float16, tf.float32, tf.float64):
action = tf.check_numerics(action, 'action')
observ_dtype = self._parse_dtype(self._batch_env.observation_space)
observ, reward, done = tf.py_func(
lambda a: self._batch_env.step(a)[:3], [action],
[observ_dtype, tf.float32, tf.bool], name='step')
observ = tf.check_numerics(observ, 'observ')
reward = tf.check_numerics(reward, 'reward')
return tf.group(
| tensorflow.name_scope | 97 |
import tensorflow as tf
if not white:
q_mu = tf.matrix_triangular_solve(Luu, q_mu, lower=True)
Luu_tiled = tf.tile(Luu[None, :, :], [num_func, 1, 1]) # remove line once issue 216 is fixed
q_sqrt_r = tf.matrix_triangular_solve(Luu_tiled, q_sqrt_r, lower=True)
Li_eKuf = tf.matrix_triangular_solve(Luu, eKuf, lower=True) # M x N
fmean = tf.matmul(Li_eKuf, q_mu, transpose_a=True)
eKff = expectation(pXnew, kern) # N (psi0)
eKuffu = expectation(pXnew, (kern, feat), (kern, feat)) # N x M x M (psi2)
Luu_tiled = tf.tile(Luu[None, :, :], [num_data, 1, 1]) # remove this line, once issue 216 is fixed
| tensorflow.matrix_triangular_solve | 98 |
import tensorflow as tf
d *= noise
z = tf.layers.dense(d, final_filters, name="unbottleneck")
return layer + z, 0.0
| tensorflow.layers.dense | 99 |
End of preview. Expand
in Dataset Viewer.
README.md exists but content is empty.
Use the Edit dataset card button to edit it.
- Downloads last month
- 42