|
--- |
|
dataset_info: |
|
features: |
|
- name: approver_id |
|
dtype: float64 |
|
- name: bit_flags |
|
dtype: int64 |
|
- name: created_at |
|
dtype: string |
|
- name: down_score |
|
dtype: int64 |
|
- name: fav_count |
|
dtype: int64 |
|
- name: file_ext |
|
dtype: string |
|
- name: file_size |
|
dtype: int64 |
|
- name: file_url |
|
dtype: string |
|
- name: has_active_children |
|
dtype: bool |
|
- name: has_children |
|
dtype: bool |
|
- name: has_large |
|
dtype: bool |
|
- name: has_visible_children |
|
dtype: bool |
|
- name: id |
|
dtype: int64 |
|
- name: image_height |
|
dtype: int64 |
|
- name: image_width |
|
dtype: int64 |
|
- name: is_banned |
|
dtype: bool |
|
- name: is_deleted |
|
dtype: bool |
|
- name: is_flagged |
|
dtype: bool |
|
- name: is_pending |
|
dtype: bool |
|
- name: large_file_url |
|
dtype: string |
|
- name: last_comment_bumped_at |
|
dtype: string |
|
- name: last_commented_at |
|
dtype: string |
|
- name: last_noted_at |
|
dtype: string |
|
- name: md5 |
|
dtype: string |
|
- name: media_asset_created_at |
|
dtype: string |
|
- name: media_asset_duration |
|
dtype: float64 |
|
- name: media_asset_file_ext |
|
dtype: string |
|
- name: media_asset_file_key |
|
dtype: string |
|
- name: media_asset_file_size |
|
dtype: int64 |
|
- name: media_asset_id |
|
dtype: int64 |
|
- name: media_asset_image_height |
|
dtype: int64 |
|
- name: media_asset_image_width |
|
dtype: int64 |
|
- name: media_asset_is_public |
|
dtype: bool |
|
- name: media_asset_md5 |
|
dtype: string |
|
- name: media_asset_pixel_hash |
|
dtype: string |
|
- name: media_asset_status |
|
dtype: string |
|
- name: media_asset_updated_at |
|
dtype: string |
|
- name: media_asset_variants |
|
dtype: string |
|
- name: parent_id |
|
dtype: float64 |
|
- name: pixiv_id |
|
dtype: float64 |
|
- name: preview_file_url |
|
dtype: string |
|
- name: rating |
|
dtype: string |
|
- name: score |
|
dtype: int64 |
|
- name: source |
|
dtype: string |
|
- name: tag_count |
|
dtype: int64 |
|
- name: tag_count_artist |
|
dtype: int64 |
|
- name: tag_count_character |
|
dtype: int64 |
|
- name: tag_count_copyright |
|
dtype: int64 |
|
- name: tag_count_general |
|
dtype: int64 |
|
- name: tag_count_meta |
|
dtype: int64 |
|
- name: tag_string |
|
dtype: string |
|
- name: tag_string_artist |
|
dtype: string |
|
- name: tag_string_character |
|
dtype: string |
|
- name: tag_string_copyright |
|
dtype: string |
|
- name: tag_string_general |
|
dtype: string |
|
- name: tag_string_meta |
|
dtype: string |
|
- name: up_score |
|
dtype: int64 |
|
- name: updated_at |
|
dtype: string |
|
- name: uploader_id |
|
dtype: int64 |
|
splits: |
|
- name: train |
|
num_bytes: 20051410186 |
|
num_examples: 8616173 |
|
download_size: 7310216883 |
|
dataset_size: 20051410186 |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
license: mit |
|
task_categories: |
|
- text-to-image |
|
- image-classification |
|
language: |
|
- en |
|
- ja |
|
pretty_name: Danbooru 2025 Metadata |
|
size_categories: |
|
- 1M<n<10M |
|
--- |
|
|
|
# Dataset Card for Danbooru 2025 Metadata |
|
|
|
This dataset repo provides comprehensive, up-to-date metadata for the Danbooru booru site. All metadata was freshly scraped starting on **January 2, 2025**, resulting in more extensive tag annotations for older posts, fewer errors, and reduced occurrences of non-labelled AI-generated images in the data. |
|
|
|
## Dataset Details |
|
|
|
**What is this?** |
|
A refreshed, Parquet-formatted metadata dump of Danbooru, current as of January 2, 2025. |
|
|
|
**Why this over other Danbooru scrapes?** |
|
- **Fresh Metadata:** Coverage includes post IDs from 1 through ~8.6M, with the newest vocabulary and tag annotations. |
|
- **Maximized Tag Count:** Many historical tag renames and additions are accurately reflected, reducing duplications for downstream tasks. |
|
- **Reduced Noise:** Fewer untagged or mislabeled AI images compared to older scrapes. |
|
|
|
**Tag Comparisons** |
|
[TODO: Contrast the tag counts, deleted entries, etc. with other Danbooru metadata scrapes.] |
|
|
|
- **Shared by:** [trojblue](https://huggingface.co./trojblue) |
|
- **Language(s) (NLP):** English, Japanese |
|
- **License:** MIT |
|
|
|
## Uses |
|
|
|
The dataset can be loaded or filtered with the Huggingface `datasets` library: |
|
|
|
```python |
|
from datasets import Dataset, load_dataset |
|
|
|
danbooru_dataset = load_dataset("trojblue/danbooru2025-metadata", split="train") |
|
df = danbooru_dataset.to_pandas() |
|
``` |
|
|
|
This dataset can be used to: |
|
- Retrieve the full Danbooru image set via the metadata’s URLs |
|
- Train or fine-tune an image tagger |
|
- Compare against previous metadata versions to track changes, tag evolution, and historical trends |
|
|
|
|
|
## Dataset Structure |
|
|
|
Below is a partial overview of the DataFrame columns, derived directly from the Danbooru JSONs: |
|
|
|
|
|
```python |
|
import unibox as ub |
|
ub.peeks(df) |
|
``` |
|
|
|
``` |
|
(8616173, 59) |
|
Index(['approver_id', 'bit_flags', 'created_at', 'down_score', 'fav_count', |
|
'file_ext', 'file_size', 'file_url', 'has_active_children', |
|
'has_children', 'has_large', 'has_visible_children', 'id', |
|
'image_height', 'image_width', 'is_banned', 'is_deleted', 'is_flagged', |
|
'is_pending', 'large_file_url', 'last_comment_bumped_at', |
|
'last_commented_at', 'last_noted_at', 'md5', 'media_asset_created_at', |
|
'media_asset_duration', 'media_asset_file_ext', 'media_asset_file_key', |
|
'media_asset_file_size', 'media_asset_id', 'media_asset_image_height', |
|
'media_asset_image_width', 'media_asset_is_public', 'media_asset_md5', |
|
'media_asset_pixel_hash', 'media_asset_status', |
|
'media_asset_updated_at', 'media_asset_variants', 'parent_id', |
|
'pixiv_id', 'preview_file_url', 'rating', 'score', 'source', |
|
'tag_count', 'tag_count_artist', 'tag_count_character', |
|
'tag_count_copyright', 'tag_count_general', 'tag_count_meta', |
|
'tag_string', 'tag_string_artist', 'tag_string_character', |
|
'tag_string_copyright', 'tag_string_general', 'tag_string_meta', |
|
'up_score', 'updated_at', 'uploader_id'], |
|
dtype='object') |
|
``` |
|
|
|
<div> |
|
<style scoped> |
|
.dataframe tbody tr th:only-of-type { |
|
vertical-align: middle; |
|
} |
|
|
|
.dataframe tbody tr th { |
|
vertical-align: top; |
|
} |
|
|
|
.dataframe thead th { |
|
text-align: right; |
|
} |
|
</style> |
|
<table border="1" class="dataframe"> |
|
<thead> |
|
<tr style="text-align: right;"> |
|
<th></th> |
|
<th>approver_id</th> |
|
<th>bit_flags</th> |
|
<th>created_at</th> |
|
<th>down_score</th> |
|
<th>fav_count</th> |
|
<th>file_ext</th> |
|
<th>file_size</th> |
|
<th>file_url</th> |
|
<th>has_active_children</th> |
|
<th>has_children</th> |
|
<th>...</th> |
|
<th>tag_count_meta</th> |
|
<th>tag_string</th> |
|
<th>tag_string_artist</th> |
|
<th>tag_string_character</th> |
|
<th>tag_string_copyright</th> |
|
<th>tag_string_general</th> |
|
<th>tag_string_meta</th> |
|
<th>up_score</th> |
|
<th>updated_at</th> |
|
<th>uploader_id</th> |
|
</tr> |
|
</thead> |
|
<tbody> |
|
<tr> |
|
<th>0</th> |
|
<td>NaN</td> |
|
<td>0</td> |
|
<td>2015-08-07T23:23:45.072-04:00</td> |
|
<td>0</td> |
|
<td>66</td> |
|
<td>jpg</td> |
|
<td>4134797</td> |
|
<td>https://cdn.donmai.us/original/a1/b3/a1b3d0fa9...</td> |
|
<td>False</td> |
|
<td>False</td> |
|
<td>...</td> |
|
<td>3</td> |
|
<td>1girl absurdres ass bangle bikini black_bikini...</td> |
|
<td>kyouka.</td> |
|
<td>marie_(splatoon)</td> |
|
<td>splatoon_(series) splatoon_1</td> |
|
<td>1girl ass bangle bikini black_bikini blush bra...</td> |
|
<td>absurdres commentary_request highres</td> |
|
<td>15</td> |
|
<td>2024-06-25T15:32:44.291-04:00</td> |
|
<td>420773</td> |
|
</tr> |
|
<tr> |
|
<th>1</th> |
|
<td>NaN</td> |
|
<td>0</td> |
|
<td>2008-03-05T01:52:28.194-05:00</td> |
|
<td>0</td> |
|
<td>7</td> |
|
<td>jpg</td> |
|
<td>380323</td> |
|
<td>https://cdn.donmai.us/original/d6/10/d6107a13b...</td> |
|
<td>False</td> |
|
<td>False</td> |
|
<td>...</td> |
|
<td>2</td> |
|
<td>1girl aqua_hair bad_id bad_pixiv_id guitar hat...</td> |
|
<td>shimeko</td> |
|
<td>hatsune_miku</td> |
|
<td>vocaloid</td> |
|
<td>1girl aqua_hair guitar instrument long_hair so...</td> |
|
<td>bad_id bad_pixiv_id</td> |
|
<td>4</td> |
|
<td>2018-01-23T00:32:10.080-05:00</td> |
|
<td>1309</td> |
|
</tr> |
|
<tr> |
|
<th>2</th> |
|
<td>85307.0</td> |
|
<td>0</td> |
|
<td>2015-08-07T23:26:12.355-04:00</td> |
|
<td>0</td> |
|
<td>10</td> |
|
<td>jpg</td> |
|
<td>208409</td> |
|
<td>https://cdn.donmai.us/original/a1/2c/a12ce629f...</td> |
|
<td>False</td> |
|
<td>False</td> |
|
<td>...</td> |
|
<td>1</td> |
|
<td>1boy 1girl blush boots carrying closed_eyes co...</td> |
|
<td>yuuryuu_nagare</td> |
|
<td>jon_(pixiv_fantasia_iii) race_(pixiv_fantasia)</td> |
|
<td>pixiv_fantasia pixiv_fantasia_3</td> |
|
<td>1boy 1girl blush boots carrying closed_eyes da...</td> |
|
<td>commentary_request</td> |
|
<td>3</td> |
|
<td>2022-05-25T02:26:06.588-04:00</td> |
|
<td>95963</td> |
|
</tr> |
|
</tbody> |
|
</table> |
|
</div> |
|
|
|
|
|
## Dataset Creation |
|
|
|
We scraped all post IDs on Danbooru from 1 up to the latest. Some restricted tags (e.g. `loli`) were hidden by the site and require a gold account to access, so they are not present. |
|
For a more complete (but older) metadata reference, you may wish to combine this with Danbooru2021 or similar previous scrapes. |
|
|
|
The scraping process used a pool of roughly 400 IPs over six hours, ensuring consistent tag definitions. Below is a simplified example of the process used to convert the metadata into Parquet: |
|
|
|
```python |
|
import pandas as pd |
|
from pandarallel import pandarallel |
|
|
|
# Initialize pandarallel |
|
pandarallel.initialize(nb_workers=4, progress_bar=True) |
|
|
|
def flatten_dict(d, parent_key='', sep='_'): |
|
""" |
|
Flattens a nested dictionary. |
|
""" |
|
items = [] |
|
for k, v in d.items(): |
|
new_key = f"{parent_key}{sep}{k}" if parent_key else k |
|
if isinstance(v, dict): |
|
items.extend(flatten_dict(v, new_key, sep=sep).items()) |
|
elif isinstance(v, list): |
|
items.append((new_key, ', '.join(map(str, v)))) |
|
else: |
|
items.append((new_key, v)) |
|
return dict(items) |
|
|
|
def extract_all_illust_info(json_content): |
|
""" |
|
Parses and flattens Danbooru JSON into a pandas Series. |
|
""" |
|
flattened_data = flatten_dict(json_content) |
|
return pd.Series(flattened_data) |
|
|
|
def dicts_to_dataframe_parallel(dicts): |
|
""" |
|
Converts a list of dicts to a flattened DataFrame using pandarallel. |
|
""" |
|
df = pd.DataFrame(dicts) |
|
flattened_df = df.parallel_apply(lambda row: extract_all_illust_info(row.to_dict()), axis=1) |
|
return flattened_df |
|
``` |
|
|
|
|
|
### Recommendations |
|
|
|
Users should be aware of potential biases and limitations, including the presence of adult content in some tags. More details and mitigations may be needed. |