File size: 4,759 Bytes
418f781
 
c3fc0c2
 
 
 
 
 
 
 
 
418f781
 
c3fc0c2
 
418f781
c3fc0c2
 
418f781
c3fc0c2
 
 
 
418f781
 
039745a
 
 
 
 
37989cd
039745a
 
 
 
 
dca5006
039745a
3ca1345
dca5006
 
 
 
 
039745a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ec985d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
039745a
 
3ca1345
039745a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
---
dataset_info:
  features:
  - name: text
    dtype: string
  - name: span
    dtype: string
  - name: label
    dtype: string
  - name: ordinal
    dtype: int64
  splits:
  - name: train
    num_bytes: 335243
    num_examples: 2358
  - name: validation
    num_bytes: 5698
    num_examples: 49
  - name: test
    num_bytes: 76698
    num_examples: 654
  download_size: 152389
  dataset_size: 417639
---

# Dataset Card for "tomaarsen/setfit-absa-semeval-laptops"

### Dataset Summary

This dataset contains the manually annotated laptop reviews from SemEval-2014 Task 4, in the format as
understood by [SetFit](https://github.com/huggingface/setfit) ABSA.

For more details, see https://aclanthology.org/S14-2004/

### Data Instances

An example of "train" looks as follows.

```json
{"text": "I charge it at night and skip taking the cord with me because of the good battery life.", "span": "cord", "label": "neutral", "ordinal": 0}
{"text": "I charge it at night and skip taking the cord with me because of the good battery life.", "span": "battery life", "label": "positive", "ordinal": 0}     
{"text": "The tech guy then said the service center does not do 1-to-1 exchange and I have to direct my concern to the \"sales\" team, which is the retail shop which I bought my netbook from.", "span": "service center", "label": "negative", "ordinal": 0}
{"text": "The tech guy then said the service center does not do 1-to-1 exchange and I have to direct my concern to the \"sales\" team, which is the retail shop which I bought my netbook from.", "span": "\"sales\" team", "label": "negative", "ordinal": 0}
{"text": "The tech guy then said the service center does not do 1-to-1 exchange and I have to direct my concern to the \"sales\" team, which is the retail shop which I bought my netbook from.", "span": "tech guy", "label": "neutral", "ordinal": 0}
```

### Data Fields

The data fields are the same among all splits.

- `text`: a `string` feature.
- `span`: a `string` feature showing the aspect span from the text.
- `label`: a `string` feature showing the polarity of the aspect span.
- `ordinal`: an `int64` feature showing the n-th occurrence of the span in the text. This is useful for if the span occurs within the same text multiple times.

### Data Splits

|  name   |train|validation|test|
|---------|----:|---------:|---:|
|tomaarsen/setfit-absa-semeval-laptops|2358|49|654|

### Training ABSA models using SetFit ABSA

To train using this dataset, first install the SetFit library:

```bash
pip install setfit
```

And then you can use the following script as a guideline of how to train an ABSA model on this dataset:

```python
from setfit import AbsaModel, AbsaTrainer, TrainingArguments
from datasets import load_dataset
from transformers import EarlyStoppingCallback

# You can initialize a AbsaModel using one or two SentenceTransformer models, or two ABSA models
model = AbsaModel.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")

# The training/eval dataset must have `text`, `span`, `polarity`, and `ordinal` columns
dataset = load_dataset("tomaarsen/setfit-absa-semeval-laptops")
train_dataset = dataset["train"]
eval_dataset = dataset["validation"]

args = TrainingArguments(
    output_dir="models",
    use_amp=True,
    batch_size=256,
    eval_steps=50,
    save_steps=50,
    load_best_model_at_end=True,
)

trainer = AbsaTrainer(
    model,
    args=args,
    train_dataset=train_dataset,
    eval_dataset=eval_dataset,
    callbacks=[EarlyStoppingCallback(early_stopping_patience=5)],
)
trainer.train()

metrics = trainer.evaluate(eval_dataset)
print(metrics)

trainer.push_to_hub("tomaarsen/setfit-absa-laptops")
```

You can then run inference like so:
```python
from setfit import AbsaModel

# Download from Hub and run inference
model = AbsaModel.from_pretrained(
    "tomaarsen/setfit-absa-laptops-aspect",
    "tomaarsen/setfit-absa-laptops-polarity",
)

# Run inference
preds = model([
    "Boots up fast and runs great!",
    "The screen shows great colors.",
])
```

### Citation Information

```bibtex
@inproceedings{pontiki-etal-2014-semeval,
    title = "{S}em{E}val-2014 Task 4: Aspect Based Sentiment Analysis",
    author = "Pontiki, Maria  and
      Galanis, Dimitris  and
      Pavlopoulos, John  and
      Papageorgiou, Harris  and
      Androutsopoulos, Ion  and
      Manandhar, Suresh",
    editor = "Nakov, Preslav  and
      Zesch, Torsten",
    booktitle = "Proceedings of the 8th International Workshop on Semantic Evaluation ({S}em{E}val 2014)",
    month = aug,
    year = "2014",
    address = "Dublin, Ireland",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/S14-2004",
    doi = "10.3115/v1/S14-2004",
    pages = "27--35",
}
```