Add training script etc.
Browse files
README.md
CHANGED
@@ -59,6 +59,70 @@ The data fields are the same among all splits.
|
|
59 |
|---------|----:|---------:|---:|
|
60 |
|tomaarsen/setfit-absa-semeval-laptops|2358|49|654|
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
### Citation Information
|
63 |
|
64 |
```bibtex
|
|
|
59 |
|---------|----:|---------:|---:|
|
60 |
|tomaarsen/setfit-absa-semeval-laptops|2358|49|654|
|
61 |
|
62 |
+
### Training ABSA models using SetFit ABSA
|
63 |
+
|
64 |
+
To train using this dataset, first install the SetFit library:
|
65 |
+
|
66 |
+
```bash
|
67 |
+
pip install setfit
|
68 |
+
```
|
69 |
+
|
70 |
+
And then you can use the following script as a guideline of how to train an ABSA model on this dataset:
|
71 |
+
|
72 |
+
```python
|
73 |
+
from setfit import AbsaModel, AbsaTrainer, TrainingArguments
|
74 |
+
from datasets import load_dataset
|
75 |
+
from transformers import EarlyStoppingCallback
|
76 |
+
|
77 |
+
# You can initialize a AbsaModel using one or two SentenceTransformer models, or two ABSA models
|
78 |
+
model = AbsaModel.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")
|
79 |
+
|
80 |
+
# The training/eval dataset must have `text`, `span`, `polarity`, and `ordinal` columns
|
81 |
+
dataset = load_dataset("tomaarsen/setfit-absa-semeval-laptops")
|
82 |
+
train_dataset = dataset["train"]
|
83 |
+
eval_dataset = dataset["validation"]
|
84 |
+
|
85 |
+
args = TrainingArguments(
|
86 |
+
output_dir="models",
|
87 |
+
use_amp=True,
|
88 |
+
batch_size=256,
|
89 |
+
eval_steps=50,
|
90 |
+
save_steps=50,
|
91 |
+
load_best_model_at_end=True,
|
92 |
+
)
|
93 |
+
|
94 |
+
trainer = AbsaTrainer(
|
95 |
+
model,
|
96 |
+
args=args,
|
97 |
+
train_dataset=train_dataset,
|
98 |
+
eval_dataset=eval_dataset,
|
99 |
+
callbacks=[EarlyStoppingCallback(early_stopping_patience=5)],
|
100 |
+
)
|
101 |
+
trainer.train()
|
102 |
+
|
103 |
+
metrics = trainer.evaluate(eval_dataset)
|
104 |
+
print(metrics)
|
105 |
+
|
106 |
+
trainer.push_to_hub("tomaarsen/setfit-absa-laptops")
|
107 |
+
```
|
108 |
+
|
109 |
+
You can then run inference like so:
|
110 |
+
```python
|
111 |
+
from setfit import AbsaModel
|
112 |
+
|
113 |
+
# Download from Hub and run inference
|
114 |
+
model = AbsaModel.from_pretrained(
|
115 |
+
"tomaarsen/setfit-absa-laptops-aspect",
|
116 |
+
"tomaarsen/setfit-absa-laptops-polarity",
|
117 |
+
)
|
118 |
+
|
119 |
+
# Run inference
|
120 |
+
preds = model([
|
121 |
+
"Boots up fast and runs great!",
|
122 |
+
"The screen shows great colors.",
|
123 |
+
])
|
124 |
+
```
|
125 |
+
|
126 |
### Citation Information
|
127 |
|
128 |
```bibtex
|