|
--- |
|
license: cc-by-4.0 |
|
task_categories: |
|
- token-classification |
|
language: |
|
- bn |
|
- de |
|
- en |
|
- es |
|
- fa |
|
- hi |
|
- ko |
|
- nl |
|
- ru |
|
- tr |
|
- zh |
|
- multilingual |
|
tags: |
|
- multiconer |
|
- ner |
|
- multilingual |
|
- named entity recognition |
|
size_categories: |
|
- 100K<n<1M |
|
dataset_info: |
|
- config_name: bn |
|
features: |
|
- name: id |
|
dtype: int32 |
|
- name: tokens |
|
sequence: string |
|
- name: ner_tags |
|
sequence: |
|
class_label: |
|
names: |
|
'0': O |
|
'1': B-PER |
|
'2': I-PER |
|
'3': B-LOC |
|
'4': I-LOC |
|
'5': B-CORP |
|
'6': I-CORP |
|
'7': B-GRP |
|
'8': I-GRP |
|
'9': B-PROD |
|
'10': I-PROD |
|
'11': B-CW |
|
'12': I-CW |
|
splits: |
|
- name: train |
|
num_bytes: 5616369 |
|
num_examples: 15300 |
|
- name: validation |
|
num_bytes: 301806 |
|
num_examples: 800 |
|
- name: test |
|
num_bytes: 21668288 |
|
num_examples: 133119 |
|
download_size: 31446032 |
|
dataset_size: 27586463 |
|
- config_name: de |
|
features: |
|
- name: id |
|
dtype: int32 |
|
- name: tokens |
|
sequence: string |
|
- name: ner_tags |
|
sequence: |
|
class_label: |
|
names: |
|
'0': O |
|
'1': B-PER |
|
'2': I-PER |
|
'3': B-LOC |
|
'4': I-LOC |
|
'5': B-CORP |
|
'6': I-CORP |
|
'7': B-GRP |
|
'8': I-GRP |
|
'9': B-PROD |
|
'10': I-PROD |
|
'11': B-CW |
|
'12': I-CW |
|
splits: |
|
- name: train |
|
num_bytes: 4056698 |
|
num_examples: 15300 |
|
- name: validation |
|
num_bytes: 214572 |
|
num_examples: 800 |
|
- name: test |
|
num_bytes: 37113304 |
|
num_examples: 217824 |
|
download_size: 44089736 |
|
dataset_size: 41384574 |
|
- config_name: en |
|
features: |
|
- name: id |
|
dtype: int32 |
|
- name: tokens |
|
sequence: string |
|
- name: ner_tags |
|
sequence: |
|
class_label: |
|
names: |
|
'0': O |
|
'1': B-PER |
|
'2': I-PER |
|
'3': B-LOC |
|
'4': I-LOC |
|
'5': B-CORP |
|
'6': I-CORP |
|
'7': B-GRP |
|
'8': I-GRP |
|
'9': B-PROD |
|
'10': I-PROD |
|
'11': B-CW |
|
'12': I-CW |
|
splits: |
|
- name: train |
|
num_bytes: 4330080 |
|
num_examples: 15300 |
|
- name: validation |
|
num_bytes: 229689 |
|
num_examples: 800 |
|
- name: test |
|
num_bytes: 38728401 |
|
num_examples: 217818 |
|
download_size: 44709663 |
|
dataset_size: 43288170 |
|
- config_name: es |
|
features: |
|
- name: id |
|
dtype: int32 |
|
- name: tokens |
|
sequence: string |
|
- name: ner_tags |
|
sequence: |
|
class_label: |
|
names: |
|
'0': O |
|
'1': B-PER |
|
'2': I-PER |
|
'3': B-LOC |
|
'4': I-LOC |
|
'5': B-CORP |
|
'6': I-CORP |
|
'7': B-GRP |
|
'8': I-GRP |
|
'9': B-PROD |
|
'10': I-PROD |
|
'11': B-CW |
|
'12': I-CW |
|
splits: |
|
- name: train |
|
num_bytes: 4576557 |
|
num_examples: 15300 |
|
- name: validation |
|
num_bytes: 238872 |
|
num_examples: 800 |
|
- name: test |
|
num_bytes: 41457435 |
|
num_examples: 217887 |
|
download_size: 46861727 |
|
dataset_size: 46272864 |
|
- config_name: fa |
|
features: |
|
- name: id |
|
dtype: int32 |
|
- name: tokens |
|
sequence: string |
|
- name: ner_tags |
|
sequence: |
|
class_label: |
|
names: |
|
'0': O |
|
'1': B-PER |
|
'2': I-PER |
|
'3': B-LOC |
|
'4': I-LOC |
|
'5': B-CORP |
|
'6': I-CORP |
|
'7': B-GRP |
|
'8': I-GRP |
|
'9': B-PROD |
|
'10': I-PROD |
|
'11': B-CW |
|
'12': I-CW |
|
splits: |
|
- name: train |
|
num_bytes: 5550551 |
|
num_examples: 15300 |
|
- name: validation |
|
num_bytes: 294184 |
|
num_examples: 800 |
|
- name: test |
|
num_bytes: 30301688 |
|
num_examples: 165702 |
|
download_size: 38042406 |
|
dataset_size: 36146423 |
|
- config_name: hi |
|
features: |
|
- name: id |
|
dtype: int32 |
|
- name: tokens |
|
sequence: string |
|
- name: ner_tags |
|
sequence: |
|
class_label: |
|
names: |
|
'0': O |
|
'1': B-PER |
|
'2': I-PER |
|
'3': B-LOC |
|
'4': I-LOC |
|
'5': B-CORP |
|
'6': I-CORP |
|
'7': B-GRP |
|
'8': I-GRP |
|
'9': B-PROD |
|
'10': I-PROD |
|
'11': B-CW |
|
'12': I-CW |
|
splits: |
|
- name: train |
|
num_bytes: 6189324 |
|
num_examples: 15300 |
|
- name: validation |
|
num_bytes: 321246 |
|
num_examples: 800 |
|
- name: test |
|
num_bytes: 25771882 |
|
num_examples: 141565 |
|
download_size: 35165171 |
|
dataset_size: 32282452 |
|
- config_name: ko |
|
features: |
|
- name: id |
|
dtype: int32 |
|
- name: tokens |
|
sequence: string |
|
- name: ner_tags |
|
sequence: |
|
class_label: |
|
names: |
|
'0': O |
|
'1': B-PER |
|
'2': I-PER |
|
'3': B-LOC |
|
'4': I-LOC |
|
'5': B-CORP |
|
'6': I-CORP |
|
'7': B-GRP |
|
'8': I-GRP |
|
'9': B-PROD |
|
'10': I-PROD |
|
'11': B-CW |
|
'12': I-CW |
|
splits: |
|
- name: train |
|
num_bytes: 4439652 |
|
num_examples: 15300 |
|
- name: validation |
|
num_bytes: 233963 |
|
num_examples: 800 |
|
- name: test |
|
num_bytes: 27529239 |
|
num_examples: 178249 |
|
download_size: 35281170 |
|
dataset_size: 32202854 |
|
- config_name: mix |
|
features: |
|
- name: id |
|
dtype: int32 |
|
- name: tokens |
|
sequence: string |
|
- name: ner_tags |
|
sequence: |
|
class_label: |
|
names: |
|
'0': O |
|
'1': B-PER |
|
'2': I-PER |
|
'3': B-LOC |
|
'4': I-LOC |
|
'5': B-CORP |
|
'6': I-CORP |
|
'7': B-GRP |
|
'8': I-GRP |
|
'9': B-PROD |
|
'10': I-PROD |
|
'11': B-CW |
|
'12': I-CW |
|
splits: |
|
- name: train |
|
num_bytes: 307844 |
|
num_examples: 1500 |
|
- name: validation |
|
num_bytes: 100909 |
|
num_examples: 500 |
|
- name: test |
|
num_bytes: 20218549 |
|
num_examples: 100000 |
|
download_size: 21802985 |
|
dataset_size: 20627302 |
|
- config_name: multi |
|
features: |
|
- name: id |
|
dtype: int32 |
|
- name: tokens |
|
sequence: string |
|
- name: ner_tags |
|
sequence: |
|
class_label: |
|
names: |
|
'0': O |
|
'1': B-PER |
|
'2': I-PER |
|
'3': B-LOC |
|
'4': I-LOC |
|
'5': B-CORP |
|
'6': I-CORP |
|
'7': B-GRP |
|
'8': I-GRP |
|
'9': B-PROD |
|
'10': I-PROD |
|
'11': B-CW |
|
'12': I-CW |
|
splits: |
|
- name: train |
|
num_bytes: 54119956 |
|
num_examples: 168300 |
|
- name: validation |
|
num_bytes: 2846552 |
|
num_examples: 8800 |
|
- name: test |
|
num_bytes: 91509480 |
|
num_examples: 471911 |
|
download_size: 148733494 |
|
dataset_size: 148475988 |
|
- config_name: nl |
|
features: |
|
- name: id |
|
dtype: int32 |
|
- name: tokens |
|
sequence: string |
|
- name: ner_tags |
|
sequence: |
|
class_label: |
|
names: |
|
'0': O |
|
'1': B-PER |
|
'2': I-PER |
|
'3': B-LOC |
|
'4': I-LOC |
|
'5': B-CORP |
|
'6': I-CORP |
|
'7': B-GRP |
|
'8': I-GRP |
|
'9': B-PROD |
|
'10': I-PROD |
|
'11': B-CW |
|
'12': I-CW |
|
splits: |
|
- name: train |
|
num_bytes: 4070487 |
|
num_examples: 15300 |
|
- name: validation |
|
num_bytes: 209337 |
|
num_examples: 800 |
|
- name: test |
|
num_bytes: 37128925 |
|
num_examples: 217337 |
|
download_size: 43263864 |
|
dataset_size: 41408749 |
|
- config_name: ru |
|
features: |
|
- name: id |
|
dtype: int32 |
|
- name: tokens |
|
sequence: string |
|
- name: ner_tags |
|
sequence: |
|
class_label: |
|
names: |
|
'0': O |
|
'1': B-PER |
|
'2': I-PER |
|
'3': B-LOC |
|
'4': I-LOC |
|
'5': B-CORP |
|
'6': I-CORP |
|
'7': B-GRP |
|
'8': I-GRP |
|
'9': B-PROD |
|
'10': I-PROD |
|
'11': B-CW |
|
'12': I-CW |
|
splits: |
|
- name: train |
|
num_bytes: 5313989 |
|
num_examples: 15300 |
|
- name: validation |
|
num_bytes: 279470 |
|
num_examples: 800 |
|
- name: test |
|
num_bytes: 47458726 |
|
num_examples: 217501 |
|
download_size: 54587257 |
|
dataset_size: 53052185 |
|
- config_name: tr |
|
features: |
|
- name: id |
|
dtype: int32 |
|
- name: tokens |
|
sequence: string |
|
- name: ner_tags |
|
sequence: |
|
class_label: |
|
names: |
|
'0': O |
|
'1': B-PER |
|
'2': I-PER |
|
'3': B-LOC |
|
'4': I-LOC |
|
'5': B-CORP |
|
'6': I-CORP |
|
'7': B-GRP |
|
'8': I-GRP |
|
'9': B-PROD |
|
'10': I-PROD |
|
'11': B-CW |
|
'12': I-CW |
|
splits: |
|
- name: train |
|
num_bytes: 4076774 |
|
num_examples: 15300 |
|
- name: validation |
|
num_bytes: 213017 |
|
num_examples: 800 |
|
- name: test |
|
num_bytes: 14779846 |
|
num_examples: 136935 |
|
download_size: 22825291 |
|
dataset_size: 19069637 |
|
- config_name: zh |
|
features: |
|
- name: id |
|
dtype: int32 |
|
- name: tokens |
|
sequence: string |
|
- name: ner_tags |
|
sequence: |
|
class_label: |
|
names: |
|
'0': O |
|
'1': B-PER |
|
'2': I-PER |
|
'3': B-LOC |
|
'4': I-LOC |
|
'5': B-CORP |
|
'6': I-CORP |
|
'7': B-GRP |
|
'8': I-GRP |
|
'9': B-PROD |
|
'10': I-PROD |
|
'11': B-CW |
|
'12': I-CW |
|
splits: |
|
- name: train |
|
num_bytes: 5899475 |
|
num_examples: 15300 |
|
- name: validation |
|
num_bytes: 310396 |
|
num_examples: 800 |
|
- name: test |
|
num_bytes: 29349271 |
|
num_examples: 151661 |
|
download_size: 36101525 |
|
dataset_size: 35559142 |
|
--- |
|
|
|
# Multilingual Complex Named Entity Recognition (MultiCoNER) |
|
|
|
## Dataset Summary |
|
MultiCoNER (version 1) is a large multilingual dataset for Named Entity Recognition that covers 3 domains (Wiki sentences, questions, and search queries) across 11 languages, as well as multilingual and code-mixing subsets. This dataset is designed to represent contemporary challenges in NER, including low-context scenarios (short and uncased text), syntactically complex entities like movie titles, and long-tail entity distributions. The 26M token dataset is compiled from public resources using techniques such as heuristic-based sentence sampling, template extraction and slotting, and machine translation. |
|
|
|
See the [AWS Open Data Registry entry for MultiCoNER](https://registry.opendata.aws/multiconer/) for more information. |
|
|
|
## Labels |
|
* `PER`: Person, i.e. names of people |
|
* `LOC`: Location, i.e. locations/physical facilities |
|
* `CORP`: Corporation, i.e. corporations/businesses |
|
* `GRP`: Groups, i.e. all other groups |
|
* `PROD`: Product, i.e. consumer products |
|
* `CW`: Creative Work, i.e. movies/songs/book titles |
|
|
|
### Dataset Structure |
|
The dataset follows the IOB format of CoNLL. In particular, it uses the following label to ID mapping: |
|
```python |
|
|
|
{ |
|
"O": 0, |
|
"B-PER": 1, |
|
"I-PER": 2, |
|
"B-LOC": 3, |
|
"I-LOC": 4, |
|
"B-CORP": 5, |
|
"I-CORP": 6, |
|
"B-GRP": 7, |
|
"I-GRP": 8, |
|
"B-PROD": 9, |
|
"I-PROD": 10, |
|
"B-CW": 11, |
|
"I-CW": 12, |
|
} |
|
``` |
|
|
|
## Languages |
|
The MultiCoNER dataset consists of the following languages: Bangla, German, English, Spanish, Farsi, Hindi, Korean, Dutch, Russian, Turkish and Chinese. |
|
|
|
## Usage |
|
```python |
|
from datasets import load_dataset |
|
|
|
dataset = load_dataset('tomaarsen/MultiCoNER', 'multi') |
|
``` |
|
|
|
## License |
|
|
|
CC BY 4.0 |
|
|
|
## Citation |
|
``` |
|
@misc{malmasi2022multiconer, |
|
title={MultiCoNER: A Large-scale Multilingual dataset for Complex Named Entity Recognition}, |
|
author={Shervin Malmasi and Anjie Fang and Besnik Fetahu and Sudipta Kar and Oleg Rokhlenko}, |
|
year={2022}, |
|
eprint={2208.14536}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |