MultiCoNER / README.md
Tom Aarsen
Specify version 1
04fafba
---
license: cc-by-4.0
task_categories:
- token-classification
language:
- bn
- de
- en
- es
- fa
- hi
- ko
- nl
- ru
- tr
- zh
- multilingual
tags:
- multiconer
- ner
- multilingual
- named entity recognition
size_categories:
- 100K<n<1M
dataset_info:
- config_name: bn
features:
- name: id
dtype: int32
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-LOC
'4': I-LOC
'5': B-CORP
'6': I-CORP
'7': B-GRP
'8': I-GRP
'9': B-PROD
'10': I-PROD
'11': B-CW
'12': I-CW
splits:
- name: train
num_bytes: 5616369
num_examples: 15300
- name: validation
num_bytes: 301806
num_examples: 800
- name: test
num_bytes: 21668288
num_examples: 133119
download_size: 31446032
dataset_size: 27586463
- config_name: de
features:
- name: id
dtype: int32
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-LOC
'4': I-LOC
'5': B-CORP
'6': I-CORP
'7': B-GRP
'8': I-GRP
'9': B-PROD
'10': I-PROD
'11': B-CW
'12': I-CW
splits:
- name: train
num_bytes: 4056698
num_examples: 15300
- name: validation
num_bytes: 214572
num_examples: 800
- name: test
num_bytes: 37113304
num_examples: 217824
download_size: 44089736
dataset_size: 41384574
- config_name: en
features:
- name: id
dtype: int32
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-LOC
'4': I-LOC
'5': B-CORP
'6': I-CORP
'7': B-GRP
'8': I-GRP
'9': B-PROD
'10': I-PROD
'11': B-CW
'12': I-CW
splits:
- name: train
num_bytes: 4330080
num_examples: 15300
- name: validation
num_bytes: 229689
num_examples: 800
- name: test
num_bytes: 38728401
num_examples: 217818
download_size: 44709663
dataset_size: 43288170
- config_name: es
features:
- name: id
dtype: int32
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-LOC
'4': I-LOC
'5': B-CORP
'6': I-CORP
'7': B-GRP
'8': I-GRP
'9': B-PROD
'10': I-PROD
'11': B-CW
'12': I-CW
splits:
- name: train
num_bytes: 4576557
num_examples: 15300
- name: validation
num_bytes: 238872
num_examples: 800
- name: test
num_bytes: 41457435
num_examples: 217887
download_size: 46861727
dataset_size: 46272864
- config_name: fa
features:
- name: id
dtype: int32
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-LOC
'4': I-LOC
'5': B-CORP
'6': I-CORP
'7': B-GRP
'8': I-GRP
'9': B-PROD
'10': I-PROD
'11': B-CW
'12': I-CW
splits:
- name: train
num_bytes: 5550551
num_examples: 15300
- name: validation
num_bytes: 294184
num_examples: 800
- name: test
num_bytes: 30301688
num_examples: 165702
download_size: 38042406
dataset_size: 36146423
- config_name: hi
features:
- name: id
dtype: int32
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-LOC
'4': I-LOC
'5': B-CORP
'6': I-CORP
'7': B-GRP
'8': I-GRP
'9': B-PROD
'10': I-PROD
'11': B-CW
'12': I-CW
splits:
- name: train
num_bytes: 6189324
num_examples: 15300
- name: validation
num_bytes: 321246
num_examples: 800
- name: test
num_bytes: 25771882
num_examples: 141565
download_size: 35165171
dataset_size: 32282452
- config_name: ko
features:
- name: id
dtype: int32
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-LOC
'4': I-LOC
'5': B-CORP
'6': I-CORP
'7': B-GRP
'8': I-GRP
'9': B-PROD
'10': I-PROD
'11': B-CW
'12': I-CW
splits:
- name: train
num_bytes: 4439652
num_examples: 15300
- name: validation
num_bytes: 233963
num_examples: 800
- name: test
num_bytes: 27529239
num_examples: 178249
download_size: 35281170
dataset_size: 32202854
- config_name: mix
features:
- name: id
dtype: int32
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-LOC
'4': I-LOC
'5': B-CORP
'6': I-CORP
'7': B-GRP
'8': I-GRP
'9': B-PROD
'10': I-PROD
'11': B-CW
'12': I-CW
splits:
- name: train
num_bytes: 307844
num_examples: 1500
- name: validation
num_bytes: 100909
num_examples: 500
- name: test
num_bytes: 20218549
num_examples: 100000
download_size: 21802985
dataset_size: 20627302
- config_name: multi
features:
- name: id
dtype: int32
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-LOC
'4': I-LOC
'5': B-CORP
'6': I-CORP
'7': B-GRP
'8': I-GRP
'9': B-PROD
'10': I-PROD
'11': B-CW
'12': I-CW
splits:
- name: train
num_bytes: 54119956
num_examples: 168300
- name: validation
num_bytes: 2846552
num_examples: 8800
- name: test
num_bytes: 91509480
num_examples: 471911
download_size: 148733494
dataset_size: 148475988
- config_name: nl
features:
- name: id
dtype: int32
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-LOC
'4': I-LOC
'5': B-CORP
'6': I-CORP
'7': B-GRP
'8': I-GRP
'9': B-PROD
'10': I-PROD
'11': B-CW
'12': I-CW
splits:
- name: train
num_bytes: 4070487
num_examples: 15300
- name: validation
num_bytes: 209337
num_examples: 800
- name: test
num_bytes: 37128925
num_examples: 217337
download_size: 43263864
dataset_size: 41408749
- config_name: ru
features:
- name: id
dtype: int32
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-LOC
'4': I-LOC
'5': B-CORP
'6': I-CORP
'7': B-GRP
'8': I-GRP
'9': B-PROD
'10': I-PROD
'11': B-CW
'12': I-CW
splits:
- name: train
num_bytes: 5313989
num_examples: 15300
- name: validation
num_bytes: 279470
num_examples: 800
- name: test
num_bytes: 47458726
num_examples: 217501
download_size: 54587257
dataset_size: 53052185
- config_name: tr
features:
- name: id
dtype: int32
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-LOC
'4': I-LOC
'5': B-CORP
'6': I-CORP
'7': B-GRP
'8': I-GRP
'9': B-PROD
'10': I-PROD
'11': B-CW
'12': I-CW
splits:
- name: train
num_bytes: 4076774
num_examples: 15300
- name: validation
num_bytes: 213017
num_examples: 800
- name: test
num_bytes: 14779846
num_examples: 136935
download_size: 22825291
dataset_size: 19069637
- config_name: zh
features:
- name: id
dtype: int32
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-LOC
'4': I-LOC
'5': B-CORP
'6': I-CORP
'7': B-GRP
'8': I-GRP
'9': B-PROD
'10': I-PROD
'11': B-CW
'12': I-CW
splits:
- name: train
num_bytes: 5899475
num_examples: 15300
- name: validation
num_bytes: 310396
num_examples: 800
- name: test
num_bytes: 29349271
num_examples: 151661
download_size: 36101525
dataset_size: 35559142
---
# Multilingual Complex Named Entity Recognition (MultiCoNER)
## Dataset Summary
MultiCoNER (version 1) is a large multilingual dataset for Named Entity Recognition that covers 3 domains (Wiki sentences, questions, and search queries) across 11 languages, as well as multilingual and code-mixing subsets. This dataset is designed to represent contemporary challenges in NER, including low-context scenarios (short and uncased text), syntactically complex entities like movie titles, and long-tail entity distributions. The 26M token dataset is compiled from public resources using techniques such as heuristic-based sentence sampling, template extraction and slotting, and machine translation.
See the [AWS Open Data Registry entry for MultiCoNER](https://registry.opendata.aws/multiconer/) for more information.
## Labels
* `PER`: Person, i.e. names of people
* `LOC`: Location, i.e. locations/physical facilities
* `CORP`: Corporation, i.e. corporations/businesses
* `GRP`: Groups, i.e. all other groups
* `PROD`: Product, i.e. consumer products
* `CW`: Creative Work, i.e. movies/songs/book titles
### Dataset Structure
The dataset follows the IOB format of CoNLL. In particular, it uses the following label to ID mapping:
```python
{
"O": 0,
"B-PER": 1,
"I-PER": 2,
"B-LOC": 3,
"I-LOC": 4,
"B-CORP": 5,
"I-CORP": 6,
"B-GRP": 7,
"I-GRP": 8,
"B-PROD": 9,
"I-PROD": 10,
"B-CW": 11,
"I-CW": 12,
}
```
## Languages
The MultiCoNER dataset consists of the following languages: Bangla, German, English, Spanish, Farsi, Hindi, Korean, Dutch, Russian, Turkish and Chinese.
## Usage
```python
from datasets import load_dataset
dataset = load_dataset('tomaarsen/MultiCoNER', 'multi')
```
## License
CC BY 4.0
## Citation
```
@misc{malmasi2022multiconer,
title={MultiCoNER: A Large-scale Multilingual dataset for Complex Named Entity Recognition},
author={Shervin Malmasi and Anjie Fang and Besnik Fetahu and Sudipta Kar and Oleg Rokhlenko},
year={2022},
eprint={2208.14536},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```