MultiCoNER / README.md
Tom Aarsen
Specify version 1
04fafba
|
raw
history blame
11.4 kB
metadata
license: cc-by-4.0
task_categories:
  - token-classification
language:
  - bn
  - de
  - en
  - es
  - fa
  - hi
  - ko
  - nl
  - ru
  - tr
  - zh
  - multilingual
tags:
  - multiconer
  - ner
  - multilingual
  - named entity recognition
size_categories:
  - 100K<n<1M
dataset_info:
  - config_name: bn
    features:
      - name: id
        dtype: int32
      - name: tokens
        sequence: string
      - name: ner_tags
        sequence:
          class_label:
            names:
              '0': O
              '1': B-PER
              '2': I-PER
              '3': B-LOC
              '4': I-LOC
              '5': B-CORP
              '6': I-CORP
              '7': B-GRP
              '8': I-GRP
              '9': B-PROD
              '10': I-PROD
              '11': B-CW
              '12': I-CW
    splits:
      - name: train
        num_bytes: 5616369
        num_examples: 15300
      - name: validation
        num_bytes: 301806
        num_examples: 800
      - name: test
        num_bytes: 21668288
        num_examples: 133119
    download_size: 31446032
    dataset_size: 27586463
  - config_name: de
    features:
      - name: id
        dtype: int32
      - name: tokens
        sequence: string
      - name: ner_tags
        sequence:
          class_label:
            names:
              '0': O
              '1': B-PER
              '2': I-PER
              '3': B-LOC
              '4': I-LOC
              '5': B-CORP
              '6': I-CORP
              '7': B-GRP
              '8': I-GRP
              '9': B-PROD
              '10': I-PROD
              '11': B-CW
              '12': I-CW
    splits:
      - name: train
        num_bytes: 4056698
        num_examples: 15300
      - name: validation
        num_bytes: 214572
        num_examples: 800
      - name: test
        num_bytes: 37113304
        num_examples: 217824
    download_size: 44089736
    dataset_size: 41384574
  - config_name: en
    features:
      - name: id
        dtype: int32
      - name: tokens
        sequence: string
      - name: ner_tags
        sequence:
          class_label:
            names:
              '0': O
              '1': B-PER
              '2': I-PER
              '3': B-LOC
              '4': I-LOC
              '5': B-CORP
              '6': I-CORP
              '7': B-GRP
              '8': I-GRP
              '9': B-PROD
              '10': I-PROD
              '11': B-CW
              '12': I-CW
    splits:
      - name: train
        num_bytes: 4330080
        num_examples: 15300
      - name: validation
        num_bytes: 229689
        num_examples: 800
      - name: test
        num_bytes: 38728401
        num_examples: 217818
    download_size: 44709663
    dataset_size: 43288170
  - config_name: es
    features:
      - name: id
        dtype: int32
      - name: tokens
        sequence: string
      - name: ner_tags
        sequence:
          class_label:
            names:
              '0': O
              '1': B-PER
              '2': I-PER
              '3': B-LOC
              '4': I-LOC
              '5': B-CORP
              '6': I-CORP
              '7': B-GRP
              '8': I-GRP
              '9': B-PROD
              '10': I-PROD
              '11': B-CW
              '12': I-CW
    splits:
      - name: train
        num_bytes: 4576557
        num_examples: 15300
      - name: validation
        num_bytes: 238872
        num_examples: 800
      - name: test
        num_bytes: 41457435
        num_examples: 217887
    download_size: 46861727
    dataset_size: 46272864
  - config_name: fa
    features:
      - name: id
        dtype: int32
      - name: tokens
        sequence: string
      - name: ner_tags
        sequence:
          class_label:
            names:
              '0': O
              '1': B-PER
              '2': I-PER
              '3': B-LOC
              '4': I-LOC
              '5': B-CORP
              '6': I-CORP
              '7': B-GRP
              '8': I-GRP
              '9': B-PROD
              '10': I-PROD
              '11': B-CW
              '12': I-CW
    splits:
      - name: train
        num_bytes: 5550551
        num_examples: 15300
      - name: validation
        num_bytes: 294184
        num_examples: 800
      - name: test
        num_bytes: 30301688
        num_examples: 165702
    download_size: 38042406
    dataset_size: 36146423
  - config_name: hi
    features:
      - name: id
        dtype: int32
      - name: tokens
        sequence: string
      - name: ner_tags
        sequence:
          class_label:
            names:
              '0': O
              '1': B-PER
              '2': I-PER
              '3': B-LOC
              '4': I-LOC
              '5': B-CORP
              '6': I-CORP
              '7': B-GRP
              '8': I-GRP
              '9': B-PROD
              '10': I-PROD
              '11': B-CW
              '12': I-CW
    splits:
      - name: train
        num_bytes: 6189324
        num_examples: 15300
      - name: validation
        num_bytes: 321246
        num_examples: 800
      - name: test
        num_bytes: 25771882
        num_examples: 141565
    download_size: 35165171
    dataset_size: 32282452
  - config_name: ko
    features:
      - name: id
        dtype: int32
      - name: tokens
        sequence: string
      - name: ner_tags
        sequence:
          class_label:
            names:
              '0': O
              '1': B-PER
              '2': I-PER
              '3': B-LOC
              '4': I-LOC
              '5': B-CORP
              '6': I-CORP
              '7': B-GRP
              '8': I-GRP
              '9': B-PROD
              '10': I-PROD
              '11': B-CW
              '12': I-CW
    splits:
      - name: train
        num_bytes: 4439652
        num_examples: 15300
      - name: validation
        num_bytes: 233963
        num_examples: 800
      - name: test
        num_bytes: 27529239
        num_examples: 178249
    download_size: 35281170
    dataset_size: 32202854
  - config_name: mix
    features:
      - name: id
        dtype: int32
      - name: tokens
        sequence: string
      - name: ner_tags
        sequence:
          class_label:
            names:
              '0': O
              '1': B-PER
              '2': I-PER
              '3': B-LOC
              '4': I-LOC
              '5': B-CORP
              '6': I-CORP
              '7': B-GRP
              '8': I-GRP
              '9': B-PROD
              '10': I-PROD
              '11': B-CW
              '12': I-CW
    splits:
      - name: train
        num_bytes: 307844
        num_examples: 1500
      - name: validation
        num_bytes: 100909
        num_examples: 500
      - name: test
        num_bytes: 20218549
        num_examples: 100000
    download_size: 21802985
    dataset_size: 20627302
  - config_name: multi
    features:
      - name: id
        dtype: int32
      - name: tokens
        sequence: string
      - name: ner_tags
        sequence:
          class_label:
            names:
              '0': O
              '1': B-PER
              '2': I-PER
              '3': B-LOC
              '4': I-LOC
              '5': B-CORP
              '6': I-CORP
              '7': B-GRP
              '8': I-GRP
              '9': B-PROD
              '10': I-PROD
              '11': B-CW
              '12': I-CW
    splits:
      - name: train
        num_bytes: 54119956
        num_examples: 168300
      - name: validation
        num_bytes: 2846552
        num_examples: 8800
      - name: test
        num_bytes: 91509480
        num_examples: 471911
    download_size: 148733494
    dataset_size: 148475988
  - config_name: nl
    features:
      - name: id
        dtype: int32
      - name: tokens
        sequence: string
      - name: ner_tags
        sequence:
          class_label:
            names:
              '0': O
              '1': B-PER
              '2': I-PER
              '3': B-LOC
              '4': I-LOC
              '5': B-CORP
              '6': I-CORP
              '7': B-GRP
              '8': I-GRP
              '9': B-PROD
              '10': I-PROD
              '11': B-CW
              '12': I-CW
    splits:
      - name: train
        num_bytes: 4070487
        num_examples: 15300
      - name: validation
        num_bytes: 209337
        num_examples: 800
      - name: test
        num_bytes: 37128925
        num_examples: 217337
    download_size: 43263864
    dataset_size: 41408749
  - config_name: ru
    features:
      - name: id
        dtype: int32
      - name: tokens
        sequence: string
      - name: ner_tags
        sequence:
          class_label:
            names:
              '0': O
              '1': B-PER
              '2': I-PER
              '3': B-LOC
              '4': I-LOC
              '5': B-CORP
              '6': I-CORP
              '7': B-GRP
              '8': I-GRP
              '9': B-PROD
              '10': I-PROD
              '11': B-CW
              '12': I-CW
    splits:
      - name: train
        num_bytes: 5313989
        num_examples: 15300
      - name: validation
        num_bytes: 279470
        num_examples: 800
      - name: test
        num_bytes: 47458726
        num_examples: 217501
    download_size: 54587257
    dataset_size: 53052185
  - config_name: tr
    features:
      - name: id
        dtype: int32
      - name: tokens
        sequence: string
      - name: ner_tags
        sequence:
          class_label:
            names:
              '0': O
              '1': B-PER
              '2': I-PER
              '3': B-LOC
              '4': I-LOC
              '5': B-CORP
              '6': I-CORP
              '7': B-GRP
              '8': I-GRP
              '9': B-PROD
              '10': I-PROD
              '11': B-CW
              '12': I-CW
    splits:
      - name: train
        num_bytes: 4076774
        num_examples: 15300
      - name: validation
        num_bytes: 213017
        num_examples: 800
      - name: test
        num_bytes: 14779846
        num_examples: 136935
    download_size: 22825291
    dataset_size: 19069637
  - config_name: zh
    features:
      - name: id
        dtype: int32
      - name: tokens
        sequence: string
      - name: ner_tags
        sequence:
          class_label:
            names:
              '0': O
              '1': B-PER
              '2': I-PER
              '3': B-LOC
              '4': I-LOC
              '5': B-CORP
              '6': I-CORP
              '7': B-GRP
              '8': I-GRP
              '9': B-PROD
              '10': I-PROD
              '11': B-CW
              '12': I-CW
    splits:
      - name: train
        num_bytes: 5899475
        num_examples: 15300
      - name: validation
        num_bytes: 310396
        num_examples: 800
      - name: test
        num_bytes: 29349271
        num_examples: 151661
    download_size: 36101525
    dataset_size: 35559142

Multilingual Complex Named Entity Recognition (MultiCoNER)

Dataset Summary

MultiCoNER (version 1) is a large multilingual dataset for Named Entity Recognition that covers 3 domains (Wiki sentences, questions, and search queries) across 11 languages, as well as multilingual and code-mixing subsets. This dataset is designed to represent contemporary challenges in NER, including low-context scenarios (short and uncased text), syntactically complex entities like movie titles, and long-tail entity distributions. The 26M token dataset is compiled from public resources using techniques such as heuristic-based sentence sampling, template extraction and slotting, and machine translation.

See the AWS Open Data Registry entry for MultiCoNER for more information.

Labels

  • PER: Person, i.e. names of people
  • LOC: Location, i.e. locations/physical facilities
  • CORP: Corporation, i.e. corporations/businesses
  • GRP: Groups, i.e. all other groups
  • PROD: Product, i.e. consumer products
  • CW: Creative Work, i.e. movies/songs/book titles

Dataset Structure

The dataset follows the IOB format of CoNLL. In particular, it uses the following label to ID mapping:


{
    "O": 0,
    "B-PER": 1,
    "I-PER": 2,
    "B-LOC": 3,
    "I-LOC": 4,
    "B-CORP": 5,
    "I-CORP": 6,
    "B-GRP": 7,
    "I-GRP": 8,
    "B-PROD": 9,
    "I-PROD": 10,
    "B-CW": 11,
    "I-CW": 12,
}

Languages

The MultiCoNER dataset consists of the following languages: Bangla, German, English, Spanish, Farsi, Hindi, Korean, Dutch, Russian, Turkish and Chinese.

Usage

from datasets import load_dataset

dataset = load_dataset('tomaarsen/MultiCoNER', 'multi')

License

CC BY 4.0

Citation

@misc{malmasi2022multiconer,
    title={MultiCoNER: A Large-scale Multilingual dataset for Complex Named Entity Recognition}, 
    author={Shervin Malmasi and Anjie Fang and Besnik Fetahu and Sudipta Kar and Oleg Rokhlenko},
    year={2022},
    eprint={2208.14536},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}