|
--- |
|
dataset_info: |
|
features: |
|
- name: label |
|
dtype: |
|
class_label: |
|
names: |
|
0: '0' |
|
1: '1' |
|
2: '2' |
|
3: '3' |
|
4: '4' |
|
5: '5' |
|
6: '6' |
|
7: '7' |
|
8: '8' |
|
9: '9' |
|
10: a |
|
11: b |
|
12: c |
|
13: d |
|
14: e |
|
15: f |
|
- name: latent |
|
sequence: |
|
sequence: |
|
sequence: float32 |
|
splits: |
|
- name: test |
|
num_bytes: 106824288 |
|
num_examples: 6312 |
|
- name: train |
|
num_bytes: 2029441460 |
|
num_examples: 119915 |
|
download_size: 2082210019 |
|
dataset_size: 2136265748 |
|
--- |
|
# Dataset Card for "latent_lsun_church_256px" |
|
|
|
This is derived from https://huggingface.co./datasets/tglcourse/lsun_church_train |
|
|
|
Each image is cropped to 256px square and encoded to a 4x32x32 latent representation using the same VAE as that employed by Stable Diffusion |
|
|
|
Decoding |
|
```python |
|
from diffusers import AutoencoderKL |
|
from datasets import load_dataset |
|
from PIL import Image |
|
import numpy as np |
|
import torch |
|
|
|
# load the dataset |
|
dataset = load_dataset('tglcourse/latent_lsun_church_256px') |
|
|
|
# Load the VAE (requires access - see repo model card for info) |
|
vae = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="vae") |
|
|
|
latent = torch.tensor([dataset['train'][0]['latent']]) # To tensor (bs, 4, 32, 32) |
|
latent = (1 / 0.18215) * latent # Scale to match SD implementation |
|
with torch.no_grad(): |
|
image = vae.decode(latent).sample[0] # Decode |
|
image = (image / 2 + 0.5).clamp(0, 1) # To (0, 1) |
|
image = image.detach().cpu().permute(1, 2, 0).numpy() # To numpy, channels lsat |
|
image = (image * 255).round().astype("uint8") # (0, 255) and type uint8 |
|
image = Image.fromarray(image) # To PIL |
|
image # The resulting PIL image |
|
|
|
``` |
|
|
|
|