johnowhitaker's picture
Update README.md
b600bc0
---
dataset_info:
features:
- name: label
dtype:
class_label:
names:
0: '0'
1: '1'
2: '2'
3: '3'
4: '4'
5: '5'
6: '6'
7: '7'
8: '8'
9: '9'
10: a
11: b
12: c
13: d
14: e
15: f
- name: latent
sequence:
sequence:
sequence: float32
splits:
- name: test
num_bytes: 106824288
num_examples: 6312
- name: train
num_bytes: 2029441460
num_examples: 119915
download_size: 2082210019
dataset_size: 2136265748
---
# Dataset Card for "latent_lsun_church_256px"
This is derived from https://huggingface.co./datasets/tglcourse/lsun_church_train
Each image is cropped to 256px square and encoded to a 4x32x32 latent representation using the same VAE as that employed by Stable Diffusion
Decoding
```python
from diffusers import AutoencoderKL
from datasets import load_dataset
from PIL import Image
import numpy as np
import torch
# load the dataset
dataset = load_dataset('tglcourse/latent_lsun_church_256px')
# Load the VAE (requires access - see repo model card for info)
vae = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="vae")
latent = torch.tensor([dataset['train'][0]['latent']]) # To tensor (bs, 4, 32, 32)
latent = (1 / 0.18215) * latent # Scale to match SD implementation
with torch.no_grad():
image = vae.decode(latent).sample[0] # Decode
image = (image / 2 + 0.5).clamp(0, 1) # To (0, 1)
image = image.detach().cpu().permute(1, 2, 0).numpy() # To numpy, channels lsat
image = (image * 255).round().astype("uint8") # (0, 255) and type uint8
image = Image.fromarray(image) # To PIL
image # The resulting PIL image
```