|
--- |
|
dataset_info: |
|
features: |
|
- name: image |
|
dtype: |
|
array3_d: |
|
shape: |
|
- 3 |
|
- 288 |
|
- 384 |
|
dtype: float32 |
|
- name: segmentation |
|
dtype: |
|
array2_d: |
|
shape: |
|
- 288 |
|
- 384 |
|
dtype: int64 |
|
- name: depth |
|
dtype: |
|
array3_d: |
|
shape: |
|
- 1 |
|
- 288 |
|
- 384 |
|
dtype: float32 |
|
- name: normal |
|
dtype: |
|
array3_d: |
|
shape: |
|
- 3 |
|
- 288 |
|
- 384 |
|
dtype: float32 |
|
- name: noise |
|
dtype: |
|
array3_d: |
|
shape: |
|
- 1 |
|
- 288 |
|
- 384 |
|
dtype: float32 |
|
splits: |
|
- name: train |
|
num_bytes: 3525109500 |
|
num_examples: 795 |
|
- name: val |
|
num_bytes: 2899901400 |
|
num_examples: 654 |
|
download_size: 2971250125 |
|
dataset_size: 6425010900 |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
- split: val |
|
path: data/val-* |
|
task_categories: |
|
- depth-estimation |
|
- image-segmentation |
|
- image-feature-extraction |
|
size_categories: |
|
- 1K<n<10K |
|
--- |
|
|
|
|
|
This is the NYUv2 dataset for scene understanding tasks. |
|
I downloaded the original data from the [Tsinghua Cloud](https://cloud.tsinghua.edu.cn/f/6d0a89f4ca1347d8af5f/?dl=1) and transformed it into Huggingface Dataset. |
|
Credit to [ForkMerge: Mitigating Negative Transfer in Auxiliary-Task Learning](http://arxiv.org/abs/2301.12618). |
|
|
|
## Dataset Information |
|
|
|
This data contains two splits: 'train' and 'val' (used as test dataset). |
|
Each sample in the dataset has 5 items: 'image', 'segmentation', 'depth', 'normal', and 'noise'. |
|
The noise is generated using `torch.rand()`. |
|
|
|
|
|
## Usage |
|
|
|
```python |
|
dataset = load_dataset('tanganke/nyuv2') |
|
dataset = dataset.with_format('torch') # this will convert the items into `torch.Tensor` objects |
|
``` |
|
|
|
this will return a `DatasetDict`: |
|
|
|
```python |
|
DatasetDict({ |
|
train: Dataset({ |
|
features: ['image', 'segmentation', 'depth', 'normal', 'noise'], |
|
num_rows: 795 |
|
}) |
|
val: Dataset({ |
|
features: ['image', 'segmentation', 'depth', 'normal', 'noise'], |
|
num_rows: 654 |
|
}) |
|
}) |
|
``` |
|
|
|
The features: |
|
|
|
```python |
|
{'image': Array3D(shape=(3, 288, 384), dtype='float32', id=None), |
|
'segmentation': Array2D(shape=(288, 384), dtype='int64', id=None), |
|
'depth': Array3D(shape=(1, 288, 384), dtype='float32', id=None), |
|
'normal': Array3D(shape=(3, 288, 384), dtype='float32', id=None), |
|
'noise': Array3D(shape=(1, 288, 384), dtype='float32', id=None)} |
|
``` |