Datasets:

License:

You need to agree to share your contact information to access this dataset

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

One more step before getting this dataset. This dataset is open access and available only for non-commercial use (except for portions of the dataset labeled with a cc-by-sa license). A "license" field paired with each of the dataset entries/samples specifies the Creative Commons license for that entry/sample.

These Creative Commons licenses specify that:

  1. You cannot use the dataset for or directed toward commercial advantage or monetary compensation (except for those portions of the dataset labeled specifically with a cc-by-sa license. If you would like to ask about commercial uses of this dataset, please email us.
  2. Any public, non-commercial use of the data must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  3. For those portions of the dataset marked with an ND license, you cannot remix, transform, or build upon the material, and you may not distribute modified material.

In addition to the above implied by Creative Commons and when clicking "Access Repository" below, you agree:

  1. Not to use the dataset for any use intended to or which has the effect of harming or enabling discrimination against individuals or groups based on legally protected characteristics or categories, including but not limited to discrimination against Indigenous People as outlined in Articles 2; 13-16; and 31 of the United Nations Declaration on the Rights of Indigenous People, 13 September 2007 and as subsequently amended and revised.
  2. That your contact information (email address and username) can be shared with the model authors as well.

Log in or Sign Up to review the conditions and access this dataset content.

logo for Bloom Library sil-ai logo

Dataset Summary

Bloom is free, open-source software and an associated website Bloom Library, app, and services developed by SIL International. Bloom’s primary goal is to equip non-dominant language communities and their members to create the literature they want for their community and children. Bloom also serves organizations that help such communities develop literature and education or other aspects of community development.

This version of the Bloom Library data is developed specifically for the language modeling task. It includes data from 364 languages across 31 language families. There is a mean of 32 stories and median of 2 stories per language.

Note: If you speak one of these languages and can help provide feedback or corrections, please let us know!

Note: Although this data was used in the training of the BLOOM model, this dataset only represents a small portion of the data used to train that model. Data from "Bloom Library" was combined with a large number of other datasets to train that model. "Bloom Library" is a project that existed prior to the BLOOM model, and is something separate. All that to say... We were using the "Bloom" name before it was cool. 😉

Languages

Of the 500+ languages listed at BloomLibrary.org, there are 363 languages available in this dataset. Here are the corresponding ISO 639-3 codes:

aaa, abc, ada, adq, aeu, afr, agq, ags, ahk, aia, ajz, aka, ame, amh, amp, amu, ann, aph, awa, awb, azn, azo, bag, bam, baw, bax, bbk, bcc, bce, bec, bef, ben, bfd, bfm, bfn, bgf, bho, bhs, bis, bjn, bjr, bkc, bkh, bkm, bkx, bob, bod, boz, bqm, bra, brb, bri, brv, bss, bud, buo, bwt, bwx, bxa, bya, bze, bzi, cak, cbr, ceb, cgc, chd, chp, cim, clo, cmn, cmo, csw, cuh, cuv, dag, ddg, ded, deu, dig, dje, dmg, dnw, dtp, dtr, dty, dug, eee, ekm, enb, enc, eng, ewo, fas, fil, fli, fon, fra, fub, fuh, gal, gbj, gou, gsw, guc, guj, guz, gwc, hao, hat, hau, hbb, hig, hil, hin, hla, hna, hre, hro, idt, ilo, ind, ino, isu, ita, jgo, jmx, jpn, jra, kak, kam, kan, kau, kbq, kbx, kby, kek, ken, khb, khm, kik, kin, kir, kjb, kmg, kmr, kms, kmu, kor, kqr, krr, ksw, kur, kvt, kwd, kwu, kwx, kxp, kyq, laj, lan, lao, lbr, lfa, lgg, lgr, lhm, lhu, lkb, llg, lmp, lns, loh, lsi, lts, lug, luy, lwl, mai, mal, mam, mar, mdr, mfh, mfj, mgg, mgm, mgo, mgq, mhx, miy, mkz, mle, mlk, mlw, mmu, mne, mnf, mnw, mot, mqj, mrn, mry, msb, muv, mve, mxu, mya, myk, myx, mzm, nas, nco, nep, new, nge, ngn, nhx, njy, nla, nld, nlv, nod, nsk, nsn, nso, nst, nuj, nwe, nwi, nxa, nxl, nya, nyo, nyu, nza, odk, oji, oki, omw, ori, ozm, pae, pag, pan, pbt, pce, pcg, pdu, pea, pex, pis, pkb, pmf, pnz, por, psp, pwg, qub, quc, quf, quz, qve, qvh, qvm, qvo, qxh, rel, rnl, ron, roo, rue, rug, rus, san, saq, sat, sdk, sea, sgd, shn, sml, snk, snl, som, sot, sox, spa, sps, ssn, stk, swa, swh, sxb, syw, taj, tam, tbj, tdb, tdg, tdt, teo, tet, tgk, tha, the, thk, thl, thy, tio, tkd, tnl, tnn, tnp, tnt, tod, tom, tpi, tpl, tpu, tsb, tsn, tso, tuv, tuz, tvs, udg, unr, urd, uzb, ven, vie, vif, war, wbm, wbr, wms, wni, wnk, wtk, xho, xkg, xmd, xmg, xmm, xog, xty, yas, yav, ybb, ybh, ybi, ydd, yea, yet, yid, yin, ymp, zaw, zho, zlm, zuh, zul

Dataset Statistics

Some of the languages included in the dataset just include 1 or a couple of "stories." These are not split between training, validation, and test. For those with higher numbers of available stories we include the following numbers of stories in each split:

ISO 639-3 Name Train Stories Validation Stories Test Stories
aeu Akeu 47 6 5
afr Afrikaans 19 2 2
ahk Akha 81 10 10
aph Athpariya 28 4 3
awa Awadhi 131 16 16
ben Bengali 201 25 25
bfn Bunak 11 1 1
bho Bhojpuri 139 17 17
bis Bislama 20 2 2
bkm Kom (Cameroon) 15 2 1
bkx Baikeno 8 1 1
brb Brao 18 2 2
bwx Bu-Nao Bunu 14 2 1
bzi Bisu 53 7 6
cak Kaqchikel 54 7 6
cbr Cashibo-Cacataibo 11 1 1
ceb Cebuano 335 42 41
cgc Kagayanen 158 20 19
cmo Central Mnong 16 2 2
ddg Fataluku 14 2 1
deu German 36 4 4
dtp Kadazan Dusun 13 2 1
dty Dotyali 138 17 17
eng English 2107 263 263
fas Persian 104 13 12
fil Filipino 55 7 6
fra French 323 40 40
gal Galolen 11 1 1
gwc Gawri 15 2 1
hat Haitian 208 26 26
hau Hausa 205 26 25
hbb Huba 22 3 2
hin Hindi 16 2 2
idt Idaté 8 1 1
ind Indonesian 208 26 25
jmx Western Juxtlahuaca Mixtec 19 2 2
jra Jarai 112 14 13
kak Kalanguya 156 20 19
kan Kannada 17 2 2
kau Kanuri 36 5 4
kek Kekchí 29 4 3
khb 25 3 3
khm Khmer 28 4 3
kik Kikuyu 8 1 1
kir Kirghiz 306 38 38
kjb Q'anjob'al 82 10 10
kmg Kâte 16 2 1
kor Korean 106 13 13
krr Krung 24 3 3
kwd Kwaio 19 2 2
kwu Kwakum 16 2 2
lbr Lohorung 8 1 1
lhu Lahu 32 4 4
lsi Lashi 21 3 2
mai Maithili 144 18 18
mal Malayalam 12 1 1
mam Mam 108 13 13
mar Marathi 8 1 1
mgm Mambae 12 2 1
mhx Maru 79 10 9
mkz Makasae 16 2 2
mya Burmese 31 4 3
myk Mamara Senoufo 28 3 3
nep Nepali (macrolanguage) 160 20 20
new Newari 142 18 17
nlv Orizaba Nahuatl 8 1 1
nsn Nehan 9 1 1
nwi Southwest Tanna 9 1 1
nxa Nauete 12 1 1
omw South Tairora 10 1 1
pbt Southern Pashto 164 21 20
pce Ruching Palaung 30 4 3
pis Pijin 14 2 1
por Portuguese 131 16 16
quc K'iche' 80 10 9
rus Russian 283 35 35
sdk Sos Kundi 9 1 1
snk Soninke 28 4 3
spa Spanish 423 53 52
swh Swahili (individual language) 58 7 7
tam Tamil 13 2 1
tdg Western Tamang 26 3 3
tdt Tetun Dili 22 3 2
tet Tetum 8 1 1
tgk Tajik 24 3 2
tha Thai 228 29 28
the Chitwania Tharu 11 1 1
thl Dangaura Tharu 148 19 18
tnl Lenakel 10 1 1
tnn North Tanna 9 1 1
tpi Tok Pisin 161 20 20
tpu Tampuan 24 3 2
uzb Uzbek 24 3 2
war Waray (Philippines) 16 2 2
wbr Wagdi 10 1 1
wni Ndzwani Comorian 12 2 1
xkg Kagoro 16 2 1
ybh Yakha 16 2 1
zho Chinese 34 4 4
zlm Malay (individual language) 8 1 1
zul Zulu 19 2 2

Dataset Structure

Data Instances

The examples look like this for Hindi:

from datasets import load_dataset

# Specify the language code.
dataset = load_dataset("sil-ai/bloom-lm", 'hin')

# A data point consists of stories in the specified language code.
# To see a story:
print(dataset['train']['text'][0])

This would produce an output:

साबू ने एक कंकड़ को ठोकर मारी। कंकड़ लुढ़कता हुआ एक पेड़ के पास पहुँचा। पेड़ के तने पर मुलायम बाल थे। साबू ने छुए और ऊपर देखा, ऊपर, ऊपर और उससे भी ऊपर...दो आँखें नीचे देख रही थीं।
“हेलो, तुम कौन हो?” साबू को बड़ा अचम्भा हुआ।“हेलो, मैं जिराफ़ हूँ। मेरा नाम है जोजो।  मैं तुम्हारे साथ खेल सकता हूँ। मेरी पीठ पर चढ़ जाओ, मैं तुम्हें घुमा के लाता हूँ।”
साबू जोजो की पीठ पर चढ़ गया और वे सड़क पर चल निकले। फिर पहाड़ी पर और शहर के बीचों बीच।
साबू खुशी से चिल्लाया, “जोजो दाएँ मुड़ो,
                                बाएँ मुड़ो और फिर दाएँ।” अब वे उसकी दोस्त मुन्नी के घर पहुँच गये।
आज मुन्नी का जन्मदिन था। साबू को जोजो पर सवारी करते देख बच्चों ने ताली बजायी। 
                                जोजो ने गुब्बारे लटकाने में आन्टी की मदद करी क्योंकि वह इतना... लम्बा था। 
                                कितना आसान था!
जोजो ने सब बच्चों को सवारी कराई।
                                उनके साथ बॉल भी खेली। बड़े मज़े की पार्टी थी।सब ने गाया, “हैप्पी बर्थ डे टु यू ।”
                                        आन्टी ने मेज़ पर समोसे, गुलाब जामुन और आइसक्रीम सजाई।
जोजो को आइसक्रीम बहुत पसन्द आई। अंकल उसके लिये एक बाल्टी भर के आइसक्रीम लाये। जोजो ने पूरी बाल्टी ख़त्म कर दी।  अब घर जाने का समय हो गया।

सब ने कहा, “बाय बाय जोजो, बाय बाय साबू।” साबू और जोजो घर लौटे।

Whereas if you wish to gather all the text for a language you may use this:

dataset['train']['text']

Data Fields

The metadata fields below are available and the full dataset will be updated with per story metadata soon (in August 2022). As of now a majority of stories have metadata, but some are missing certain fields. In terms of licenses, all stories included in the current release are released under a Creative Commons license (even if the individual story metadata fields are missing).

  • text: the text of the story/book, concatenated together from the different pages.
  • id: id of the sample
  • title: title of the book, e.g. "Going to Buy a Book".
  • license: specific license used, e.g. "cc-by-sa" for "Creative Commons, by attribution, share-alike".
  • copyright: copyright notice from the original book on bloomlibrary.org
  • pageCount: page count from the metadata on the original book on bloomlibrary.org.
  • bookInstanceId: unique ID for each book/translation assigned by Bloom. For example the Hindi version of 'Going to Buy a Book' is 'af86eefd-f69c-4e06-b8eb-e0451853aab9'.
  • bookLineage: Unique bookInstanceIDs of other Bloom books that this book is in some way based on. For example, the Hindi version in the example above is based on '056B6F11-4A6C-4942-B2BC-8861E62B03B3'. It's quite possible for this to be either empty, or have multiple entries. For example, the book 'Saboo y Jojo' with ID '5b232a5f-561d-4514-afe7-d6ed2f6a940f' is based on two others, ['056B6F11-4A6C-4942-B2BC-8861E62B03B3', '10a6075b-3c4f-40e4-94f3-593497f2793a']
  • (coming soon) contentLanguages: Other languages this book may be available in. "Going to Buy a Book" is available in ['eng', 'kan', 'mar', 'pan', 'ben', 'guj', 'hin'] for example.

Data Splits

All languages include a train, validation, and test split. However, for language having a small number of stories, certain of these splits maybe empty. In such cases, we recommend using any data for testing only or for zero-shot experiments.

Changelog

  • 25 August 2022 - add the remaining metadata, change data type of pageCount to int32
  • 24 August 2022 - majority of metadata added back in to the filtered/ clean data
  • 23 August 2022 - metadata temporarily removed to update to cleaner dataset
Downloads last month
92

Models trained or fine-tuned on sil-ai/bloom-lm