Dataset Preview
Full Screen
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code:   DatasetGenerationCastError
Exception:    DatasetGenerationCastError
Message:      An error occurred while generating the dataset

All the data files must have the same columns, but at some point there are 131 missing columns ({'99', '68', '89', '111', '64', '103', '31', '146', '65', '52', '36', '95', '44', '124', '98', '30', '116', '37', '39', '132', '51', '24', '94', '128', '86', '108', '33', '72', '138', '63', '77', '41', '104', '92', '20', '48', '87', '73', '85', '140', '100', '91', '79', '114', '102', '29', '120', '54', '59', '53', '101', '121', '139', '119', '49', '82', '97', '125', '131', '135', '109', '28', '143', '110', '127', '60', '88', '80', '50', '113', '42', '66', '69', '70', '75', '129', '35', '144', '142', '26', '62', '21', '112', '25', '22', '90', '61', '78', '123', '55', '136', '107', '118', '148', '58', '96', '27', '122', '84', '43', '23', '149', '74', '106', '105', '83', '93', '47', '38', '45', '81', '56', '57', '67', '19', '76', '145', '46', '32', '117', '126', '137', '133', '115', '34', '134', '147', '40', '71', '141', '130'})

This happened while the json dataset builder was generating data using

hf://datasets/shi-labs/oneformer_demo/cityscapes_panoptic.json (at revision 4d683bd5bf84e9c8b5537dce306230bde409fe89)

Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 2011, in _prepare_split_single
                  writer.write_table(table)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 585, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2302, in table_cast
                  return cast_table_to_schema(table, schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2256, in cast_table_to_schema
                  raise CastError(
              datasets.table.CastError: Couldn't cast
              0: struct<isthing: int64, name: string>
                child 0, isthing: int64
                child 1, name: string
              1: struct<isthing: int64, name: string>
                child 0, isthing: int64
                child 1, name: string
              2: struct<isthing: int64, name: string>
                child 0, isthing: int64
                child 1, name: string
              3: struct<isthing: int64, name: string>
                child 0, isthing: int64
                child 1, name: string
              4: struct<isthing: int64, name: string>
                child 0, isthing: int64
                child 1, name: string
              5: struct<isthing: int64, name: string>
                child 0, isthing: int64
                child 1, name: string
              6: struct<isthing: int64, name: string>
                child 0, isthing: int64
                child 1, name: string
              7: struct<isthing: int64, name: string>
                child 0, isthing: int64
                child 1, name: string
              8: struct<isthing: int64, name: string>
                child 0, isthing: int64
                child 1, name: string
              9: struct<isthing: int64, name: string>
                child 0, isthing: int64
                child 1, name: string
              10: struct<isthing: int64, name: string>
                child 0, isthing: int64
                child 1, name: string
              11: struct<isthing: int64, name: string>
                child 0, isthing: int64
                child 1, name: string
              12: struct<isthing: int64, name: string>
                child 0, isthing: int64
                child 1, name: string
              13: struct<isthing: int64, name: string>
                child 0, isthing: int64
                child 1, name: string
              14: struct<isthing: int64, name: string>
                child 0, isthing: int64
                child 1, name: string
              15: struct<isthing: int64, name: string>
                child 0, isthing: int64
                child 1, name: string
              16: struct<isthing: int64, name: string>
                child 0, isthing: int64
                child 1, name: string
              17: struct<isthing: int64, name: string>
                child 0, isthing: int64
                child 1, name: string
              18: struct<isthing: int64, name: string>
                child 0, isthing: int64
                child 1, name: string
              to
              {'0': {'isthing': Value(dtype='int64', id=None), 'name': Value(dtype='string', id=None)}, '1': {'isthing': Value(dtype='int64', id=None), 'name': Value(dtype='string', id=None)}, '2': {'isthing': Value(dtype='int64', id=None), 'name': Value(dtype='string', id=None)}, '3': {'isthing': Value(dtype='int64', id=None), 'name': Value(dtype='string', id=None)}, '4': {'isthing': Value(dtype='int64', id=None), 'name': Value(dtype='string', id=None)}, '5': {'isthing': Value(dtype='int64', id=None), 'name': Value(dtype='string', id=None)}, '6': {'isthing': Value(dtype='int64', id=None), 'name': Value(dtype='string', id=None)}, '7': {'isthing': Value(dtype='int64', id=None), 'name': Value(dtype='string', id=None)}, '8': {'isthing': Value(dtype='int64', id=None), 'name': Value(dtype='string', id=None)}, '9': {'isthing': Value(dtype='int64', id=None), 'name': Value(dtype='string', id=None)}, '10': {'isthing': Value(dtype='int64', id=None), 'name': Value(dtype='string', id=None)}, '11': {'isthing': Value(dtype='int64', id=None), 'name': Value(dtype='string', id=None)}, '12': {'isthing': Value(dtype='int64', id=None), 'name': Value(dtype='string', id=None)}, '13': {'isthing': Value(dtype='int64', id=None), 'name': Value(dtype='string', id=None)}, '14': {'isthing': Value(dtype='int64', id=None), 'name': Value(dtype='string', id=None)}, '15': {'isthing': Value(dtype='int64', id=None), 'name': Value(dtype='string', id=None)}, '16': {'isthing': Value(dtype='int64', id=None), 'name': Value(dtype=
              ...
              e), 'name': Value(dtype='string', id=None)}, '134': {'isthing': Value(dtype='int64', id=None), 'name': Value(dtype='string', id=None)}, '135': {'isthing': Value(dtype='int64', id=None), 'name': Value(dtype='string', id=None)}, '136': {'isthing': Value(dtype='int64', id=None), 'name': Value(dtype='string', id=None)}, '137': {'isthing': Value(dtype='int64', id=None), 'name': Value(dtype='string', id=None)}, '138': {'isthing': Value(dtype='int64', id=None), 'name': Value(dtype='string', id=None)}, '139': {'isthing': Value(dtype='int64', id=None), 'name': Value(dtype='string', id=None)}, '140': {'isthing': Value(dtype='int64', id=None), 'name': Value(dtype='string', id=None)}, '141': {'isthing': Value(dtype='int64', id=None), 'name': Value(dtype='string', id=None)}, '142': {'isthing': Value(dtype='int64', id=None), 'name': Value(dtype='string', id=None)}, '143': {'isthing': Value(dtype='int64', id=None), 'name': Value(dtype='string', id=None)}, '144': {'isthing': Value(dtype='int64', id=None), 'name': Value(dtype='string', id=None)}, '145': {'isthing': Value(dtype='int64', id=None), 'name': Value(dtype='string', id=None)}, '146': {'isthing': Value(dtype='int64', id=None), 'name': Value(dtype='string', id=None)}, '147': {'isthing': Value(dtype='int64', id=None), 'name': Value(dtype='string', id=None)}, '148': {'isthing': Value(dtype='int64', id=None), 'name': Value(dtype='string', id=None)}, '149': {'isthing': Value(dtype='int64', id=None), 'name': Value(dtype='string', id=None)}}
              because column names don't match
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1321, in compute_config_parquet_and_info_response
                  parquet_operations = convert_to_parquet(builder)
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 935, in convert_to_parquet
                  builder.download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1027, in download_and_prepare
                  self._download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1122, in _download_and_prepare
                  self._prepare_split(split_generator, **prepare_split_kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1882, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 2013, in _prepare_split_single
                  raise DatasetGenerationCastError.from_cast_error(
              datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
              
              All the data files must have the same columns, but at some point there are 131 missing columns ({'99', '68', '89', '111', '64', '103', '31', '146', '65', '52', '36', '95', '44', '124', '98', '30', '116', '37', '39', '132', '51', '24', '94', '128', '86', '108', '33', '72', '138', '63', '77', '41', '104', '92', '20', '48', '87', '73', '85', '140', '100', '91', '79', '114', '102', '29', '120', '54', '59', '53', '101', '121', '139', '119', '49', '82', '97', '125', '131', '135', '109', '28', '143', '110', '127', '60', '88', '80', '50', '113', '42', '66', '69', '70', '75', '129', '35', '144', '142', '26', '62', '21', '112', '25', '22', '90', '61', '78', '123', '55', '136', '107', '118', '148', '58', '96', '27', '122', '84', '43', '23', '149', '74', '106', '105', '83', '93', '47', '38', '45', '81', '56', '57', '67', '19', '76', '145', '46', '32', '117', '126', '137', '133', '115', '34', '134', '147', '40', '71', '141', '130'})
              
              This happened while the json dataset builder was generating data using
              
              hf://datasets/shi-labs/oneformer_demo/cityscapes_panoptic.json (at revision 4d683bd5bf84e9c8b5537dce306230bde409fe89)
              
              Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

0
dict
1
dict
2
dict
3
dict
4
dict
5
dict
6
dict
7
dict
8
dict
9
dict
10
dict
11
dict
12
dict
13
dict
14
dict
15
dict
16
dict
17
dict
18
dict
19
dict
20
dict
21
dict
22
dict
23
dict
24
dict
25
dict
26
dict
27
dict
28
dict
29
dict
30
dict
31
dict
32
dict
33
dict
34
dict
35
dict
36
dict
37
dict
38
dict
39
dict
40
dict
41
dict
42
dict
43
dict
44
dict
45
dict
46
dict
47
dict
48
dict
49
dict
50
dict
51
dict
52
dict
53
dict
54
dict
55
dict
56
dict
57
dict
58
dict
59
dict
60
dict
61
dict
62
dict
63
dict
64
dict
65
dict
66
dict
67
dict
68
dict
69
dict
70
dict
71
dict
72
dict
73
dict
74
dict
75
dict
76
dict
77
dict
78
dict
79
dict
80
dict
81
dict
82
dict
83
dict
84
dict
85
dict
86
dict
87
dict
88
dict
89
dict
90
dict
91
dict
92
dict
93
dict
94
dict
95
dict
96
dict
97
dict
98
dict
99
dict
100
dict
101
dict
102
dict
103
dict
104
dict
105
dict
106
dict
107
dict
108
dict
109
dict
110
dict
111
dict
112
dict
113
dict
114
dict
115
dict
116
dict
117
dict
118
dict
119
dict
120
dict
121
dict
122
dict
123
dict
124
dict
125
dict
126
dict
127
dict
128
dict
129
dict
130
dict
131
dict
132
dict
133
dict
134
dict
135
dict
136
dict
137
dict
138
dict
139
dict
140
dict
141
dict
142
dict
143
dict
144
dict
145
dict
146
dict
147
dict
148
dict
149
dict
{ "isthing": 0, "name": "wall" }
{ "isthing": 0, "name": "building" }
{ "isthing": 0, "name": "sky" }
{ "isthing": 0, "name": "floor" }
{ "isthing": 0, "name": "tree" }
{ "isthing": 0, "name": "ceiling" }
{ "isthing": 0, "name": "road, route" }
{ "isthing": 1, "name": "bed" }
{ "isthing": 1, "name": "window " }
{ "isthing": 0, "name": "grass" }
{ "isthing": 1, "name": "cabinet" }
{ "isthing": 0, "name": "sidewalk, pavement" }
{ "isthing": 1, "name": "person" }
{ "isthing": 0, "name": "earth, ground" }
{ "isthing": 1, "name": "door" }
{ "isthing": 1, "name": "table" }
{ "isthing": 0, "name": "mountain, mount" }
{ "isthing": 0, "name": "plant" }
{ "isthing": 1, "name": "curtain" }
{ "isthing": 1, "name": "chair" }
{ "isthing": 1, "name": "car" }
{ "isthing": 0, "name": "water" }
{ "isthing": 1, "name": "painting, picture" }
{ "isthing": 1, "name": "sofa" }
{ "isthing": 1, "name": "shelf" }
{ "isthing": 0, "name": "house" }
{ "isthing": 0, "name": "sea" }
{ "isthing": 1, "name": "mirror" }
{ "isthing": 0, "name": "rug" }
{ "isthing": 0, "name": "field" }
{ "isthing": 1, "name": "armchair" }
{ "isthing": 1, "name": "seat" }
{ "isthing": 1, "name": "fence" }
{ "isthing": 1, "name": "desk" }
{ "isthing": 0, "name": "rock, stone" }
{ "isthing": 1, "name": "wardrobe, closet, press" }
{ "isthing": 1, "name": "lamp" }
{ "isthing": 1, "name": "tub" }
{ "isthing": 1, "name": "rail" }
{ "isthing": 1, "name": "cushion" }
{ "isthing": 0, "name": "base, pedestal, stand" }
{ "isthing": 1, "name": "box" }
{ "isthing": 1, "name": "column, pillar" }
{ "isthing": 1, "name": "signboard, sign" }
{ "isthing": 1, "name": "chest of drawers, chest, bureau, dresser" }
{ "isthing": 1, "name": "counter" }
{ "isthing": 0, "name": "sand" }
{ "isthing": 1, "name": "sink" }
{ "isthing": 0, "name": "skyscraper" }
{ "isthing": 1, "name": "fireplace" }
{ "isthing": 1, "name": "refrigerator, icebox" }
{ "isthing": 0, "name": "grandstand, covered stand" }
{ "isthing": 0, "name": "path" }
{ "isthing": 1, "name": "stairs" }
{ "isthing": 0, "name": "runway" }
{ "isthing": 1, "name": "case, display case, showcase, vitrine" }
{ "isthing": 1, "name": "pool table, billiard table, snooker table" }
{ "isthing": 1, "name": "pillow" }
{ "isthing": 1, "name": "screen door, screen" }
{ "isthing": 0, "name": "stairway, staircase" }
{ "isthing": 0, "name": "river" }
{ "isthing": 0, "name": "bridge, span" }
{ "isthing": 1, "name": "bookcase" }
{ "isthing": 0, "name": "blind, screen" }
{ "isthing": 1, "name": "coffee table" }
{ "isthing": 1, "name": "toilet, can, commode, crapper, pot, potty, stool, throne" }
{ "isthing": 1, "name": "flower" }
{ "isthing": 1, "name": "book" }
{ "isthing": 0, "name": "hill" }
{ "isthing": 1, "name": "bench" }
{ "isthing": 1, "name": "countertop" }
{ "isthing": 1, "name": "stove" }
{ "isthing": 1, "name": "palm, palm tree" }
{ "isthing": 1, "name": "kitchen island" }
{ "isthing": 1, "name": "computer" }
{ "isthing": 1, "name": "swivel chair" }
{ "isthing": 1, "name": "boat" }
{ "isthing": 0, "name": "bar" }
{ "isthing": 1, "name": "arcade machine" }
{ "isthing": 0, "name": "hovel, hut, hutch, shack, shanty" }
{ "isthing": 1, "name": "bus" }
{ "isthing": 1, "name": "towel" }
{ "isthing": 1, "name": "light" }
{ "isthing": 1, "name": "truck" }
{ "isthing": 0, "name": "tower" }
{ "isthing": 1, "name": "chandelier" }
{ "isthing": 1, "name": "awning, sunshade, sunblind" }
{ "isthing": 1, "name": "street lamp" }
{ "isthing": 1, "name": "booth" }
{ "isthing": 1, "name": "tv" }
{ "isthing": 1, "name": "plane" }
{ "isthing": 0, "name": "dirt track" }
{ "isthing": 1, "name": "clothes" }
{ "isthing": 1, "name": "pole" }
{ "isthing": 0, "name": "land, ground, soil" }
{ "isthing": 1, "name": "bannister, banister, balustrade, balusters, handrail" }
{ "isthing": 0, "name": "escalator, moving staircase, moving stairway" }
{ "isthing": 1, "name": "ottoman, pouf, pouffe, puff, hassock" }
{ "isthing": 1, "name": "bottle" }
{ "isthing": 0, "name": "buffet, counter, sideboard" }
{ "isthing": 0, "name": "poster, posting, placard, notice, bill, card" }
{ "isthing": 0, "name": "stage" }
{ "isthing": 1, "name": "van" }
{ "isthing": 1, "name": "ship" }
{ "isthing": 1, "name": "fountain" }
{ "isthing": 0, "name": "conveyer belt, conveyor belt, conveyer, conveyor, transporter" }
{ "isthing": 0, "name": "canopy" }
{ "isthing": 1, "name": "washer, automatic washer, washing machine" }
{ "isthing": 1, "name": "plaything, toy" }
{ "isthing": 0, "name": "pool" }
{ "isthing": 1, "name": "stool" }
{ "isthing": 1, "name": "barrel, cask" }
{ "isthing": 1, "name": "basket, handbasket" }
{ "isthing": 0, "name": "falls" }
{ "isthing": 0, "name": "tent" }
{ "isthing": 1, "name": "bag" }
{ "isthing": 1, "name": "minibike, motorbike" }
{ "isthing": 0, "name": "cradle" }
{ "isthing": 1, "name": "oven" }
{ "isthing": 1, "name": "ball" }
{ "isthing": 1, "name": "food, solid food" }
{ "isthing": 1, "name": "step, stair" }
{ "isthing": 0, "name": "tank, storage tank" }
{ "isthing": 1, "name": "trade name" }
{ "isthing": 1, "name": "microwave" }
{ "isthing": 1, "name": "pot" }
{ "isthing": 1, "name": "animal" }
{ "isthing": 1, "name": "bicycle" }
{ "isthing": 0, "name": "lake" }
{ "isthing": 1, "name": "dishwasher" }
{ "isthing": 1, "name": "screen" }
{ "isthing": 0, "name": "blanket, cover" }
{ "isthing": 1, "name": "sculpture" }
{ "isthing": 1, "name": "hood, exhaust hood" }
{ "isthing": 1, "name": "sconce" }
{ "isthing": 1, "name": "vase" }
{ "isthing": 1, "name": "traffic light" }
{ "isthing": 1, "name": "tray" }
{ "isthing": 1, "name": "trash can" }
{ "isthing": 1, "name": "fan" }
{ "isthing": 0, "name": "pier" }
{ "isthing": 0, "name": "crt screen" }
{ "isthing": 1, "name": "plate" }
{ "isthing": 1, "name": "monitor" }
{ "isthing": 1, "name": "bulletin board" }
{ "isthing": 0, "name": "shower" }
{ "isthing": 1, "name": "radiator" }
{ "isthing": 1, "name": "glass, drinking glass" }
{ "isthing": 1, "name": "clock" }
{ "isthing": 1, "name": "flag" }
{ "isthing": 0, "name": "road" }
{ "isthing": 0, "name": "building" }
{ "isthing": 0, "name": "sidewalk" }
{ "isthing": 0, "name": "wall" }
{ "isthing": 0, "name": "fence" }
{ "isthing": 0, "name": "pole" }
{ "isthing": 0, "name": "traffic light" }
{ "isthing": 0, "name": "traffic sign" }
{ "isthing": 0, "name": "vegetation" }
{ "isthing": 0, "name": "terrain" }
{ "isthing": 0, "name": "sky" }
{ "isthing": 1, "name": "person" }
{ "isthing": 1, "name": "rider" }
{ "isthing": 1, "name": "car" }
{ "isthing": 1, "name": "truck" }
{ "isthing": 1, "name": "bus" }
{ "isthing": 1, "name": "train" }
{ "isthing": 1, "name": "motorcycle" }
{ "isthing": 1, "name": "bicycle" }
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
{ "isthing": 1, "name": "person" }
{ "isthing": 1, "name": "bicycle" }
{ "isthing": 1, "name": "car" }
{ "isthing": 1, "name": "motorcycle" }
{ "isthing": 1, "name": "airplane" }
{ "isthing": 1, "name": "bus" }
{ "isthing": 1, "name": "train" }
{ "isthing": 1, "name": "truck" }
{ "isthing": 1, "name": "boat" }
{ "isthing": 1, "name": "traffic light" }
{ "isthing": 1, "name": "fire hydrant" }
{ "isthing": 1, "name": "stop sign" }
{ "isthing": 1, "name": "parking meter" }
{ "isthing": 1, "name": "bench" }
{ "isthing": 1, "name": "bird" }
{ "isthing": 1, "name": "cat" }
{ "isthing": 1, "name": "dog" }
{ "isthing": 1, "name": "horse" }
{ "isthing": 1, "name": "sheep" }
{ "isthing": 1, "name": "cow" }
{ "isthing": 1, "name": "elephant" }
{ "isthing": 1, "name": "bear" }
{ "isthing": 1, "name": "zebra" }
{ "isthing": 1, "name": "giraffe" }
{ "isthing": 1, "name": "backpack" }
{ "isthing": 1, "name": "umbrella" }
{ "isthing": 1, "name": "handbag" }
{ "isthing": 1, "name": "tie" }
{ "isthing": 1, "name": "suitcase" }
{ "isthing": 1, "name": "frisbee" }
{ "isthing": 1, "name": "skis" }
{ "isthing": 1, "name": "snowboard" }
{ "isthing": 1, "name": "sports ball" }
{ "isthing": 1, "name": "kite" }
{ "isthing": 1, "name": "baseball bat" }
{ "isthing": 1, "name": "baseball glove" }
{ "isthing": 1, "name": "skateboard" }
{ "isthing": 1, "name": "surfboard" }
{ "isthing": 1, "name": "tennis racket" }
{ "isthing": 1, "name": "bottle" }
{ "isthing": 1, "name": "wine glass" }
{ "isthing": 1, "name": "cup" }
{ "isthing": 1, "name": "fork" }
{ "isthing": 1, "name": "knife" }
{ "isthing": 1, "name": "spoon" }
{ "isthing": 1, "name": "bowl" }
{ "isthing": 1, "name": "banana" }
{ "isthing": 1, "name": "apple" }
{ "isthing": 1, "name": "sandwich" }
{ "isthing": 1, "name": "orange" }
{ "isthing": 1, "name": "broccoli" }
{ "isthing": 1, "name": "carrot" }
{ "isthing": 1, "name": "hot dog" }
{ "isthing": 1, "name": "pizza" }
{ "isthing": 1, "name": "donut" }
{ "isthing": 1, "name": "cake" }
{ "isthing": 1, "name": "chair" }
{ "isthing": 1, "name": "couch" }
{ "isthing": 1, "name": "potted plant" }
{ "isthing": 1, "name": "bed" }
{ "isthing": 1, "name": "dining table" }
{ "isthing": 1, "name": "toilet" }
{ "isthing": 1, "name": "tv" }
{ "isthing": 1, "name": "laptop" }
{ "isthing": 1, "name": "mouse" }
{ "isthing": 1, "name": "remote" }
{ "isthing": 1, "name": "keyboard" }
{ "isthing": 1, "name": "cell phone" }
{ "isthing": 1, "name": "microwave" }
{ "isthing": 1, "name": "oven" }
{ "isthing": 1, "name": "toaster" }
{ "isthing": 1, "name": "sink" }
{ "isthing": 1, "name": "refrigerator" }
{ "isthing": 1, "name": "book" }
{ "isthing": 1, "name": "clock" }
{ "isthing": 1, "name": "vase" }
{ "isthing": 1, "name": "scissors" }
{ "isthing": 1, "name": "teddy bear" }
{ "isthing": 1, "name": "hair drier" }
{ "isthing": 1, "name": "toothbrush" }
{ "isthing": 0, "name": "banner" }
{ "isthing": 0, "name": "blanket" }
{ "isthing": 0, "name": "bridge" }
{ "isthing": 0, "name": "cardboard" }
{ "isthing": 0, "name": "counter" }
{ "isthing": 0, "name": "curtain" }
{ "isthing": 0, "name": "door-stuff" }
{ "isthing": 0, "name": "floor-wood" }
{ "isthing": 0, "name": "flower" }
{ "isthing": 0, "name": "fruit" }
{ "isthing": 0, "name": "gravel" }
{ "isthing": 0, "name": "house" }
{ "isthing": 0, "name": "light" }
{ "isthing": 0, "name": "mirror-stuff" }
{ "isthing": 0, "name": "net" }
{ "isthing": 0, "name": "pillow" }
{ "isthing": 0, "name": "platform" }
{ "isthing": 0, "name": "playingfield" }
{ "isthing": 0, "name": "railroad" }
{ "isthing": 0, "name": "river" }
{ "isthing": 0, "name": "road" }
{ "isthing": 0, "name": "roof" }
{ "isthing": 0, "name": "sand" }
{ "isthing": 0, "name": "sea" }
{ "isthing": 0, "name": "shelf" }
{ "isthing": 0, "name": "snow" }
{ "isthing": 0, "name": "stairs" }
{ "isthing": 0, "name": "tent" }
{ "isthing": 0, "name": "towel" }
{ "isthing": 0, "name": "wall-brick" }
{ "isthing": 0, "name": "wall-stone" }
{ "isthing": 0, "name": "wall-tile" }
{ "isthing": 0, "name": "wall-wood" }
{ "isthing": 0, "name": "water-other" }
{ "isthing": 0, "name": "window-blind" }
{ "isthing": 0, "name": "window-other" }
{ "isthing": 0, "name": "tree-merged" }
{ "isthing": 0, "name": "fence-merged" }
{ "isthing": 0, "name": "ceiling-merged" }
{ "isthing": 0, "name": "sky-other-merged" }
{ "isthing": 0, "name": "cabinet-merged" }
{ "isthing": 0, "name": "table-merged" }
{ "isthing": 0, "name": "floor-other-merged" }
{ "isthing": 0, "name": "pavement-merged" }
{ "isthing": 0, "name": "mountain-merged" }
{ "isthing": 0, "name": "grass-merged" }
{ "isthing": 0, "name": "dirt-merged" }
{ "isthing": 0, "name": "paper-merged" }
{ "isthing": 0, "name": "food-other-merged" }
{ "isthing": 0, "name": "building-other-merged" }
{ "isthing": 0, "name": "rock-merged" }
{ "isthing": 0, "name": "wall-other-merged" }
{ "isthing": 0, "name": "rug-merged" }
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null

No dataset card yet

Downloads last month
43,692