amharic-sentiment / README.md
rasyosef's picture
Update README.md
543f0ad verified
metadata
language:
  - am
size_categories:
  - 1K<n<10K
task_categories:
  - text-classification
dataset_info:
  features:
    - name: clean_tweet
      dtype: string
    - name: label
      dtype:
        class_label:
          names:
            '0': negative
            '1': positive
  splits:
    - name: train
      num_bytes: 468510
      num_examples: 2223
    - name: dev
      num_bytes: 56319
      num_examples: 279
    - name: test
      num_bytes: 58731
      num_examples: 279
  download_size: 338974
  dataset_size: 583560
configs:
  - config_name: default
    data_files:
      - split: train
        path: data/train-*
      - split: dev
        path: data/dev-*
      - split: test
        path: data/test-*

Amharic Sentiment Dataset

This dataset contains 2781 cleaned Amharic Tweets, labeled as having either positive or negative sentiment. This dataset can be used to train a sentiment classification model.

Dataset Source

https://github.com/liyaSileshi/amharic-sentiment-analysis/blob/main/data_preprocess/train.csv

Finetuned Models

The following models were finetuned using this dataset. The reported precision, recall, and f1 metrics are macro averages.

Model Size (# params) Accuracy Precision Recall F1
bert-medium-amharic 40.5M 0.83 0.83 0.82 0.83
bert-small-amharic 27.8M 0.83 0.83 0.82 0.83
bert-mini-amharic 10.7M 0.81 0.81 0.81 0.81
bert-tiny-amharic 4.18M 0.79 0.79 0.79 0.79
xlm-roberta-base 279M 0.83 0.83 0.83 0.83
am-roberta 443M 0.82 0.83 0.82 0.82

Code

In this repository, you can find notebooks for finetuning each of the above models using this dataset