url
stringlengths 58
61
| repository_url
stringclasses 1
value | labels_url
stringlengths 72
75
| comments_url
stringlengths 67
70
| events_url
stringlengths 65
68
| html_url
stringlengths 46
51
| id
int64 599M
2.04B
| node_id
stringlengths 18
32
| number
int64 1
6.5k
| title
stringlengths 1
290
| user
dict | labels
list | state
stringclasses 2
values | locked
bool 1
class | assignee
dict | assignees
list | comments
sequence | created_at
timestamp[s] | updated_at
timestamp[s] | closed_at
timestamp[s] | author_association
stringclasses 3
values | active_lock_reason
null | draft
bool 2
classes | pull_request
dict | body
stringlengths 0
228k
⌀ | reactions
dict | timeline_url
stringlengths 67
70
| performed_via_github_app
null | state_reason
stringclasses 3
values | is_pull_request
bool 2
classes |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
https://api.github.com/repos/huggingface/datasets/issues/6400 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6400/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6400/comments | https://api.github.com/repos/huggingface/datasets/issues/6400/events | https://github.com/huggingface/datasets/issues/6400 | 1,988,571,317 | I_kwDODunzps52hzC1 | 6,400 | Safely load datasets by disabling execution of dataset loading script | {
"login": "irenedea",
"id": 14367635,
"node_id": "MDQ6VXNlcjE0MzY3NjM1",
"avatar_url": "https://avatars.githubusercontent.com/u/14367635?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/irenedea",
"html_url": "https://github.com/irenedea",
"followers_url": "https://api.github.com/users/irenedea/followers",
"following_url": "https://api.github.com/users/irenedea/following{/other_user}",
"gists_url": "https://api.github.com/users/irenedea/gists{/gist_id}",
"starred_url": "https://api.github.com/users/irenedea/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/irenedea/subscriptions",
"organizations_url": "https://api.github.com/users/irenedea/orgs",
"repos_url": "https://api.github.com/users/irenedea/repos",
"events_url": "https://api.github.com/users/irenedea/events{/privacy}",
"received_events_url": "https://api.github.com/users/irenedea/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892871,
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement",
"name": "enhancement",
"color": "a2eeef",
"default": true,
"description": "New feature or request"
}
] | open | false | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
}
] | [
"great idea IMO\r\n\r\nthis could be a `trust_remote_code=True` flag like in transformers. We could also default to loading the Parquet conversion rather than executing code (for dataset repos that have both)",
"@julien-c that would be great!"
] | 2023-11-10T23:48:29 | 2023-11-15T14:46:43 | null | NONE | null | null | null | ### Feature request
Is there a way to disable execution of dataset loading script using `load_dataset`? This is a security vulnerability that could lead to arbitrary code execution.
Any suggested workarounds are welcome as well.
### Motivation
This is a security vulnerability that could lead to arbitrary code execution.
### Your contribution
n/a | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6400/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6400/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/6399 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6399/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6399/comments | https://api.github.com/repos/huggingface/datasets/issues/6399/events | https://github.com/huggingface/datasets/issues/6399 | 1,988,368,503 | I_kwDODunzps52hBh3 | 6,399 | TypeError: Cannot convert pyarrow.lib.ChunkedArray to pyarrow.lib.Array | {
"login": "y-hwang",
"id": 76236359,
"node_id": "MDQ6VXNlcjc2MjM2MzU5",
"avatar_url": "https://avatars.githubusercontent.com/u/76236359?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/y-hwang",
"html_url": "https://github.com/y-hwang",
"followers_url": "https://api.github.com/users/y-hwang/followers",
"following_url": "https://api.github.com/users/y-hwang/following{/other_user}",
"gists_url": "https://api.github.com/users/y-hwang/gists{/gist_id}",
"starred_url": "https://api.github.com/users/y-hwang/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/y-hwang/subscriptions",
"organizations_url": "https://api.github.com/users/y-hwang/orgs",
"repos_url": "https://api.github.com/users/y-hwang/repos",
"events_url": "https://api.github.com/users/y-hwang/events{/privacy}",
"received_events_url": "https://api.github.com/users/y-hwang/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | [] | 2023-11-10T20:48:46 | 2023-11-10T20:48:46 | null | NONE | null | null | null | ### Describe the bug
Hi, I am preprocessing a large custom dataset with numpy arrays. I am running into this TypeError during writing in a dataset.map() function. I've tried decreasing writer batch size, but this error persists. This error does not occur for smaller datasets.
Thank you!
### Steps to reproduce the bug
Traceback (most recent call last):
File "/n/home12/yhwang/.conda/envs/lib/python3.10/site-packages/multiprocess/pool.py", line 125, in worker
result = (True, func(*args, **kwds))
File "/n/home12/yhwang/.conda/envs/lib/python3.10/site-packages/datasets/utils/py_utils.py", line 1354, in _write_generator_to_queue
for i, result in enumerate(func(**kwargs)):
File "/n/home12/yhwang/.conda/envs/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 3493, in _map_single
writer.write_batch(batch)
File "/n/home12/yhwang/.conda/envs/lib/python3.10/site-packages/datasets/arrow_writer.py", line 555, in write_batch
arrays.append(pa.array(typed_sequence))
File "pyarrow/array.pxi", line 243, in pyarrow.lib.array
File "pyarrow/array.pxi", line 110, in pyarrow.lib._handle_arrow_array_protocol
File "/n/home12/yhwang/.conda/envs/lib/python3.10/site-packages/datasets/arrow_writer.py", line 184, in __arrow_array__
out = numpy_to_pyarrow_listarray(data)
File "/n/home12/yhwang/.conda/envs/lib/python3.10/site-packages/datasets/features/features.py", line 1394, in numpy_to_pyarrow_listarray
values = pa.ListArray.from_arrays(offsets, values)
File "pyarrow/array.pxi", line 2004, in pyarrow.lib.ListArray.from_arrays
TypeError: Cannot convert pyarrow.lib.ChunkedArray to pyarrow.lib.Array
### Expected behavior
Type should not be a ChunkedArray
### Environment info
datasets v2.14.5
arrow v1.2.3
pyarrow v12.0.1 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6399/reactions",
"total_count": 1,
"+1": 1,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6399/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/6398 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6398/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6398/comments | https://api.github.com/repos/huggingface/datasets/issues/6398/events | https://github.com/huggingface/datasets/pull/6398 | 1,987,786,446 | PR_kwDODunzps5fJlP7 | 6,398 | Remove redundant condition in builders | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | [
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004475 / 0.011353 (-0.006878) | 0.002840 / 0.011008 (-0.008168) | 0.061544 / 0.038508 (0.023036) | 0.031237 / 0.023109 (0.008128) | 0.243270 / 0.275898 (-0.032628) | 0.271903 / 0.323480 (-0.051577) | 0.002906 / 0.007986 (-0.005080) | 0.003118 / 0.004328 (-0.001210) | 0.047362 / 0.004250 (0.043112) | 0.047840 / 0.037052 (0.010788) | 0.244044 / 0.258489 (-0.014445) | 0.279310 / 0.293841 (-0.014531) | 0.023408 / 0.128546 (-0.105138) | 0.007110 / 0.075646 (-0.068536) | 0.207328 / 0.419271 (-0.211943) | 0.058463 / 0.043533 (0.014930) | 0.245631 / 0.255139 (-0.009508) | 0.267755 / 0.283200 (-0.015445) | 0.018147 / 0.141683 (-0.123536) | 1.086877 / 1.452155 (-0.365278) | 1.155380 / 1.492716 (-0.337337) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.091925 / 0.018006 (0.073919) | 0.299858 / 0.000490 (0.299368) | 0.000232 / 0.000200 (0.000032) | 0.000047 / 0.000054 (-0.000007) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018416 / 0.037411 (-0.018995) | 0.062608 / 0.014526 (0.048082) | 0.073897 / 0.176557 (-0.102660) | 0.120216 / 0.737135 (-0.616919) | 0.075788 / 0.296338 (-0.220550) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.287823 / 0.215209 (0.072614) | 2.797546 / 2.077655 (0.719891) | 1.470878 / 1.504120 (-0.033242) | 1.347497 / 1.541195 (-0.193698) | 1.363837 / 1.468490 (-0.104653) | 0.400069 / 4.584777 (-4.184708) | 2.338870 / 3.745712 (-1.406842) | 2.564075 / 5.269862 (-2.705787) | 1.568454 / 4.565676 (-2.997222) | 0.047103 / 0.424275 (-0.377172) | 0.004783 / 0.007607 (-0.002824) | 0.345244 / 0.226044 (0.119200) | 3.407752 / 2.268929 (1.138823) | 1.826552 / 55.444624 (-53.618073) | 1.536714 / 6.876477 (-5.339763) | 1.543138 / 2.142072 (-0.598934) | 0.478996 / 4.805227 (-4.326232) | 0.099580 / 6.500664 (-6.401085) | 0.041994 / 0.075469 (-0.033475) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.947106 / 1.841788 (-0.894682) | 11.391262 / 8.074308 (3.316954) | 10.531141 / 10.191392 (0.339749) | 0.141497 / 0.680424 (-0.538927) | 0.014214 / 0.534201 (-0.519987) | 0.269346 / 0.579283 (-0.309937) | 0.268129 / 0.434364 (-0.166235) | 0.309496 / 0.540337 (-0.230841) | 0.429207 / 1.386936 (-0.957729) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004770 / 0.011353 (-0.006583) | 0.002878 / 0.011008 (-0.008130) | 0.048248 / 0.038508 (0.009740) | 0.051068 / 0.023109 (0.027959) | 0.272076 / 0.275898 (-0.003822) | 0.292423 / 0.323480 (-0.031057) | 0.004016 / 0.007986 (-0.003970) | 0.002522 / 0.004328 (-0.001807) | 0.047617 / 0.004250 (0.043367) | 0.038168 / 0.037052 (0.001115) | 0.275236 / 0.258489 (0.016746) | 0.303811 / 0.293841 (0.009970) | 0.023816 / 0.128546 (-0.104730) | 0.007177 / 0.075646 (-0.068469) | 0.053453 / 0.419271 (-0.365818) | 0.032425 / 0.043533 (-0.011108) | 0.271620 / 0.255139 (0.016481) | 0.289618 / 0.283200 (0.006418) | 0.017986 / 0.141683 (-0.123697) | 1.154225 / 1.452155 (-0.297930) | 1.224244 / 1.492716 (-0.268472) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.090477 / 0.018006 (0.072471) | 0.299461 / 0.000490 (0.298971) | 0.000224 / 0.000200 (0.000024) | 0.000053 / 0.000054 (-0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022043 / 0.037411 (-0.015369) | 0.070327 / 0.014526 (0.055801) | 0.080132 / 0.176557 (-0.096425) | 0.120007 / 0.737135 (-0.617128) | 0.083037 / 0.296338 (-0.213301) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.294538 / 0.215209 (0.079329) | 2.882791 / 2.077655 (0.805136) | 1.582923 / 1.504120 (0.078803) | 1.457091 / 1.541195 (-0.084104) | 1.536149 / 1.468490 (0.067659) | 0.401539 / 4.584777 (-4.183238) | 2.440919 / 3.745712 (-1.304793) | 2.503108 / 5.269862 (-2.766753) | 1.509216 / 4.565676 (-3.056460) | 0.046267 / 0.424275 (-0.378008) | 0.004790 / 0.007607 (-0.002817) | 0.336137 / 0.226044 (0.110093) | 3.331655 / 2.268929 (1.062726) | 1.954228 / 55.444624 (-53.490396) | 1.686637 / 6.876477 (-5.189840) | 1.650278 / 2.142072 (-0.491794) | 0.473895 / 4.805227 (-4.331333) | 0.096908 / 6.500664 (-6.403756) | 0.040387 / 0.075469 (-0.035082) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.972999 / 1.841788 (-0.868789) | 11.978367 / 8.074308 (3.904059) | 10.861092 / 10.191392 (0.669699) | 0.129054 / 0.680424 (-0.551369) | 0.015988 / 0.534201 (-0.518213) | 0.268827 / 0.579283 (-0.310456) | 0.271714 / 0.434364 (-0.162649) | 0.304045 / 0.540337 (-0.236293) | 0.413158 / 1.386936 (-0.973778) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#9e4348a233a75907c305b3159ac9cb183cf30ea5 \"CML watermark\")\n",
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005286 / 0.011353 (-0.006067) | 0.002860 / 0.011008 (-0.008149) | 0.062449 / 0.038508 (0.023941) | 0.035346 / 0.023109 (0.012237) | 0.241685 / 0.275898 (-0.034213) | 0.268116 / 0.323480 (-0.055364) | 0.003050 / 0.007986 (-0.004935) | 0.003134 / 0.004328 (-0.001194) | 0.048818 / 0.004250 (0.044567) | 0.049187 / 0.037052 (0.012135) | 0.247395 / 0.258489 (-0.011094) | 0.280301 / 0.293841 (-0.013540) | 0.023801 / 0.128546 (-0.104745) | 0.007653 / 0.075646 (-0.067994) | 0.204185 / 0.419271 (-0.215087) | 0.071251 / 0.043533 (0.027718) | 0.244409 / 0.255139 (-0.010730) | 0.262363 / 0.283200 (-0.020836) | 0.018631 / 0.141683 (-0.123052) | 1.110152 / 1.452155 (-0.342003) | 1.165093 / 1.492716 (-0.327624) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.099536 / 0.018006 (0.081530) | 0.309598 / 0.000490 (0.309109) | 0.000207 / 0.000200 (0.000007) | 0.000050 / 0.000054 (-0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019213 / 0.037411 (-0.018198) | 0.069296 / 0.014526 (0.054770) | 0.074752 / 0.176557 (-0.101804) | 0.121314 / 0.737135 (-0.615822) | 0.081274 / 0.296338 (-0.215065) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.281345 / 0.215209 (0.066136) | 2.755435 / 2.077655 (0.677780) | 1.453358 / 1.504120 (-0.050762) | 1.328222 / 1.541195 (-0.212973) | 1.392281 / 1.468490 (-0.076209) | 0.410539 / 4.584777 (-4.174238) | 2.452072 / 3.745712 (-1.293640) | 2.777757 / 5.269862 (-2.492105) | 1.656719 / 4.565676 (-2.908958) | 0.046844 / 0.424275 (-0.377431) | 0.004785 / 0.007607 (-0.002822) | 0.336567 / 0.226044 (0.110522) | 3.317564 / 2.268929 (1.048635) | 1.830737 / 55.444624 (-53.613888) | 1.528464 / 6.876477 (-5.348013) | 1.620527 / 2.142072 (-0.521545) | 0.480662 / 4.805227 (-4.324565) | 0.100819 / 6.500664 (-6.399845) | 0.042501 / 0.075469 (-0.032968) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.962593 / 1.841788 (-0.879195) | 12.508048 / 8.074308 (4.433740) | 11.117398 / 10.191392 (0.926006) | 0.131265 / 0.680424 (-0.549159) | 0.014469 / 0.534201 (-0.519732) | 0.271627 / 0.579283 (-0.307656) | 0.274966 / 0.434364 (-0.159398) | 0.313260 / 0.540337 (-0.227077) | 0.444741 / 1.386936 (-0.942195) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004974 / 0.011353 (-0.006379) | 0.003383 / 0.011008 (-0.007626) | 0.048792 / 0.038508 (0.010284) | 0.052821 / 0.023109 (0.029712) | 0.267123 / 0.275898 (-0.008775) | 0.293604 / 0.323480 (-0.029876) | 0.003968 / 0.007986 (-0.004018) | 0.002594 / 0.004328 (-0.001735) | 0.047690 / 0.004250 (0.043439) | 0.040236 / 0.037052 (0.003183) | 0.267805 / 0.258489 (0.009315) | 0.310543 / 0.293841 (0.016702) | 0.025707 / 0.128546 (-0.102839) | 0.008012 / 0.075646 (-0.067634) | 0.054460 / 0.419271 (-0.364812) | 0.033545 / 0.043533 (-0.009988) | 0.270166 / 0.255139 (0.015027) | 0.285965 / 0.283200 (0.002765) | 0.019391 / 0.141683 (-0.122292) | 1.144991 / 1.452155 (-0.307164) | 1.198491 / 1.492716 (-0.294225) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.094757 / 0.018006 (0.076751) | 0.306712 / 0.000490 (0.306222) | 0.000218 / 0.000200 (0.000018) | 0.000055 / 0.000054 (0.000000) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.020995 / 0.037411 (-0.016417) | 0.070293 / 0.014526 (0.055767) | 0.081441 / 0.176557 (-0.095116) | 0.119538 / 0.737135 (-0.617597) | 0.081454 / 0.296338 (-0.214885) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.293451 / 0.215209 (0.078242) | 2.880378 / 2.077655 (0.802723) | 1.572547 / 1.504120 (0.068427) | 1.439172 / 1.541195 (-0.102023) | 1.506343 / 1.468490 (0.037853) | 0.402764 / 4.584777 (-4.182013) | 2.501341 / 3.745712 (-1.244371) | 2.538494 / 5.269862 (-2.731367) | 1.524306 / 4.565676 (-3.041371) | 0.046401 / 0.424275 (-0.377874) | 0.004781 / 0.007607 (-0.002826) | 0.349448 / 0.226044 (0.123404) | 3.416181 / 2.268929 (1.147252) | 1.964204 / 55.444624 (-53.480420) | 1.648564 / 6.876477 (-5.227912) | 1.675977 / 2.142072 (-0.466095) | 0.475717 / 4.805227 (-4.329511) | 0.098416 / 6.500664 (-6.402248) | 0.041212 / 0.075469 (-0.034257) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.975928 / 1.841788 (-0.865860) | 12.066648 / 8.074308 (3.992340) | 10.943181 / 10.191392 (0.751789) | 0.149687 / 0.680424 (-0.530736) | 0.015107 / 0.534201 (-0.519094) | 0.268950 / 0.579283 (-0.310333) | 0.280419 / 0.434364 (-0.153945) | 0.305263 / 0.540337 (-0.235074) | 0.408486 / 1.386936 (-0.978450) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#344086a7a1707ef20b57399f813ef64ce679e956 \"CML watermark\")\n"
] | 2023-11-10T14:56:43 | 2023-11-14T10:49:15 | 2023-11-14T10:43:00 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6398",
"html_url": "https://github.com/huggingface/datasets/pull/6398",
"diff_url": "https://github.com/huggingface/datasets/pull/6398.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6398.patch",
"merged_at": "2023-11-14T10:43:00"
} | Minor refactoring to remove redundant condition. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6398/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6398/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6397 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6397/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6397/comments | https://api.github.com/repos/huggingface/datasets/issues/6397/events | https://github.com/huggingface/datasets/issues/6397 | 1,987,622,152 | I_kwDODunzps52eLUI | 6,397 | Raise a different exception for inexisting dataset vs files without known extension | {
"login": "severo",
"id": 1676121,
"node_id": "MDQ6VXNlcjE2NzYxMjE=",
"avatar_url": "https://avatars.githubusercontent.com/u/1676121?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/severo",
"html_url": "https://github.com/severo",
"followers_url": "https://api.github.com/users/severo/followers",
"following_url": "https://api.github.com/users/severo/following{/other_user}",
"gists_url": "https://api.github.com/users/severo/gists{/gist_id}",
"starred_url": "https://api.github.com/users/severo/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/severo/subscriptions",
"organizations_url": "https://api.github.com/users/severo/orgs",
"repos_url": "https://api.github.com/users/severo/repos",
"events_url": "https://api.github.com/users/severo/events{/privacy}",
"received_events_url": "https://api.github.com/users/severo/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | [] | 2023-11-10T13:22:14 | 2023-11-22T15:12:34 | 2023-11-22T15:12:34 | CONTRIBUTOR | null | null | null | See https://github.com/huggingface/datasets-server/issues/2082#issuecomment-1805716557
We have the same error for:
- https://huggingface.co./datasets/severo/a_dataset_that_does_not_exist: a dataset that does not exist
- https://huggingface.co./datasets/severo/test_files_without_extension: a dataset with files without a known extension
```
>>> import datasets
>>> datasets.get_dataset_config_names('severo/a_dataset_that_does_not_exist')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/home/slesage/hf/datasets-server/services/worker/.venv/lib/python3.9/site-packages/datasets/inspect.py", line 351, in get_dataset_config_names
dataset_module = dataset_module_factory(
File "/home/slesage/hf/datasets-server/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1508, in dataset_module_factory
raise FileNotFoundError(
FileNotFoundError: Couldn't find a dataset script at /home/slesage/hf/datasets-server/services/worker/severo/a_dataset_that_does_not_exist/a_dataset_that_does_not_exist.py or any data file in the same directory. Couldn't find 'severo/a_dataset_that_does_not_exist' on the Hugging Face Hub either: FileNotFoundError: Dataset 'severo/a_dataset_that_does_not_exist' doesn't exist on the Hub. If the repo is private or gated, make sure to log in with `huggingface-cli login`.
>>> datasets.get_dataset_config_names('severo/test_files_without_extension')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/home/slesage/hf/datasets-server/services/worker/.venv/lib/python3.9/site-packages/datasets/inspect.py", line 351, in get_dataset_config_names
dataset_module = dataset_module_factory(
File "/home/slesage/hf/datasets-server/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1508, in dataset_module_factory
raise FileNotFoundError(
FileNotFoundError: Couldn't find a dataset script at /home/slesage/hf/datasets-server/services/worker/severo/test_files_without_extension/test_files_without_extension.py or any data file in the same directory. Couldn't find 'severo/test_files_without_extension' on the Hugging Face Hub either: FileNotFoundError: No (supported) data files or dataset script found in severo/test_files_without_extension.
```
To differentiate, we must parse the error message (only the end is different). We should have a different exception for these two errors. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6397/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6397/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/6396 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6396/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6396/comments | https://api.github.com/repos/huggingface/datasets/issues/6396/events | https://github.com/huggingface/datasets/issues/6396 | 1,987,308,077 | I_kwDODunzps52c-ot | 6,396 | Issue with pyarrow 14.0.1 | {
"login": "severo",
"id": 1676121,
"node_id": "MDQ6VXNlcjE2NzYxMjE=",
"avatar_url": "https://avatars.githubusercontent.com/u/1676121?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/severo",
"html_url": "https://github.com/severo",
"followers_url": "https://api.github.com/users/severo/followers",
"following_url": "https://api.github.com/users/severo/following{/other_user}",
"gists_url": "https://api.github.com/users/severo/gists{/gist_id}",
"starred_url": "https://api.github.com/users/severo/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/severo/subscriptions",
"organizations_url": "https://api.github.com/users/severo/orgs",
"repos_url": "https://api.github.com/users/severo/repos",
"events_url": "https://api.github.com/users/severo/events{/privacy}",
"received_events_url": "https://api.github.com/users/severo/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | [
"Looks like we should stop using `PyExtensionType` and use `ExtensionType` instead\r\n\r\nsee https://github.com/apache/arrow/commit/f14170976372436ec1d03a724d8d3f3925484ecf",
"https://github.com/huggingface/datasets-server/pull/2089#pullrequestreview-1724449532\r\n\r\n> Yes, I understand now: they have disabled their `PyExtensionType` and we use it in `datasets` for arrays... ",
"related?\r\n\r\nhttps://huggingface.co./datasets/ssbuild/tools_data/discussions/1#654e663b77c8ec680d10479c",
"> related?\r\n>\r\n> https://huggingface.co./datasets/ssbuild/tools_data/discussions/1#654e663b77c8ec680d10479c\r\n\r\nNo, related to https://github.com/huggingface/datasets/issues/5706",
"Running the following is a workaround:\r\n\r\n```\r\nimport pyarrow\r\npyarrow.PyExtensionType.set_auto_load(True)\r\n```"
] | 2023-11-10T10:02:12 | 2023-11-14T10:23:30 | 2023-11-14T10:23:30 | CONTRIBUTOR | null | null | null | See https://github.com/huggingface/datasets-server/pull/2089 for reference
```
from datasets import (Array2D, Dataset, Features)
feature_type = Array2D(shape=(2, 2), dtype="float32")
content = [[0.0, 0.0], [0.0, 0.0]]
features = Features({"col": feature_type})
dataset = Dataset.from_dict({"col": [content]}, features=features)
```
generates
```
/home/slesage/hf/datasets-server/libs/libcommon/.venv/lib/python3.9/site-packages/datasets/features/features.py:648: FutureWarning: pyarrow.PyExtensionType is deprecated and will refuse deserialization by default. Instead, please derive from pyarrow.ExtensionType and implement your own serialization mechanism.
pa.PyExtensionType.__init__(self, self.storage_dtype)
/home/slesage/hf/datasets-server/libs/libcommon/.venv/lib/python3.9/site-packages/datasets/features/features.py:1661: RuntimeWarning: pickle-based deserialization of pyarrow.PyExtensionType subclasses is disabled by default; if you only ingest trusted data files, you may re-enable this using `pyarrow.PyExtensionType.set_auto_load(True)`.
In the future, Python-defined extension subclasses should derive from pyarrow.ExtensionType (not pyarrow.PyExtensionType) and implement their own serialization mechanism.
obj = {field.name: generate_from_arrow_type(field.type) for field in pa_schema}
/home/slesage/hf/datasets-server/libs/libcommon/.venv/lib/python3.9/site-packages/datasets/features/features.py:1661: FutureWarning: pyarrow.PyExtensionType is deprecated and will refuse deserialization by default. Instead, please derive from pyarrow.ExtensionType and implement your own serialization mechanism.
obj = {field.name: generate_from_arrow_type(field.type) for field in pa_schema}
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/home/slesage/hf/datasets-server/libs/libcommon/.venv/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 924, in from_dict
return cls(pa_table, info=info, split=split)
File "/home/slesage/hf/datasets-server/libs/libcommon/.venv/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 693, in __init__
inferred_features = Features.from_arrow_schema(arrow_table.schema)
File "/home/slesage/hf/datasets-server/libs/libcommon/.venv/lib/python3.9/site-packages/datasets/features/features.py", line 1661, in from_arrow_schema
obj = {field.name: generate_from_arrow_type(field.type) for field in pa_schema}
File "/home/slesage/hf/datasets-server/libs/libcommon/.venv/lib/python3.9/site-packages/datasets/features/features.py", line 1661, in <dictcomp>
obj = {field.name: generate_from_arrow_type(field.type) for field in pa_schema}
File "/home/slesage/hf/datasets-server/libs/libcommon/.venv/lib/python3.9/site-packages/datasets/features/features.py", line 1381, in generate_from_arrow_type
return Value(dtype=_arrow_to_datasets_dtype(pa_type))
File "/home/slesage/hf/datasets-server/libs/libcommon/.venv/lib/python3.9/site-packages/datasets/features/features.py", line 111, in _arrow_to_datasets_dtype
raise ValueError(f"Arrow type {arrow_type} does not have a datasets dtype equivalent.")
ValueError: Arrow type extension<arrow.py_extension_type<pyarrow.lib.UnknownExtensionType>> does not have a datasets dtype equivalent.
``` | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6396/reactions",
"total_count": 1,
"+1": 1,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6396/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/6395 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6395/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6395/comments | https://api.github.com/repos/huggingface/datasets/issues/6395/events | https://github.com/huggingface/datasets/issues/6395 | 1,986,484,124 | I_kwDODunzps52Z1ec | 6,395 | Add ability to set lock type | {
"login": "leoleoasd",
"id": 37735580,
"node_id": "MDQ6VXNlcjM3NzM1NTgw",
"avatar_url": "https://avatars.githubusercontent.com/u/37735580?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/leoleoasd",
"html_url": "https://github.com/leoleoasd",
"followers_url": "https://api.github.com/users/leoleoasd/followers",
"following_url": "https://api.github.com/users/leoleoasd/following{/other_user}",
"gists_url": "https://api.github.com/users/leoleoasd/gists{/gist_id}",
"starred_url": "https://api.github.com/users/leoleoasd/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/leoleoasd/subscriptions",
"organizations_url": "https://api.github.com/users/leoleoasd/orgs",
"repos_url": "https://api.github.com/users/leoleoasd/repos",
"events_url": "https://api.github.com/users/leoleoasd/events{/privacy}",
"received_events_url": "https://api.github.com/users/leoleoasd/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892871,
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement",
"name": "enhancement",
"color": "a2eeef",
"default": true,
"description": "New feature or request"
}
] | closed | false | null | [] | [
"We've replaced our filelock implementation with the `filelock` package, so their repo is the right place to request this feature.\r\n\r\nIn the meantime, the following should work: \r\n```python\r\nimport filelock\r\nfilelock.FileLock = filelock.SoftFileLock\r\n\r\nimport datasets\r\n...\r\n```"
] | 2023-11-09T22:12:30 | 2023-11-23T18:50:00 | 2023-11-23T18:50:00 | NONE | null | null | null | ### Feature request
Allow setting file lock type, maybe from an environment variable
Currently, it only depends on whether fnctl is available:
https://github.com/huggingface/datasets/blob/12ebe695b4748c5a26e08b44ed51955f74f5801d/src/datasets/utils/filelock.py#L463-L470C16
### Motivation
In my environment, flock isn't supported on a network attached drive
### Your contribution
I'll be happy to submit a pr. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6395/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6395/timeline | null | not_planned | false |
https://api.github.com/repos/huggingface/datasets/issues/6394 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6394/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6394/comments | https://api.github.com/repos/huggingface/datasets/issues/6394/events | https://github.com/huggingface/datasets/issues/6394 | 1,985,947,116 | I_kwDODunzps52XyXs | 6,394 | TorchFormatter images (H, W, C) instead of (C, H, W) format | {
"login": "Modexus",
"id": 37351874,
"node_id": "MDQ6VXNlcjM3MzUxODc0",
"avatar_url": "https://avatars.githubusercontent.com/u/37351874?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/Modexus",
"html_url": "https://github.com/Modexus",
"followers_url": "https://api.github.com/users/Modexus/followers",
"following_url": "https://api.github.com/users/Modexus/following{/other_user}",
"gists_url": "https://api.github.com/users/Modexus/gists{/gist_id}",
"starred_url": "https://api.github.com/users/Modexus/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Modexus/subscriptions",
"organizations_url": "https://api.github.com/users/Modexus/orgs",
"repos_url": "https://api.github.com/users/Modexus/repos",
"events_url": "https://api.github.com/users/Modexus/events{/privacy}",
"received_events_url": "https://api.github.com/users/Modexus/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | [
"Here's a PR for that. https://github.com/huggingface/datasets/pull/6402\r\n\r\nIt's not backward compatible, unfortunately. "
] | 2023-11-09T16:02:15 | 2023-11-11T19:41:03 | null | NONE | null | null | null | ### Describe the bug
Using .set_format("torch") leads to images having shape (H, W, C), the same as in numpy.
However, pytorch normally uses (C, H, W) format.
Maybe I'm missing something but this makes the format a lot less useful as I then have to permute it anyways.
If not using the format it is possible to directly use torchvision transforms but any non-transformed value will not be a tensor.
Is there a reason for this choice?
### Steps to reproduce the bug
```python
from datasets import Dataset, Features, Audio, Image
images = ["path/to/image.png"] * 10
features = Features({"image": Image()})
ds = Dataset.from_dict({"image": images}, features=features)
ds = ds.with_format("torch")
ds[0]["image"].shape
```
```python
torch.Size([512, 512, 4])
```
### Expected behavior
```python
from datasets import Dataset, Features, Audio, Image
images = ["path/to/image.png"] * 10
features = Features({"image": Image()})
ds = Dataset.from_dict({"image": images}, features=features)
ds = ds.with_format("torch")
ds[0]["image"].shape
```
```python
torch.Size([4, 512, 512])
```
### Environment info
- `datasets` version: 2.14.6
- Platform: Linux-6.5.9-100.fc37.x86_64-x86_64-with-glibc2.31
- Python version: 3.11.6
- Huggingface_hub version: 0.18.0
- PyArrow version: 14.0.1
- Pandas version: 2.1.2 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6394/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6394/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/6393 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6393/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6393/comments | https://api.github.com/repos/huggingface/datasets/issues/6393/events | https://github.com/huggingface/datasets/issues/6393 | 1,984,913,259 | I_kwDODunzps52T19r | 6,393 | Filter occasionally hangs | {
"login": "dakinggg",
"id": 43149077,
"node_id": "MDQ6VXNlcjQzMTQ5MDc3",
"avatar_url": "https://avatars.githubusercontent.com/u/43149077?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/dakinggg",
"html_url": "https://github.com/dakinggg",
"followers_url": "https://api.github.com/users/dakinggg/followers",
"following_url": "https://api.github.com/users/dakinggg/following{/other_user}",
"gists_url": "https://api.github.com/users/dakinggg/gists{/gist_id}",
"starred_url": "https://api.github.com/users/dakinggg/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/dakinggg/subscriptions",
"organizations_url": "https://api.github.com/users/dakinggg/orgs",
"repos_url": "https://api.github.com/users/dakinggg/repos",
"events_url": "https://api.github.com/users/dakinggg/events{/privacy}",
"received_events_url": "https://api.github.com/users/dakinggg/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | [
"It looks like I may not be the first to encounter this: https://github.com/huggingface/datasets/issues/3172",
"Adding some more information, it seems to occur more frequently with large (millions of samples) datasets.",
"More information. My code is structured as (1) load (2) map (3) filter (4) filter. It was always the second filter that failed. Combining the two filters into one seems to reliably work.",
"@lhoestq it'd be great if someone had a chance to look at this. I suspect it is impacting many users given the other issue that I linked.",
"Hi ! Sorry for the late response. Was it happening after the first or the second filter ?\r\n\r\nIt looks like an issue with the garbage collector (which makes it random). Maybe datasets created with `filter` are not always handled properly ? cc @mariosasko",
"It was after the second filter (and combining the two filters into one seemingly resolved it). I obviously haven't tried all settings to know that these details are causal, but it did work for me.",
"Thanks, that's good to know.\r\n\r\nThe stacktrace suggests an issue when `del self._indices` is called, which happens when a filtered dataset falls out of scope. The indices are a PyArrow table memory mapped from disk, so I'm not quite sure how calling `del` on it can cause this issue. We do `del self._indices` to make sure the file on disk is not used anymore by the current process and avoid e.g. permission errors.\r\n\r\nHopefully we can find a way to reproduce this error, otherwise it will be quite hard to understand what happened",
"Yeah, I have a reliable repro, but it is not even close to minimal and uses a dataset I can't share. Perhaps you could try getting close to my setting.\r\n\r\n(1) make a large (~20GB) jsonl with prompt/response pairs\r\n(2) load it on a linux machine (`dataset = load_dataset(...)`)\r\n(3) map a tokenizer to it, with multiprocessing (`tokenized_dataset = dataset.map(...)`)\r\n(4) filter it once based on something, with multiprocessing (`filtered_1 = tokenized_dataset.filter(...)`)\r\n(5) filter it again based on something, with multiprocessing (`filtered_2 = filtered_1.filter(...)`)\r\n\r\nI included the variable names just in case it is relevant that I was creating new datasets each time, not overwriting the same variable."
] | 2023-11-09T06:18:30 | 2023-11-21T17:39:26 | null | NONE | null | null | null | ### Describe the bug
A call to `.filter` occasionally hangs (after the filter is complete, according to tqdm)
There is a trace produced
```
Exception ignored in: <function Dataset.__del__ at 0x7efb48130c10>
Traceback (most recent call last):
File "/usr/lib/python3/dist-packages/datasets/arrow_dataset.py", line 1366, in __del__
if hasattr(self, "_indices"):
File "/usr/lib/python3/dist-packages/composer/core/engine.py", line 123, in sigterm_handler
sys.exit(128 + signal)
SystemExit: 143
```
but I'm not sure if the trace is actually from `datasets`, or from surrounding code that is trying to clean up after datasets gets stuck.
Unfortunately I can't reproduce this issue anywhere close to reliably. It happens infrequently when using `num_procs > 1`. Anecdotally I started seeing it when using larger datasets (~10M samples).
### Steps to reproduce the bug
N/A see description
### Expected behavior
map/filter calls always complete sucessfully
### Environment info
- `datasets` version: 2.14.6
- Platform: Linux-5.4.0-137-generic-x86_64-with-glibc2.31
- Python version: 3.10.13
- Huggingface_hub version: 0.17.3
- PyArrow version: 13.0.0
- Pandas version: 2.1.2 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6393/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6393/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/6392 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6392/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6392/comments | https://api.github.com/repos/huggingface/datasets/issues/6392/events | https://github.com/huggingface/datasets/issues/6392 | 1,984,369,545 | I_kwDODunzps52RxOJ | 6,392 | `push_to_hub` is not robust to hub closing connection | {
"login": "msis",
"id": 577139,
"node_id": "MDQ6VXNlcjU3NzEzOQ==",
"avatar_url": "https://avatars.githubusercontent.com/u/577139?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/msis",
"html_url": "https://github.com/msis",
"followers_url": "https://api.github.com/users/msis/followers",
"following_url": "https://api.github.com/users/msis/following{/other_user}",
"gists_url": "https://api.github.com/users/msis/gists{/gist_id}",
"starred_url": "https://api.github.com/users/msis/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/msis/subscriptions",
"organizations_url": "https://api.github.com/users/msis/orgs",
"repos_url": "https://api.github.com/users/msis/repos",
"events_url": "https://api.github.com/users/msis/events{/privacy}",
"received_events_url": "https://api.github.com/users/msis/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | [
"Hi! We made some improvements to `push_to_hub` to make it more robust a couple of weeks ago but haven't published a release in the meantime, so it would help if you could install `datasets` from `main` (`pip install https://github.com/huggingface/datasets`) and let us know if this improved version of `push_to_hub` resolves the issue (in case the `ConnectionError` happens, re-running `push_to_hub` should be faster now).\r\n\r\nAlso, note that the previous implementation retries the upload, but sometimes this is not enough, so re-running the op is the only option.",
"The update helped push more data.\r\nHowever it still crashed a little later:\r\n\r\n```\r\nTraceback (most recent call last):\r\n File \"/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/utils/_errors.py\", line 270, in hf_raise_for_status\r\n response.raise_for_status()\r\n File \"/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/requests/models.py\", line 1021, in raise_for_status\r\n raise HTTPError(http_error_msg, response=self)\r\nrequests.exceptions.HTTPError: 500 Server Error: Internal Server Error for url: https://hf-hub-lfs-us-east-1.s3.us-east-1.amazonaws.com/repos/6c/33/6c33b3be1463a656e43c7a4f2d43c4a1cdae6e9d81fff87f69167ef25ccb1b88/5f53cb57cf2a52ca0d4c2166a69a6714c64fcdbb7cb8936dfa5b11ac60058e5f?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA2JU7TKAQFN2FTF47%2F20231110%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20231110T011254Z&X-Amz-Expires=86400&X-Amz-Signature=74e3e33c09ac4e7c6ac887aaee8d489f068869abbe1ee6d58a910fb18d0601d4&X-Amz-SignedHeaders=host&partNumber=13&uploadId=kQwunNkunfmT9D8GulQu_ufw1BTZtRA6wEUI4hnYOjytfdf.GKxDETgMr4wm8_0WNF2yGaNco_0h3JAGm4l9KV1N0nqr5XXyUCbs1ROmHP475fn9FIhc1umWQLEDc97V&x-id=UploadPart\r\n\r\nThe above exception was the direct cause of the following exception:\r\n\r\nTraceback (most recent call last):\r\n File \"/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/_commit_api.py\", line 391, in _wrapped_lfs_upload\r\n lfs_upload(operation=operation, lfs_batch_action=batch_action, token=token)\r\n File \"/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/lfs.py\", line 223, in lfs_upload\r\n _upload_multi_part(operation=operation, header=header, chunk_size=chunk_size, upload_url=upload_action[\"href\"])\r\n File \"/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/lfs.py\", line 319, in _upload_multi_part\r\n else _upload_parts_iteratively(operation=operation, sorted_parts_urls=sorted_parts_urls, chunk_size=chunk_size)\r\n File \"/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/lfs.py\", line 376, in _upload_parts_iteratively\r\n hf_raise_for_status(part_upload_res)\r\n File \"/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/utils/_errors.py\", line 330, in hf_raise_for_status\r\n raise HfHubHTTPError(str(e), response=response) from e\r\nhuggingface_hub.utils._errors.HfHubHTTPError: 500 Server Error: Internal Server Error for url: https://hf-hub-lfs-us-east-1.s3.us-east-1.amazonaws.com/repos/6c/33/6c33b3be1463a656e43c7a4f2d43c4a1cdae6e9d81fff87f69167ef25ccb1b88/5f53cb57cf2a52ca0d4c2166a69a6714c64fcdbb7cb8936dfa5b11ac60058e5f?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA2JU7TKAQFN2FTF47%2F20231110%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20231110T011254Z&X-Amz-Expires=86400&X-Amz-Signature=74e3e33c09ac4e7c6ac887aaee8d489f068869abbe1ee6d58a910fb18d0601d4&X-Amz-SignedHeaders=host&partNumber=13&uploadId=kQwunNkunfmT9D8GulQu_ufw1BTZtRA6wEUI4hnYOjytfdf.GKxDETgMr4wm8_0WNF2yGaNco_0h3JAGm4l9KV1N0nqr5XXyUCbs1ROmHP475fn9FIhc1umWQLEDc97V&x-id=UploadPart\r\n\r\nThe above exception was the direct cause of the following exception:\r\n\r\nTraceback (most recent call last):\r\n File \"convert_to_hf.py\", line 121, in <module>\r\n main()\r\n File \"convert_to_hf.py\", line 109, in main\r\n audio_dataset.push_to_hub(\r\n File \"/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/datasets/dataset_dict.py\", line 1699, in push_to_hub\r\n split_additions, uploaded_size, dataset_nbytes = self[split]._push_parquet_shards_to_hub(\r\n File \"/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/datasets/arrow_dataset.py\", line 5215, in _push_parquet_shards_to_hub\r\n _retry(\r\n File \"/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/datasets/utils/file_utils.py\", line 290, in _retry\r\n return func(*func_args, **func_kwargs)\r\n File \"/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/hf_api.py\", line 3665, in preupload_lfs_files\r\n _upload_lfs_files(\r\n File \"/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/utils/_validators.py\", line 118, in _inner_fn\r\n return fn(*args, **kwargs)\r\n File \"/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/_commit_api.py\", line 401, in _upload_lfs_files\r\n _wrapped_lfs_upload(filtered_actions[0])\r\n File \"/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/_commit_api.py\", line 393, in _wrapped_lfs_upload\r\n raise RuntimeError(f\"Error while uploading '{operation.path_in_repo}' to the Hub.\") from exc\r\nRuntimeError: Error while uploading 'batch_20/train-00206-of-00261.parquet' to the Hub.\r\n```",
"I think the previous implementation was actually better: it pushes to the hub every shard. So if it fails, as long as the shards have the same checksum, it will skip the ones that have been pushed.\r\n\r\nThe implementation in `main` pushes commits at the end, so when it fails, there are no commits and therefore restarts from the beginning every time.\r\n\r\nBelow is the another error log from another run with `main`. I've reverting back to the current release as it does the job for me.\r\n\r\n```\r\nUploading the dataset shards: 86%|████████▌ | 224/261 [21:46<03:35, 5.83s/it]s]\r\nTraceback (most recent call last):\r\n File \"/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/utils/_errors.py\", line 270, in hf_raise_for_status\r\n response.raise_for_status()\r\n File \"/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/requests/models.py\", line 1021, in raise_for_status\r\n raise HTTPError(http_error_msg, response=self)\r\nrequests.exceptions.HTTPError: 500 Server Error: Internal Server Error for url: https://hf-hub-lfs-us-east-1.s3.us-east-1.amazonaws.com/repos/6c/33/6c33b3be1463a656e43c7a4f2d43c4a1cdae6e9d81fff87f69167ef25ccb1b88/97e68d7a5d4a747ffaa249fc09798e961d621fe4170599e6100197f7733f321d?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA2JU7TKAQFN2FTF47%2F20231110%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20231110T145155Z&X-Amz-Expires=86400&X-Amz-Signature=5341e4b34dc325737f92dc9005c4a31e4d3f9a3d3d853b267e01915260acf629&X-Amz-SignedHeaders=host&partNumber=27&uploadId=NRD0izEWv7MPtC2bYrm5VJ4XgIbHctKNguR7zS1UhGOOrXwBJvigrOywBvQBnS9sxiy0J0ma9sNog8S13nIdTdE9p60MIITTstUFeKvLHSxpU.a527QED1JVYzJ.9xA0&x-id=UploadPart\r\n\r\nThe above exception was the direct cause of the following exception:\r\n\r\nTraceback (most recent call last):\r\n File \"/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/_commit_api.py\", line 391, in _wrapped_lfs_upload\r\n lfs_upload(operation=operation, lfs_batch_action=batch_action, token=token)\r\n File \"/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/lfs.py\", line 223, in lfs_upload\r\n _upload_multi_part(operation=operation, header=header, chunk_size=chunk_size, upload_url=upload_action[\"href\"])\r\n File \"/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/lfs.py\", line 319, in _upload_multi_part\r\n else _upload_parts_iteratively(operation=operation, sorted_parts_urls=sorted_parts_urls, chunk_size=chunk_size)\r\n File \"/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/lfs.py\", line 376, in _upload_parts_iteratively\r\n hf_raise_for_status(part_upload_res)\r\n File \"/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/utils/_errors.py\", line 330, in hf_raise_for_status\r\n raise HfHubHTTPError(str(e), response=response) from e\r\nhuggingface_hub.utils._errors.HfHubHTTPError: 500 Server Error: Internal Server Error for url: https://hf-hub-lfs-us-east-1.s3.us-east-1.amazonaws.com/repos/6c/33/6c33b3be1463a656e43c7a4f2d43c4a1cdae6e9d81fff87f69167ef25ccb1b88/97e68d7a5d4a747ffaa249fc09798e961d621fe4170599e6100197f7733f321d?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA2JU7TKAQFN2FTF47%2F20231110%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20231110T145155Z&X-Amz-Expires=86400&X-Amz-Signature=5341e4b34dc325737f92dc9005c4a31e4d3f9a3d3d853b267e01915260acf629&X-Amz-SignedHeaders=host&partNumber=27&uploadId=NRD0izEWv7MPtC2bYrm5VJ4XgIbHctKNguR7zS1UhGOOrXwBJvigrOywBvQBnS9sxiy0J0ma9sNog8S13nIdTdE9p60MIITTstUFeKvLHSxpU.a527QED1JVYzJ.9xA0&x-id=UploadPart\r\n\r\nThe above exception was the direct cause of the following exception:\r\n\r\nTraceback (most recent call last):\r\n File \"convert_to_hf.py\", line 121, in <module>\r\n main()\r\n File \"convert_to_hf.py\", line 109, in main\r\n audio_dataset.push_to_hub(\r\n File \"/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/datasets/dataset_dict.py\", line 1699, in push_to_hub\r\n p, glob_pattern_to_regex(PUSH_TO_HUB_WITHOUT_METADATA_CONFIGS_SPLIT_PATTERN_SHARDED)\r\n File \"/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/datasets/arrow_dataset.py\", line 5215, in _push_parquet_shards_to_hub\r\n token = token if token is not None else HfFolder.get_token()\r\n File \"/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/datasets/utils/file_utils.py\", line 290, in _retry\r\n return func(*func_args, **func_kwargs)\r\n File \"/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/hf_api.py\", line 3665, in preupload_lfs_files\r\n _upload_lfs_files(\r\n File \"/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/utils/_validators.py\", line 118, in _inner_fn\r\n return fn(*args, **kwargs)\r\n File \"/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/_commit_api.py\", line 401, in _upload_lfs_files\r\n _wrapped_lfs_upload(filtered_actions[0])\r\n File \"/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/_commit_api.py\", line 393, in _wrapped_lfs_upload\r\n raise RuntimeError(f\"Error while uploading '{operation.path_in_repo}' to the Hub.\") from exc\r\nRuntimeError: Error while uploading 'batch_20/train-00224-of-00261.parquet' to the Hub.\r\n```",
"There's a new error from the hub now:\r\n```\r\nPushing dataset shards to the dataset hub: 49%|████▉ | 128/261 [11:38<12:05, 5.45s/it]\r\nTraceback (most recent call last):\r\n File \"/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/utils/_errors.py\", line 270, in hf_raise_for_status\r\n response.raise_for_status()\r\n File \"/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/requests/models.py\", line 1021, in raise_for_status\r\n raise HTTPError(http_error_msg, response=self)\r\nrequests.exceptions.HTTPError: 429 Client Error: Too Many Requests for url: https://huggingface.co./api/datasets/tarteel-ai/tawseem/commit/main\r\n\r\nThe above exception was the direct cause of the following exception:\r\n\r\nTraceback (most recent call last):\r\n File \"convert_to_hf.py\", line 121, in <module>\r\n main()\r\n File \"convert_to_hf.py\", line 109, in main\r\n audio_dataset.push_to_hub(\r\n File \"/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/datasets/dataset_dict.py\", line 1641, in push_to_hub\r\n repo_id, split, uploaded_size, dataset_nbytes, _, _ = self[split]._push_parquet_shards_to_hub(\r\n File \"/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/datasets/arrow_dataset.py\", line 5308, in _push_parquet_shards_to_hub\r\n _retry(\r\n File \"/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/datasets/utils/file_utils.py\", line 293, in _retry\r\n raise err\r\n File \"/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/datasets/utils/file_utils.py\", line 290, in _retry\r\n return func(*func_args, **func_kwargs)\r\n File \"/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/utils/_validators.py\", line 118, in _inner_fn\r\n return fn(*args, **kwargs)\r\n File \"/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/hf_api.py\", line 1045, in _inner\r\n return fn(self, *args, **kwargs)\r\n File \"/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/hf_api.py\", line 3850, in upload_file\r\n commit_info = self.create_commit(\r\n File \"/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/utils/_validators.py\", line 118, in _inner_fn\r\n return fn(*args, **kwargs)\r\n File \"/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/hf_api.py\", line 1045, in _inner\r\n return fn(self, *args, **kwargs)\r\n File \"/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/hf_api.py\", line 3237, in create_commit\r\n hf_raise_for_status(commit_resp, endpoint_name=\"commit\")\r\n File \"/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/utils/_errors.py\", line 330, in hf_raise_for_status\r\n raise HfHubHTTPError(str(e), response=response) from e\r\nhuggingface_hub.utils._errors.HfHubHTTPError: 429 Client Error: Too Many Requests for url: https://huggingface.co./api/datasets/tarteel-ai/tawseem/commit/main (Request ID: Root=1-654e48e6-598511b14413bb293fa67084;783522b4-66f9-4f8a-8a74-2accf7cabd17)\r\n\r\nYou have exceeded our hourly quotas for action: commit. We invite you to retry later.\r\n```\r\n\r\nAt least this is more explicit from the server side.",
"> think the previous implementation was actually better: it pushes to the hub every shard. So if it fails, as long as the shards have the same checksum, it will skip the ones that have been pushed.\r\n>\r\n>The implementation in main pushes commits at the end, so when it fails, there are no commits and therefore restarts from the beginning every time.\r\n>\r\n>Below is the another error log from another run with main. I've reverting back to the current release as it does the job for me.\r\n\r\nThe `preupload` step is instant for the already uploaded shards, so only the Parquet conversion is repeated without uploading the actual Parquet data (only to check the SHAs). The previous implementation manually checks the Parquet shard's fingerprint to resume uploading, so the current implementation is cleaner.\r\n\r\n> You have exceeded our hourly quotas for action: commit. We invite you to retry later.\r\n\r\nThis is the problem with the previous implementation. If the number of shards is large, it creates too many commits for the Hub in a short period.",
"But I agree that the `500 Server Error` returned by the Hub is annoying. Earlier today, I also got it on a small 5GB dataset (with 500 MB shards).\r\n\r\n@Wauplin @julien-c Is there something we can do about this?",
"@mariosasko can't do much if AWS raises a HTTP 500 unfortunately (we are simply pushing data to a S3 bucket).\r\nWhat we can do is to add a retry mechanism in the multi-part upload logic here: https://github.com/huggingface/huggingface_hub/blob/c972cba1fecb456a7b3325cdd1fdbcc425f21f94/src/huggingface_hub/lfs.py#L370 :confused: ",
"@Wauplin That code already retries the request using `http_backoff`, no?",
"> That code already retries the request using http_backoff, no?\r\n\r\nCurrently only on HTTP 503 by default. We should add 500 as well (and hope it is a transient error from AWS)",
"Opened a PR to retry in case S3 raises HTTP 500. Will also retry on any `ConnectionError` (connection reset by peer, connection lost,...). Hopefully this should make the upload process more robust to transient errors."
] | 2023-11-08T20:44:53 | 2023-12-01T17:51:34 | 2023-12-01T17:51:34 | NONE | null | null | null | ### Describe the bug
Like to #6172, `push_to_hub` will crash if Hub resets the connection and raise the following error:
```
Pushing dataset shards to the dataset hub: 32%|███▏ | 54/171 [06:38<14:23, 7.38s/it]
Traceback (most recent call last):
File "/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/urllib3/connectionpool.py", line 715, in urlopen
httplib_response = self._make_request(
File "/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/urllib3/connectionpool.py", line 467, in _make_request
six.raise_from(e, None)
File "<string>", line 3, in raise_from
File "/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/urllib3/connectionpool.py", line 462, in _make_request
httplib_response = conn.getresponse()
File "/usr/lib/python3.8/http/client.py", line 1348, in getresponse
response.begin()
File "/usr/lib/python3.8/http/client.py", line 316, in begin
version, status, reason = self._read_status()
File "/usr/lib/python3.8/http/client.py", line 285, in _read_status
raise RemoteDisconnected("Remote end closed connection without"
http.client.RemoteDisconnected: Remote end closed connection without response
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/requests/adapters.py", line 486, in send
resp = conn.urlopen(
File "/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/urllib3/connectionpool.py", line 799, in urlopen
retries = retries.increment(
File "/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/urllib3/util/retry.py", line 550, in increment
raise six.reraise(type(error), error, _stacktrace)
File "/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/urllib3/packages/six.py", line 769, in reraise
raise value.with_traceback(tb)
File "/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/urllib3/connectionpool.py", line 715, in urlopen
httplib_response = self._make_request(
File "/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/urllib3/connectionpool.py", line 467, in _make_request
six.raise_from(e, None)
File "<string>", line 3, in raise_from
File "/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/urllib3/connectionpool.py", line 462, in _make_request
httplib_response = conn.getresponse()
File "/usr/lib/python3.8/http/client.py", line 1348, in getresponse
response.begin()
File "/usr/lib/python3.8/http/client.py", line 316, in begin
version, status, reason = self._read_status()
File "/usr/lib/python3.8/http/client.py", line 285, in _read_status
raise RemoteDisconnected("Remote end closed connection without"
urllib3.exceptions.ProtocolError: ('Connection aborted.', RemoteDisconnected('Remote end closed connection without response'))
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/_commit_api.py", line 383, in _wrapped_lfs_upload
lfs_upload(operation=operation, lfs_batch_action=batch_action, token=token)
File "/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/lfs.py", line 223, in lfs_upload
_upload_multi_part(operation=operation, header=header, chunk_size=chunk_size, upload_url=upload_action["href"])
File "/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/lfs.py", line 319, in _upload_multi_part
else _upload_parts_iteratively(operation=operation, sorted_parts_urls=sorted_parts_urls, chunk_size=chunk_size)
File "/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/lfs.py", line 375, in _upload_parts_iteratively
part_upload_res = http_backoff("PUT", part_upload_url, data=fileobj_slice)
File "/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/utils/_http.py", line 258, in http_backoff
response = session.request(method=method, url=url, **kwargs)
File "/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/requests/sessions.py", line 589, in request
resp = self.send(prep, **send_kwargs)
File "/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/requests/sessions.py", line 703, in send
r = adapter.send(request, **kwargs)
File "/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/utils/_http.py", line 63, in send
return super().send(request, *args, **kwargs)
File "/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/requests/adapters.py", line 501, in send
raise ConnectionError(err, request=request)
requests.exceptions.ConnectionError: (ProtocolError('Connection aborted.', RemoteDisconnected('Remote end closed connection without response')), '(Request ID: 2bab8c06-b701-4266-aead-fe2e0dc0e3ed)')
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
File "convert_to_hf.py", line 116, in <module>
main()
File "convert_to_hf.py", line 108, in main
audio_dataset.push_to_hub(
File "/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/datasets/dataset_dict.py", line 1641, in push_to_hub
repo_id, split, uploaded_size, dataset_nbytes, _, _ = self[split]._push_parquet_shards_to_hub(
File "/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/datasets/arrow_dataset.py", line 5308, in _push_parquet_shards_to_hub
_retry(
File "/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/datasets/utils/file_utils.py", line 290, in _retry
return func(*func_args, **func_kwargs)
File "/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/utils/_validators.py", line 118, in _inner_fn
return fn(*args, **kwargs)
File "/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/hf_api.py", line 828, in _inner
return fn(self, *args, **kwargs)
File "/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/hf_api.py", line 3221, in upload_file
commit_info = self.create_commit(
File "/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/utils/_validators.py", line 118, in _inner_fn
return fn(*args, **kwargs)
File "/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/hf_api.py", line 828, in _inner
return fn(self, *args, **kwargs)
File "/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/hf_api.py", line 2695, in create_commit
upload_lfs_files(
File "/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/utils/_validators.py", line 118, in _inner_fn
return fn(*args, **kwargs)
File "/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/_commit_api.py", line 393, in upload_lfs_files
_wrapped_lfs_upload(filtered_actions[0])
File "/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/_commit_api.py", line 385, in _wrapped_lfs_upload
raise RuntimeError(f"Error while uploading '{operation.path_in_repo}' to the Hub.") from exc
RuntimeError: Error while uploading 'batch_19/train-00054-of-00171-932beb4082c034bf.parquet' to the Hub.
```
The function should retry if the operations fails, or at least offer a way to recover after such a failure.
Right now, calling the function again will start sending all the parquets files leading to duplicates in the repository, with no guarantee that it will actually be pushed.
Previously, it would crash with an error 400 #4677 .
### Steps to reproduce the bug
Any large dataset pushed the hub:
```py
audio_dataset.push_to_hub(
repo_id="org/dataset",
)
```
### Expected behavior
`push_to_hub` should have an option for max retries or resume.
### Environment info
- `datasets` version: 2.14.6
- Platform: Linux-5.15.0-1044-aws-x86_64-with-glibc2.29
- Python version: 3.8.10
- Huggingface_hub version: 0.16.4
- PyArrow version: 13.0.0
- Pandas version: 2.0.3 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6392/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6392/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/6391 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6391/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6391/comments | https://api.github.com/repos/huggingface/datasets/issues/6391/events | https://github.com/huggingface/datasets/pull/6391 | 1,984,091,776 | PR_kwDODunzps5e9BDO | 6,391 | Webdataset dataset builder | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | [
"_The documentation is not available anymore as the PR was closed or merged._",
"I added an error message if the first examples don't appear to be in webdataset format\r\n```\r\n\"The TAR archives of the dataset should be in Webdataset format, \"\r\n\"but the files in the archive don't share the same prefix or the same types.\"\r\n```",
"@mariosasko could you review this ? I think it's fine to have webdataset as an optional dependency for now, then depending on usage and user feedbacks see if it makes sense to have our own implementation or not",
"I just removed the dependency on `webdataset` @mariosasko :)",
"took your comments into account, lmk if you see anything else"
] | 2023-11-08T17:31:59 | 2023-11-28T16:33:33 | 2023-11-28T16:33:10 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6391",
"html_url": "https://github.com/huggingface/datasets/pull/6391",
"diff_url": "https://github.com/huggingface/datasets/pull/6391.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6391.patch",
"merged_at": "2023-11-28T16:33:10"
} | Allow `load_dataset` to support the Webdataset format.
It allows users to download/stream data from local files or from the Hugging Face Hub.
Moreover it will enable the Dataset Viewer for Webdataset datasets on HF.
## Implementation details
- I added a new Webdataset builder
- dataset with TAR files are now read using the Webdataset builder
- Basic decoding from `webdataset` is used by default, except unsafe ones like pickle
- HF authentication support is done by registering a `webdataset.gopen` reader
- `webdataset` uses buffering when reading files, so I had to add buffering support in `xopen`
## TODOS
- [x] tests
- [x] docs | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6391/reactions",
"total_count": 2,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 2,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6391/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6390 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6390/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6390/comments | https://api.github.com/repos/huggingface/datasets/issues/6390/events | https://github.com/huggingface/datasets/pull/6390 | 1,983,725,707 | PR_kwDODunzps5e7xQ3 | 6,390 | handle future deprecation argument | {
"login": "winglian",
"id": 381258,
"node_id": "MDQ6VXNlcjM4MTI1OA==",
"avatar_url": "https://avatars.githubusercontent.com/u/381258?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/winglian",
"html_url": "https://github.com/winglian",
"followers_url": "https://api.github.com/users/winglian/followers",
"following_url": "https://api.github.com/users/winglian/following{/other_user}",
"gists_url": "https://api.github.com/users/winglian/gists{/gist_id}",
"starred_url": "https://api.github.com/users/winglian/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/winglian/subscriptions",
"organizations_url": "https://api.github.com/users/winglian/orgs",
"repos_url": "https://api.github.com/users/winglian/repos",
"events_url": "https://api.github.com/users/winglian/events{/privacy}",
"received_events_url": "https://api.github.com/users/winglian/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | [
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004368 / 0.011353 (-0.006985) | 0.002613 / 0.011008 (-0.008396) | 0.061365 / 0.038508 (0.022856) | 0.029553 / 0.023109 (0.006444) | 0.240535 / 0.275898 (-0.035363) | 0.280634 / 0.323480 (-0.042845) | 0.002923 / 0.007986 (-0.005063) | 0.003696 / 0.004328 (-0.000632) | 0.049824 / 0.004250 (0.045573) | 0.044935 / 0.037052 (0.007882) | 0.246870 / 0.258489 (-0.011619) | 0.317248 / 0.293841 (0.023407) | 0.022717 / 0.128546 (-0.105829) | 0.006933 / 0.075646 (-0.068713) | 0.201118 / 0.419271 (-0.218154) | 0.053422 / 0.043533 (0.009890) | 0.266262 / 0.255139 (0.011123) | 0.269114 / 0.283200 (-0.014086) | 0.016908 / 0.141683 (-0.124775) | 1.154296 / 1.452155 (-0.297859) | 1.218825 / 1.492716 (-0.273892) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.089908 / 0.018006 (0.071902) | 0.300029 / 0.000490 (0.299539) | 0.000209 / 0.000200 (0.000009) | 0.000052 / 0.000054 (-0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018518 / 0.037411 (-0.018894) | 0.062246 / 0.014526 (0.047720) | 0.073542 / 0.176557 (-0.103014) | 0.119386 / 0.737135 (-0.617749) | 0.075256 / 0.296338 (-0.221082) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.280812 / 0.215209 (0.065603) | 2.701282 / 2.077655 (0.623628) | 1.455146 / 1.504120 (-0.048974) | 1.310198 / 1.541195 (-0.230996) | 1.335287 / 1.468490 (-0.133203) | 0.388245 / 4.584777 (-4.196532) | 2.357770 / 3.745712 (-1.387942) | 2.534640 / 5.269862 (-2.735222) | 1.541382 / 4.565676 (-3.024295) | 0.045597 / 0.424275 (-0.378678) | 0.004842 / 0.007607 (-0.002765) | 0.325416 / 0.226044 (0.099371) | 3.221873 / 2.268929 (0.952944) | 1.791061 / 55.444624 (-53.653563) | 1.485094 / 6.876477 (-5.391382) | 1.512354 / 2.142072 (-0.629718) | 0.471241 / 4.805227 (-4.333986) | 0.098672 / 6.500664 (-6.401992) | 0.041668 / 0.075469 (-0.033801) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.953553 / 1.841788 (-0.888234) | 11.378394 / 8.074308 (3.304086) | 10.355970 / 10.191392 (0.164578) | 0.126891 / 0.680424 (-0.553533) | 0.013808 / 0.534201 (-0.520393) | 0.267800 / 0.579283 (-0.311484) | 0.266436 / 0.434364 (-0.167928) | 0.306668 / 0.540337 (-0.233670) | 0.427666 / 1.386936 (-0.959270) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004908 / 0.011353 (-0.006445) | 0.002698 / 0.011008 (-0.008310) | 0.047492 / 0.038508 (0.008984) | 0.049906 / 0.023109 (0.026797) | 0.271466 / 0.275898 (-0.004432) | 0.291030 / 0.323480 (-0.032449) | 0.003938 / 0.007986 (-0.004047) | 0.002457 / 0.004328 (-0.001871) | 0.047347 / 0.004250 (0.043096) | 0.038599 / 0.037052 (0.001547) | 0.269950 / 0.258489 (0.011461) | 0.303026 / 0.293841 (0.009185) | 0.024196 / 0.128546 (-0.104351) | 0.006889 / 0.075646 (-0.068757) | 0.053357 / 0.419271 (-0.365914) | 0.032249 / 0.043533 (-0.011284) | 0.271660 / 0.255139 (0.016521) | 0.286395 / 0.283200 (0.003196) | 0.017914 / 0.141683 (-0.123769) | 1.128762 / 1.452155 (-0.323393) | 1.206495 / 1.492716 (-0.286221) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.093384 / 0.018006 (0.075378) | 0.305504 / 0.000490 (0.305014) | 0.000227 / 0.000200 (0.000027) | 0.000052 / 0.000054 (-0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.021183 / 0.037411 (-0.016229) | 0.070113 / 0.014526 (0.055587) | 0.080288 / 0.176557 (-0.096269) | 0.120798 / 0.737135 (-0.616337) | 0.082896 / 0.296338 (-0.213442) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.292758 / 0.215209 (0.077549) | 2.893975 / 2.077655 (0.816320) | 1.584909 / 1.504120 (0.080789) | 1.455509 / 1.541195 (-0.085686) | 1.501625 / 1.468490 (0.033135) | 0.400772 / 4.584777 (-4.184005) | 2.446319 / 3.745712 (-1.299393) | 2.530690 / 5.269862 (-2.739172) | 1.525957 / 4.565676 (-3.039719) | 0.046070 / 0.424275 (-0.378205) | 0.004756 / 0.007607 (-0.002851) | 0.343039 / 0.226044 (0.116995) | 3.366772 / 2.268929 (1.097844) | 1.948895 / 55.444624 (-53.495729) | 1.666419 / 6.876477 (-5.210058) | 1.658258 / 2.142072 (-0.483814) | 0.470835 / 4.805227 (-4.334392) | 0.098008 / 6.500664 (-6.402656) | 0.040743 / 0.075469 (-0.034726) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.978025 / 1.841788 (-0.863763) | 11.945229 / 8.074308 (3.870920) | 11.025810 / 10.191392 (0.834418) | 0.129706 / 0.680424 (-0.550717) | 0.015148 / 0.534201 (-0.519053) | 0.269160 / 0.579283 (-0.310123) | 0.284306 / 0.434364 (-0.150058) | 0.307154 / 0.540337 (-0.233183) | 0.409153 / 1.386936 (-0.977783) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#9c75c104fd79cbf53be25f0fbbeb001e535f7e9b \"CML watermark\")\n"
] | 2023-11-08T14:21:25 | 2023-11-21T02:10:24 | 2023-11-14T15:15:59 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6390",
"html_url": "https://github.com/huggingface/datasets/pull/6390",
"diff_url": "https://github.com/huggingface/datasets/pull/6390.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6390.patch",
"merged_at": "2023-11-14T15:15:59"
} | getting this error:
```
/root/miniconda3/envs/py3.10/lib/python3.10/site-packages/datasets/table.py:1387: FutureWarning: promote has been superseded by mode='default'.
return cls._concat_blocks(pa_tables_to_concat_vertically, axis=0)
```
Since datasets supports arrow greater than 8.0.0, we need to handle both cases.
[Arrow v14 docs](https://arrow.apache.org/docs/python/generated/pyarrow.concat_tables.html)
[Arrow v13 docs](https://arrow.apache.org/docs/13.0/python/generated/pyarrow.concat_tables.html) | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6390/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6390/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6389 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6389/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6389/comments | https://api.github.com/repos/huggingface/datasets/issues/6389/events | https://github.com/huggingface/datasets/issues/6389 | 1,983,545,744 | I_kwDODunzps52OoGQ | 6,389 | Index 339 out of range for dataset of size 339 <-- save_to_file() | {
"login": "jaggzh",
"id": 20318973,
"node_id": "MDQ6VXNlcjIwMzE4OTcz",
"avatar_url": "https://avatars.githubusercontent.com/u/20318973?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/jaggzh",
"html_url": "https://github.com/jaggzh",
"followers_url": "https://api.github.com/users/jaggzh/followers",
"following_url": "https://api.github.com/users/jaggzh/following{/other_user}",
"gists_url": "https://api.github.com/users/jaggzh/gists{/gist_id}",
"starred_url": "https://api.github.com/users/jaggzh/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/jaggzh/subscriptions",
"organizations_url": "https://api.github.com/users/jaggzh/orgs",
"repos_url": "https://api.github.com/users/jaggzh/repos",
"events_url": "https://api.github.com/users/jaggzh/events{/privacy}",
"received_events_url": "https://api.github.com/users/jaggzh/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | [
"Hi! Can you make the above reproducer self-contained by adding code that generates the data?",
"I managed a workaround eventually but I don't know what it was (I made a lot of changes to seq2seq). I'll try to include generating code in the future. (If I close, I don't know if you see it. Feel free to close; I'll re-open if I encounter it again (if I can))."
] | 2023-11-08T12:52:09 | 2023-11-24T09:14:13 | null | NONE | null | null | null | ### Describe the bug
When saving out some Audio() data.
The data is audio recordings with associated 'sentences'.
(They use the audio 'bytes' approach because they're clips within audio files).
Code is below the traceback (I can't upload the voice audio/text (it's not even me)).
```
Traceback (most recent call last):
File "/mnt/ddrive/prj/voice/voice-training-dataset-create/./dataset.py", line 156, in <module>
create_dataset(args)
File "/mnt/ddrive/prj/voice/voice-training-dataset-create/./dataset.py", line 138, in create_dataset
hf_dataset.save_to_disk(args.outds, max_shard_size='50MB')
File "/home/j/src/py/datasets/src/datasets/arrow_dataset.py", line 1531, in save_to_disk
for kwargs in kwargs_per_job:
File "/home/j/src/py/datasets/src/datasets/arrow_dataset.py", line 1508, in <genexpr>
"shard": self.shard(num_shards=num_shards, index=shard_idx, contiguous=True),
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/j/src/py/datasets/src/datasets/arrow_dataset.py", line 4609, in shard
return self.select(
^^^^^^^^^^^^
File "/home/j/src/py/datasets/src/datasets/arrow_dataset.py", line 556, in wrapper
out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/j/src/py/datasets/src/datasets/fingerprint.py", line 511, in wrapper
out = func(dataset, *args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/j/src/py/datasets/src/datasets/arrow_dataset.py", line 3797, in select
return self._select_contiguous(start, length, new_fingerprint=new_fingerprint)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/j/src/py/datasets/src/datasets/arrow_dataset.py", line 556, in wrapper
out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/j/src/py/datasets/src/datasets/fingerprint.py", line 511, in wrapper
out = func(dataset, *args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/j/src/py/datasets/src/datasets/arrow_dataset.py", line 3857, in _select_contiguous
_check_valid_indices_value(start, len(self))
File "/home/j/src/py/datasets/src/datasets/arrow_dataset.py", line 648, in _check_valid_indices_value
raise IndexError(f"Index {index} out of range for dataset of size {size}.")
IndexError: Index 339 out of range for dataset of size 339.
```
### Steps to reproduce the bug
(I had to set the default max batch size down due to a different bug... or maybe it's related: https://github.com/huggingface/datasets/issues/5717)
```python3
#!/usr/bin/env python3
import argparse
import os
from pathlib import Path
import soundfile as sf
import datasets
datasets.config.DEFAULT_MAX_BATCH_SIZE=35
from datasets import Features, Array2D, Value, Dataset, Sequence, Audio
import numpy as np
import librosa
import sys
import soundfile as sf
import io
import logging
logging.basicConfig(level=logging.DEBUG, filename='debug.log', filemode='w',
format='%(name)s - %(levelname)s - %(message)s')
# Define the arguments for the command-line interface
def parse_args():
parser = argparse.ArgumentParser(description="Create a Huggingface dataset from labeled audio files.")
parser.add_argument("--indir_labeled", action="append", help="Directory containing labeled audio files.", required=True)
parser.add_argument("--outds", help="Path to save the dataset file.", required=True)
parser.add_argument("--max_clips", type=int, help="Max count of audio samples to add to the dataset.", default=None)
parser.add_argument("-r", "--sr", type=int, help="Sample rate for the audio files.", default=16000)
parser.add_argument("--no-resample", action="store_true", help="Disable resampling of the audio files.")
parser.add_argument("--max_clip_secs", type=float, help="Max length of audio clips in seconds.", default=3.0)
parser.add_argument("-v", "--verbose", action='count', default=1, help="Increase verbosity")
return parser.parse_args()
# Convert the NumPy arrays to audio bytes in WAV format
def numpy_to_bytes(audio_array, sampling_rate=16000):
with io.BytesIO() as bytes_io:
sf.write(bytes_io, audio_array, samplerate=sampling_rate,
format='wav', subtype='FLOAT') # float32
return bytes_io.getvalue()
# Function to find audio and label files in a directory
def find_audio_label_pairs(indir_labeled):
audio_label_pairs = []
for root, _, files in os.walk(indir_labeled):
for file in files:
if file.endswith(('.mp3', '.wav', '.aac', '.flac')):
audio_path = Path(root) / file
if args.verbose>1:
print(f'File: {audio_path}')
label_path = audio_path.with_suffix('.labels.txt')
if label_path.exists():
if args.verbose>0:
print(f' Pair: {audio_path}')
audio_label_pairs.append((audio_path, label_path))
return audio_label_pairs
def process_audio_label_pair(audio_path, label_path, sampling_rate, no_resample, max_clip_secs):
# Read the label file
with open(label_path, 'r') as label_file:
labels = label_file.readlines()
# Load the full audio file
full_audio, current_sr = sf.read(audio_path)
if not no_resample and current_sr != sampling_rate:
# You can use librosa.resample here if librosa is available
full_audio = librosa.resample(full_audio, orig_sr=current_sr, target_sr=sampling_rate)
audio_segments = []
sentences = []
# Process each label
for label in labels:
start_secs, end_secs, label_text = label.strip().split('\t')
start_sample = int(float(start_secs) * sampling_rate)
end_sample = int(float(end_secs) * sampling_rate)
# Extract segment and truncate or pad to max_clip_secs
audio_segment = full_audio[start_sample:end_sample]
max_samples = int(max_clip_secs * sampling_rate)
if len(audio_segment) > max_samples: # Truncate
audio_segment = audio_segment[:max_samples]
elif len(audio_segment) < max_samples: # Pad
padding = np.zeros(max_samples - len(audio_segment), dtype=audio_segment.dtype)
audio_segment = np.concatenate((audio_segment, padding))
audio_segment = numpy_to_bytes(audio_segment)
audio_data = {
'path': str(audio_path),
'bytes': audio_segment,
}
audio_segments.append(audio_data)
sentences.append(label_text)
return audio_segments, sentences
# Main function to create the dataset
def create_dataset(args):
audio_label_pairs = []
for indir in args.indir_labeled:
audio_label_pairs.extend(find_audio_label_pairs(indir))
# Initialize our dataset data
dataset_data = {
'path': [], # This will be a list of strings
'audio': [], # This will be a list of dictionaries
'sentence': [], # This will be a list of strings
}
# Process each audio-label pair and add the data to the dataset
for audio_path, label_path in audio_label_pairs[:args.max_clips]:
audio_segments, sentences = process_audio_label_pair(audio_path, label_path, args.sr, args.no_resample, args.max_clip_secs)
if audio_segments and sentences:
for audio_data, sentence in zip(audio_segments, sentences):
if args.verbose>1:
print(f'Appending {audio_data["path"]}')
dataset_data['path'].append(audio_data['path'])
dataset_data['audio'].append({
'path': audio_data['path'],
'bytes': audio_data['bytes'],
})
dataset_data['sentence'].append(sentence)
features = Features({
'path': Value('string'), # Path is redundant in common voice set also
'audio': Audio(sampling_rate=16000),
'sentence': Value('string'),
})
hf_dataset = Dataset.from_dict(dataset_data, features=features)
for key in dataset_data:
for i, item in enumerate(dataset_data[key]):
if item is None or (isinstance(item, bytes) and len(item) == 0):
logging.error(f"Invalid {key} at index {i}: {item}")
import ipdb; ipdb.set_trace(context=16); pass
hf_dataset.save_to_disk(args.outds, max_shard_size='50MB')
# try:
# hf_dataset.save_to_disk(args.outds)
# except TypeError as e:
# # If there's a TypeError, log the exception and the dataset data that might have caused it
# logging.exception("An error occurred while saving the dataset.")
# import ipdb; ipdb.set_trace(context=16); pass
# for key in dataset_data:
# logging.debug(f"{key} length: {len(dataset_data[key])}")
# if key == 'audio':
# # Log the first 100 bytes of the audio data to avoid huge log files
# for i, audio in enumerate(dataset_data[key]):
# logging.debug(f"Audio {i}: {audio['bytes'][:100]}")
# raise
# Run the script
if __name__ == "__main__":
args = parse_args()
create_dataset(args)
```
### Expected behavior
It shouldn't fail.
### Environment info
- `datasets` version: 2.14.7.dev0
- Platform: Linux-6.1.0-13-amd64-x86_64-with-glibc2.36
- Python version: 3.11.2
- `huggingface_hub` version: 0.17.3
- PyArrow version: 13.0.0
- Pandas version: 2.1.2
- `fsspec` version: 2023.9.2
| {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6389/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6389/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/6388 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6388/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6388/comments | https://api.github.com/repos/huggingface/datasets/issues/6388/events | https://github.com/huggingface/datasets/issues/6388 | 1,981,136,093 | I_kwDODunzps52Fbzd | 6,388 | How to create 3d medical imgae dataset? | {
"login": "QingYunA",
"id": 41177312,
"node_id": "MDQ6VXNlcjQxMTc3MzEy",
"avatar_url": "https://avatars.githubusercontent.com/u/41177312?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/QingYunA",
"html_url": "https://github.com/QingYunA",
"followers_url": "https://api.github.com/users/QingYunA/followers",
"following_url": "https://api.github.com/users/QingYunA/following{/other_user}",
"gists_url": "https://api.github.com/users/QingYunA/gists{/gist_id}",
"starred_url": "https://api.github.com/users/QingYunA/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/QingYunA/subscriptions",
"organizations_url": "https://api.github.com/users/QingYunA/orgs",
"repos_url": "https://api.github.com/users/QingYunA/repos",
"events_url": "https://api.github.com/users/QingYunA/events{/privacy}",
"received_events_url": "https://api.github.com/users/QingYunA/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892871,
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement",
"name": "enhancement",
"color": "a2eeef",
"default": true,
"description": "New feature or request"
}
] | open | false | null | [] | [] | 2023-11-07T11:27:36 | 2023-11-07T11:28:53 | null | NONE | null | null | null | ### Feature request
I am newer to huggingface, after i look up `datasets` docs, I can't find how to create the dataset contains 3d medical image (ends with '.mhd', '.dcm', '.nii')
### Motivation
help us to upload 3d medical dataset to huggingface!
### Your contribution
I'll submit a PR if I find a way to add this feature | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6388/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6388/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/6387 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6387/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6387/comments | https://api.github.com/repos/huggingface/datasets/issues/6387/events | https://github.com/huggingface/datasets/issues/6387 | 1,980,224,020 | I_kwDODunzps52B9IU | 6,387 | How to load existing downloaded dataset ? | {
"login": "liming-ai",
"id": 73068772,
"node_id": "MDQ6VXNlcjczMDY4Nzcy",
"avatar_url": "https://avatars.githubusercontent.com/u/73068772?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/liming-ai",
"html_url": "https://github.com/liming-ai",
"followers_url": "https://api.github.com/users/liming-ai/followers",
"following_url": "https://api.github.com/users/liming-ai/following{/other_user}",
"gists_url": "https://api.github.com/users/liming-ai/gists{/gist_id}",
"starred_url": "https://api.github.com/users/liming-ai/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/liming-ai/subscriptions",
"organizations_url": "https://api.github.com/users/liming-ai/orgs",
"repos_url": "https://api.github.com/users/liming-ai/repos",
"events_url": "https://api.github.com/users/liming-ai/events{/privacy}",
"received_events_url": "https://api.github.com/users/liming-ai/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892871,
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement",
"name": "enhancement",
"color": "a2eeef",
"default": true,
"description": "New feature or request"
}
] | closed | false | null | [] | [
"Feel free to use `dataset.save_to_disk(...)`, then scp the directory containing the saved dataset and reload it on your other machine using `dataset = load_from_disk(...)`"
] | 2023-11-06T22:51:44 | 2023-11-16T18:07:01 | 2023-11-16T18:07:01 | NONE | null | null | null | Hi @mariosasko @lhoestq @katielink
Thanks for your contribution and hard work.
### Feature request
First, I download a dataset as normal by:
```
from datasets import load_dataset
dataset = load_dataset('username/data_name', cache_dir='data')
```
The dataset format in `data` directory will be:
```
-data
|-data_name
|-test-00000-of-00001-bf4c733542e35fcb.parquet
|-train-00000-of-00001-2a1df75c6bce91ab.parquet
```
Then I use SCP to clone this dataset into another machine, and then try:
```
from datasets import load_dataset
dataset = load_dataset('data/data_name') # load from local path
```
This leads to re-generating training and validation split for each time, and the disk quota will be duplicated occupation.
How can I just load the dataset without generating and saving these splits again?
### Motivation
I do not want to download the same dataset in two machines, scp is much faster and better than HuggingFace API. I hope we can directly load the downloaded datasets (.parquest)
### Your contribution
Please refer to the feature | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6387/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6387/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/6386 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6386/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6386/comments | https://api.github.com/repos/huggingface/datasets/issues/6386/events | https://github.com/huggingface/datasets/issues/6386 | 1,979,878,014 | I_kwDODunzps52Aop- | 6,386 | Formatting overhead | {
"login": "d-miketa",
"id": 320321,
"node_id": "MDQ6VXNlcjMyMDMyMQ==",
"avatar_url": "https://avatars.githubusercontent.com/u/320321?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/d-miketa",
"html_url": "https://github.com/d-miketa",
"followers_url": "https://api.github.com/users/d-miketa/followers",
"following_url": "https://api.github.com/users/d-miketa/following{/other_user}",
"gists_url": "https://api.github.com/users/d-miketa/gists{/gist_id}",
"starred_url": "https://api.github.com/users/d-miketa/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/d-miketa/subscriptions",
"organizations_url": "https://api.github.com/users/d-miketa/orgs",
"repos_url": "https://api.github.com/users/d-miketa/repos",
"events_url": "https://api.github.com/users/d-miketa/events{/privacy}",
"received_events_url": "https://api.github.com/users/d-miketa/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | [
"Ah I think the `line-profiler` log is off-by-one and it is in fact the `extract_batch` method that's taking forever. Will investigate further.",
"I tracked it down to a quirk of my setup. Apologies."
] | 2023-11-06T19:06:38 | 2023-11-06T23:56:12 | 2023-11-06T23:56:12 | NONE | null | null | null | ### Describe the bug
Hi! I very recently noticed that my training time is dominated by batch formatting. Using Lightning's profilers, I located the bottleneck within `datasets.formatting.formatting` and then narrowed it down with `line-profiler`. It turns out that almost all of the overhead is due to creating new instances of `self.python_arrow_extractor`. I admit I'm confused why that could be the case - as far as I can tell there's no complex `__init__` logic to execute.
![image](https://github.com/huggingface/datasets/assets/320321/5e022e0b-0d21-43d0-8e6f-9e641142e96b)
### Steps to reproduce the bug
1. Set up a dataset `ds` with potentially several (4+) columns (not sure if this is necessary, but it did at one point of the investigation make overhead worse)
2. Process it using a custom transform, `ds = ds.with_transform(transform_func)`
3. Decorate this function https://github.com/huggingface/datasets/blob/main/src/datasets/formatting/formatting.py#L512 with `@profile` from https://pypi.org/project/line-profiler/
4. Profile with `$ kernprof -l script_to_profile.py`
### Expected behavior
Batch formatting should have acceptable overhead.
### Environment info
```
datasets=2.14.6
pyarrow=14.0.0
``` | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6386/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6386/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/6385 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6385/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6385/comments | https://api.github.com/repos/huggingface/datasets/issues/6385/events | https://github.com/huggingface/datasets/issues/6385 | 1,979,308,338 | I_kwDODunzps51-dky | 6,385 | Get an error when i try to concatenate the squad dataset with my own dataset | {
"login": "CCDXDX",
"id": 149378500,
"node_id": "U_kgDOCOdVxA",
"avatar_url": "https://avatars.githubusercontent.com/u/149378500?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/CCDXDX",
"html_url": "https://github.com/CCDXDX",
"followers_url": "https://api.github.com/users/CCDXDX/followers",
"following_url": "https://api.github.com/users/CCDXDX/following{/other_user}",
"gists_url": "https://api.github.com/users/CCDXDX/gists{/gist_id}",
"starred_url": "https://api.github.com/users/CCDXDX/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/CCDXDX/subscriptions",
"organizations_url": "https://api.github.com/users/CCDXDX/orgs",
"repos_url": "https://api.github.com/users/CCDXDX/repos",
"events_url": "https://api.github.com/users/CCDXDX/events{/privacy}",
"received_events_url": "https://api.github.com/users/CCDXDX/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | [
"The `answers.text` field in the JSON dataset needs to be a list of strings, not a string.\r\n\r\nSo, here is the fixed code:\r\n```python\r\nfrom huggingface_hub import notebook_login\r\nfrom datasets import load_dataset\r\n\r\n\r\n\r\nnotebook_login(\"mymailadresse\", \"mypassword\")\r\nsquad = load_dataset(\"squad\", split=\"train[:5000]\")\r\nsquad = squad.train_test_split(test_size=0.2)\r\ndataset1 = squad[\"train\"]\r\n\r\n\r\n\r\n\r\nimport json\r\n\r\nmybase = [\r\n {\r\n \"id\": \"1\",\r\n \"context\": \"She lives in Nantes\",\r\n \"question\": \"Where does she live?\",\r\n \"answers\": {\r\n \"text\": [\"Nantes\"],\r\n \"answer_start\": [13],\r\n }\r\n }\r\n]\r\n\r\n\r\n\r\n\r\n# Save the data to a JSON file\r\njson_file_path = r\"data\"\r\nwith open(json_file_path, \"w\", encoding= \"utf-8\") as json_file:\r\n json.dump(mybase, json_file, indent=4)\r\n\r\n\r\n\r\n\r\n# Load the JSON file as a dataset\r\ncustom_dataset = load_dataset(\"json\", data_files=json_file_path, features=dataset1.features)\r\n\r\n\r\n# Access the train split\r\ntrain_dataset = custom_dataset[\"train\"]\r\n\r\n\r\nfrom datasets import concatenate_datasets\r\n\r\n\r\n# Concatenate the datasets\r\nconcatenated_dataset = concatenate_datasets([train_dataset, dataset1])\r\n```",
"Thank you @mariosasko for your help ! It works !"
] | 2023-11-06T14:29:22 | 2023-11-06T16:50:45 | 2023-11-06T16:50:45 | NONE | null | null | null | ### Describe the bug
Hello,
I'm new here and I need to concatenate the squad dataset with my own dataset i created. I find the following error when i try to do it: Traceback (most recent call last):
Cell In[9], line 1
concatenated_dataset = concatenate_datasets([train_dataset, dataset1])
File ~\anaconda3\Lib\site-packages\datasets\combine.py:213 in concatenate_datasets
return _concatenate_map_style_datasets(dsets, info=info, split=split, axis=axis)
File ~\anaconda3\Lib\site-packages\datasets\arrow_dataset.py:6002 in _concatenate_map_style_datasets
_check_if_features_can_be_aligned([dset.features for dset in dsets])
File ~\anaconda3\Lib\site-packages\datasets\features\features.py:2122 in _check_if_features_can_be_aligned
raise ValueError(
ValueError: The features can't be aligned because the key answers of features {'id': Value(dtype='string', id=None), 'title': Value(dtype='string', id=None), 'context': Value(dtype='string', id=None), 'question': Value(dtype='string', id=None), 'answers': Sequence(feature={'text': Value(dtype='string', id=None), 'answer_start': Value(dtype='int32', id=None)}, length=-1, id=None)} has unexpected type - Sequence(feature={'text': Value(dtype='string', id=None), 'answer_start': Value(dtype='int32', id=None)}, length=-1, id=None) (expected either {'answer_start': Sequence(feature=Value(dtype='int64', id=None), length=-1, id=None), 'text': Value(dtype='string', id=None)} or Value("null").
### Steps to reproduce the bug
```python
from huggingface_hub import notebook_login
from datasets import load_dataset
notebook_login("mymailadresse", "mypassword")
squad = load_dataset("squad", split="train[:5000]")
squad = squad.train_test_split(test_size=0.2)
dataset1 = squad["train"]
import json
mybase = [
{
"id": "1",
"context": "She lives in Nantes",
"question": "Where does she live?",
"answers": {
"text": "Nantes",
"answer_start": [13],
}
}
]
# Save the data to a JSON file
json_file_path = r"C:\Users\mypath\thefile.json"
with open(json_file_path, "w", encoding= "utf-8") as json_file:
json.dump(mybase, json_file, indent=4)
# Load the JSON file as a dataset
custom_dataset = load_dataset("json", data_files=json_file_path)
# Access the train split
train_dataset = custom_dataset["train"]
from datasets import concatenate_datasets
# Concatenate the datasets
concatenated_dataset = concatenate_datasets([train_dataset, dataset1])
```
### Expected behavior
I would expect the two datasets to be concatenated without error. The len(dataset1) is equal to 4000 and the len(train_dataset) is equal to 1 so I would exepect concatenated_dataset to be created and having lenght 4001.
### Environment info
Python 3.11.4 and using windows
Thank you for your help | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6385/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6385/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/6384 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6384/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6384/comments | https://api.github.com/repos/huggingface/datasets/issues/6384/events | https://github.com/huggingface/datasets/issues/6384 | 1,979,117,069 | I_kwDODunzps519u4N | 6,384 | Load the local dataset folder from other place | {
"login": "OrangeSodahub",
"id": 54439582,
"node_id": "MDQ6VXNlcjU0NDM5NTgy",
"avatar_url": "https://avatars.githubusercontent.com/u/54439582?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/OrangeSodahub",
"html_url": "https://github.com/OrangeSodahub",
"followers_url": "https://api.github.com/users/OrangeSodahub/followers",
"following_url": "https://api.github.com/users/OrangeSodahub/following{/other_user}",
"gists_url": "https://api.github.com/users/OrangeSodahub/gists{/gist_id}",
"starred_url": "https://api.github.com/users/OrangeSodahub/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/OrangeSodahub/subscriptions",
"organizations_url": "https://api.github.com/users/OrangeSodahub/orgs",
"repos_url": "https://api.github.com/users/OrangeSodahub/repos",
"events_url": "https://api.github.com/users/OrangeSodahub/events{/privacy}",
"received_events_url": "https://api.github.com/users/OrangeSodahub/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | [
"Solved"
] | 2023-11-06T13:07:04 | 2023-11-19T05:42:06 | 2023-11-19T05:42:05 | NONE | null | null | null | This is from https://github.com/huggingface/diffusers/issues/5573
| {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6384/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6384/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/6383 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6383/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6383/comments | https://api.github.com/repos/huggingface/datasets/issues/6383/events | https://github.com/huggingface/datasets/issues/6383 | 1,978,189,389 | I_kwDODunzps516MZN | 6,383 | imagenet-1k downloads over and over | {
"login": "seann999",
"id": 6847529,
"node_id": "MDQ6VXNlcjY4NDc1Mjk=",
"avatar_url": "https://avatars.githubusercontent.com/u/6847529?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/seann999",
"html_url": "https://github.com/seann999",
"followers_url": "https://api.github.com/users/seann999/followers",
"following_url": "https://api.github.com/users/seann999/following{/other_user}",
"gists_url": "https://api.github.com/users/seann999/gists{/gist_id}",
"starred_url": "https://api.github.com/users/seann999/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/seann999/subscriptions",
"organizations_url": "https://api.github.com/users/seann999/orgs",
"repos_url": "https://api.github.com/users/seann999/repos",
"events_url": "https://api.github.com/users/seann999/events{/privacy}",
"received_events_url": "https://api.github.com/users/seann999/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | [] | 2023-11-06T02:58:58 | 2023-11-06T06:02:39 | 2023-11-06T06:02:39 | NONE | null | null | null | ### Describe the bug
What could be causing this?
```
$ python3
Python 3.8.13 (default, Mar 28 2022, 11:38:47)
[GCC 7.5.0] :: Anaconda, Inc. on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> from datasets import load_dataset
>>> load_dataset("imagenet-1k")
Downloading builder script: 100%|██████████| 4.72k/4.72k [00:00<00:00, 7.51MB/s]
Downloading readme: 100%|███████████████████| 85.4k/85.4k [00:00<00:00, 510kB/s]
Downloading extra modules: 100%|████████████| 46.4k/46.4k [00:00<00:00, 300kB/s]
Downloading data: 100%|████████████████████| 29.1G/29.1G [19:36<00:00, 24.8MB/s]
Downloading data: 100%|████████████████████| 29.3G/29.3G [08:38<00:00, 56.5MB/s]
Downloading data: 100%|████████████████████| 29.0G/29.0G [09:26<00:00, 51.2MB/s]
Downloading data: 100%|████████████████████| 29.2G/29.2G [09:38<00:00, 50.6MB/s]
Downloading data: 100%|███████████████████▉| 29.2G/29.2G [09:37<00:00, 44.1MB/s^Downloading data: 0%| | 106M/29.1G [00:05<23:49, 20.3MB/s]
```
### Steps to reproduce the bug
See above commands/code
### Expected behavior
imagenet-1k is downloaded
### Environment info
- `datasets` version: 2.14.6
- Platform: Linux-6.2.0-34-generic-x86_64-with-glibc2.17
- Python version: 3.8.13
- Huggingface_hub version: 0.15.1
- PyArrow version: 14.0.0
- Pandas version: 1.5.2 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6383/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6383/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/6382 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6382/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6382/comments | https://api.github.com/repos/huggingface/datasets/issues/6382/events | https://github.com/huggingface/datasets/issues/6382 | 1,977,400,799 | I_kwDODunzps513L3f | 6,382 | Add CheXpert dataset for vision | {
"login": "SauravMaheshkar",
"id": 61241031,
"node_id": "MDQ6VXNlcjYxMjQxMDMx",
"avatar_url": "https://avatars.githubusercontent.com/u/61241031?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/SauravMaheshkar",
"html_url": "https://github.com/SauravMaheshkar",
"followers_url": "https://api.github.com/users/SauravMaheshkar/followers",
"following_url": "https://api.github.com/users/SauravMaheshkar/following{/other_user}",
"gists_url": "https://api.github.com/users/SauravMaheshkar/gists{/gist_id}",
"starred_url": "https://api.github.com/users/SauravMaheshkar/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/SauravMaheshkar/subscriptions",
"organizations_url": "https://api.github.com/users/SauravMaheshkar/orgs",
"repos_url": "https://api.github.com/users/SauravMaheshkar/repos",
"events_url": "https://api.github.com/users/SauravMaheshkar/events{/privacy}",
"received_events_url": "https://api.github.com/users/SauravMaheshkar/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892871,
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement",
"name": "enhancement",
"color": "a2eeef",
"default": true,
"description": "New feature or request"
},
{
"id": 2067376369,
"node_id": "MDU6TGFiZWwyMDY3Mzc2MzY5",
"url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20request",
"name": "dataset request",
"color": "e99695",
"default": false,
"description": "Requesting to add a new dataset"
}
] | open | false | null | [] | [
"Hey @SauravMaheshkar ! Just responded to your email.\r\n\r\n_For transparency, copying part of my response here:_\r\nI agree, it would be really great to have this and other BenchMD datasets easily accessible on the hub.\r\n\r\nI think the main limiting factor is that the ChexPert dataset is currently hosted on the Stanford AIMI Shared Datasets website, with a license that does not permit redistribution IIRC. Thus, I believe we would need to create a [dataset loading script](https://huggingface.co./docs/datasets/image_dataset#loading-script) that would check authentication with the Stanford AIMI site before downloading and extracting the data. \r\n\r\nI've started a HF dataset repo [here](https://huggingface.co./datasets/katielink/CheXpert), in case you want to collaborate on writing up this loading script! I'm also happy to take a stab when I have some more time next week.",
"Hey @katielink I would love to try this out. Please guide me."
] | 2023-11-04T15:36:11 | 2023-12-11T17:55:52 | null | NONE | null | null | null | ### Feature request
### Name
**CheXpert: A Large Chest Radiograph Dataset with Uncertainty Labels and Expert Comparison**
### Paper
https://arxiv.org/abs/1901.07031
### Data
https://stanfordaimi.azurewebsites.net/datasets/8cbd9ed4-2eb9-4565-affc-111cf4f7ebe2
### Motivation
CheXpert is one of the fundamental models in medical image classification and can serve as a viable pre-training dataset for radiology classification or low-scale ablation / exploratory studies.
This could also serve as a good pre-training dataset for Kaggle competitions.
### Your contribution
Would love to make a PR and pre-process / get this into 🤗 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6382/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6382/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/6381 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6381/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6381/comments | https://api.github.com/repos/huggingface/datasets/issues/6381/events | https://github.com/huggingface/datasets/pull/6381 | 1,975,028,470 | PR_kwDODunzps5eeYty | 6,381 | Add my dataset | {
"login": "keyur536",
"id": 103646675,
"node_id": "U_kgDOBi2F0w",
"avatar_url": "https://avatars.githubusercontent.com/u/103646675?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/keyur536",
"html_url": "https://github.com/keyur536",
"followers_url": "https://api.github.com/users/keyur536/followers",
"following_url": "https://api.github.com/users/keyur536/following{/other_user}",
"gists_url": "https://api.github.com/users/keyur536/gists{/gist_id}",
"starred_url": "https://api.github.com/users/keyur536/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/keyur536/subscriptions",
"organizations_url": "https://api.github.com/users/keyur536/orgs",
"repos_url": "https://api.github.com/users/keyur536/repos",
"events_url": "https://api.github.com/users/keyur536/events{/privacy}",
"received_events_url": "https://api.github.com/users/keyur536/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | [
"Hi! We do not host datasets in this repo. Instead, you should use `dataset.push_to_hub` to upload the dataset to the HF Hub.",
"@mariosasko could you provide me proper guide to push data on HF hub ",
"You can find this info here: https://huggingface.co./docs/datasets/upload_dataset. Also, check https://huggingface.co./docs/datasets/loading for how to load a local dataset (before pushing it to the Hub)."
] | 2023-11-02T20:59:52 | 2023-11-08T14:37:46 | 2023-11-06T15:50:14 | NONE | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6381",
"html_url": "https://github.com/huggingface/datasets/pull/6381",
"diff_url": "https://github.com/huggingface/datasets/pull/6381.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6381.patch",
"merged_at": null
} | ## medical data
**Description:**
This dataset, named "medical data," is a collection of text data from various sources, carefully curated and cleaned for use in natural language processing (NLP) tasks. It consists of a diverse range of text, including articles, books, and online content, covering topics from science to literature.
**Citation:**
If applicable, please include a citation for this dataset to give credit to the original sources or contributors.
**Key Features:**
- Language: The text is primarily in English, but it may include content in other languages as well.
- Use Cases: This dataset is suitable for text classification, language modeling, sentiment analysis, and other NLP tasks.
**Usage:**
To access this dataset, use the `load_your_dataset` function provided in the `your_dataset.py` script within this repository. You can specify the dataset split you need, such as "train," "test," or "validation," to get the data for your specific task.
**Contributors:**
- [Keyur Chaudhari]
**Contact:**
If you have any questions or need assistance regarding this dataset, please feel free to contact [[email protected]].
Please note that this dataset is shared under a specific license, which can be found in the [LICENSE](link to your dataset's license) file. Make sure to review and adhere to the terms of the license when using this dataset for your projects.
| {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6381/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6381/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6380 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6380/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6380/comments | https://api.github.com/repos/huggingface/datasets/issues/6380/events | https://github.com/huggingface/datasets/pull/6380 | 1,974,741,221 | PR_kwDODunzps5edaO6 | 6,380 | Fix for continuation behaviour on broken dataset archives due to starving download connections via HTTP-GET | {
"login": "RuntimeRacer",
"id": 49956579,
"node_id": "MDQ6VXNlcjQ5OTU2NTc5",
"avatar_url": "https://avatars.githubusercontent.com/u/49956579?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/RuntimeRacer",
"html_url": "https://github.com/RuntimeRacer",
"followers_url": "https://api.github.com/users/RuntimeRacer/followers",
"following_url": "https://api.github.com/users/RuntimeRacer/following{/other_user}",
"gists_url": "https://api.github.com/users/RuntimeRacer/gists{/gist_id}",
"starred_url": "https://api.github.com/users/RuntimeRacer/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/RuntimeRacer/subscriptions",
"organizations_url": "https://api.github.com/users/RuntimeRacer/orgs",
"repos_url": "https://api.github.com/users/RuntimeRacer/repos",
"events_url": "https://api.github.com/users/RuntimeRacer/events{/privacy}",
"received_events_url": "https://api.github.com/users/RuntimeRacer/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | [] | 2023-11-02T17:28:23 | 2023-11-02T17:31:19 | null | NONE | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6380",
"html_url": "https://github.com/huggingface/datasets/pull/6380",
"diff_url": "https://github.com/huggingface/datasets/pull/6380.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6380.patch",
"merged_at": null
} | This PR proposes a (slightly hacky) fix for an Issue that can occur when downloading large dataset parts over unstable connections.
The underlying issue is also being discussed in https://github.com/huggingface/datasets/issues/5594.
Issue Symptoms & Behaviour:
- Download of a large archive file during dataset download via HTTP-GET fails.
- An silent net exception (which I was unable to identify) is thrown within the `tqdm` download progress.
- Due to missing exception catch code, the above process just continues processing, assuming `http_get` completed successfully.
- Pending Archive file gets renamed to remove the `.incomplete` extension, despite not all data has been downloaded.
- Also, for reasons I did not investigate, there seems to be no real integrity check for the downloaded files; or it does not detect this problem. This is especially problematic, since the downloader script won't retry downloading this archive after CRC-Checking, even if it is being manually restarted / executed again after running into errors on extraction.
Fix proposal: Adding a retry mechanic for HTTP-GET downloads, which adds the following behaviour:
- Download Progress Thread checks for download size validity in case the HTTP connection starves mid download. If the check fails, a RuntimeError is thrown
- Cache Downloader code with retry mechanic monitors for an exception thrown by the download progress thread, and retries download with updated `resume_size`.
- Cache Downloader will not mark incomplete files which have thrown an exception during download, and exceeded retries, as complete. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6380/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6380/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6379 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6379/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6379/comments | https://api.github.com/repos/huggingface/datasets/issues/6379/events | https://github.com/huggingface/datasets/pull/6379 | 1,974,638,850 | PR_kwDODunzps5edDZL | 6,379 | Avoid redundant warning when encoding NumPy array as `Image` | {
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | [
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008649 / 0.011353 (-0.002704) | 0.005754 / 0.011008 (-0.005254) | 0.101992 / 0.038508 (0.063484) | 0.084932 / 0.023109 (0.061823) | 0.393928 / 0.275898 (0.118030) | 0.414059 / 0.323480 (0.090579) | 0.006564 / 0.007986 (-0.001422) | 0.004746 / 0.004328 (0.000418) | 0.078624 / 0.004250 (0.074373) | 0.060465 / 0.037052 (0.023412) | 0.420767 / 0.258489 (0.162278) | 0.497797 / 0.293841 (0.203956) | 0.047031 / 0.128546 (-0.081516) | 0.014316 / 0.075646 (-0.061330) | 0.340347 / 0.419271 (-0.078925) | 0.067126 / 0.043533 (0.023593) | 0.390806 / 0.255139 (0.135667) | 0.413711 / 0.283200 (0.130512) | 0.037838 / 0.141683 (-0.103845) | 1.713547 / 1.452155 (0.261393) | 1.825591 / 1.492716 (0.332874) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.316357 / 0.018006 (0.298350) | 0.594279 / 0.000490 (0.593789) | 0.013659 / 0.000200 (0.013459) | 0.000547 / 0.000054 (0.000492) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031310 / 0.037411 (-0.006101) | 0.090410 / 0.014526 (0.075884) | 0.114620 / 0.176557 (-0.061936) | 0.183036 / 0.737135 (-0.554099) | 0.112700 / 0.296338 (-0.183638) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.582424 / 0.215209 (0.367215) | 5.670424 / 2.077655 (3.592769) | 2.444326 / 1.504120 (0.940206) | 2.108555 / 1.541195 (0.567360) | 2.091594 / 1.468490 (0.623104) | 0.839067 / 4.584777 (-3.745710) | 5.280942 / 3.745712 (1.535230) | 4.611059 / 5.269862 (-0.658803) | 2.911145 / 4.565676 (-1.654531) | 0.091929 / 0.424275 (-0.332346) | 0.008774 / 0.007607 (0.001167) | 0.657948 / 0.226044 (0.431904) | 6.816300 / 2.268929 (4.547371) | 3.232260 / 55.444624 (-52.212364) | 2.479626 / 6.876477 (-4.396851) | 2.497886 / 2.142072 (0.355813) | 0.959160 / 4.805227 (-3.846068) | 0.222306 / 6.500664 (-6.278358) | 0.072962 / 0.075469 (-0.002507) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.580415 / 1.841788 (-0.261372) | 23.689597 / 8.074308 (15.615289) | 20.430709 / 10.191392 (10.239317) | 0.237891 / 0.680424 (-0.442533) | 0.028194 / 0.534201 (-0.506007) | 0.464915 / 0.579283 (-0.114368) | 0.611512 / 0.434364 (0.177148) | 0.556564 / 0.540337 (0.016227) | 0.811075 / 1.386936 (-0.575861) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008703 / 0.011353 (-0.002649) | 0.005030 / 0.011008 (-0.005978) | 0.079251 / 0.038508 (0.040743) | 0.079054 / 0.023109 (0.055945) | 0.440220 / 0.275898 (0.164322) | 0.479824 / 0.323480 (0.156344) | 0.006312 / 0.007986 (-0.001673) | 0.004506 / 0.004328 (0.000177) | 0.078454 / 0.004250 (0.074203) | 0.061041 / 0.037052 (0.023989) | 0.490104 / 0.258489 (0.231615) | 0.480925 / 0.293841 (0.187084) | 0.049601 / 0.128546 (-0.078945) | 0.013114 / 0.075646 (-0.062532) | 0.092576 / 0.419271 (-0.326696) | 0.059516 / 0.043533 (0.015983) | 0.433728 / 0.255139 (0.178589) | 0.490039 / 0.283200 (0.206839) | 0.035359 / 0.141683 (-0.106324) | 1.823618 / 1.452155 (0.371463) | 1.980894 / 1.492716 (0.488178) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.284679 / 0.018006 (0.266673) | 0.606623 / 0.000490 (0.606133) | 0.007531 / 0.000200 (0.007331) | 0.000109 / 0.000054 (0.000055) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033261 / 0.037411 (-0.004150) | 0.102908 / 0.014526 (0.088382) | 0.123912 / 0.176557 (-0.052644) | 0.169893 / 0.737135 (-0.567242) | 0.115366 / 0.296338 (-0.180973) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.598239 / 0.215209 (0.383030) | 6.003464 / 2.077655 (3.925809) | 2.828483 / 1.504120 (1.324363) | 2.485996 / 1.541195 (0.944802) | 2.434986 / 1.468490 (0.966496) | 0.832718 / 4.584777 (-3.752058) | 5.327407 / 3.745712 (1.581694) | 4.732271 / 5.269862 (-0.537590) | 3.047555 / 4.565676 (-1.518121) | 0.103576 / 0.424275 (-0.320699) | 0.009795 / 0.007607 (0.002188) | 0.755443 / 0.226044 (0.529399) | 7.465857 / 2.268929 (5.196928) | 3.564923 / 55.444624 (-51.879701) | 2.740483 / 6.876477 (-4.135994) | 3.044993 / 2.142072 (0.902920) | 1.012925 / 4.805227 (-3.792302) | 0.207498 / 6.500664 (-6.293167) | 0.073361 / 0.075469 (-0.002108) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.704988 / 1.841788 (-0.136800) | 24.669992 / 8.074308 (16.595684) | 21.103096 / 10.191392 (10.911704) | 0.253759 / 0.680424 (-0.426665) | 0.040109 / 0.534201 (-0.494092) | 0.465646 / 0.579283 (-0.113637) | 0.619696 / 0.434364 (0.185332) | 0.552228 / 0.540337 (0.011890) | 0.794907 / 1.386936 (-0.592029) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#85bba8991f6a2d9ed9fd4769d945eeaf318d3aa6 \"CML watermark\")\n",
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006347 / 0.011353 (-0.005006) | 0.003725 / 0.011008 (-0.007283) | 0.080233 / 0.038508 (0.041725) | 0.061013 / 0.023109 (0.037904) | 0.390046 / 0.275898 (0.114148) | 0.420526 / 0.323480 (0.097046) | 0.003579 / 0.007986 (-0.004407) | 0.002837 / 0.004328 (-0.001491) | 0.062929 / 0.004250 (0.058678) | 0.048781 / 0.037052 (0.011729) | 0.400722 / 0.258489 (0.142233) | 0.435022 / 0.293841 (0.141182) | 0.027560 / 0.128546 (-0.100986) | 0.007981 / 0.075646 (-0.067666) | 0.262838 / 0.419271 (-0.156433) | 0.045480 / 0.043533 (0.001947) | 0.394443 / 0.255139 (0.139304) | 0.413828 / 0.283200 (0.130628) | 0.023375 / 0.141683 (-0.118307) | 1.412865 / 1.452155 (-0.039290) | 1.495761 / 1.492716 (0.003044) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.224876 / 0.018006 (0.206870) | 0.424234 / 0.000490 (0.423745) | 0.007502 / 0.000200 (0.007302) | 0.000220 / 0.000054 (0.000166) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024246 / 0.037411 (-0.013165) | 0.073982 / 0.014526 (0.059456) | 0.082704 / 0.176557 (-0.093852) | 0.143137 / 0.737135 (-0.593998) | 0.083398 / 0.296338 (-0.212941) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.400220 / 0.215209 (0.185010) | 3.973037 / 2.077655 (1.895382) | 2.025903 / 1.504120 (0.521783) | 1.912888 / 1.541195 (0.371693) | 1.999578 / 1.468490 (0.531088) | 0.499378 / 4.584777 (-4.085399) | 3.025715 / 3.745712 (-0.719997) | 2.992338 / 5.269862 (-2.277524) | 1.851155 / 4.565676 (-2.714522) | 0.057528 / 0.424275 (-0.366747) | 0.006802 / 0.007607 (-0.000805) | 0.469516 / 0.226044 (0.243471) | 4.675630 / 2.268929 (2.406702) | 2.472166 / 55.444624 (-52.972458) | 2.238052 / 6.876477 (-4.638424) | 2.288255 / 2.142072 (0.146183) | 0.584906 / 4.805227 (-4.220321) | 0.125902 / 6.500664 (-6.374762) | 0.060681 / 0.075469 (-0.014788) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.236383 / 1.841788 (-0.605404) | 17.554238 / 8.074308 (9.479930) | 13.749298 / 10.191392 (3.557906) | 0.144715 / 0.680424 (-0.535708) | 0.017449 / 0.534201 (-0.516752) | 0.334831 / 0.579283 (-0.244452) | 0.362660 / 0.434364 (-0.071704) | 0.385295 / 0.540337 (-0.155043) | 0.541173 / 1.386936 (-0.845763) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006118 / 0.011353 (-0.005235) | 0.003660 / 0.011008 (-0.007348) | 0.062373 / 0.038508 (0.023865) | 0.063404 / 0.023109 (0.040295) | 0.354149 / 0.275898 (0.078251) | 0.410324 / 0.323480 (0.086844) | 0.004826 / 0.007986 (-0.003160) | 0.002881 / 0.004328 (-0.001448) | 0.061631 / 0.004250 (0.057381) | 0.048052 / 0.037052 (0.010999) | 0.352905 / 0.258489 (0.094416) | 0.400096 / 0.293841 (0.106255) | 0.028472 / 0.128546 (-0.100075) | 0.008076 / 0.075646 (-0.067571) | 0.067910 / 0.419271 (-0.351362) | 0.040671 / 0.043533 (-0.002862) | 0.352131 / 0.255139 (0.096992) | 0.402140 / 0.283200 (0.118940) | 0.020065 / 0.141683 (-0.121618) | 1.456938 / 1.452155 (0.004783) | 1.506484 / 1.492716 (0.013767) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.222295 / 0.018006 (0.204288) | 0.416672 / 0.000490 (0.416183) | 0.003015 / 0.000200 (0.002815) | 0.000079 / 0.000054 (0.000025) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026428 / 0.037411 (-0.010983) | 0.080072 / 0.014526 (0.065547) | 0.089992 / 0.176557 (-0.086564) | 0.141739 / 0.737135 (-0.595397) | 0.092281 / 0.296338 (-0.204058) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.417758 / 0.215209 (0.202549) | 4.175673 / 2.077655 (2.098018) | 2.262369 / 1.504120 (0.758249) | 2.100440 / 1.541195 (0.559246) | 2.075827 / 1.468490 (0.607337) | 0.505673 / 4.584777 (-4.079104) | 3.129020 / 3.745712 (-0.616692) | 2.843255 / 5.269862 (-2.426607) | 1.853288 / 4.565676 (-2.712389) | 0.058337 / 0.424275 (-0.365938) | 0.006461 / 0.007607 (-0.001147) | 0.491797 / 0.226044 (0.265753) | 4.933327 / 2.268929 (2.664399) | 2.675374 / 55.444624 (-52.769250) | 2.358103 / 6.876477 (-4.518374) | 2.540436 / 2.142072 (0.398363) | 0.591550 / 4.805227 (-4.213677) | 0.121572 / 6.500664 (-6.379092) | 0.057311 / 0.075469 (-0.018158) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.365368 / 1.841788 (-0.476419) | 17.763413 / 8.074308 (9.689105) | 14.368754 / 10.191392 (4.177362) | 0.132979 / 0.680424 (-0.547445) | 0.017957 / 0.534201 (-0.516244) | 0.334035 / 0.579283 (-0.245248) | 0.385349 / 0.434364 (-0.049015) | 0.392636 / 0.540337 (-0.147702) | 0.537957 / 1.386936 (-0.848979) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#92503c94839b31125b4d5288d0a49d81b9b9b3cc \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008053 / 0.011353 (-0.003300) | 0.004966 / 0.011008 (-0.006043) | 0.102219 / 0.038508 (0.063711) | 0.099319 / 0.023109 (0.076210) | 0.418458 / 0.275898 (0.142559) | 0.459344 / 0.323480 (0.135864) | 0.004756 / 0.007986 (-0.003229) | 0.003940 / 0.004328 (-0.000388) | 0.076824 / 0.004250 (0.072573) | 0.068090 / 0.037052 (0.031038) | 0.428689 / 0.258489 (0.170200) | 0.476153 / 0.293841 (0.182312) | 0.036927 / 0.128546 (-0.091619) | 0.010232 / 0.075646 (-0.065414) | 0.345126 / 0.419271 (-0.074145) | 0.063182 / 0.043533 (0.019649) | 0.416633 / 0.255139 (0.161494) | 0.437418 / 0.283200 (0.154218) | 0.028192 / 0.141683 (-0.113491) | 1.768869 / 1.452155 (0.316715) | 1.847022 / 1.492716 (0.354306) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.269997 / 0.018006 (0.251991) | 0.544246 / 0.000490 (0.543756) | 0.012940 / 0.000200 (0.012740) | 0.000754 / 0.000054 (0.000699) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.035570 / 0.037411 (-0.001842) | 0.104318 / 0.014526 (0.089792) | 0.115263 / 0.176557 (-0.061294) | 0.184693 / 0.737135 (-0.552442) | 0.116023 / 0.296338 (-0.180315) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.472361 / 0.215209 (0.257152) | 4.714327 / 2.077655 (2.636673) | 2.405434 / 1.504120 (0.901314) | 2.197871 / 1.541195 (0.656677) | 2.312901 / 1.468490 (0.844411) | 0.569736 / 4.584777 (-4.015041) | 4.600008 / 3.745712 (0.854296) | 4.127967 / 5.269862 (-1.141895) | 2.462232 / 4.565676 (-2.103445) | 0.067759 / 0.424275 (-0.356516) | 0.009277 / 0.007607 (0.001670) | 0.569658 / 0.226044 (0.343614) | 5.694050 / 2.268929 (3.425121) | 3.041495 / 55.444624 (-52.403129) | 2.688418 / 6.876477 (-4.188059) | 2.762175 / 2.142072 (0.620102) | 0.683250 / 4.805227 (-4.121977) | 0.158772 / 6.500664 (-6.341892) | 0.073364 / 0.075469 (-0.002105) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.627241 / 1.841788 (-0.214547) | 23.054465 / 8.074308 (14.980157) | 17.122451 / 10.191392 (6.931059) | 0.170272 / 0.680424 (-0.510152) | 0.021678 / 0.534201 (-0.512523) | 0.467301 / 0.579283 (-0.111982) | 0.509480 / 0.434364 (0.075116) | 0.555077 / 0.540337 (0.014740) | 0.816199 / 1.386936 (-0.570737) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008499 / 0.011353 (-0.002854) | 0.004724 / 0.011008 (-0.006284) | 0.077519 / 0.038508 (0.039011) | 0.103237 / 0.023109 (0.080127) | 0.447470 / 0.275898 (0.171572) | 0.484778 / 0.323480 (0.161298) | 0.006475 / 0.007986 (-0.001511) | 0.003946 / 0.004328 (-0.000383) | 0.075596 / 0.004250 (0.071346) | 0.069265 / 0.037052 (0.032213) | 0.454185 / 0.258489 (0.195696) | 0.491039 / 0.293841 (0.197198) | 0.038611 / 0.128546 (-0.089935) | 0.009889 / 0.075646 (-0.065758) | 0.084012 / 0.419271 (-0.335260) | 0.057265 / 0.043533 (0.013732) | 0.448622 / 0.255139 (0.193483) | 0.470961 / 0.283200 (0.187762) | 0.029220 / 0.141683 (-0.112463) | 1.773347 / 1.452155 (0.321192) | 1.872669 / 1.492716 (0.379953) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.272429 / 0.018006 (0.254423) | 0.569907 / 0.000490 (0.569418) | 0.013359 / 0.000200 (0.013159) | 0.000187 / 0.000054 (0.000133) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.038784 / 0.037411 (0.001373) | 0.114958 / 0.014526 (0.100432) | 0.132745 / 0.176557 (-0.043811) | 0.186283 / 0.737135 (-0.550852) | 0.126652 / 0.296338 (-0.169686) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.482753 / 0.215209 (0.267544) | 4.827287 / 2.077655 (2.749633) | 2.539959 / 1.504120 (1.035839) | 2.348483 / 1.541195 (0.807288) | 2.421739 / 1.468490 (0.953249) | 0.586064 / 4.584777 (-3.998713) | 4.579865 / 3.745712 (0.834152) | 3.950617 / 5.269862 (-1.319244) | 2.528447 / 4.565676 (-2.037229) | 0.070280 / 0.424275 (-0.353995) | 0.008801 / 0.007607 (0.001194) | 0.568857 / 0.226044 (0.342812) | 5.692739 / 2.268929 (3.423810) | 3.192045 / 55.444624 (-52.252579) | 2.768092 / 6.876477 (-4.108384) | 3.002934 / 2.142072 (0.860862) | 0.701887 / 4.805227 (-4.103340) | 0.155563 / 6.500664 (-6.345102) | 0.069397 / 0.075469 (-0.006072) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.607991 / 1.841788 (-0.233796) | 24.658060 / 8.074308 (16.583752) | 17.616229 / 10.191392 (7.424837) | 0.209730 / 0.680424 (-0.470693) | 0.024052 / 0.534201 (-0.510149) | 0.476648 / 0.579283 (-0.102635) | 0.534452 / 0.434364 (0.100089) | 0.567702 / 0.540337 (0.027365) | 0.772933 / 1.386936 (-0.614003) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#a49e78ede85c2a680adddacbb6b9638cba4062f3 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004684 / 0.011353 (-0.006669) | 0.002944 / 0.011008 (-0.008064) | 0.063065 / 0.038508 (0.024557) | 0.051627 / 0.023109 (0.028518) | 0.243485 / 0.275898 (-0.032413) | 0.275144 / 0.323480 (-0.048336) | 0.002934 / 0.007986 (-0.005052) | 0.002395 / 0.004328 (-0.001934) | 0.048579 / 0.004250 (0.044328) | 0.038940 / 0.037052 (0.001887) | 0.250244 / 0.258489 (-0.008245) | 0.287404 / 0.293841 (-0.006437) | 0.022958 / 0.128546 (-0.105588) | 0.007189 / 0.075646 (-0.068458) | 0.202483 / 0.419271 (-0.216788) | 0.035477 / 0.043533 (-0.008056) | 0.243793 / 0.255139 (-0.011346) | 0.265990 / 0.283200 (-0.017209) | 0.019675 / 0.141683 (-0.122008) | 1.119127 / 1.452155 (-0.333028) | 1.183230 / 1.492716 (-0.309486) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.097090 / 0.018006 (0.079084) | 0.305815 / 0.000490 (0.305325) | 0.000228 / 0.000200 (0.000028) | 0.000050 / 0.000054 (-0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019233 / 0.037411 (-0.018178) | 0.061743 / 0.014526 (0.047217) | 0.077033 / 0.176557 (-0.099524) | 0.119786 / 0.737135 (-0.617349) | 0.074740 / 0.296338 (-0.221598) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.284361 / 0.215209 (0.069152) | 2.761501 / 2.077655 (0.683846) | 1.464980 / 1.504120 (-0.039140) | 1.348026 / 1.541195 (-0.193169) | 1.362690 / 1.468490 (-0.105800) | 0.392022 / 4.584777 (-4.192755) | 2.401330 / 3.745712 (-1.344382) | 2.618999 / 5.269862 (-2.650863) | 1.599526 / 4.565676 (-2.966150) | 0.045621 / 0.424275 (-0.378654) | 0.005153 / 0.007607 (-0.002454) | 0.337279 / 0.226044 (0.111234) | 3.330135 / 2.268929 (1.061206) | 1.803544 / 55.444624 (-53.641081) | 1.515545 / 6.876477 (-5.360932) | 1.561745 / 2.142072 (-0.580327) | 0.468735 / 4.805227 (-4.336492) | 0.098882 / 6.500664 (-6.401782) | 0.042923 / 0.075469 (-0.032546) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.961106 / 1.841788 (-0.880682) | 12.030489 / 8.074308 (3.956181) | 10.824166 / 10.191392 (0.632774) | 0.132135 / 0.680424 (-0.548289) | 0.015320 / 0.534201 (-0.518881) | 0.269691 / 0.579283 (-0.309592) | 0.270700 / 0.434364 (-0.163664) | 0.308317 / 0.540337 (-0.232020) | 0.397871 / 1.386936 (-0.989065) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004859 / 0.011353 (-0.006494) | 0.003400 / 0.011008 (-0.007609) | 0.048095 / 0.038508 (0.009587) | 0.054885 / 0.023109 (0.031776) | 0.276976 / 0.275898 (0.001078) | 0.302298 / 0.323480 (-0.021182) | 0.004084 / 0.007986 (-0.003902) | 0.002647 / 0.004328 (-0.001681) | 0.048570 / 0.004250 (0.044319) | 0.040683 / 0.037052 (0.003631) | 0.279828 / 0.258489 (0.021339) | 0.306037 / 0.293841 (0.012196) | 0.024263 / 0.128546 (-0.104283) | 0.007336 / 0.075646 (-0.068310) | 0.053768 / 0.419271 (-0.365503) | 0.032284 / 0.043533 (-0.011248) | 0.276706 / 0.255139 (0.021567) | 0.294706 / 0.283200 (0.011506) | 0.018092 / 0.141683 (-0.123591) | 1.153430 / 1.452155 (-0.298725) | 1.208783 / 1.492716 (-0.283933) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.096946 / 0.018006 (0.078939) | 0.308118 / 0.000490 (0.307628) | 0.000234 / 0.000200 (0.000034) | 0.000053 / 0.000054 (-0.000001) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.021834 / 0.037411 (-0.015577) | 0.070934 / 0.014526 (0.056408) | 0.080310 / 0.176557 (-0.096247) | 0.123299 / 0.737135 (-0.613836) | 0.081591 / 0.296338 (-0.214748) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.302242 / 0.215209 (0.087033) | 2.934477 / 2.077655 (0.856822) | 1.623768 / 1.504120 (0.119648) | 1.493868 / 1.541195 (-0.047326) | 1.516553 / 1.468490 (0.048063) | 0.410319 / 4.584777 (-4.174458) | 2.471346 / 3.745712 (-1.274366) | 2.667371 / 5.269862 (-2.602491) | 1.625390 / 4.565676 (-2.940286) | 0.046465 / 0.424275 (-0.377810) | 0.004867 / 0.007607 (-0.002740) | 0.355516 / 0.226044 (0.129471) | 3.442294 / 2.268929 (1.173365) | 1.973859 / 55.444624 (-53.470765) | 1.682089 / 6.876477 (-5.194388) | 1.865253 / 2.142072 (-0.276819) | 0.475750 / 4.805227 (-4.329477) | 0.098298 / 6.500664 (-6.402366) | 0.041025 / 0.075469 (-0.034445) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.969864 / 1.841788 (-0.871924) | 12.437806 / 8.074308 (4.363498) | 10.461262 / 10.191392 (0.269870) | 0.131051 / 0.680424 (-0.549373) | 0.016232 / 0.534201 (-0.517969) | 0.273968 / 0.579283 (-0.305315) | 0.285369 / 0.434364 (-0.148995) | 0.309046 / 0.540337 (-0.231291) | 0.398776 / 1.386936 (-0.988160) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#a49e78ede85c2a680adddacbb6b9638cba4062f3 \"CML watermark\")\n"
] | 2023-11-02T16:37:58 | 2023-11-06T17:53:27 | 2023-11-02T17:08:07 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6379",
"html_url": "https://github.com/huggingface/datasets/pull/6379",
"diff_url": "https://github.com/huggingface/datasets/pull/6379.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6379.patch",
"merged_at": "2023-11-02T17:08:07"
} | Avoid a redundant warning in `encode_np_array` by removing the identity check as NumPy `dtype`s can be equal without having identical `id`s.
Additionally, fix "unreachable" checks in `encode_np_array`. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6379/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6379/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6378 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6378/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6378/comments | https://api.github.com/repos/huggingface/datasets/issues/6378/events | https://github.com/huggingface/datasets/pull/6378 | 1,973,942,770 | PR_kwDODunzps5eaqhv | 6,378 | Support pyarrow 14.0.0 | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007561 / 0.011353 (-0.003792) | 0.004824 / 0.011008 (-0.006184) | 0.110372 / 0.038508 (0.071864) | 0.076767 / 0.023109 (0.053657) | 0.357094 / 0.275898 (0.081196) | 0.420566 / 0.323480 (0.097086) | 0.004753 / 0.007986 (-0.003232) | 0.004734 / 0.004328 (0.000405) | 0.072926 / 0.004250 (0.068675) | 0.058045 / 0.037052 (0.020992) | 0.401109 / 0.258489 (0.142620) | 0.444585 / 0.293841 (0.150744) | 0.046492 / 0.128546 (-0.082055) | 0.013948 / 0.075646 (-0.061698) | 0.305188 / 0.419271 (-0.114083) | 0.063112 / 0.043533 (0.019579) | 0.384711 / 0.255139 (0.129572) | 0.411375 / 0.283200 (0.128175) | 0.048147 / 0.141683 (-0.093536) | 1.632357 / 1.452155 (0.180202) | 1.661021 / 1.492716 (0.168304) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.281104 / 0.018006 (0.263098) | 0.567152 / 0.000490 (0.566662) | 0.007178 / 0.000200 (0.006978) | 0.000121 / 0.000054 (0.000066) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029337 / 0.037411 (-0.008075) | 0.081644 / 0.014526 (0.067118) | 0.103326 / 0.176557 (-0.073230) | 0.155299 / 0.737135 (-0.581836) | 0.093518 / 0.296338 (-0.202821) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.517979 / 0.215209 (0.302769) | 5.250052 / 2.077655 (3.172397) | 2.220543 / 1.504120 (0.716424) | 1.901087 / 1.541195 (0.359892) | 1.920564 / 1.468490 (0.452073) | 0.766289 / 4.584777 (-3.818488) | 5.130968 / 3.745712 (1.385256) | 4.561874 / 5.269862 (-0.707988) | 2.702808 / 4.565676 (-1.862868) | 0.078929 / 0.424275 (-0.345346) | 0.007834 / 0.007607 (0.000226) | 0.636628 / 0.226044 (0.410583) | 6.309391 / 2.268929 (4.040463) | 2.942180 / 55.444624 (-52.502445) | 2.369557 / 6.876477 (-4.506920) | 2.347528 / 2.142072 (0.205456) | 0.911110 / 4.805227 (-3.894117) | 0.189102 / 6.500664 (-6.311562) | 0.068012 / 0.075469 (-0.007457) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.494431 / 1.841788 (-0.347356) | 22.161476 / 8.074308 (14.087168) | 19.426403 / 10.191392 (9.235011) | 0.211154 / 0.680424 (-0.469270) | 0.030655 / 0.534201 (-0.503546) | 0.440449 / 0.579283 (-0.138834) | 0.526522 / 0.434364 (0.092158) | 0.517494 / 0.540337 (-0.022844) | 0.727387 / 1.386936 (-0.659549) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008354 / 0.011353 (-0.002999) | 0.006108 / 0.011008 (-0.004900) | 0.069079 / 0.038508 (0.030571) | 0.080402 / 0.023109 (0.057292) | 0.452166 / 0.275898 (0.176268) | 0.440264 / 0.323480 (0.116784) | 0.005942 / 0.007986 (-0.002043) | 0.003397 / 0.004328 (-0.000932) | 0.079856 / 0.004250 (0.075606) | 0.056329 / 0.037052 (0.019276) | 0.424261 / 0.258489 (0.165772) | 0.464362 / 0.293841 (0.170521) | 0.051968 / 0.128546 (-0.076578) | 0.015204 / 0.075646 (-0.060442) | 0.085940 / 0.419271 (-0.333332) | 0.066673 / 0.043533 (0.023140) | 0.436481 / 0.255139 (0.181342) | 0.445285 / 0.283200 (0.162085) | 0.035188 / 0.141683 (-0.106495) | 1.579442 / 1.452155 (0.127288) | 1.686120 / 1.492716 (0.193404) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.319039 / 0.018006 (0.301032) | 0.655080 / 0.000490 (0.654591) | 0.005445 / 0.000200 (0.005245) | 0.000112 / 0.000054 (0.000057) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028566 / 0.037411 (-0.008845) | 0.092131 / 0.014526 (0.077605) | 0.103654 / 0.176557 (-0.072902) | 0.158082 / 0.737135 (-0.579054) | 0.107520 / 0.296338 (-0.188819) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.573479 / 0.215209 (0.358270) | 5.629751 / 2.077655 (3.552096) | 2.501722 / 1.504120 (0.997602) | 2.156255 / 1.541195 (0.615061) | 2.251296 / 1.468490 (0.782805) | 0.767686 / 4.584777 (-3.817091) | 5.080866 / 3.745712 (1.335154) | 4.353351 / 5.269862 (-0.916510) | 2.818707 / 4.565676 (-1.746970) | 0.082617 / 0.424275 (-0.341658) | 0.008045 / 0.007607 (0.000438) | 0.665462 / 0.226044 (0.439417) | 6.961380 / 2.268929 (4.692452) | 3.308717 / 55.444624 (-52.135907) | 2.664239 / 6.876477 (-4.212238) | 2.782790 / 2.142072 (0.640718) | 0.919567 / 4.805227 (-3.885660) | 0.186731 / 6.500664 (-6.313933) | 0.063437 / 0.075469 (-0.012032) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.668076 / 1.841788 (-0.173712) | 22.720187 / 8.074308 (14.645879) | 19.803359 / 10.191392 (9.611967) | 0.237201 / 0.680424 (-0.443223) | 0.041156 / 0.534201 (-0.493045) | 0.458974 / 0.579283 (-0.120309) | 0.620276 / 0.434364 (0.185912) | 0.544079 / 0.540337 (0.003741) | 0.722715 / 1.386936 (-0.664221) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#1ed9306b6c512befb721b681fba3222221c8468e \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006882 / 0.011353 (-0.004471) | 0.004238 / 0.011008 (-0.006770) | 0.084042 / 0.038508 (0.045534) | 0.074175 / 0.023109 (0.051065) | 0.308771 / 0.275898 (0.032873) | 0.346300 / 0.323480 (0.022820) | 0.005455 / 0.007986 (-0.002530) | 0.003638 / 0.004328 (-0.000690) | 0.065326 / 0.004250 (0.061076) | 0.056080 / 0.037052 (0.019028) | 0.326324 / 0.258489 (0.067834) | 0.360133 / 0.293841 (0.066292) | 0.031577 / 0.128546 (-0.096969) | 0.008675 / 0.075646 (-0.066971) | 0.288051 / 0.419271 (-0.131221) | 0.052769 / 0.043533 (0.009236) | 0.308689 / 0.255139 (0.053550) | 0.328270 / 0.283200 (0.045070) | 0.025028 / 0.141683 (-0.116655) | 1.520670 / 1.452155 (0.068515) | 1.585229 / 1.492716 (0.092513) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.284078 / 0.018006 (0.266072) | 0.558134 / 0.000490 (0.557644) | 0.015042 / 0.000200 (0.014842) | 0.000429 / 0.000054 (0.000375) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028747 / 0.037411 (-0.008664) | 0.083816 / 0.014526 (0.069290) | 0.207467 / 0.176557 (0.030911) | 0.163527 / 0.737135 (-0.573608) | 0.100148 / 0.296338 (-0.196190) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.376109 / 0.215209 (0.160900) | 3.749639 / 2.077655 (1.671984) | 1.827081 / 1.504120 (0.322961) | 1.662021 / 1.541195 (0.120827) | 1.734655 / 1.468490 (0.266165) | 0.483701 / 4.584777 (-4.101075) | 3.454772 / 3.745712 (-0.290941) | 3.465079 / 5.269862 (-1.804783) | 2.070874 / 4.565676 (-2.494802) | 0.056714 / 0.424275 (-0.367561) | 0.007786 / 0.007607 (0.000179) | 0.455980 / 0.226044 (0.229936) | 4.530612 / 2.268929 (2.261683) | 2.345757 / 55.444624 (-53.098867) | 2.030289 / 6.876477 (-4.846188) | 2.068440 / 2.142072 (-0.073632) | 0.576502 / 4.805227 (-4.228725) | 0.131787 / 6.500664 (-6.368878) | 0.060038 / 0.075469 (-0.015431) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.272225 / 1.841788 (-0.569563) | 19.373635 / 8.074308 (11.299327) | 14.167831 / 10.191392 (3.976439) | 0.166336 / 0.680424 (-0.514088) | 0.018420 / 0.534201 (-0.515781) | 0.387878 / 0.579283 (-0.191405) | 0.413105 / 0.434364 (-0.021259) | 0.458618 / 0.540337 (-0.081720) | 0.639031 / 1.386936 (-0.747905) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007122 / 0.011353 (-0.004230) | 0.004193 / 0.011008 (-0.006815) | 0.066194 / 0.038508 (0.027686) | 0.077775 / 0.023109 (0.054666) | 0.349780 / 0.275898 (0.073882) | 0.383417 / 0.323480 (0.059937) | 0.006416 / 0.007986 (-0.001570) | 0.003651 / 0.004328 (-0.000677) | 0.064837 / 0.004250 (0.060587) | 0.058012 / 0.037052 (0.020959) | 0.351085 / 0.258489 (0.092596) | 0.387302 / 0.293841 (0.093462) | 0.032447 / 0.128546 (-0.096099) | 0.008636 / 0.075646 (-0.067011) | 0.071962 / 0.419271 (-0.347309) | 0.047839 / 0.043533 (0.004306) | 0.349508 / 0.255139 (0.094369) | 0.361892 / 0.283200 (0.078693) | 0.024129 / 0.141683 (-0.117554) | 1.523828 / 1.452155 (0.071673) | 1.607371 / 1.492716 (0.114655) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.245928 / 0.018006 (0.227922) | 0.567708 / 0.000490 (0.567218) | 0.003789 / 0.000200 (0.003589) | 0.000092 / 0.000054 (0.000037) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034107 / 0.037411 (-0.003304) | 0.092539 / 0.014526 (0.078014) | 0.110735 / 0.176557 (-0.065821) | 0.163251 / 0.737135 (-0.573884) | 0.110353 / 0.296338 (-0.185985) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.399992 / 0.215209 (0.184783) | 3.976526 / 2.077655 (1.898872) | 2.056182 / 1.504120 (0.552062) | 1.856624 / 1.541195 (0.315429) | 1.941540 / 1.468490 (0.473050) | 0.484662 / 4.584777 (-4.100115) | 3.548228 / 3.745712 (-0.197484) | 3.352900 / 5.269862 (-1.916962) | 2.056310 / 4.565676 (-2.509366) | 0.056952 / 0.424275 (-0.367323) | 0.007284 / 0.007607 (-0.000323) | 0.473749 / 0.226044 (0.247704) | 4.736510 / 2.268929 (2.467581) | 2.570711 / 55.444624 (-52.873913) | 2.204237 / 6.876477 (-4.672239) | 2.438512 / 2.142072 (0.296439) | 0.575542 / 4.805227 (-4.229685) | 0.129260 / 6.500664 (-6.371404) | 0.057704 / 0.075469 (-0.017765) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.316659 / 1.841788 (-0.525128) | 20.103340 / 8.074308 (12.029032) | 14.488385 / 10.191392 (4.296993) | 0.171841 / 0.680424 (-0.508583) | 0.020148 / 0.534201 (-0.514053) | 0.398456 / 0.579283 (-0.180828) | 0.443516 / 0.434364 (0.009152) | 0.479597 / 0.540337 (-0.060741) | 0.643665 / 1.386936 (-0.743271) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#370be814b0c18769ea8e699e3647fadcf431e6df \"CML watermark\")\n"
] | 2023-11-02T10:25:10 | 2023-11-02T15:24:28 | 2023-11-02T15:15:44 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6378",
"html_url": "https://github.com/huggingface/datasets/pull/6378",
"diff_url": "https://github.com/huggingface/datasets/pull/6378.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6378.patch",
"merged_at": "2023-11-02T15:15:44"
} | Support `pyarrow` 14.0.0.
Fix #6377 and fix #6374 (root cause).
This fix is analog to a previous one:
- #6175 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6378/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6378/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6377 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6377/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6377/comments | https://api.github.com/repos/huggingface/datasets/issues/6377/events | https://github.com/huggingface/datasets/issues/6377 | 1,973,937,612 | I_kwDODunzps51p-XM | 6,377 | Support pyarrow 14.0.0 | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
}
] | [] | 2023-11-02T10:22:08 | 2023-11-02T15:15:45 | 2023-11-02T15:15:45 | MEMBER | null | null | null | Support pyarrow 14.0.0 by fixing the root cause of:
- #6374
and revert:
- #6375 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6377/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6377/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/6376 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6376/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6376/comments | https://api.github.com/repos/huggingface/datasets/issues/6376/events | https://github.com/huggingface/datasets/issues/6376 | 1,973,927,468 | I_kwDODunzps51p74s | 6,376 | Caching problem when deleting a dataset | {
"login": "clefourrier",
"id": 22726840,
"node_id": "MDQ6VXNlcjIyNzI2ODQw",
"avatar_url": "https://avatars.githubusercontent.com/u/22726840?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/clefourrier",
"html_url": "https://github.com/clefourrier",
"followers_url": "https://api.github.com/users/clefourrier/followers",
"following_url": "https://api.github.com/users/clefourrier/following{/other_user}",
"gists_url": "https://api.github.com/users/clefourrier/gists{/gist_id}",
"starred_url": "https://api.github.com/users/clefourrier/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/clefourrier/subscriptions",
"organizations_url": "https://api.github.com/users/clefourrier/orgs",
"repos_url": "https://api.github.com/users/clefourrier/repos",
"events_url": "https://api.github.com/users/clefourrier/events{/privacy}",
"received_events_url": "https://api.github.com/users/clefourrier/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | [
"Thanks for reporting! Can you also share the error message printed in step 5?",
"I did not store it at the time but I'll try to re-do a mwe next week to get it again",
"I haven't managed to reproduce this issue using a [notebook](https://colab.research.google.com/drive/1m6eduYun7pFTkigrCJAFgw0BghlbvXIL?usp=sharing) that follows the steps to reproduce the bug. So, I'm closing it.\r\n\r\nBut feel free to re-open it if you have a better reproducer."
] | 2023-11-02T10:15:58 | 2023-12-04T16:53:34 | 2023-12-04T16:53:33 | MEMBER | null | null | null | ### Describe the bug
Pushing a dataset with n + m features to a repo which was deleted, but contained n features, will fail.
### Steps to reproduce the bug
1. Create a dataset with n features per row
2. `dataset.push_to_hub(YOUR_PATH, SPLIT, token=TOKEN)`
3. Go on the hub, delete the repo at `YOUR_PATH`
4. Update your local dataset to have n + m features per row
5. `dataset.push_to_hub(YOUR_PATH, SPLIT, token=TOKEN)` will fail because of a mismatch in features number
### Expected behavior
Step 5 should work or display a message to indicate the cache has not been cleared
### Environment info
- `datasets` version: 2.12.0
- Platform: Linux-5.15.0-88-generic-x86_64-with-glibc2.31
- Python version: 3.10.10
- Huggingface_hub version: 0.16.4
- PyArrow version: 11.0.0
- Pandas version: 2.0.0
| {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6376/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6376/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/6375 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6375/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6375/comments | https://api.github.com/repos/huggingface/datasets/issues/6375/events | https://github.com/huggingface/datasets/pull/6375 | 1,973,877,879 | PR_kwDODunzps5eacao | 6,375 | Temporarily pin pyarrow < 14.0.0 | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008947 / 0.011353 (-0.002406) | 0.005602 / 0.011008 (-0.005406) | 0.111208 / 0.038508 (0.072700) | 0.082750 / 0.023109 (0.059641) | 0.453277 / 0.275898 (0.177379) | 0.480072 / 0.323480 (0.156592) | 0.005254 / 0.007986 (-0.002731) | 0.005421 / 0.004328 (0.001092) | 0.082899 / 0.004250 (0.078648) | 0.062859 / 0.037052 (0.025807) | 0.466703 / 0.258489 (0.208214) | 0.478241 / 0.293841 (0.184400) | 0.050754 / 0.128546 (-0.077792) | 0.017726 / 0.075646 (-0.057920) | 0.374830 / 0.419271 (-0.044442) | 0.068577 / 0.043533 (0.025044) | 0.453643 / 0.255139 (0.198504) | 0.453736 / 0.283200 (0.170537) | 0.037313 / 0.141683 (-0.104369) | 1.741215 / 1.452155 (0.289060) | 1.862247 / 1.492716 (0.369531) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.314174 / 0.018006 (0.296168) | 0.644439 / 0.000490 (0.643949) | 0.013914 / 0.000200 (0.013715) | 0.000478 / 0.000054 (0.000424) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030462 / 0.037411 (-0.006949) | 0.096789 / 0.014526 (0.082263) | 0.109999 / 0.176557 (-0.066557) | 0.184610 / 0.737135 (-0.552525) | 0.113846 / 0.296338 (-0.182493) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.586508 / 0.215209 (0.371299) | 5.785138 / 2.077655 (3.707484) | 2.578512 / 1.504120 (1.074392) | 2.266981 / 1.541195 (0.725786) | 2.442463 / 1.468490 (0.973973) | 0.880973 / 4.584777 (-3.703804) | 5.410327 / 3.745712 (1.664615) | 4.976842 / 5.269862 (-0.293020) | 3.020535 / 4.565676 (-1.545142) | 0.089640 / 0.424275 (-0.334635) | 0.009126 / 0.007607 (0.001519) | 0.682364 / 0.226044 (0.456319) | 6.840507 / 2.268929 (4.571579) | 3.313314 / 55.444624 (-52.131310) | 2.815313 / 6.876477 (-4.061164) | 2.851787 / 2.142072 (0.709715) | 1.044916 / 4.805227 (-3.760312) | 0.218346 / 6.500664 (-6.282318) | 0.075655 / 0.075469 (0.000186) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.641767 / 1.841788 (-0.200020) | 24.618096 / 8.074308 (16.543788) | 21.557652 / 10.191392 (11.366260) | 0.211622 / 0.680424 (-0.468801) | 0.028775 / 0.534201 (-0.505426) | 0.480469 / 0.579283 (-0.098814) | 0.593311 / 0.434364 (0.158948) | 0.560620 / 0.540337 (0.020283) | 0.827026 / 1.386936 (-0.559910) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009347 / 0.011353 (-0.002006) | 0.005184 / 0.011008 (-0.005824) | 0.078878 / 0.038508 (0.040370) | 0.083067 / 0.023109 (0.059957) | 0.446591 / 0.275898 (0.170693) | 0.512934 / 0.323480 (0.189454) | 0.006614 / 0.007986 (-0.001372) | 0.004477 / 0.004328 (0.000148) | 0.087403 / 0.004250 (0.083153) | 0.060710 / 0.037052 (0.023658) | 0.451811 / 0.258489 (0.193322) | 0.482031 / 0.293841 (0.188190) | 0.051685 / 0.128546 (-0.076862) | 0.013436 / 0.075646 (-0.062210) | 0.109012 / 0.419271 (-0.310259) | 0.059654 / 0.043533 (0.016121) | 0.439041 / 0.255139 (0.183902) | 0.481708 / 0.283200 (0.198508) | 0.037393 / 0.141683 (-0.104290) | 1.761704 / 1.452155 (0.309549) | 1.946711 / 1.492716 (0.453995) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.287981 / 0.018006 (0.269975) | 0.610219 / 0.000490 (0.609729) | 0.006733 / 0.000200 (0.006533) | 0.000128 / 0.000054 (0.000074) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.038999 / 0.037411 (0.001588) | 0.100613 / 0.014526 (0.086087) | 0.126445 / 0.176557 (-0.050111) | 0.187596 / 0.737135 (-0.549540) | 0.122130 / 0.296338 (-0.174208) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.647686 / 0.215209 (0.432477) | 6.176079 / 2.077655 (4.098424) | 2.800232 / 1.504120 (1.296112) | 2.434625 / 1.541195 (0.893430) | 2.460646 / 1.468490 (0.992155) | 0.923736 / 4.584777 (-3.661041) | 5.480197 / 3.745712 (1.734485) | 4.849250 / 5.269862 (-0.420612) | 3.031576 / 4.565676 (-1.534101) | 0.102525 / 0.424275 (-0.321750) | 0.008688 / 0.007607 (0.001081) | 0.766097 / 0.226044 (0.540052) | 7.626822 / 2.268929 (5.357893) | 3.719155 / 55.444624 (-51.725469) | 2.967121 / 6.876477 (-3.909356) | 3.182464 / 2.142072 (1.040392) | 1.018315 / 4.805227 (-3.786912) | 0.211300 / 6.500664 (-6.289364) | 0.083055 / 0.075469 (0.007586) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.731619 / 1.841788 (-0.110168) | 25.315978 / 8.074308 (17.241669) | 22.736306 / 10.191392 (12.544914) | 0.270330 / 0.680424 (-0.410094) | 0.034790 / 0.534201 (-0.499411) | 0.488675 / 0.579283 (-0.090608) | 0.603426 / 0.434364 (0.169062) | 0.572547 / 0.540337 (0.032210) | 0.825719 / 1.386936 (-0.561217) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#1eaa85a4ad79aa0e411218d61a8894cc14a75fa0 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008992 / 0.011353 (-0.002360) | 0.005086 / 0.011008 (-0.005923) | 0.107400 / 0.038508 (0.068892) | 0.091894 / 0.023109 (0.068785) | 0.382347 / 0.275898 (0.106449) | 0.446581 / 0.323480 (0.123101) | 0.005179 / 0.007986 (-0.002807) | 0.006356 / 0.004328 (0.002028) | 0.084979 / 0.004250 (0.080729) | 0.060647 / 0.037052 (0.023594) | 0.385940 / 0.258489 (0.127451) | 0.444817 / 0.293841 (0.150976) | 0.049484 / 0.128546 (-0.079062) | 0.014173 / 0.075646 (-0.061473) | 0.345704 / 0.419271 (-0.073567) | 0.068082 / 0.043533 (0.024550) | 0.377170 / 0.255139 (0.122031) | 0.411816 / 0.283200 (0.128616) | 0.043049 / 0.141683 (-0.098633) | 1.681499 / 1.452155 (0.229344) | 1.805428 / 1.492716 (0.312712) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.323170 / 0.018006 (0.305164) | 0.693845 / 0.000490 (0.693355) | 0.015499 / 0.000200 (0.015299) | 0.000603 / 0.000054 (0.000548) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031629 / 0.037411 (-0.005783) | 0.093511 / 0.014526 (0.078985) | 0.112400 / 0.176557 (-0.064157) | 0.173731 / 0.737135 (-0.563405) | 0.116013 / 0.296338 (-0.180325) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.576724 / 0.215209 (0.361515) | 5.775055 / 2.077655 (3.697400) | 2.755869 / 1.504120 (1.251749) | 2.430253 / 1.541195 (0.889058) | 2.479629 / 1.468490 (1.011139) | 0.841472 / 4.584777 (-3.743305) | 5.120536 / 3.745712 (1.374824) | 4.813281 / 5.269862 (-0.456581) | 3.054617 / 4.565676 (-1.511059) | 0.091459 / 0.424275 (-0.332816) | 0.009072 / 0.007607 (0.001465) | 0.742674 / 0.226044 (0.516629) | 7.137861 / 2.268929 (4.868933) | 3.497568 / 55.444624 (-51.947056) | 2.814658 / 6.876477 (-4.061819) | 2.934415 / 2.142072 (0.792343) | 0.970855 / 4.805227 (-3.834372) | 0.213366 / 6.500664 (-6.287299) | 0.078763 / 0.075469 (0.003293) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.584716 / 1.841788 (-0.257072) | 24.098173 / 8.074308 (16.023865) | 20.746352 / 10.191392 (10.554960) | 0.215313 / 0.680424 (-0.465111) | 0.029538 / 0.534201 (-0.504663) | 0.448672 / 0.579283 (-0.130611) | 0.580023 / 0.434364 (0.145659) | 0.537867 / 0.540337 (-0.002471) | 0.804622 / 1.386936 (-0.582314) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008965 / 0.011353 (-0.002388) | 0.005544 / 0.011008 (-0.005464) | 0.076806 / 0.038508 (0.038298) | 0.085333 / 0.023109 (0.062224) | 0.509974 / 0.275898 (0.234076) | 0.511548 / 0.323480 (0.188068) | 0.007136 / 0.007986 (-0.000849) | 0.004491 / 0.004328 (0.000163) | 0.086687 / 0.004250 (0.082437) | 0.066539 / 0.037052 (0.029486) | 0.483663 / 0.258489 (0.225174) | 0.529480 / 0.293841 (0.235639) | 0.046296 / 0.128546 (-0.082250) | 0.014736 / 0.075646 (-0.060910) | 0.088261 / 0.419271 (-0.331010) | 0.056753 / 0.043533 (0.013220) | 0.511698 / 0.255139 (0.256559) | 0.497956 / 0.283200 (0.214756) | 0.034753 / 0.141683 (-0.106930) | 1.828354 / 1.452155 (0.376199) | 1.799211 / 1.492716 (0.306494) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.389652 / 0.018006 (0.371645) | 0.602522 / 0.000490 (0.602033) | 0.068363 / 0.000200 (0.068163) | 0.000493 / 0.000054 (0.000439) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.036431 / 0.037411 (-0.000980) | 0.102162 / 0.014526 (0.087636) | 0.122466 / 0.176557 (-0.054091) | 0.181001 / 0.737135 (-0.556134) | 0.125743 / 0.296338 (-0.170596) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.583847 / 0.215209 (0.368638) | 5.913008 / 2.077655 (3.835354) | 2.716088 / 1.504120 (1.211968) | 2.328631 / 1.541195 (0.787437) | 2.459953 / 1.468490 (0.991463) | 0.792829 / 4.584777 (-3.791948) | 5.183965 / 3.745712 (1.438253) | 4.508264 / 5.269862 (-0.761598) | 2.855444 / 4.565676 (-1.710232) | 0.090704 / 0.424275 (-0.333571) | 0.009303 / 0.007607 (0.001696) | 0.694303 / 0.226044 (0.468258) | 6.951876 / 2.268929 (4.682947) | 3.418244 / 55.444624 (-52.026381) | 2.799743 / 6.876477 (-4.076734) | 3.043657 / 2.142072 (0.901584) | 0.921537 / 4.805227 (-3.883691) | 0.191774 / 6.500664 (-6.308890) | 0.068602 / 0.075469 (-0.006867) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.624842 / 1.841788 (-0.216946) | 24.570622 / 8.074308 (16.496314) | 21.207566 / 10.191392 (11.016174) | 0.217734 / 0.680424 (-0.462689) | 0.033109 / 0.534201 (-0.501091) | 0.451651 / 0.579283 (-0.127632) | 0.590890 / 0.434364 (0.156526) | 0.546195 / 0.540337 (0.005858) | 0.730298 / 1.386936 (-0.656638) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#f6bdecff73303cf97f279a4e36622faf53133f9c \"CML watermark\")\n"
] | 2023-11-02T09:48:58 | 2023-11-02T10:22:33 | 2023-11-02T10:11:19 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6375",
"html_url": "https://github.com/huggingface/datasets/pull/6375",
"diff_url": "https://github.com/huggingface/datasets/pull/6375.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6375.patch",
"merged_at": "2023-11-02T10:11:19"
} | Temporarily pin `pyarrow` < 14.0.0 until permanent solution is found.
Hot fix #6374. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6375/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6375/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6374 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6374/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6374/comments | https://api.github.com/repos/huggingface/datasets/issues/6374/events | https://github.com/huggingface/datasets/issues/6374 | 1,973,857,428 | I_kwDODunzps51pqyU | 6,374 | CI is broken: TypeError: Couldn't cast array | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
}
] | [] | 2023-11-02T09:37:06 | 2023-11-02T10:11:20 | 2023-11-02T10:11:20 | MEMBER | null | null | null | See: https://github.com/huggingface/datasets/actions/runs/6730567226/job/18293518039
```
FAILED tests/test_table.py::test_cast_sliced_fixed_size_array_to_features - TypeError: Couldn't cast array of type
fixed_size_list<item: int32>[3]
to
Sequence(feature=Value(dtype='int64', id=None), length=3, id=None)
``` | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6374/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6374/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/6373 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6373/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6373/comments | https://api.github.com/repos/huggingface/datasets/issues/6373/events | https://github.com/huggingface/datasets/pull/6373 | 1,973,349,695 | PR_kwDODunzps5eYsZc | 6,373 | Fix typo in `Dataset.map` docstring | {
"login": "bryant1410",
"id": 3905501,
"node_id": "MDQ6VXNlcjM5MDU1MDE=",
"avatar_url": "https://avatars.githubusercontent.com/u/3905501?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/bryant1410",
"html_url": "https://github.com/bryant1410",
"followers_url": "https://api.github.com/users/bryant1410/followers",
"following_url": "https://api.github.com/users/bryant1410/following{/other_user}",
"gists_url": "https://api.github.com/users/bryant1410/gists{/gist_id}",
"starred_url": "https://api.github.com/users/bryant1410/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/bryant1410/subscriptions",
"organizations_url": "https://api.github.com/users/bryant1410/orgs",
"repos_url": "https://api.github.com/users/bryant1410/repos",
"events_url": "https://api.github.com/users/bryant1410/events{/privacy}",
"received_events_url": "https://api.github.com/users/bryant1410/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006709 / 0.011353 (-0.004643) | 0.004102 / 0.011008 (-0.006906) | 0.084449 / 0.038508 (0.045941) | 0.076078 / 0.023109 (0.052969) | 0.319831 / 0.275898 (0.043933) | 0.359918 / 0.323480 (0.036438) | 0.006092 / 0.007986 (-0.001894) | 0.003402 / 0.004328 (-0.000926) | 0.064715 / 0.004250 (0.060465) | 0.054541 / 0.037052 (0.017488) | 0.330394 / 0.258489 (0.071905) | 0.366048 / 0.293841 (0.072207) | 0.031594 / 0.128546 (-0.096952) | 0.008591 / 0.075646 (-0.067056) | 0.292983 / 0.419271 (-0.126288) | 0.052986 / 0.043533 (0.009453) | 0.322253 / 0.255139 (0.067114) | 0.340082 / 0.283200 (0.056882) | 0.023390 / 0.141683 (-0.118293) | 1.459038 / 1.452155 (0.006883) | 1.536256 / 1.492716 (0.043540) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.233527 / 0.018006 (0.215521) | 0.459145 / 0.000490 (0.458655) | 0.007471 / 0.000200 (0.007271) | 0.000281 / 0.000054 (0.000227) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028158 / 0.037411 (-0.009253) | 0.083079 / 0.014526 (0.068553) | 0.097159 / 0.176557 (-0.079397) | 0.151927 / 0.737135 (-0.585208) | 0.098024 / 0.296338 (-0.198314) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.386882 / 0.215209 (0.171673) | 3.849635 / 2.077655 (1.771981) | 1.832885 / 1.504120 (0.328765) | 1.668356 / 1.541195 (0.127162) | 1.745066 / 1.468490 (0.276576) | 0.484476 / 4.584777 (-4.100301) | 3.547604 / 3.745712 (-0.198108) | 3.480338 / 5.269862 (-1.789523) | 2.066837 / 4.565676 (-2.498840) | 0.056755 / 0.424275 (-0.367520) | 0.007747 / 0.007607 (0.000140) | 0.467999 / 0.226044 (0.241955) | 4.678875 / 2.268929 (2.409946) | 2.341930 / 55.444624 (-53.102695) | 1.985632 / 6.876477 (-4.890844) | 2.046998 / 2.142072 (-0.095074) | 0.579860 / 4.805227 (-4.225367) | 0.131488 / 6.500664 (-6.369176) | 0.060193 / 0.075469 (-0.015276) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.249656 / 1.841788 (-0.592132) | 19.079517 / 8.074308 (11.005209) | 14.328827 / 10.191392 (4.137435) | 0.173707 / 0.680424 (-0.506717) | 0.018250 / 0.534201 (-0.515951) | 0.392225 / 0.579283 (-0.187058) | 0.413920 / 0.434364 (-0.020444) | 0.464124 / 0.540337 (-0.076214) | 0.640283 / 1.386936 (-0.746653) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006859 / 0.011353 (-0.004494) | 0.004068 / 0.011008 (-0.006940) | 0.063936 / 0.038508 (0.025428) | 0.077187 / 0.023109 (0.054078) | 0.365098 / 0.275898 (0.089200) | 0.391003 / 0.323480 (0.067523) | 0.005571 / 0.007986 (-0.002415) | 0.003425 / 0.004328 (-0.000904) | 0.063220 / 0.004250 (0.058970) | 0.056964 / 0.037052 (0.019912) | 0.367793 / 0.258489 (0.109304) | 0.398776 / 0.293841 (0.104935) | 0.033182 / 0.128546 (-0.095364) | 0.008601 / 0.075646 (-0.067045) | 0.070276 / 0.419271 (-0.348996) | 0.048383 / 0.043533 (0.004850) | 0.360414 / 0.255139 (0.105275) | 0.368171 / 0.283200 (0.084971) | 0.023114 / 0.141683 (-0.118569) | 1.503503 / 1.452155 (0.051349) | 1.567279 / 1.492716 (0.074562) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.224296 / 0.018006 (0.206290) | 0.455138 / 0.000490 (0.454648) | 0.004014 / 0.000200 (0.003814) | 0.000104 / 0.000054 (0.000050) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032337 / 0.037411 (-0.005074) | 0.094385 / 0.014526 (0.079859) | 0.109870 / 0.176557 (-0.066687) | 0.156978 / 0.737135 (-0.580157) | 0.107559 / 0.296338 (-0.188780) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.427409 / 0.215209 (0.212200) | 4.261772 / 2.077655 (2.184117) | 2.276106 / 1.504120 (0.771986) | 2.115232 / 1.541195 (0.574038) | 2.192048 / 1.468490 (0.723558) | 0.488459 / 4.584777 (-4.096318) | 3.675463 / 3.745712 (-0.070249) | 3.322475 / 5.269862 (-1.947387) | 2.072253 / 4.565676 (-2.493424) | 0.058259 / 0.424275 (-0.366017) | 0.007319 / 0.007607 (-0.000288) | 0.499513 / 0.226044 (0.273469) | 4.994774 / 2.268929 (2.725845) | 2.760927 / 55.444624 (-52.683697) | 2.391947 / 6.876477 (-4.484530) | 2.600557 / 2.142072 (0.458484) | 0.587597 / 4.805227 (-4.217630) | 0.131444 / 6.500664 (-6.369220) | 0.057334 / 0.075469 (-0.018135) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.354636 / 1.841788 (-0.487152) | 19.685735 / 8.074308 (11.611427) | 14.295920 / 10.191392 (4.104528) | 0.171921 / 0.680424 (-0.508503) | 0.019926 / 0.534201 (-0.514274) | 0.395216 / 0.579283 (-0.184068) | 0.432791 / 0.434364 (-0.001573) | 0.473055 / 0.540337 (-0.067282) | 0.638633 / 1.386936 (-0.748303) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#fad7c899ec9218a717311223aa6ef5c09a6c7885 \"CML watermark\")\n"
] | 2023-11-02T01:36:49 | 2023-11-02T15:18:22 | 2023-11-02T10:11:38 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6373",
"html_url": "https://github.com/huggingface/datasets/pull/6373",
"diff_url": "https://github.com/huggingface/datasets/pull/6373.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6373.patch",
"merged_at": "2023-11-02T10:11:38"
} | null | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6373/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6373/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6372 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6372/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6372/comments | https://api.github.com/repos/huggingface/datasets/issues/6372/events | https://github.com/huggingface/datasets/pull/6372 | 1,972,837,794 | PR_kwDODunzps5eW9kO | 6,372 | do not try to download from HF GCS for generator | {
"login": "yundai424",
"id": 43726198,
"node_id": "MDQ6VXNlcjQzNzI2MTk4",
"avatar_url": "https://avatars.githubusercontent.com/u/43726198?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/yundai424",
"html_url": "https://github.com/yundai424",
"followers_url": "https://api.github.com/users/yundai424/followers",
"following_url": "https://api.github.com/users/yundai424/following{/other_user}",
"gists_url": "https://api.github.com/users/yundai424/gists{/gist_id}",
"starred_url": "https://api.github.com/users/yundai424/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/yundai424/subscriptions",
"organizations_url": "https://api.github.com/users/yundai424/orgs",
"repos_url": "https://api.github.com/users/yundai424/repos",
"events_url": "https://api.github.com/users/yundai424/events{/privacy}",
"received_events_url": "https://api.github.com/users/yundai424/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007617 / 0.011353 (-0.003735) | 0.005371 / 0.011008 (-0.005638) | 0.092110 / 0.038508 (0.053602) | 0.070654 / 0.023109 (0.047544) | 0.362501 / 0.275898 (0.086603) | 0.412835 / 0.323480 (0.089355) | 0.006752 / 0.007986 (-0.001234) | 0.003752 / 0.004328 (-0.000576) | 0.075644 / 0.004250 (0.071394) | 0.055666 / 0.037052 (0.018614) | 0.355906 / 0.258489 (0.097417) | 0.405078 / 0.293841 (0.111237) | 0.045767 / 0.128546 (-0.082779) | 0.013778 / 0.075646 (-0.061868) | 0.324696 / 0.419271 (-0.094575) | 0.062200 / 0.043533 (0.018667) | 0.359571 / 0.255139 (0.104432) | 0.387274 / 0.283200 (0.104075) | 0.035323 / 0.141683 (-0.106360) | 1.586294 / 1.452155 (0.134139) | 1.707564 / 1.492716 (0.214847) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.303940 / 0.018006 (0.285934) | 0.583349 / 0.000490 (0.582859) | 0.014845 / 0.000200 (0.014645) | 0.000698 / 0.000054 (0.000643) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028994 / 0.037411 (-0.008417) | 0.085555 / 0.014526 (0.071029) | 0.097856 / 0.176557 (-0.078701) | 0.161480 / 0.737135 (-0.575655) | 0.098573 / 0.296338 (-0.197766) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.591294 / 0.215209 (0.376085) | 5.751350 / 2.077655 (3.673695) | 2.241620 / 1.504120 (0.737500) | 1.991083 / 1.541195 (0.449888) | 2.006711 / 1.468490 (0.538221) | 0.832339 / 4.584777 (-3.752438) | 5.213808 / 3.745712 (1.468095) | 4.650355 / 5.269862 (-0.619506) | 2.860494 / 4.565676 (-1.705182) | 0.093090 / 0.424275 (-0.331185) | 0.009740 / 0.007607 (0.002133) | 0.693509 / 0.226044 (0.467464) | 6.828735 / 2.268929 (4.559807) | 2.967763 / 55.444624 (-52.476862) | 2.311461 / 6.876477 (-4.565016) | 2.400051 / 2.142072 (0.257979) | 0.914753 / 4.805227 (-3.890474) | 0.202804 / 6.500664 (-6.297860) | 0.076905 / 0.075469 (0.001436) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.576424 / 1.841788 (-0.265363) | 22.963472 / 8.074308 (14.889164) | 19.948105 / 10.191392 (9.756713) | 0.228982 / 0.680424 (-0.451442) | 0.029038 / 0.534201 (-0.505163) | 0.477715 / 0.579283 (-0.101568) | 0.554924 / 0.434364 (0.120560) | 0.532118 / 0.540337 (-0.008219) | 0.775096 / 1.386936 (-0.611840) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009127 / 0.011353 (-0.002226) | 0.004978 / 0.011008 (-0.006030) | 0.084166 / 0.038508 (0.045658) | 0.083391 / 0.023109 (0.060282) | 0.420760 / 0.275898 (0.144862) | 0.459072 / 0.323480 (0.135592) | 0.007102 / 0.007986 (-0.000883) | 0.004175 / 0.004328 (-0.000154) | 0.082922 / 0.004250 (0.078672) | 0.059010 / 0.037052 (0.021957) | 0.416959 / 0.258489 (0.158470) | 0.472220 / 0.293841 (0.178379) | 0.049999 / 0.128546 (-0.078547) | 0.014126 / 0.075646 (-0.061520) | 0.096894 / 0.419271 (-0.322378) | 0.057920 / 0.043533 (0.014387) | 0.405779 / 0.255139 (0.150640) | 0.464286 / 0.283200 (0.181087) | 0.034957 / 0.141683 (-0.106726) | 1.637921 / 1.452155 (0.185767) | 1.768231 / 1.492716 (0.275515) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.354875 / 0.018006 (0.336868) | 0.554667 / 0.000490 (0.554177) | 0.074127 / 0.000200 (0.073927) | 0.000411 / 0.000054 (0.000357) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027681 / 0.037411 (-0.009730) | 0.087746 / 0.014526 (0.073220) | 0.093714 / 0.176557 (-0.082843) | 0.145380 / 0.737135 (-0.591755) | 0.095686 / 0.296338 (-0.200652) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.522079 / 0.215209 (0.306870) | 5.197366 / 2.077655 (3.119711) | 2.300744 / 1.504120 (0.796624) | 2.056846 / 1.541195 (0.515652) | 2.009897 / 1.468490 (0.541407) | 0.813025 / 4.584777 (-3.771751) | 5.177732 / 3.745712 (1.432020) | 4.076749 / 5.269862 (-1.193112) | 2.545588 / 4.565676 (-2.020088) | 0.083507 / 0.424275 (-0.340769) | 0.007011 / 0.007607 (-0.000596) | 0.598820 / 0.226044 (0.372776) | 6.203730 / 2.268929 (3.934801) | 2.945385 / 55.444624 (-52.499239) | 2.304849 / 6.876477 (-4.571628) | 2.599035 / 2.142072 (0.456962) | 1.002721 / 4.805227 (-3.802506) | 0.191781 / 6.500664 (-6.308883) | 0.064178 / 0.075469 (-0.011292) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.549560 / 1.841788 (-0.292228) | 22.395727 / 8.074308 (14.321418) | 20.537895 / 10.191392 (10.346503) | 0.246542 / 0.680424 (-0.433882) | 0.031673 / 0.534201 (-0.502528) | 0.442490 / 0.579283 (-0.136793) | 0.589838 / 0.434364 (0.155474) | 0.535201 / 0.540337 (-0.005136) | 0.733660 / 1.386936 (-0.653276) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#e742718e504a372cce0b1f87c2cac65eb8c35792 \"CML watermark\")\n"
] | 2023-11-01T17:57:11 | 2023-11-02T16:02:52 | 2023-11-02T15:52:09 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6372",
"html_url": "https://github.com/huggingface/datasets/pull/6372",
"diff_url": "https://github.com/huggingface/datasets/pull/6372.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6372.patch",
"merged_at": "2023-11-02T15:52:09"
} | attempt to fix https://github.com/huggingface/datasets/issues/6371 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6372/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6372/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6371 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6371/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6371/comments | https://api.github.com/repos/huggingface/datasets/issues/6371/events | https://github.com/huggingface/datasets/issues/6371 | 1,972,807,579 | I_kwDODunzps51lqeb | 6,371 | `Dataset.from_generator` should not try to download from HF GCS | {
"login": "yundai424",
"id": 43726198,
"node_id": "MDQ6VXNlcjQzNzI2MTk4",
"avatar_url": "https://avatars.githubusercontent.com/u/43726198?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/yundai424",
"html_url": "https://github.com/yundai424",
"followers_url": "https://api.github.com/users/yundai424/followers",
"following_url": "https://api.github.com/users/yundai424/following{/other_user}",
"gists_url": "https://api.github.com/users/yundai424/gists{/gist_id}",
"starred_url": "https://api.github.com/users/yundai424/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/yundai424/subscriptions",
"organizations_url": "https://api.github.com/users/yundai424/orgs",
"repos_url": "https://api.github.com/users/yundai424/repos",
"events_url": "https://api.github.com/users/yundai424/events{/privacy}",
"received_events_url": "https://api.github.com/users/yundai424/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | [
"Indeed, setting `try_from_gcs` to `False` makes sense for `from_generator`.\r\n\r\nWe plan to deprecate and remove `try_from_hf_gcs` soon, as we can use Hub for file hosting now, but this is a good temporary fix.\r\n"
] | 2023-11-01T17:36:17 | 2023-11-02T15:52:10 | 2023-11-02T15:52:10 | CONTRIBUTOR | null | null | null | ### Describe the bug
When using [`Dataset.from_generator`](https://github.com/huggingface/datasets/blob/c9c1166e1cf81d38534020f9c167b326585339e5/src/datasets/arrow_dataset.py#L1072) with `streaming=False`, the internal logic will call [`download_and_prepare`](https://github.com/huggingface/datasets/blob/main/src/datasets/io/generator.py#L47) which will attempt to download from HF GCS which is redundant, because user has already provided the generator from which the data should be drawn.
If someone attempts to call `Dataset.from_generator` from an environment that doesn't have external internet access (for example internal production machine) and doesn't set `HF_DATASETS_OFFLINE=1`, this will result in process being stuck at building connection.
### Steps to reproduce the bug
```python
import datasets
def gen():
for _ in range(100):
yield {"text": "dummy text"}
dataset = datasets.Dataset.from_generator(gen)
```
A minimum example executed on any environment that doesn't have access to HF GCS can result in the error
### Expected behavior
`try_from_hf_gcs` should be set to False here https://github.com/huggingface/datasets/blob/c9c1166e1cf81d38534020f9c167b326585339e5/src/datasets/io/generator.py#L51
### Environment info
- `datasets` version: 2.14.4
- Platform: Linux-3.10.0-1160.90.1.el7.x86_64-x86_64-with-glibc2.17
- Python version: 3.10.12
- Huggingface_hub version: 0.17.1
- PyArrow version: 12.0.1
- Pandas version: 2.0.3 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6371/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6371/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/6370 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6370/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6370/comments | https://api.github.com/repos/huggingface/datasets/issues/6370/events | https://github.com/huggingface/datasets/issues/6370 | 1,972,073,909 | I_kwDODunzps51i3W1 | 6,370 | TensorDataset format does not work with Trainer from transformers | {
"login": "jinzzasol",
"id": 49014051,
"node_id": "MDQ6VXNlcjQ5MDE0MDUx",
"avatar_url": "https://avatars.githubusercontent.com/u/49014051?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/jinzzasol",
"html_url": "https://github.com/jinzzasol",
"followers_url": "https://api.github.com/users/jinzzasol/followers",
"following_url": "https://api.github.com/users/jinzzasol/following{/other_user}",
"gists_url": "https://api.github.com/users/jinzzasol/gists{/gist_id}",
"starred_url": "https://api.github.com/users/jinzzasol/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/jinzzasol/subscriptions",
"organizations_url": "https://api.github.com/users/jinzzasol/orgs",
"repos_url": "https://api.github.com/users/jinzzasol/repos",
"events_url": "https://api.github.com/users/jinzzasol/events{/privacy}",
"received_events_url": "https://api.github.com/users/jinzzasol/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | [
"I figured it out. I found that `Trainer` does not work with TensorDataset even though the document says it uses it. Instead, I ended up creating a dictionary and converting it to a dataset using `dataset.Dataset.from_dict()`.\r\n\r\nI will leave this post open for a while. If someone knows a better approach, please leave a comment.",
"Only issues directly related to the HF datasets library should be reported here. ~So, I'm transferring this issue to the `transformers` repo.~ I'm not a `transformers` maintainer, so GitHub doesn't let me transfer it there :(. This means you need to do it manually."
] | 2023-11-01T10:09:54 | 2023-11-29T16:31:08 | 2023-11-29T16:31:08 | NONE | null | null | null | ### Describe the bug
The model was built to do fine tunning on BERT model for relation extraction.
trainer.train() returns an error message ```TypeError: vars() argument must have __dict__ attribute``` when it has `train_dataset` generated from `torch.utils.data.TensorDataset`
However, in the document, the required data format is `torch.utils.data.TensorDataset`.
![image](https://github.com/huggingface/datasets/assets/49014051/36fa34ac-3127-4c64-9580-9ab736136d83)
Transformers trainer is supposed to accept the train_dataset in the format of torch.utils.data.TensorDataset, but it returns error message *"TypeError: vars() argument must have __dict__ attribute"*
```
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-30-5df728c929a2> in <cell line: 1>()
----> 1 trainer.train()
2 trainer.evaluate(test_dataset)
9 frames
/usr/local/lib/python3.10/dist-packages/transformers/data/data_collator.py in <listcomp>(.0)
107
108 if not isinstance(features[0], Mapping):
--> 109 features = [vars(f) for f in features]
110 first = features[0]
111 batch = {}
TypeError: vars() argument must have __dict__ attribute
```
### Steps to reproduce the bug
Create train_dataset using `torch.utils.data.TensorDataset`, for instance,
```train_dataset = torch.utils.data.TensorDataset(train_input_ids, train_attention_masks, train_labels)```
Feed this `train_dataset` to your trainer and run trainer.train
```
trainer = Trainer(model,
training_args,
train_dataset=train_dataset,
eval_dataset=dev_dataset,
compute_metrics=compute_metrics,
)
```
### Expected behavior
Trainer should start training
### Environment info
It is running on Google Colab
- `datasets` version: 2.14.6
- Platform: Linux-5.15.120+-x86_64-with-glibc2.35
- Python version: 3.10.12
- Huggingface_hub version: 0.17.3
- PyArrow version: 9.0.0
- Pandas version: 1.5.3 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6370/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6370/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/6369 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6369/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6369/comments | https://api.github.com/repos/huggingface/datasets/issues/6369/events | https://github.com/huggingface/datasets/issues/6369 | 1,971,794,108 | I_kwDODunzps51hzC8 | 6,369 | Multi process map did not load cache file correctly | {
"login": "enze5088",
"id": 14285786,
"node_id": "MDQ6VXNlcjE0Mjg1Nzg2",
"avatar_url": "https://avatars.githubusercontent.com/u/14285786?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/enze5088",
"html_url": "https://github.com/enze5088",
"followers_url": "https://api.github.com/users/enze5088/followers",
"following_url": "https://api.github.com/users/enze5088/following{/other_user}",
"gists_url": "https://api.github.com/users/enze5088/gists{/gist_id}",
"starred_url": "https://api.github.com/users/enze5088/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/enze5088/subscriptions",
"organizations_url": "https://api.github.com/users/enze5088/orgs",
"repos_url": "https://api.github.com/users/enze5088/repos",
"events_url": "https://api.github.com/users/enze5088/events{/privacy}",
"received_events_url": "https://api.github.com/users/enze5088/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | [
"The inconsistency may be caused by the usage of \"update_fingerprint\" and setting \"trust_remote_code\" to \"True.\"\r\nWhen the tokenizer employs \"trust_remote_code,\" the behavior of the map function varies with each code execution. Even if the remote code of the tokenizer remains the same, the result of \"asher.hexdigest()\" is found to be inconsistent each time.\r\nThis may result in different processes executing multiple maps\r\n![1698841094290](https://github.com/huggingface/datasets/assets/14285786/21fc3c65-e9fd-4a79-b12e-a1d4b9c6cf32)\r\n![1698841117416](https://github.com/huggingface/datasets/assets/14285786/c3e5a530-54d2-4ae6-b902-ce9f85de373b)\r\n\r\n",
"The issue may be related to problems previously discussed in GitHub issues [#3847](https://github.com/huggingface/datasets/issues/3847) and [#6318](https://github.com/huggingface/datasets/pull/6318). \r\nThis arises from the fact that tokenizer.tokens_trie._tokens is an unordered set, leading to varying hash results:\r\n`value = hash_bytes(dumps(tokenizer.tokens_trie._tokens))`\r\nConsequently, this results in different outcomes each time for:\r\n`new_fingerprint = update_fingerprint(datasets._fingerprint, transform, kwargs_for_fingerprint)`\r\n\r\nTo address this issue, it's essential to make `Trie._tokens` a deterministic set while ensuring a consistent order after the final update of `_tokens`.\r\n",
"We now sort `set` and `dict` items to make their hashes deterministic (install from `main` with `pip install git+https://github.com/huggingface/datasets` to test this). Consequently, this should also make the `tokenizer.tokens_trie`'s hash deterministic. Feel free to re-open the issue if this is not the case."
] | 2023-11-01T06:36:54 | 2023-11-30T16:04:46 | 2023-11-30T16:04:45 | NONE | null | null | null | ### Describe the bug
When I was training model on Multiple GPUs by DDP, the dataset is tokenized multiple times after main process.
![1698820541284](https://github.com/huggingface/datasets/assets/14285786/0b2fe054-54d8-4e00-96e6-6ca5b69e662b)
![1698820501568](https://github.com/huggingface/datasets/assets/14285786/dd62bf6f-a58f-41bf-9848-ea4fb3b62b9b)
Code is modified from [run_clm.py](https://github.com/huggingface/transformers/blob/7d8ff3629b2725ec43ace99c1a6e87ac1978d433/examples/pytorch/language-modeling/run_clm.py#L484)
### Steps to reproduce the bug
```
block_size = data_args.block_size
IGNORE_INDEX = -100
Ignore_Input = False
def tokenize_function(examples):
sources = []
targets = []
for instruction, inputs, output in zip(examples['instruction'], examples['input'], examples['output']):
source = instruction + inputs
target = f"{output}{tokenizer.eos_token}"
sources.append(source)
targets.append(target)
tokenized_sources = tokenizer(sources, return_attention_mask=False)
tokenized_targets = tokenizer(targets, return_attention_mask=False,
add_special_tokens=False
)
all_input_ids = []
all_labels = []
for s, t in zip(tokenized_sources['input_ids'], tokenized_targets['input_ids']):
if len(s) > block_size and Ignore_Input == False:
# print(s)
continue
input_ids = torch.LongTensor(s + t)[:block_size]
if Ignore_Input:
labels = torch.LongTensor([IGNORE_INDEX] * len(s) + t)[:block_size]
else:
labels = input_ids
assert len(input_ids) == len(labels)
all_input_ids.append(input_ids)
all_labels.append(labels)
results = {
'input_ids': all_input_ids,
'labels': all_labels,
}
return results
with training_args.main_process_first(desc="dataset map tokenization ", local=False):
# print('local_rank',training_args.local_rank)
if not data_args.streaming:
tokenized_datasets = raw_datasets.map(
tokenize_function,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on dataset ",
)
else:
tokenized_datasets = raw_datasets.map(
tokenize_function,
batched=True,
remove_columns=column_names,
desc="Running tokenizer on dataset "
)
```
### Expected behavior
This code should only tokenize the dataset in the main process, and the other processes load the dataset after waiting
### Environment info
transformers == 4.34.1
datasets == 2.14.5 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6369/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6369/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/6368 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6368/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6368/comments | https://api.github.com/repos/huggingface/datasets/issues/6368/events | https://github.com/huggingface/datasets/pull/6368 | 1,971,193,692 | PR_kwDODunzps5eRZwQ | 6,368 | Fix python formatting for complex types in `format_table` | {
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | [
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008047 / 0.011353 (-0.003305) | 0.004649 / 0.011008 (-0.006359) | 0.100275 / 0.038508 (0.061767) | 0.089551 / 0.023109 (0.066442) | 0.369831 / 0.275898 (0.093933) | 0.431023 / 0.323480 (0.107544) | 0.004721 / 0.007986 (-0.003265) | 0.004904 / 0.004328 (0.000575) | 0.076345 / 0.004250 (0.072095) | 0.066902 / 0.037052 (0.029849) | 0.377208 / 0.258489 (0.118718) | 0.430989 / 0.293841 (0.137148) | 0.036260 / 0.128546 (-0.092287) | 0.010158 / 0.075646 (-0.065488) | 0.344923 / 0.419271 (-0.074349) | 0.062504 / 0.043533 (0.018971) | 0.373038 / 0.255139 (0.117899) | 0.399918 / 0.283200 (0.116718) | 0.028257 / 0.141683 (-0.113425) | 1.782546 / 1.452155 (0.330391) | 1.920010 / 1.492716 (0.427293) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.277670 / 0.018006 (0.259664) | 0.500543 / 0.000490 (0.500053) | 0.018256 / 0.000200 (0.018056) | 0.000343 / 0.000054 (0.000289) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033337 / 0.037411 (-0.004074) | 0.100542 / 0.014526 (0.086017) | 0.114903 / 0.176557 (-0.061654) | 0.181267 / 0.737135 (-0.555868) | 0.115019 / 0.296338 (-0.181320) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.457333 / 0.215209 (0.242124) | 4.542082 / 2.077655 (2.464427) | 2.231817 / 1.504120 (0.727697) | 2.028523 / 1.541195 (0.487328) | 2.110715 / 1.468490 (0.642225) | 0.583162 / 4.584777 (-4.001615) | 4.179413 / 3.745712 (0.433701) | 4.145620 / 5.269862 (-1.124241) | 2.452458 / 4.565676 (-2.113218) | 0.068229 / 0.424275 (-0.356046) | 0.009027 / 0.007607 (0.001420) | 0.549002 / 0.226044 (0.322957) | 5.485707 / 2.268929 (3.216779) | 2.789467 / 55.444624 (-52.655157) | 2.397499 / 6.876477 (-4.478977) | 2.492083 / 2.142072 (0.350010) | 0.692445 / 4.805227 (-4.112782) | 0.160527 / 6.500664 (-6.340137) | 0.071597 / 0.075469 (-0.003872) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.486043 / 1.841788 (-0.355744) | 22.377207 / 8.074308 (14.302899) | 16.443719 / 10.191392 (6.252327) | 0.170740 / 0.680424 (-0.509684) | 0.021511 / 0.534201 (-0.512690) | 0.470798 / 0.579283 (-0.108485) | 0.511851 / 0.434364 (0.077487) | 0.551154 / 0.540337 (0.010817) | 0.768420 / 1.386936 (-0.618516) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008049 / 0.011353 (-0.003303) | 0.004676 / 0.011008 (-0.006332) | 0.076360 / 0.038508 (0.037852) | 0.093648 / 0.023109 (0.070539) | 0.480597 / 0.275898 (0.204699) | 0.524674 / 0.323480 (0.201194) | 0.006242 / 0.007986 (-0.001744) | 0.003827 / 0.004328 (-0.000501) | 0.077039 / 0.004250 (0.072788) | 0.067992 / 0.037052 (0.030940) | 0.480287 / 0.258489 (0.221798) | 0.528546 / 0.293841 (0.234706) | 0.038347 / 0.128546 (-0.090199) | 0.010036 / 0.075646 (-0.065611) | 0.084386 / 0.419271 (-0.334885) | 0.057211 / 0.043533 (0.013678) | 0.475993 / 0.255139 (0.220854) | 0.504881 / 0.283200 (0.221682) | 0.026658 / 0.141683 (-0.115025) | 1.777095 / 1.452155 (0.324940) | 1.896446 / 1.492716 (0.403730) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.242450 / 0.018006 (0.224443) | 0.488864 / 0.000490 (0.488374) | 0.007329 / 0.000200 (0.007129) | 0.000108 / 0.000054 (0.000053) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.039093 / 0.037411 (0.001682) | 0.114724 / 0.014526 (0.100198) | 0.124965 / 0.176557 (-0.051591) | 0.188165 / 0.737135 (-0.548971) | 0.125336 / 0.296338 (-0.171002) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.515718 / 0.215209 (0.300509) | 5.150865 / 2.077655 (3.073210) | 2.767866 / 1.504120 (1.263746) | 2.571003 / 1.541195 (1.029808) | 2.656224 / 1.468490 (1.187734) | 0.583771 / 4.584777 (-4.001006) | 4.268713 / 3.745712 (0.523001) | 3.938699 / 5.269862 (-1.331163) | 2.413569 / 4.565676 (-2.152108) | 0.068848 / 0.424275 (-0.355427) | 0.008758 / 0.007607 (0.001151) | 0.610831 / 0.226044 (0.384786) | 6.099965 / 2.268929 (3.831037) | 3.337530 / 55.444624 (-52.107095) | 2.910962 / 6.876477 (-3.965514) | 3.149813 / 2.142072 (1.007740) | 0.700576 / 4.805227 (-4.104651) | 0.157569 / 6.500664 (-6.343095) | 0.072237 / 0.075469 (-0.003232) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.655840 / 1.841788 (-0.185947) | 23.639061 / 8.074308 (15.564753) | 17.301593 / 10.191392 (7.110201) | 0.201717 / 0.680424 (-0.478707) | 0.023836 / 0.534201 (-0.510365) | 0.470941 / 0.579283 (-0.108342) | 0.498157 / 0.434364 (0.063794) | 0.581195 / 0.540337 (0.040857) | 0.788304 / 1.386936 (-0.598632) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#f657900acfd8ea1afaf47267e552a7ad2c6ef28b \"CML watermark\")\n",
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004823 / 0.011353 (-0.006530) | 0.002976 / 0.011008 (-0.008032) | 0.062070 / 0.038508 (0.023562) | 0.051623 / 0.023109 (0.028513) | 0.242249 / 0.275898 (-0.033649) | 0.271223 / 0.323480 (-0.052257) | 0.003906 / 0.007986 (-0.004079) | 0.002709 / 0.004328 (-0.001620) | 0.047874 / 0.004250 (0.043624) | 0.038123 / 0.037052 (0.001071) | 0.253737 / 0.258489 (-0.004752) | 0.281942 / 0.293841 (-0.011899) | 0.023750 / 0.128546 (-0.104797) | 0.007227 / 0.075646 (-0.068420) | 0.203137 / 0.419271 (-0.216134) | 0.036254 / 0.043533 (-0.007278) | 0.243923 / 0.255139 (-0.011216) | 0.263908 / 0.283200 (-0.019291) | 0.017795 / 0.141683 (-0.123888) | 1.105680 / 1.452155 (-0.346475) | 1.166804 / 1.492716 (-0.325912) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.097388 / 0.018006 (0.079381) | 0.305481 / 0.000490 (0.304991) | 0.000210 / 0.000200 (0.000010) | 0.000043 / 0.000054 (-0.000012) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.020096 / 0.037411 (-0.017315) | 0.063990 / 0.014526 (0.049464) | 0.073694 / 0.176557 (-0.102863) | 0.122909 / 0.737135 (-0.614227) | 0.076199 / 0.296338 (-0.220140) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.285612 / 0.215209 (0.070403) | 2.770524 / 2.077655 (0.692869) | 1.451624 / 1.504120 (-0.052496) | 1.329223 / 1.541195 (-0.211972) | 1.369980 / 1.468490 (-0.098510) | 0.398269 / 4.584777 (-4.186507) | 2.418740 / 3.745712 (-1.326972) | 2.796384 / 5.269862 (-2.473478) | 1.686490 / 4.565676 (-2.879186) | 0.046417 / 0.424275 (-0.377858) | 0.005414 / 0.007607 (-0.002193) | 0.345505 / 0.226044 (0.119460) | 3.391857 / 2.268929 (1.122929) | 1.856696 / 55.444624 (-53.587929) | 1.538061 / 6.876477 (-5.338416) | 1.631489 / 2.142072 (-0.510584) | 0.479188 / 4.805227 (-4.326039) | 0.101549 / 6.500664 (-6.399116) | 0.042150 / 0.075469 (-0.033319) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.957961 / 1.841788 (-0.883827) | 12.349371 / 8.074308 (4.275063) | 10.778214 / 10.191392 (0.586822) | 0.141265 / 0.680424 (-0.539158) | 0.014559 / 0.534201 (-0.519642) | 0.272071 / 0.579283 (-0.307212) | 0.262493 / 0.434364 (-0.171871) | 0.310351 / 0.540337 (-0.229986) | 0.399220 / 1.386936 (-0.987716) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005127 / 0.011353 (-0.006226) | 0.002926 / 0.011008 (-0.008082) | 0.048320 / 0.038508 (0.009812) | 0.063082 / 0.023109 (0.039973) | 0.269846 / 0.275898 (-0.006052) | 0.294470 / 0.323480 (-0.029010) | 0.004201 / 0.007986 (-0.003784) | 0.002434 / 0.004328 (-0.001894) | 0.048020 / 0.004250 (0.043770) | 0.043909 / 0.037052 (0.006856) | 0.271328 / 0.258489 (0.012839) | 0.298820 / 0.293841 (0.004979) | 0.024565 / 0.128546 (-0.103981) | 0.007752 / 0.075646 (-0.067894) | 0.054171 / 0.419271 (-0.365101) | 0.033147 / 0.043533 (-0.010386) | 0.266628 / 0.255139 (0.011489) | 0.288651 / 0.283200 (0.005452) | 0.018910 / 0.141683 (-0.122773) | 1.153679 / 1.452155 (-0.298476) | 1.214979 / 1.492716 (-0.277737) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.097064 / 0.018006 (0.079057) | 0.307504 / 0.000490 (0.307014) | 0.000230 / 0.000200 (0.000030) | 0.000051 / 0.000054 (-0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.021848 / 0.037411 (-0.015563) | 0.071159 / 0.014526 (0.056633) | 0.081310 / 0.176557 (-0.095247) | 0.120175 / 0.737135 (-0.616961) | 0.082619 / 0.296338 (-0.213720) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.296606 / 0.215209 (0.081397) | 2.908495 / 2.077655 (0.830840) | 1.606522 / 1.504120 (0.102402) | 1.528599 / 1.541195 (-0.012596) | 1.508332 / 1.468490 (0.039842) | 0.396336 / 4.584777 (-4.188441) | 2.449163 / 3.745712 (-1.296549) | 2.533372 / 5.269862 (-2.736490) | 1.623061 / 4.565676 (-2.942615) | 0.046723 / 0.424275 (-0.377552) | 0.005120 / 0.007607 (-0.002487) | 0.345763 / 0.226044 (0.119718) | 3.427382 / 2.268929 (1.158454) | 1.962806 / 55.444624 (-53.481819) | 1.678548 / 6.876477 (-5.197929) | 1.865773 / 2.142072 (-0.276300) | 0.477932 / 4.805227 (-4.327295) | 0.100994 / 6.500664 (-6.399670) | 0.042212 / 0.075469 (-0.033258) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.992766 / 1.841788 (-0.849022) | 12.764885 / 8.074308 (4.690577) | 10.892094 / 10.191392 (0.700702) | 0.143211 / 0.680424 (-0.537213) | 0.016347 / 0.534201 (-0.517853) | 0.270181 / 0.579283 (-0.309102) | 0.278658 / 0.434364 (-0.155706) | 0.307134 / 0.540337 (-0.233203) | 0.396792 / 1.386936 (-0.990144) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#6d2f2a5e0fea3827eccfd1717d8021c15fc4292a \"CML watermark\")\n",
"Thanks for the fix ! It was probably my mistake (forgot to re-apply the features)"
] | 2023-10-31T19:48:08 | 2023-11-02T14:42:28 | 2023-11-02T14:21:16 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6368",
"html_url": "https://github.com/huggingface/datasets/pull/6368",
"diff_url": "https://github.com/huggingface/datasets/pull/6368.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6368.patch",
"merged_at": "2023-11-02T14:21:16"
} | Fix #6366 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6368/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6368/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6367 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6367/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6367/comments | https://api.github.com/repos/huggingface/datasets/issues/6367/events | https://github.com/huggingface/datasets/pull/6367 | 1,971,015,861 | PR_kwDODunzps5eQy1D | 6,367 | Fix time measuring snippet in docs | {
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007683 / 0.011353 (-0.003670) | 0.004159 / 0.011008 (-0.006849) | 0.097017 / 0.038508 (0.058509) | 0.074216 / 0.023109 (0.051107) | 0.323115 / 0.275898 (0.047217) | 0.412836 / 0.323480 (0.089356) | 0.005151 / 0.007986 (-0.002834) | 0.004037 / 0.004328 (-0.000292) | 0.067881 / 0.004250 (0.063631) | 0.051395 / 0.037052 (0.014342) | 0.356391 / 0.258489 (0.097901) | 0.386744 / 0.293841 (0.092903) | 0.043571 / 0.128546 (-0.084975) | 0.012844 / 0.075646 (-0.062803) | 0.369440 / 0.419271 (-0.049832) | 0.056944 / 0.043533 (0.013411) | 0.316159 / 0.255139 (0.061020) | 0.435530 / 0.283200 (0.152330) | 0.033622 / 0.141683 (-0.108061) | 1.379602 / 1.452155 (-0.072553) | 1.766400 / 1.492716 (0.273683) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.304151 / 0.018006 (0.286145) | 0.616365 / 0.000490 (0.615875) | 0.013588 / 0.000200 (0.013389) | 0.000441 / 0.000054 (0.000387) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032812 / 0.037411 (-0.004600) | 0.100914 / 0.014526 (0.086388) | 0.124004 / 0.176557 (-0.052552) | 0.195087 / 0.737135 (-0.542048) | 0.124388 / 0.296338 (-0.171951) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.575649 / 0.215209 (0.360440) | 5.665461 / 2.077655 (3.587806) | 2.474892 / 1.504120 (0.970773) | 2.142687 / 1.541195 (0.601492) | 2.254962 / 1.468490 (0.786472) | 0.816635 / 4.584777 (-3.768141) | 5.044279 / 3.745712 (1.298567) | 4.566728 / 5.269862 (-0.703134) | 2.867146 / 4.565676 (-1.698531) | 0.092994 / 0.424275 (-0.331281) | 0.008395 / 0.007607 (0.000788) | 0.680346 / 0.226044 (0.454302) | 6.909875 / 2.268929 (4.640946) | 3.275602 / 55.444624 (-52.169022) | 2.556000 / 6.876477 (-4.320477) | 2.581337 / 2.142072 (0.439264) | 0.997883 / 4.805227 (-3.807344) | 0.204109 / 6.500664 (-6.296555) | 0.069705 / 0.075469 (-0.005764) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.504573 / 1.841788 (-0.337215) | 22.219363 / 8.074308 (14.145055) | 19.078040 / 10.191392 (8.886648) | 0.234970 / 0.680424 (-0.445454) | 0.027324 / 0.534201 (-0.506877) | 0.427960 / 0.579283 (-0.151323) | 0.570258 / 0.434364 (0.135894) | 0.502335 / 0.540337 (-0.038003) | 0.788078 / 1.386936 (-0.598858) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008370 / 0.011353 (-0.002982) | 0.004573 / 0.011008 (-0.006435) | 0.073080 / 0.038508 (0.034572) | 0.068752 / 0.023109 (0.045643) | 0.439648 / 0.275898 (0.163750) | 0.499700 / 0.323480 (0.176220) | 0.006119 / 0.007986 (-0.001866) | 0.004300 / 0.004328 (-0.000028) | 0.073173 / 0.004250 (0.068923) | 0.055676 / 0.037052 (0.018624) | 0.464152 / 0.258489 (0.205663) | 0.476954 / 0.293841 (0.183113) | 0.046335 / 0.128546 (-0.082211) | 0.013373 / 0.075646 (-0.062274) | 0.092006 / 0.419271 (-0.327265) | 0.054802 / 0.043533 (0.011269) | 0.456594 / 0.255139 (0.201455) | 0.491931 / 0.283200 (0.208732) | 0.034021 / 0.141683 (-0.107662) | 1.575200 / 1.452155 (0.123045) | 1.689742 / 1.492716 (0.197026) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.299432 / 0.018006 (0.281426) | 0.605643 / 0.000490 (0.605153) | 0.006280 / 0.000200 (0.006080) | 0.000120 / 0.000054 (0.000066) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028414 / 0.037411 (-0.008997) | 0.085812 / 0.014526 (0.071286) | 0.109142 / 0.176557 (-0.067414) | 0.163458 / 0.737135 (-0.573677) | 0.100837 / 0.296338 (-0.195501) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.615557 / 0.215209 (0.400348) | 6.051599 / 2.077655 (3.973944) | 2.872353 / 1.504120 (1.368234) | 2.508322 / 1.541195 (0.967128) | 2.550073 / 1.468490 (1.081583) | 0.835793 / 4.584777 (-3.748983) | 5.208484 / 3.745712 (1.462772) | 4.361846 / 5.269862 (-0.908016) | 2.776164 / 4.565676 (-1.789513) | 0.090831 / 0.424275 (-0.333444) | 0.007320 / 0.007607 (-0.000287) | 0.725533 / 0.226044 (0.499488) | 7.051321 / 2.268929 (4.782393) | 3.515464 / 55.444624 (-51.929160) | 2.798193 / 6.876477 (-4.078284) | 3.022512 / 2.142072 (0.880440) | 0.986744 / 4.805227 (-3.818484) | 0.198050 / 6.500664 (-6.302615) | 0.069200 / 0.075469 (-0.006269) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.623759 / 1.841788 (-0.218029) | 22.269700 / 8.074308 (14.195392) | 19.577429 / 10.191392 (9.386037) | 0.215990 / 0.680424 (-0.464434) | 0.033005 / 0.534201 (-0.501196) | 0.436848 / 0.579283 (-0.142435) | 0.591442 / 0.434364 (0.157078) | 0.547701 / 0.540337 (0.007364) | 0.741695 / 1.386936 (-0.645241) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#7e17e139b1323aca3321a5d2c2da40d82c458bae \"CML watermark\")\n",
"CI failures are unrelated",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009027 / 0.011353 (-0.002326) | 0.006118 / 0.011008 (-0.004890) | 0.118939 / 0.038508 (0.080431) | 0.089979 / 0.023109 (0.066869) | 0.412425 / 0.275898 (0.136527) | 0.455706 / 0.323480 (0.132227) | 0.006762 / 0.007986 (-0.001224) | 0.004409 / 0.004328 (0.000080) | 0.088002 / 0.004250 (0.083751) | 0.063708 / 0.037052 (0.026656) | 0.417373 / 0.258489 (0.158884) | 0.489582 / 0.293841 (0.195741) | 0.050222 / 0.128546 (-0.078324) | 0.014386 / 0.075646 (-0.061260) | 0.435363 / 0.419271 (0.016092) | 0.069375 / 0.043533 (0.025842) | 0.410242 / 0.255139 (0.155103) | 0.436439 / 0.283200 (0.153239) | 0.039318 / 0.141683 (-0.102365) | 1.857574 / 1.452155 (0.405419) | 1.919402 / 1.492716 (0.426686) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.343916 / 0.018006 (0.325910) | 0.633639 / 0.000490 (0.633150) | 0.014756 / 0.000200 (0.014557) | 0.000707 / 0.000054 (0.000652) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031983 / 0.037411 (-0.005429) | 0.097222 / 0.014526 (0.082697) | 0.114644 / 0.176557 (-0.061912) | 0.187787 / 0.737135 (-0.549348) | 0.120595 / 0.296338 (-0.175743) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.605861 / 0.215209 (0.390652) | 6.039318 / 2.077655 (3.961664) | 2.699251 / 1.504120 (1.195132) | 2.436398 / 1.541195 (0.895203) | 2.493653 / 1.468490 (1.025163) | 0.889423 / 4.584777 (-3.695354) | 5.384769 / 3.745712 (1.639056) | 5.033033 / 5.269862 (-0.236829) | 3.056894 / 4.565676 (-1.508783) | 0.100683 / 0.424275 (-0.323592) | 0.009103 / 0.007607 (0.001495) | 0.737066 / 0.226044 (0.511021) | 7.370485 / 2.268929 (5.101556) | 3.422670 / 55.444624 (-52.021954) | 2.830392 / 6.876477 (-4.046084) | 2.985789 / 2.142072 (0.843717) | 0.999239 / 4.805227 (-3.805989) | 0.203506 / 6.500664 (-6.297158) | 0.076135 / 0.075469 (0.000666) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.697001 / 1.841788 (-0.144787) | 24.653975 / 8.074308 (16.579667) | 22.241622 / 10.191392 (12.050230) | 0.257075 / 0.680424 (-0.423349) | 0.029159 / 0.534201 (-0.505041) | 0.493329 / 0.579283 (-0.085954) | 0.596661 / 0.434364 (0.162297) | 0.569431 / 0.540337 (0.029094) | 0.812231 / 1.386936 (-0.574705) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009815 / 0.011353 (-0.001538) | 0.005136 / 0.011008 (-0.005872) | 0.078224 / 0.038508 (0.039716) | 0.103276 / 0.023109 (0.080166) | 0.512742 / 0.275898 (0.236844) | 0.544010 / 0.323480 (0.220530) | 0.007957 / 0.007986 (-0.000029) | 0.004629 / 0.004328 (0.000300) | 0.074983 / 0.004250 (0.070733) | 0.071831 / 0.037052 (0.034778) | 0.542752 / 0.258489 (0.284262) | 0.573176 / 0.293841 (0.279335) | 0.053939 / 0.128546 (-0.074607) | 0.015007 / 0.075646 (-0.060640) | 0.085389 / 0.419271 (-0.333882) | 0.063587 / 0.043533 (0.020055) | 0.509580 / 0.255139 (0.254441) | 0.563374 / 0.283200 (0.280174) | 0.037575 / 0.141683 (-0.104108) | 1.840740 / 1.452155 (0.388585) | 1.836414 / 1.492716 (0.343698) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.310188 / 0.018006 (0.292182) | 0.641478 / 0.000490 (0.640988) | 0.011057 / 0.000200 (0.010857) | 0.000173 / 0.000054 (0.000119) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.043280 / 0.037411 (0.005869) | 0.109256 / 0.014526 (0.094730) | 0.126701 / 0.176557 (-0.049856) | 0.199172 / 0.737135 (-0.537963) | 0.123584 / 0.296338 (-0.172755) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.649272 / 0.215209 (0.434063) | 6.487501 / 2.077655 (4.409846) | 3.170330 / 1.504120 (1.666210) | 2.960912 / 1.541195 (1.419718) | 3.024531 / 1.468490 (1.556041) | 0.905112 / 4.584777 (-3.679665) | 5.560961 / 3.745712 (1.815249) | 4.920463 / 5.269862 (-0.349399) | 3.158989 / 4.565676 (-1.406687) | 0.095444 / 0.424275 (-0.328831) | 0.008264 / 0.007607 (0.000657) | 0.819292 / 0.226044 (0.593247) | 7.982695 / 2.268929 (5.713767) | 4.098704 / 55.444624 (-51.345921) | 3.442330 / 6.876477 (-3.434147) | 3.763426 / 2.142072 (1.621354) | 1.065464 / 4.805227 (-3.739763) | 0.215089 / 6.500664 (-6.285575) | 0.085280 / 0.075469 (0.009811) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.881770 / 1.841788 (0.039983) | 25.671479 / 8.074308 (17.597171) | 22.367019 / 10.191392 (12.175627) | 0.241377 / 0.680424 (-0.439047) | 0.033555 / 0.534201 (-0.500646) | 0.501786 / 0.579283 (-0.077497) | 0.596376 / 0.434364 (0.162012) | 0.579674 / 0.540337 (0.039337) | 0.855534 / 1.386936 (-0.531402) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#c9c1166e1cf81d38534020f9c167b326585339e5 \"CML watermark\")\n"
] | 2023-10-31T17:57:17 | 2023-10-31T18:35:53 | 2023-10-31T18:24:02 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6367",
"html_url": "https://github.com/huggingface/datasets/pull/6367",
"diff_url": "https://github.com/huggingface/datasets/pull/6367.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6367.patch",
"merged_at": "2023-10-31T18:24:02"
} | Fix https://discuss.huggingface.co/t/attributeerror-enter/60509 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6367/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6367/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6366 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6366/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6366/comments | https://api.github.com/repos/huggingface/datasets/issues/6366/events | https://github.com/huggingface/datasets/issues/6366 | 1,970,213,490 | I_kwDODunzps51bxJy | 6,366 | with_format() function returns bytes instead of PIL images even when image column is not part of "columns" | {
"login": "leot13",
"id": 17809020,
"node_id": "MDQ6VXNlcjE3ODA5MDIw",
"avatar_url": "https://avatars.githubusercontent.com/u/17809020?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/leot13",
"html_url": "https://github.com/leot13",
"followers_url": "https://api.github.com/users/leot13/followers",
"following_url": "https://api.github.com/users/leot13/following{/other_user}",
"gists_url": "https://api.github.com/users/leot13/gists{/gist_id}",
"starred_url": "https://api.github.com/users/leot13/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/leot13/subscriptions",
"organizations_url": "https://api.github.com/users/leot13/orgs",
"repos_url": "https://api.github.com/users/leot13/repos",
"events_url": "https://api.github.com/users/leot13/events{/privacy}",
"received_events_url": "https://api.github.com/users/leot13/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | [
"Thanks for reporting! I've opened a PR with a fix."
] | 2023-10-31T11:10:48 | 2023-11-02T14:21:17 | 2023-11-02T14:21:17 | NONE | null | null | null | ### Describe the bug
When using the with_format() function on a dataset containing images, even if the image column is not part of the columns provided in the function, its type will be changed to bytes.
Here is a minimal reproduction of the bug:
https://colab.research.google.com/drive/1hyaOspgyhB41oiR1-tXE3k_gJCdJUQCf?usp=sharing
### Steps to reproduce the bug
1. Load the image dataset
2. apply with_format(columns=["text"])
3. Check the type of images in the "image" column before and after applying with_format
### Expected behavior
The type should stay the same, but it does not
### Environment info
datasets==2.14.6
| {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6366/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6366/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/6365 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6365/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6365/comments | https://api.github.com/repos/huggingface/datasets/issues/6365/events | https://github.com/huggingface/datasets/issues/6365 | 1,970,140,392 | I_kwDODunzps51bfTo | 6,365 | Parquet size grows exponential for categorical data | {
"login": "aseganti",
"id": 82567957,
"node_id": "MDQ6VXNlcjgyNTY3OTU3",
"avatar_url": "https://avatars.githubusercontent.com/u/82567957?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/aseganti",
"html_url": "https://github.com/aseganti",
"followers_url": "https://api.github.com/users/aseganti/followers",
"following_url": "https://api.github.com/users/aseganti/following{/other_user}",
"gists_url": "https://api.github.com/users/aseganti/gists{/gist_id}",
"starred_url": "https://api.github.com/users/aseganti/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/aseganti/subscriptions",
"organizations_url": "https://api.github.com/users/aseganti/orgs",
"repos_url": "https://api.github.com/users/aseganti/repos",
"events_url": "https://api.github.com/users/aseganti/events{/privacy}",
"received_events_url": "https://api.github.com/users/aseganti/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | [
"Wrong repo."
] | 2023-10-31T10:29:02 | 2023-10-31T10:49:17 | 2023-10-31T10:49:17 | NONE | null | null | null | ### Describe the bug
It seems that when saving a data frame with a categorical column inside the size can grow exponentially.
This seems to happen because when we save the categorical data to parquet, we are saving the data + all the categories existing in the original data. This happens even when the categories are not present in the original data.
### Steps to reproduce the bug
To reproduce the bug, it is enough to run this script:
```
import pandas as pd
import os
if __name__ == "__main__":
for n in [10, 1e2, 1e3, 1e4, 1e5]:
for n_col in [1, 10, 100, 1000, 10000]:
input = pd.DataFrame([{"{i}": f"{i}_cat" for col in range(n_col)} for i in range(int(n))])
input.iloc[0:100].to_parquet("a.parquet")
for col in input.columns:
input[col] = input[col].astype("category")
input.iloc[0:100].to_parquet("b.parquet")
a_size_mb = os.stat("a.parquet").st_size / (1024 * 1024)
b_size_mb = os.stat("b.parquet").st_size / (1024 * 1024)
print(f"{n} {n_col} {a_size_mb} {b_size_mb} {100*b_size_mb/a_size_mb:.2f}")
```
That produces this output:
<img width="464" alt="Screenshot 2023-10-31 at 11 25 25" src="https://github.com/huggingface/datasets/assets/82567957/2b8a9284-7f9e-4c10-a006-0a27236ebd15">
### Expected behavior
In my opinion either:
1. The two file should have (almost) the same size
2. There should be warning telling the user that such difference in size is possible
### Environment info
Python 3.8.18
pandas==2.0.3
numpy==1.24.4 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6365/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6365/timeline | null | not_planned | false |
https://api.github.com/repos/huggingface/datasets/issues/6364 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6364/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6364/comments | https://api.github.com/repos/huggingface/datasets/issues/6364/events | https://github.com/huggingface/datasets/issues/6364 | 1,969,136,106 | I_kwDODunzps51XqHq | 6,364 | ArrowNotImplementedError: Unsupported cast from string to list using function cast_list | {
"login": "divyakrishna-devisetty",
"id": 32887094,
"node_id": "MDQ6VXNlcjMyODg3MDk0",
"avatar_url": "https://avatars.githubusercontent.com/u/32887094?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/divyakrishna-devisetty",
"html_url": "https://github.com/divyakrishna-devisetty",
"followers_url": "https://api.github.com/users/divyakrishna-devisetty/followers",
"following_url": "https://api.github.com/users/divyakrishna-devisetty/following{/other_user}",
"gists_url": "https://api.github.com/users/divyakrishna-devisetty/gists{/gist_id}",
"starred_url": "https://api.github.com/users/divyakrishna-devisetty/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/divyakrishna-devisetty/subscriptions",
"organizations_url": "https://api.github.com/users/divyakrishna-devisetty/orgs",
"repos_url": "https://api.github.com/users/divyakrishna-devisetty/repos",
"events_url": "https://api.github.com/users/divyakrishna-devisetty/events{/privacy}",
"received_events_url": "https://api.github.com/users/divyakrishna-devisetty/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | [
"You can use the following code to load this CSV with the list values preserved:\r\n```python\r\nfrom datasets import load_dataset\r\nimport ast\r\n\r\nconverters = {\r\n \"contexts\" : ast.literal_eval,\r\n \"ground_truths\" : ast.literal_eval,\r\n}\r\n\r\nds = load_dataset(\"csv\", data_files=\"golden_dataset.csv\", converters=converters)\r\n```",
"Thank you! it worked :)"
] | 2023-10-30T20:14:01 | 2023-10-31T19:21:23 | 2023-10-31T19:21:23 | NONE | null | null | null | Hi,
I am trying to load a local csv dataset(similar to explodinggradients_fiqa) using load_dataset. When I try to pass features, I am facing the mentioned issue.
CSV Data sample(golden_dataset.csv):
Question | Context | answer | groundtruth
"what is abc?" | "abc is this and that" | "abc is this " | "abc is this and that"
```
import csv
# built it based on https://huggingface.co./datasets/explodinggradients/fiqa/viewer/ragas_eval?row=0
mydict = [
{'question' : "what is abc?", 'contexts': ["abc is this and that"], 'answer': "abc is this " , 'groundtruth': ["abc is this and that"]},
{'question' : "what is abc?", 'contexts': ["abc is this and that"], 'answer': "abc is this " , 'groundtruth': ["abc is this and that"]},
{'question' : "what is abc?", 'contexts': ["abc is this and that"], 'answer': "abc is this " , 'groundtruth': ["abc is this and that"]}
]
fields = ['question', 'contexts', 'answer', 'ground_truths']
with open('golden_dataset.csv', 'w', newline='\n') as file:
writer = csv.DictWriter(file, fieldnames = fields)
writer.writeheader()
for row in mydict:
writer.writerow(row)
```
Retrieved dataset:
DatasetDict({
train: Dataset({
features: ['question', 'contexts', 'answer', 'ground_truths'],
num_rows: 1
})
})
Code to reproduce issue:
```
from datasets import load_dataset, Features, Sequence, Value
encode_features = Features(
{
"question": Value(dtype='string', id=0),
"contexts": Sequence(feature=Value(dtype='string', id=1)),
"answer": Value(dtype='string', id=2),
"ground_truths": Sequence(feature=Value(dtype='string',id=3)),
}
)
eval_dataset = load_dataset('csv', data_files='/golden_dataset.csv', features = encode_features )
```
Error trace:
```
---------------------------------------------------------------------------
ArrowNotImplementedError Traceback (most recent call last)
File ~/anaconda3/envs/python3/lib/python3.10/site-packages/datasets/builder.py:1925, in ArrowBasedBuilder._prepare_split_single(self, gen_kwargs, fpath, file_format, max_shard_size, job_id)
1924 _time = time.time()
-> 1925 for _, table in generator:
1926 if max_shard_size is not None and writer._num_bytes > max_shard_size:
File ~/anaconda3/envs/python3/lib/python3.10/site-packages/datasets/packaged_modules/csv/csv.py:192, in Csv._generate_tables(self, files)
189 # Uncomment for debugging (will print the Arrow table size and elements)
190 # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
191 # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
--> 192 yield (file_idx, batch_idx), self._cast_table(pa_table)
193 except ValueError as e:
File ~/anaconda3/envs/python3/lib/python3.10/site-packages/datasets/packaged_modules/csv/csv.py:167, in Csv._cast_table(self, pa_table)
165 if all(not require_storage_cast(feature) for feature in self.config.features.values()):
166 # cheaper cast
--> 167 pa_table = pa.Table.from_arrays([pa_table[field.name] for field in schema], schema=schema)
168 else:
169 # more expensive cast; allows str <-> int/float or str to Audio for example
File ~/anaconda3/envs/python3/lib/python3.10/site-packages/pyarrow/table.pxi:3781, in pyarrow.lib.Table.from_arrays()
File ~/anaconda3/envs/python3/lib/python3.10/site-packages/pyarrow/table.pxi:1449, in pyarrow.lib._sanitize_arrays()
File ~/anaconda3/envs/python3/lib/python3.10/site-packages/pyarrow/array.pxi:354, in pyarrow.lib.asarray()
File ~/anaconda3/envs/python3/lib/python3.10/site-packages/pyarrow/table.pxi:551, in pyarrow.lib.ChunkedArray.cast()
File ~/anaconda3/envs/python3/lib/python3.10/site-packages/pyarrow/compute.py:400, in cast(arr, target_type, safe, options, memory_pool)
399 options = CastOptions.safe(target_type)
--> 400 return call_function("cast", [arr], options, memory_pool)
File ~/anaconda3/envs/python3/lib/python3.10/site-packages/pyarrow/_compute.pyx:572, in pyarrow._compute.call_function()
File ~/anaconda3/envs/python3/lib/python3.10/site-packages/pyarrow/_compute.pyx:367, in pyarrow._compute.Function.call()
File ~/anaconda3/envs/python3/lib/python3.10/site-packages/pyarrow/error.pxi:144, in pyarrow.lib.pyarrow_internal_check_status()
File ~/anaconda3/envs/python3/lib/python3.10/site-packages/pyarrow/error.pxi:121, in pyarrow.lib.check_status()
ArrowNotImplementedError: Unsupported cast from string to list using function cast_list
The above exception was the direct cause of the following exception:
DatasetGenerationError Traceback (most recent call last)
Cell In[57], line 1
----> 1 eval_dataset = load_dataset('csv', data_files='/golden_dataset.csv', features = encode_features )
File ~/anaconda3/envs/python3/lib/python3.10/site-packages/datasets/load.py:2153, in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, ignore_verifications, keep_in_memory, save_infos, revision, token, use_auth_token, task, streaming, num_proc, storage_options, **config_kwargs)
2150 try_from_hf_gcs = path not in _PACKAGED_DATASETS_MODULES
2152 # Download and prepare data
-> 2153 builder_instance.download_and_prepare(
2154 download_config=download_config,
2155 download_mode=download_mode,
2156 verification_mode=verification_mode,
2157 try_from_hf_gcs=try_from_hf_gcs,
2158 num_proc=num_proc,
2159 storage_options=storage_options,
2160 )
2162 # Build dataset for splits
2163 keep_in_memory = (
2164 keep_in_memory if keep_in_memory is not None else is_small_dataset(builder_instance.info.dataset_size)
2165 )
File ~/anaconda3/envs/python3/lib/python3.10/site-packages/datasets/builder.py:954, in DatasetBuilder.download_and_prepare(self, output_dir, download_config, download_mode, verification_mode, ignore_verifications, try_from_hf_gcs, dl_manager, base_path, use_auth_token, file_format, max_shard_size, num_proc, storage_options, **download_and_prepare_kwargs)
952 if num_proc is not None:
953 prepare_split_kwargs["num_proc"] = num_proc
--> 954 self._download_and_prepare(
955 dl_manager=dl_manager,
956 verification_mode=verification_mode,
957 **prepare_split_kwargs,
958 **download_and_prepare_kwargs,
959 )
960 # Sync info
961 self.info.dataset_size = sum(split.num_bytes for split in self.info.splits.values())
File ~/anaconda3/envs/python3/lib/python3.10/site-packages/datasets/builder.py:1049, in DatasetBuilder._download_and_prepare(self, dl_manager, verification_mode, **prepare_split_kwargs)
1045 split_dict.add(split_generator.split_info)
1047 try:
1048 # Prepare split will record examples associated to the split
-> 1049 self._prepare_split(split_generator, **prepare_split_kwargs)
1050 except OSError as e:
1051 raise OSError(
1052 "Cannot find data file. "
1053 + (self.manual_download_instructions or "")
1054 + "\nOriginal error:\n"
1055 + str(e)
1056 ) from None
File ~/anaconda3/envs/python3/lib/python3.10/site-packages/datasets/builder.py:1813, in ArrowBasedBuilder._prepare_split(self, split_generator, file_format, num_proc, max_shard_size)
1811 job_id = 0
1812 with pbar:
-> 1813 for job_id, done, content in self._prepare_split_single(
1814 gen_kwargs=gen_kwargs, job_id=job_id, **_prepare_split_args
1815 ):
1816 if done:
1817 result = content
File ~/anaconda3/envs/python3/lib/python3.10/site-packages/datasets/builder.py:1958, in ArrowBasedBuilder._prepare_split_single(self, gen_kwargs, fpath, file_format, max_shard_size, job_id)
1956 if isinstance(e, SchemaInferenceError) and e.__context__ is not None:
1957 e = e.__context__
-> 1958 raise DatasetGenerationError("An error occurred while generating the dataset") from e
1960 yield job_id, True, (total_num_examples, total_num_bytes, writer._features, num_shards, shard_lengths)
DatasetGenerationError: An error occurred while generating the dataset
```
Environment Info:
datasets version: 2.14.5
Python version: 3.10.8
PyArrow version: 12.0.1
Pandas version: 2.0.3
I have also tried to load dataset first and then use cast_column, or save_to_disk and load_from_disk. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6364/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6364/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/6363 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6363/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6363/comments | https://api.github.com/repos/huggingface/datasets/issues/6363/events | https://github.com/huggingface/datasets/issues/6363 | 1,968,891,277 | I_kwDODunzps51WuWN | 6,363 | dataset.transform() hangs indefinitely while finetuning the stable diffusion XL | {
"login": "bhosalems",
"id": 10846405,
"node_id": "MDQ6VXNlcjEwODQ2NDA1",
"avatar_url": "https://avatars.githubusercontent.com/u/10846405?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/bhosalems",
"html_url": "https://github.com/bhosalems",
"followers_url": "https://api.github.com/users/bhosalems/followers",
"following_url": "https://api.github.com/users/bhosalems/following{/other_user}",
"gists_url": "https://api.github.com/users/bhosalems/gists{/gist_id}",
"starred_url": "https://api.github.com/users/bhosalems/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/bhosalems/subscriptions",
"organizations_url": "https://api.github.com/users/bhosalems/orgs",
"repos_url": "https://api.github.com/users/bhosalems/repos",
"events_url": "https://api.github.com/users/bhosalems/events{/privacy}",
"received_events_url": "https://api.github.com/users/bhosalems/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | [
"I think the code hangs on the `accelerator.main_process_first()` context manager exit. To verify this, you can append a print statement to the end of the `accelerator.main_process_first()` block. \r\n\r\n\r\nIf the problem is in `with_transform`, it would help if you could share the error stack trace printed when you interrupt the process (while it hangs)",
"@bhosalems Were you able to fix that ? I face this issue as well",
"@matankley No I am not able to resolve this issue yet.",
"@mariosasko yes the problem seems to be to exit from accelerator.main_process_first(). Is there any known problem?",
"NCCL debug info I get below output, if it helps.\r\n```\r\n11/09/2023 13:36:44 - INFO - __main__ - Distributed environment: MULTI_GPU Backend: nccl\r\nNum processes: 2\r\nProcess index: 1\r\nLocal process index: 1\r\nDevice: cuda:1\r\n\r\nMixed precision type: fp16\r\n\r\nDetected kernel version 5.4.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.\r\n11/09/2023 13:36:44 - INFO - __main__ - Distributed environment: MULTI_GPU Backend: nccl\r\nNum processes: 2\r\nProcess index: 0\r\nLocal process index: 0\r\nDevice: cuda:0\r\n\r\nMixed precision type: fp16\r\n\r\n{'timestep_spacing', 'thresholding', 'variance_type', 'clip_sample_range', 'prediction_type', 'dynamic_thresholding_ratio', 'sample_max_value'} was not found in config. Values will be initialized to default values.\r\n{'norm_num_groups', 'force_upcast'} was not found in config. Values will be initialized to default values.\r\n{'num_attention_heads', 'projection_class_embeddings_input_dim', 'addition_embed_type_num_heads', 'mid_block_only_cross_attention', 'addition_embed_type', 'num_class_embeds', 'upcast_attention', 'cross_attention_norm', 'addition_time_embed_dim', 'time_embedding_dim', 'class_embeddings_concat', 'encoder_hid_dim', 'encoder_hid_dim_type', 'resnet_out_scale_factor', 'attention_type', 'conv_out_kernel', 'only_cross_attention', 'resnet_time_scale_shift', 'resnet_skip_time_act', 'reverse_transformer_layers_per_block', 'conv_in_kernel', 'time_cond_proj_dim', 'use_linear_projection', 'mid_block_type', 'time_embedding_act_fn', 'dropout', 'timestep_post_act', 'dual_cross_attention', 'class_embed_type', 'transformer_layers_per_block', 'time_embedding_type'} was not found in config. Values will be initialized to default values.\r\n{'num_attention_heads', 'projection_class_embeddings_input_dim', 'addition_embed_type_num_heads', 'mid_block_only_cross_attention', 'addition_embed_type', 'num_class_embeds', 'upcast_attention', 'cross_attention_norm', 'addition_time_embed_dim', 'time_embedding_dim', 'class_embeddings_concat', 'encoder_hid_dim', 'encoder_hid_dim_type', 'resnet_out_scale_factor', 'attention_type', 'conv_out_kernel', 'only_cross_attention', 'resnet_time_scale_shift', 'resnet_skip_time_act', 'reverse_transformer_layers_per_block', 'conv_in_kernel', 'time_cond_proj_dim', 'use_linear_projection', 'mid_block_type', 'time_embedding_act_fn', 'dropout', 'timestep_post_act', 'dual_cross_attention', 'class_embed_type', 'transformer_layers_per_block', 'time_embedding_type'} was not found in config. Values will be initialized to default values.\r\ndeepbull5:1311249:1311249 [0] NCCL INFO Bootstrap : Using enp194s0f0:128.205.43.171<0>\r\ndeepbull5:1311249:1311249 [0] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation\r\ndeepbull5:1311249:1311249 [0] NCCL INFO cudaDriverVersion 11070\r\nNCCL version 2.14.3+cuda11.7\r\ndeepbull5:1311250:1311250 [1] NCCL INFO cudaDriverVersion 11070\r\ndeepbull5:1311249:1311365 [0] NCCL INFO NET/IB : No device found.\r\ndeepbull5:1311249:1311365 [0] NCCL INFO NET/Socket : Using [0]enp194s0f0:128.205.43.171<0>\r\ndeepbull5:1311249:1311365 [0] NCCL INFO Using network Socket\r\ndeepbull5:1311250:1311250 [1] NCCL INFO Bootstrap : Using enp194s0f0:128.205.43.171<0>\r\ndeepbull5:1311250:1311250 [1] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation\r\ndeepbull5:1311250:1311366 [1] NCCL INFO NET/IB : No device found.\r\ndeepbull5:1311250:1311366 [1] NCCL INFO NET/Socket : Using [0]enp194s0f0:128.205.43.171<0>\r\ndeepbull5:1311250:1311366 [1] NCCL INFO Using network Socket\r\ndeepbull5:1311250:1311366 [1] NCCL INFO Setting affinity for GPU 1 to ff,ffff0000,00ffffff\r\ndeepbull5:1311249:1311365 [0] NCCL INFO Setting affinity for GPU 0 to ff,ffff0000,00ffffff\r\ndeepbull5:1311249:1311365 [0] NCCL INFO Channel 00/04 : 0 1\r\ndeepbull5:1311250:1311366 [1] NCCL INFO Trees [0] -1/-1/-1->1->0 [1] 0/-1/-1->1->-1 [2] -1/-1/-1->1->0 [3] 0/-1/-1->1->-1\r\ndeepbull5:1311249:1311365 [0] NCCL INFO Channel 01/04 : 0 1\r\ndeepbull5:1311249:1311365 [0] NCCL INFO Channel 02/04 : 0 1\r\ndeepbull5:1311249:1311365 [0] NCCL INFO Channel 03/04 : 0 1\r\ndeepbull5:1311249:1311365 [0] NCCL INFO Trees [0] 1/-1/-1->0->-1 [1] -1/-1/-1->0->1 [2] 1/-1/-1->0->-1 [3] -1/-1/-1->0->1\r\ndeepbull5:1311249:1311365 [0] NCCL INFO Channel 00/0 : 0[1000] -> 1[24000] via P2P/IPC\r\ndeepbull5:1311250:1311366 [1] NCCL INFO Channel 00/0 : 1[24000] -> 0[1000] via P2P/IPC\r\ndeepbull5:1311249:1311365 [0] NCCL INFO Channel 01/0 : 0[1000] -> 1[24000] via P2P/IPC\r\ndeepbull5:1311250:1311366 [1] NCCL INFO Channel 01/0 : 1[24000] -> 0[1000] via P2P/IPC\r\ndeepbull5:1311250:1311366 [1] NCCL INFO Channel 02/0 : 1[24000] -> 0[1000] via P2P/IPC\r\ndeepbull5:1311249:1311365 [0] NCCL INFO Channel 02/0 : 0[1000] -> 1[24000] via P2P/IPC\r\ndeepbull5:1311250:1311366 [1] NCCL INFO Channel 03/0 : 1[24000] -> 0[1000] via P2P/IPC\r\ndeepbull5:1311249:1311365 [0] NCCL INFO Channel 03/0 : 0[1000] -> 1[24000] via P2P/IPC\r\ndeepbull5:1311249:1311365 [0] NCCL INFO Connected all rings\r\ndeepbull5:1311249:1311365 [0] NCCL INFO Connected all trees\r\ndeepbull5:1311249:1311365 [0] NCCL INFO threadThresholds 8/8/64 | 16/8/64 | 512 | 512\r\ndeepbull5:1311249:1311365 [0] NCCL INFO 4 coll channels, 4 p2p channels, 2 p2p channels per peer\r\ndeepbull5:1311250:1311366 [1] NCCL INFO Connected all rings\r\ndeepbull5:1311250:1311366 [1] NCCL INFO Connected all trees\r\ndeepbull5:1311250:1311366 [1] NCCL INFO threadThresholds 8/8/64 | 16/8/64 | 512 | 512\r\ndeepbull5:1311250:1311366 [1] NCCL INFO 4 coll channels, 4 p2p channels, 2 p2p channels per peer\r\ndeepbull5:1311249:1311365 [0] NCCL INFO comm 0x88a84ee0 rank 0 nranks 2 cudaDev 0 busId 1000 - Init COMPLETE\r\ndeepbull5:1311250:1311366 [1] NCCL INFO comm 0x89a42f60 rank 1 nranks 2 cudaDev 1 busId 24000 - Init COMPLETE\r\n\r\n```",
"Maybe @muellerzr can help as an `accelerate` maintainer.",
"I don't know what the issue was, but after going through the thread here I loved the issue with https://github.com/huggingface/accelerate/issues/314#issuecomment-1565259831"
] | 2023-10-30T17:34:05 | 2023-11-22T00:29:21 | 2023-11-22T00:29:21 | NONE | null | null | null | ### Describe the bug
Multi-GPU fine-tuning the stable diffusion X by following https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/README_sdxl.md hangs indefinitely.
### Steps to reproduce the bug
accelerate launch train_text_to_image_sdxl.py --pretrained_model_name_or_path=$MODEL_NAME --pretrained_vae_model_name_or_path=$VAE_NAME --dataset_name=$DATASET_NAME --enable_xformers_memory_efficient_attention --resolution=512 --center_crop --random_flip --proportion_empty_prompts=0.2 --train_batch_size=1 --gradient_accumulation_steps=4 --gradient_checkpointing --max_train_steps=10000 --use_8bit_adam --learning_rate=1e-06 --lr_scheduler="constant" --lr_warmup_steps=0 --mixed_precision="fp16" --report_to="wandb" --validation_prompt="a cute Sundar Pichai creature" --validation_epochs 5 --checkpointing_steps=5000 --output_dir="sdxl-pokemon-model"
### Expected behavior
It should start the training as it does for the single GPU training. I opened the issue in diffusers **https://github.com/huggingface/diffusers/issues/5534 but it does seem to be an issue with the Pokemon dataset.
I added some debug prints
```
print("==========HERE3=============")
with accelerator.main_process_first():
print(accelerator.is_main_process)
print("===========Here3.1===========")
if args.max_train_samples is not None:
dataset["train"] = dataset["train"].shuffle(seed=args.seed).select(range(args.max_train_samples))
print("===========Here3.2===========")
# Set the training transforms
train_dataset = dataset["train"].with_transform(preprocess_train)
print("==========HERE4=============")
Corresponding Output
Detected kernel version 5.4.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.
10/25/2023 21:18:04 - INFO - main - Distributed environment: MULTI_GPU Backend: nccl
Num processes: 3
Process index: 1
Local process index: 1
Device: cuda:1
Mixed precision type: fp16
10/25/2023 21:18:04 - INFO - main - Distributed environment: MULTI_GPU Backend: nccl
Num processes: 3
Process index: 2
Local process index: 2
Device: cuda:2
Mixed precision type: fp16
10/25/2023 21:18:04 - INFO - main - Distributed environment: MULTI_GPU Backend: nccl
Num processes: 3
Process index: 0
Local process index: 0
Device: cuda:0
Mixed precision type: fp16
You are using a model of type clip_text_model to instantiate a model of type . This is not supported for all configurations of models and can yield errors.
You are using a model of type clip_text_model to instantiate a model of type . This is not supported for all configurations of models and can yield errors.
{‘variance_type’, ‘clip_sample_range’, ‘thresholding’, ‘dynamic_thresholding_ratio’} was not found in config. Values will be initialized to default values.
{‘attention_type’, ‘reverse_transformer_layers_per_block’, ‘dropout’} was not found in config. Values will be initialized to default values.
==========HERE1=============
==========HERE1=============
==========HERE1=============
==========HERE2=============
==========HERE2=============
==========HERE2=============
==========HERE3=============
True
===========Here3.1===========
===========Here3.2===========
==========HERE3=============
==========HERE3=========
```
### Environment info
_libgcc_mutex 0.1 conda_forge conda-forge
_openmp_mutex 4.5 2_kmp_llvm conda-forge
absl-py 2.0.0 pypi_0 pypi
accelerate 0.24.0 pypi_0 pypi
aiohttp 3.8.6 pypi_0 pypi
aiosignal 1.3.1 pypi_0 pypi
appdirs 1.4.4 pyh9f0ad1d_0 conda-forge
async-timeout 4.0.3 pypi_0 pypi
attrs 23.1.0 pypi_0 pypi
bitsandbytes 0.41.1 pypi_0 pypi
blas 1.0 mkl
blessings 1.7 py39h06a4308_1002
brotli-python 1.0.9 py39h6a678d5_7
bzip2 1.0.8 h7b6447c_0
ca-certificates 2023.08.22 h06a4308_0
cachetools 5.3.2 pypi_0 pypi
certifi 2023.7.22 py39h06a4308_0
cffi 1.15.1 py39h5eee18b_3
charset-normalizer 2.0.4 pyhd3eb1b0_0
click 8.1.7 unix_pyh707e725_0 conda-forge
cryptography 41.0.3 py39hdda0065_0
cuda-cudart 11.7.99 0 nvidia
cuda-cupti 11.7.101 0 nvidia
cuda-libraries 11.7.1 0 nvidia
cuda-nvrtc 11.7.99 0 nvidia
cuda-nvtx 11.7.91 0 nvidia
cuda-runtime 11.7.1 0 nvidia
datasets 2.14.6 pypi_0 pypi
diffusers 0.22.0.dev0 pypi_0 pypi
dill 0.3.7 pypi_0 pypi
docker-pycreds 0.4.0 py_0 conda-forge
ffmpeg 4.3 hf484d3e_0 pytorch
filelock 3.12.4 pypi_0 pypi
freetype 2.12.1 h4a9f257_0
frozenlist 1.4.0 pypi_0 pypi
fsspec 2023.10.0 pypi_0 pypi
ftfy 6.1.1 pypi_0 pypi
giflib 5.2.1 h5eee18b_3
gitdb 4.0.11 pyhd8ed1ab_0 conda-forge
gitpython 3.1.40 pyhd8ed1ab_0 conda-forge
gmp 6.2.1 h295c915_3
gnutls 3.6.15 he1e5248_0
google-auth 2.23.3 pypi_0 pypi
google-auth-oauthlib 1.1.0 pypi_0 pypi
gpustat 0.6.0 pyhd3eb1b0_1
grpcio 1.59.0 pypi_0 pypi
huggingface-hub 0.17.3 pypi_0 pypi
idna 3.4 py39h06a4308_0
importlib-metadata 6.8.0 pypi_0 pypi
intel-openmp 2023.1.0 hdb19cb5_46305
jinja2 3.1.2 pypi_0 pypi
jpeg 9e h5eee18b_1
lame 3.100 h7b6447c_0
lcms2 2.12 h3be6417_0
ld_impl_linux-64 2.38 h1181459_1
lerc 3.0 h295c915_0
libcublas 11.10.3.66 0 nvidia
libcufft 10.7.2.124 h4fbf590_0 nvidia
libcufile 1.8.0.34 0 nvidia
libcurand 10.3.4.52 0 nvidia
libcusolver 11.4.0.1 0 nvidia
libcusparse 11.7.4.91 0 nvidia
libdeflate 1.17 h5eee18b_1
libffi 3.4.4 h6a678d5_0
libgcc-ng 13.2.0 h807b86a_2 conda-forge
libgfortran-ng 13.2.0 h69a702a_2 conda-forge
libgfortran5 13.2.0 ha4646dd_2 conda-forge
libiconv 1.16 h7f8727e_2
libidn2 2.3.4 h5eee18b_0
libnpp 11.7.4.75 0 nvidia
libnvjpeg 11.8.0.2 0 nvidia
libpng 1.6.39 h5eee18b_0
libprotobuf 3.20.3 he621ea3_0
libstdcxx-ng 13.2.0 h7e041cc_2 conda-forge
libtasn1 4.19.0 h5eee18b_0
libtiff 4.5.1 h6a678d5_0
libunistring 0.9.10 h27cfd23_0
libwebp 1.3.2 h11a3e52_0
libwebp-base 1.3.2 h5eee18b_0
llvm-openmp 14.0.6 h9e868ea_0
lz4-c 1.9.4 h6a678d5_0
markdown 3.5 pypi_0 pypi
markupsafe 2.1.3 pypi_0 pypi
mkl 2023.1.0 h213fc3f_46343
mkl-service 2.4.0 py39h5eee18b_1
mkl_fft 1.3.8 py39h5eee18b_0
mkl_random 1.2.4 py39hdb19cb5_0
multidict 6.0.4 pypi_0 pypi
multiprocess 0.70.15 pypi_0 pypi
ncurses 6.4 h6a678d5_0
nettle 3.7.3 hbbd107a_1
numpy 1.26.0 py39h5f9d8c6_0
numpy-base 1.26.0 py39hb5e798b_0
nvidia-ml 7.352.0 pyhd3eb1b0_0
oauthlib 3.2.2 pypi_0 pypi
openh264 2.1.1 h4ff587b_0
openjpeg 2.4.0 h3ad879b_0
openssl 3.0.11 h7f8727e_2
packaging 23.2 pypi_0 pypi
pandas 2.1.1 pypi_0 pypi
pathtools 0.1.2 py_1 conda-forge
pillow 10.0.1 py39ha6cbd5a_0
pip 23.3 py39h06a4308_0
protobuf 4.23.4 pypi_0 pypi
psutil 5.9.6 pypi_0 pypi
pyarrow 13.0.0 pypi_0 pypi
pyasn1 0.5.0 pypi_0 pypi
pyasn1-modules 0.3.0 pypi_0 pypi
pycparser 2.21 pyhd3eb1b0_0
pyopenssl 23.2.0 py39h06a4308_0
pysocks 1.7.1 py39h06a4308_0
python 3.9.18 h955ad1f_0
python-dateutil 2.8.2 pypi_0 pypi
python_abi 3.9 2_cp39 conda-forge
pytorch 1.13.1 py3.9_cuda11.7_cudnn8.5.0_0 pytorch
pytorch-cuda 11.7 h778d358_5 pytorch
pytorch-mutex 1.0 cuda pytorch
pytz 2023.3.post1 pypi_0 pypi
pyyaml 6.0.1 pypi_0 pypi
readline 8.2 h5eee18b_0
regex 2023.10.3 pypi_0 pypi
requests 2.31.0 py39h06a4308_0
requests-oauthlib 1.3.1 pypi_0 pypi
rsa 4.9 pypi_0 pypi
safetensors 0.4.0 pypi_0 pypi
scipy 1.11.3 py39h5f9d8c6_0
sentry-sdk 1.32.0 pyhd8ed1ab_0 conda-forge
setproctitle 1.1.10 py39h3811e60_1004 conda-forge
setuptools 68.0.0 py39h06a4308_0
six 1.16.0 pyh6c4a22f_0 conda-forge
smmap 5.0.0 pyhd8ed1ab_0 conda-forge
sqlite 3.41.2 h5eee18b_0
tbb 2021.8.0 hdb19cb5_0
tensorboard 2.15.0 pypi_0 pypi
tensorboard-data-server 0.7.2 pypi_0 pypi
tk 8.6.12 h1ccaba5_0
tokenizers 0.14.1 pypi_0 pypi
torchaudio 0.13.1 py39_cu117 pytorch
torchtriton 2.1.0 py39 pytorch
torchvision 0.14.1 py39_cu117 pytorch
tqdm 4.66.1 pypi_0 pypi
transformers 4.34.1 pypi_0 pypi
typing_extensions 4.7.1 py39h06a4308_0
tzdata 2023.3 pypi_0 pypi
urllib3 1.26.18 py39h06a4308_0
wandb 0.15.12 pyhd8ed1ab_0 conda-forge
wcwidth 0.2.8 pypi_0 pypi
werkzeug 3.0.1 pypi_0 pypi
wheel 0.41.2 py39h06a4308_0
xformers 0.0.22.post7 py39_cu11.7.1_pyt1.13.1 xformers
xxhash 3.4.1 pypi_0 pypi
xz 5.4.2 h5eee18b_0
yaml 0.2.5 h7f98852_2 conda-forge
yarl 1.9.2 pypi_0 pypi
zipp 3.17.0 pypi_0 pypi
zlib 1.2.13 h5eee18b_0
zstd 1.5.5 hc292b87_0 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6363/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6363/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/6362 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6362/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6362/comments | https://api.github.com/repos/huggingface/datasets/issues/6362/events | https://github.com/huggingface/datasets/pull/6362 | 1,965,794,569 | PR_kwDODunzps5d_MxD | 6,362 | Simplify filesystem logic | {
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | [
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008852 / 0.011353 (-0.002501) | 0.004613 / 0.011008 (-0.006396) | 0.096153 / 0.038508 (0.057645) | 0.074945 / 0.023109 (0.051836) | 0.365960 / 0.275898 (0.090062) | 0.385450 / 0.323480 (0.061970) | 0.004757 / 0.007986 (-0.003229) | 0.003453 / 0.004328 (-0.000876) | 0.069944 / 0.004250 (0.065693) | 0.057781 / 0.037052 (0.020729) | 0.361056 / 0.258489 (0.102567) | 0.409218 / 0.293841 (0.115377) | 0.045714 / 0.128546 (-0.082833) | 0.013776 / 0.075646 (-0.061871) | 0.328797 / 0.419271 (-0.090474) | 0.063431 / 0.043533 (0.019899) | 0.370799 / 0.255139 (0.115660) | 0.370701 / 0.283200 (0.087502) | 0.034894 / 0.141683 (-0.106789) | 1.730290 / 1.452155 (0.278136) | 1.863600 / 1.492716 (0.370883) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.245571 / 0.018006 (0.227565) | 0.509666 / 0.000490 (0.509176) | 0.008051 / 0.000200 (0.007851) | 0.000104 / 0.000054 (0.000050) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027854 / 0.037411 (-0.009557) | 0.090735 / 0.014526 (0.076209) | 0.100100 / 0.176557 (-0.076457) | 0.158267 / 0.737135 (-0.578868) | 0.107537 / 0.296338 (-0.188801) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.565455 / 0.215209 (0.350246) | 5.671436 / 2.077655 (3.593781) | 2.438078 / 1.504120 (0.933958) | 2.072403 / 1.541195 (0.531208) | 2.127830 / 1.468490 (0.659340) | 0.840101 / 4.584777 (-3.744675) | 4.945952 / 3.745712 (1.200240) | 4.840904 / 5.269862 (-0.428957) | 3.037936 / 4.565676 (-1.527740) | 0.099027 / 0.424275 (-0.325248) | 0.008448 / 0.007607 (0.000841) | 0.703315 / 0.226044 (0.477271) | 6.837550 / 2.268929 (4.568621) | 3.204232 / 55.444624 (-52.240393) | 2.492985 / 6.876477 (-4.383492) | 2.426792 / 2.142072 (0.284720) | 0.998430 / 4.805227 (-3.806797) | 0.203854 / 6.500664 (-6.296811) | 0.072386 / 0.075469 (-0.003083) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.606627 / 1.841788 (-0.235161) | 22.287391 / 8.074308 (14.213082) | 20.245654 / 10.191392 (10.054262) | 0.229377 / 0.680424 (-0.451046) | 0.028399 / 0.534201 (-0.505802) | 0.446567 / 0.579283 (-0.132716) | 0.565277 / 0.434364 (0.130913) | 0.502957 / 0.540337 (-0.037381) | 0.749268 / 1.386936 (-0.637668) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008253 / 0.011353 (-0.003100) | 0.004432 / 0.011008 (-0.006576) | 0.081995 / 0.038508 (0.043487) | 0.075443 / 0.023109 (0.052334) | 0.442139 / 0.275898 (0.166241) | 0.507308 / 0.323480 (0.183829) | 0.007343 / 0.007986 (-0.000643) | 0.003850 / 0.004328 (-0.000478) | 0.072656 / 0.004250 (0.068406) | 0.054585 / 0.037052 (0.017533) | 0.430057 / 0.258489 (0.171568) | 0.466953 / 0.293841 (0.173112) | 0.050350 / 0.128546 (-0.078196) | 0.013682 / 0.075646 (-0.061965) | 0.088164 / 0.419271 (-0.331107) | 0.061726 / 0.043533 (0.018193) | 0.444420 / 0.255139 (0.189281) | 0.470406 / 0.283200 (0.187206) | 0.033258 / 0.141683 (-0.108425) | 1.635977 / 1.452155 (0.183823) | 1.732767 / 1.492716 (0.240051) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.227350 / 0.018006 (0.209344) | 0.500805 / 0.000490 (0.500316) | 0.006473 / 0.000200 (0.006273) | 0.000110 / 0.000054 (0.000055) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034456 / 0.037411 (-0.002955) | 0.094832 / 0.014526 (0.080306) | 0.118549 / 0.176557 (-0.058008) | 0.177971 / 0.737135 (-0.559164) | 0.114165 / 0.296338 (-0.182174) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.664805 / 0.215209 (0.449596) | 6.509756 / 2.077655 (4.432101) | 2.936840 / 1.504120 (1.432720) | 2.662645 / 1.541195 (1.121450) | 2.659957 / 1.468490 (1.191467) | 0.903019 / 4.584777 (-3.681758) | 5.237191 / 3.745712 (1.491479) | 4.791917 / 5.269862 (-0.477945) | 3.130905 / 4.565676 (-1.434772) | 0.100953 / 0.424275 (-0.323322) | 0.008388 / 0.007607 (0.000781) | 0.776393 / 0.226044 (0.550348) | 7.726230 / 2.268929 (5.457301) | 3.669223 / 55.444624 (-51.775401) | 2.904556 / 6.876477 (-3.971921) | 3.205546 / 2.142072 (1.063473) | 1.058899 / 4.805227 (-3.746329) | 0.213733 / 6.500664 (-6.286931) | 0.071374 / 0.075469 (-0.004096) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.713384 / 1.841788 (-0.128403) | 23.325498 / 8.074308 (15.251190) | 20.140510 / 10.191392 (9.949118) | 0.211565 / 0.680424 (-0.468859) | 0.032916 / 0.534201 (-0.501285) | 0.460504 / 0.579283 (-0.118779) | 0.594352 / 0.434364 (0.159988) | 0.556384 / 0.540337 (0.016047) | 0.788586 / 1.386936 (-0.598350) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#3c7249c11d8330ce49b1fe119c34fc6100f10774 \"CML watermark\")\n",
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008840 / 0.011353 (-0.002513) | 0.005045 / 0.011008 (-0.005963) | 0.110777 / 0.038508 (0.072269) | 0.100495 / 0.023109 (0.077386) | 0.420302 / 0.275898 (0.144404) | 0.456423 / 0.323480 (0.132943) | 0.006873 / 0.007986 (-0.001113) | 0.005230 / 0.004328 (0.000902) | 0.081316 / 0.004250 (0.077066) | 0.063047 / 0.037052 (0.025995) | 0.439469 / 0.258489 (0.180979) | 0.488477 / 0.293841 (0.194636) | 0.048553 / 0.128546 (-0.079994) | 0.014984 / 0.075646 (-0.060662) | 0.401317 / 0.419271 (-0.017955) | 0.074578 / 0.043533 (0.031045) | 0.435298 / 0.255139 (0.180159) | 0.464406 / 0.283200 (0.181206) | 0.048788 / 0.141683 (-0.092895) | 1.836166 / 1.452155 (0.384011) | 1.959808 / 1.492716 (0.467091) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.321419 / 0.018006 (0.303412) | 0.595736 / 0.000490 (0.595246) | 0.021144 / 0.000200 (0.020944) | 0.000626 / 0.000054 (0.000571) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033033 / 0.037411 (-0.004379) | 0.112621 / 0.014526 (0.098095) | 0.118736 / 0.176557 (-0.057821) | 0.195533 / 0.737135 (-0.541602) | 0.120807 / 0.296338 (-0.175531) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.616692 / 0.215209 (0.401483) | 6.033674 / 2.077655 (3.956019) | 2.630106 / 1.504120 (1.125986) | 2.316739 / 1.541195 (0.775544) | 2.387525 / 1.468490 (0.919035) | 0.863385 / 4.584777 (-3.721392) | 5.288193 / 3.745712 (1.542481) | 5.115766 / 5.269862 (-0.154096) | 3.083055 / 4.565676 (-1.482621) | 0.104885 / 0.424275 (-0.319391) | 0.012233 / 0.007607 (0.004626) | 0.739924 / 0.226044 (0.513880) | 7.422996 / 2.268929 (5.154067) | 3.403316 / 55.444624 (-52.041309) | 2.778740 / 6.876477 (-4.097736) | 2.836937 / 2.142072 (0.694864) | 1.059683 / 4.805227 (-3.745544) | 0.235838 / 6.500664 (-6.264826) | 0.083725 / 0.075469 (0.008256) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.755843 / 1.841788 (-0.085944) | 25.186642 / 8.074308 (17.112334) | 24.133582 / 10.191392 (13.942190) | 0.240511 / 0.680424 (-0.439913) | 0.029563 / 0.534201 (-0.504638) | 0.486049 / 0.579283 (-0.093234) | 0.610064 / 0.434364 (0.175700) | 0.559521 / 0.540337 (0.019184) | 0.828289 / 1.386936 (-0.558647) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.012134 / 0.011353 (0.000781) | 0.005133 / 0.011008 (-0.005875) | 0.084521 / 0.038508 (0.046013) | 0.095172 / 0.023109 (0.072063) | 0.527298 / 0.275898 (0.251400) | 0.558915 / 0.323480 (0.235435) | 0.006996 / 0.007986 (-0.000989) | 0.004283 / 0.004328 (-0.000045) | 0.082975 / 0.004250 (0.078725) | 0.067976 / 0.037052 (0.030924) | 0.534020 / 0.258489 (0.275531) | 0.560810 / 0.293841 (0.266969) | 0.051603 / 0.128546 (-0.076943) | 0.013330 / 0.075646 (-0.062316) | 0.094093 / 0.419271 (-0.325178) | 0.068967 / 0.043533 (0.025434) | 0.512527 / 0.255139 (0.257388) | 0.542182 / 0.283200 (0.258982) | 0.039159 / 0.141683 (-0.102524) | 1.858841 / 1.452155 (0.406686) | 1.915450 / 1.492716 (0.422734) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.269013 / 0.018006 (0.251007) | 0.601711 / 0.000490 (0.601222) | 0.013950 / 0.000200 (0.013750) | 0.000166 / 0.000054 (0.000112) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.038817 / 0.037411 (0.001405) | 0.138528 / 0.014526 (0.124002) | 0.130691 / 0.176557 (-0.045865) | 0.192825 / 0.737135 (-0.544310) | 0.128337 / 0.296338 (-0.168002) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.678725 / 0.215209 (0.463516) | 6.869763 / 2.077655 (4.792108) | 3.416224 / 1.504120 (1.912104) | 3.106971 / 1.541195 (1.565776) | 3.117248 / 1.468490 (1.648757) | 0.895004 / 4.584777 (-3.689773) | 5.551618 / 3.745712 (1.805906) | 4.964811 / 5.269862 (-0.305051) | 3.239555 / 4.565676 (-1.326121) | 0.099776 / 0.424275 (-0.324500) | 0.008723 / 0.007607 (0.001116) | 0.818554 / 0.226044 (0.592510) | 8.015976 / 2.268929 (5.747047) | 4.200392 / 55.444624 (-51.244232) | 3.566942 / 6.876477 (-3.309535) | 3.766249 / 2.142072 (1.624177) | 1.083428 / 4.805227 (-3.721799) | 0.214614 / 6.500664 (-6.286050) | 0.081951 / 0.075469 (0.006482) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.854400 / 1.841788 (0.012612) | 26.002556 / 8.074308 (17.928248) | 24.315194 / 10.191392 (14.123802) | 0.249012 / 0.680424 (-0.431412) | 0.032681 / 0.534201 (-0.501520) | 0.502360 / 0.579283 (-0.076923) | 0.606014 / 0.434364 (0.171650) | 0.616852 / 0.540337 (0.076514) | 0.861785 / 1.386936 (-0.525151) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#53c5c01583153cc112a507082aff4679433a1cce \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006723 / 0.011353 (-0.004630) | 0.004135 / 0.011008 (-0.006873) | 0.079241 / 0.038508 (0.040733) | 0.065484 / 0.023109 (0.042374) | 0.302831 / 0.275898 (0.026933) | 0.343747 / 0.323480 (0.020268) | 0.005910 / 0.007986 (-0.002076) | 0.006028 / 0.004328 (0.001699) | 0.064000 / 0.004250 (0.059750) | 0.047872 / 0.037052 (0.010820) | 0.336928 / 0.258489 (0.078439) | 0.357726 / 0.293841 (0.063885) | 0.039375 / 0.128546 (-0.089171) | 0.010439 / 0.075646 (-0.065207) | 0.310453 / 0.419271 (-0.108819) | 0.055320 / 0.043533 (0.011787) | 0.294722 / 0.255139 (0.039583) | 0.314649 / 0.283200 (0.031450) | 0.033223 / 0.141683 (-0.108460) | 1.386705 / 1.452155 (-0.065450) | 1.420546 / 1.492716 (-0.072170) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.262649 / 0.018006 (0.244643) | 0.536764 / 0.000490 (0.536274) | 0.011090 / 0.000200 (0.010891) | 0.000118 / 0.000054 (0.000063) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023822 / 0.037411 (-0.013590) | 0.074279 / 0.014526 (0.059753) | 0.081295 / 0.176557 (-0.095262) | 0.135853 / 0.737135 (-0.601282) | 0.080193 / 0.296338 (-0.216146) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.468577 / 0.215209 (0.253368) | 4.615975 / 2.077655 (2.538321) | 2.059232 / 1.504120 (0.555112) | 1.798578 / 1.541195 (0.257383) | 1.801436 / 1.468490 (0.332946) | 0.660489 / 4.584777 (-3.924288) | 4.394652 / 3.745712 (0.648940) | 3.956277 / 5.269862 (-1.313585) | 2.406700 / 4.565676 (-2.158976) | 0.077174 / 0.424275 (-0.347101) | 0.007121 / 0.007607 (-0.000486) | 0.568213 / 0.226044 (0.342168) | 5.721217 / 2.268929 (3.452289) | 2.662741 / 55.444624 (-52.781883) | 2.207333 / 6.876477 (-4.669144) | 2.165279 / 2.142072 (0.023206) | 0.772566 / 4.805227 (-4.032661) | 0.162845 / 6.500664 (-6.337819) | 0.057515 / 0.075469 (-0.017954) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.313565 / 1.841788 (-0.528223) | 19.298926 / 8.074308 (11.224618) | 17.194320 / 10.191392 (7.002928) | 0.223404 / 0.680424 (-0.457020) | 0.024735 / 0.534201 (-0.509466) | 0.388452 / 0.579283 (-0.190831) | 0.489354 / 0.434364 (0.054990) | 0.427962 / 0.540337 (-0.112375) | 0.629483 / 1.386936 (-0.757453) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007404 / 0.011353 (-0.003949) | 0.004434 / 0.011008 (-0.006574) | 0.061633 / 0.038508 (0.023125) | 0.058446 / 0.023109 (0.035336) | 0.386107 / 0.275898 (0.110209) | 0.397676 / 0.323480 (0.074197) | 0.005463 / 0.007986 (-0.002523) | 0.003797 / 0.004328 (-0.000531) | 0.067323 / 0.004250 (0.063072) | 0.053826 / 0.037052 (0.016774) | 0.387910 / 0.258489 (0.129421) | 0.409364 / 0.293841 (0.115523) | 0.039836 / 0.128546 (-0.088710) | 0.011940 / 0.075646 (-0.063706) | 0.071812 / 0.419271 (-0.347459) | 0.047952 / 0.043533 (0.004419) | 0.386826 / 0.255139 (0.131687) | 0.392845 / 0.283200 (0.109645) | 0.029430 / 0.141683 (-0.112253) | 1.390961 / 1.452155 (-0.061194) | 1.482744 / 1.492716 (-0.009972) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.258814 / 0.018006 (0.240807) | 0.535505 / 0.000490 (0.535015) | 0.006097 / 0.000200 (0.005897) | 0.000130 / 0.000054 (0.000075) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028046 / 0.037411 (-0.009365) | 0.078077 / 0.014526 (0.063552) | 0.087713 / 0.176557 (-0.088843) | 0.140856 / 0.737135 (-0.596279) | 0.090565 / 0.296338 (-0.205773) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.504375 / 0.215209 (0.289165) | 5.133472 / 2.077655 (3.055817) | 2.368968 / 1.504120 (0.864848) | 2.176939 / 1.541195 (0.635744) | 2.151976 / 1.468490 (0.683486) | 0.720566 / 4.584777 (-3.864211) | 5.050505 / 3.745712 (1.304793) | 3.993614 / 5.269862 (-1.276248) | 2.492234 / 4.565676 (-2.073443) | 0.089629 / 0.424275 (-0.334646) | 0.008074 / 0.007607 (0.000467) | 0.677706 / 0.226044 (0.451661) | 6.208332 / 2.268929 (3.939403) | 3.058299 / 55.444624 (-52.386325) | 2.461078 / 6.876477 (-4.415399) | 2.622681 / 2.142072 (0.480609) | 0.873573 / 4.805227 (-3.931654) | 0.176321 / 6.500664 (-6.324343) | 0.062410 / 0.075469 (-0.013059) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.454767 / 1.841788 (-0.387021) | 19.544225 / 8.074308 (11.469917) | 17.365997 / 10.191392 (7.174605) | 0.225461 / 0.680424 (-0.454963) | 0.027679 / 0.534201 (-0.506522) | 0.396419 / 0.579283 (-0.182864) | 0.513244 / 0.434364 (0.078880) | 0.469054 / 0.540337 (-0.071283) | 0.676458 / 1.386936 (-0.710478) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#d44d8a649b541cd0b10ea99fbfe7a02c3ba50a63 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007606 / 0.011353 (-0.003747) | 0.004692 / 0.011008 (-0.006317) | 0.100525 / 0.038508 (0.062017) | 0.085426 / 0.023109 (0.062317) | 0.378568 / 0.275898 (0.102670) | 0.412268 / 0.323480 (0.088788) | 0.004756 / 0.007986 (-0.003230) | 0.003871 / 0.004328 (-0.000457) | 0.075244 / 0.004250 (0.070994) | 0.064969 / 0.037052 (0.027916) | 0.385569 / 0.258489 (0.127079) | 0.429117 / 0.293841 (0.135276) | 0.035798 / 0.128546 (-0.092749) | 0.009999 / 0.075646 (-0.065647) | 0.351380 / 0.419271 (-0.067891) | 0.060850 / 0.043533 (0.017317) | 0.381327 / 0.255139 (0.126188) | 0.403663 / 0.283200 (0.120464) | 0.028103 / 0.141683 (-0.113580) | 1.814143 / 1.452155 (0.361988) | 1.895062 / 1.492716 (0.402346) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.263581 / 0.018006 (0.245575) | 0.506988 / 0.000490 (0.506499) | 0.012775 / 0.000200 (0.012575) | 0.000456 / 0.000054 (0.000402) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033452 / 0.037411 (-0.003959) | 0.104950 / 0.014526 (0.090425) | 0.114803 / 0.176557 (-0.061754) | 0.182465 / 0.737135 (-0.554671) | 0.116156 / 0.296338 (-0.180183) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.441574 / 0.215209 (0.226365) | 4.394601 / 2.077655 (2.316946) | 2.170797 / 1.504120 (0.666677) | 1.926675 / 1.541195 (0.385480) | 1.974867 / 1.468490 (0.506377) | 0.546777 / 4.584777 (-4.038000) | 4.053612 / 3.745712 (0.307900) | 3.934278 / 5.269862 (-1.335583) | 2.354660 / 4.565676 (-2.211017) | 0.067706 / 0.424275 (-0.356569) | 0.009217 / 0.007607 (0.001610) | 0.539261 / 0.226044 (0.313217) | 5.409552 / 2.268929 (3.140623) | 2.835739 / 55.444624 (-52.608886) | 2.282246 / 6.876477 (-4.594230) | 2.359930 / 2.142072 (0.217858) | 0.696363 / 4.805227 (-4.108864) | 0.155947 / 6.500664 (-6.344717) | 0.071293 / 0.075469 (-0.004176) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.495512 / 1.841788 (-0.346275) | 22.027128 / 8.074308 (13.952820) | 16.226068 / 10.191392 (6.034676) | 0.180281 / 0.680424 (-0.500142) | 0.021839 / 0.534201 (-0.512362) | 0.446151 / 0.579283 (-0.133132) | 0.476872 / 0.434364 (0.042508) | 0.515171 / 0.540337 (-0.025166) | 0.731372 / 1.386936 (-0.655564) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006843 / 0.011353 (-0.004510) | 0.004286 / 0.011008 (-0.006722) | 0.074104 / 0.038508 (0.035596) | 0.076789 / 0.023109 (0.053680) | 0.441506 / 0.275898 (0.165608) | 0.500999 / 0.323480 (0.177519) | 0.006041 / 0.007986 (-0.001945) | 0.003718 / 0.004328 (-0.000610) | 0.074189 / 0.004250 (0.069938) | 0.060513 / 0.037052 (0.023461) | 0.460812 / 0.258489 (0.202323) | 0.503631 / 0.293841 (0.209790) | 0.037026 / 0.128546 (-0.091520) | 0.009611 / 0.075646 (-0.066035) | 0.077037 / 0.419271 (-0.342234) | 0.052191 / 0.043533 (0.008658) | 0.444567 / 0.255139 (0.189428) | 0.486730 / 0.283200 (0.203530) | 0.023846 / 0.141683 (-0.117837) | 1.692422 / 1.452155 (0.240267) | 1.809648 / 1.492716 (0.316932) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.240007 / 0.018006 (0.222001) | 0.481980 / 0.000490 (0.481490) | 0.006945 / 0.000200 (0.006746) | 0.000120 / 0.000054 (0.000065) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.037198 / 0.037411 (-0.000213) | 0.119413 / 0.014526 (0.104887) | 0.137409 / 0.176557 (-0.039148) | 0.199130 / 0.737135 (-0.538005) | 0.133137 / 0.296338 (-0.163202) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.521747 / 0.215209 (0.306538) | 4.955653 / 2.077655 (2.877999) | 2.694323 / 1.504120 (1.190203) | 2.496629 / 1.541195 (0.955434) | 2.661151 / 1.468490 (1.192660) | 0.576687 / 4.584777 (-4.008089) | 4.251437 / 3.745712 (0.505725) | 3.683020 / 5.269862 (-1.586842) | 2.363951 / 4.565676 (-2.201726) | 0.064631 / 0.424275 (-0.359644) | 0.007958 / 0.007607 (0.000351) | 0.616498 / 0.226044 (0.390454) | 5.919424 / 2.268929 (3.650496) | 3.255936 / 55.444624 (-52.188689) | 2.866167 / 6.876477 (-4.010309) | 3.007272 / 2.142072 (0.865199) | 0.660259 / 4.805227 (-4.144968) | 0.152469 / 6.500664 (-6.348195) | 0.065254 / 0.075469 (-0.010215) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.547912 / 1.841788 (-0.293876) | 22.494611 / 8.074308 (14.420303) | 16.400746 / 10.191392 (6.209354) | 0.184137 / 0.680424 (-0.496287) | 0.023615 / 0.534201 (-0.510586) | 0.473923 / 0.579283 (-0.105360) | 0.473030 / 0.434364 (0.038666) | 0.534264 / 0.540337 (-0.006073) | 0.770178 / 1.386936 (-0.616758) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#565efb7f43839072ef01247681645ca404ba0b94 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006812 / 0.011353 (-0.004541) | 0.004254 / 0.011008 (-0.006754) | 0.084271 / 0.038508 (0.045763) | 0.084299 / 0.023109 (0.061189) | 0.317437 / 0.275898 (0.041539) | 0.350855 / 0.323480 (0.027375) | 0.004296 / 0.007986 (-0.003690) | 0.003610 / 0.004328 (-0.000718) | 0.065205 / 0.004250 (0.060955) | 0.057734 / 0.037052 (0.020682) | 0.324049 / 0.258489 (0.065560) | 0.365042 / 0.293841 (0.071201) | 0.031454 / 0.128546 (-0.097092) | 0.008703 / 0.075646 (-0.066943) | 0.286603 / 0.419271 (-0.132668) | 0.052251 / 0.043533 (0.008719) | 0.312404 / 0.255139 (0.057265) | 0.335902 / 0.283200 (0.052703) | 0.025087 / 0.141683 (-0.116595) | 1.478573 / 1.452155 (0.026418) | 1.559548 / 1.492716 (0.066831) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.307637 / 0.018006 (0.289631) | 0.567169 / 0.000490 (0.566679) | 0.006782 / 0.000200 (0.006582) | 0.000235 / 0.000054 (0.000180) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030979 / 0.037411 (-0.006433) | 0.089972 / 0.014526 (0.075446) | 0.101689 / 0.176557 (-0.074868) | 0.162038 / 0.737135 (-0.575097) | 0.103107 / 0.296338 (-0.193232) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.382458 / 0.215209 (0.167248) | 3.813105 / 2.077655 (1.735450) | 1.855198 / 1.504120 (0.351078) | 1.699850 / 1.541195 (0.158656) | 1.902818 / 1.468490 (0.434328) | 0.478654 / 4.584777 (-4.106123) | 3.536926 / 3.745712 (-0.208786) | 3.558557 / 5.269862 (-1.711304) | 2.121098 / 4.565676 (-2.444579) | 0.056584 / 0.424275 (-0.367691) | 0.007693 / 0.007607 (0.000086) | 0.471157 / 0.226044 (0.245112) | 4.717742 / 2.268929 (2.448813) | 2.389033 / 55.444624 (-53.055591) | 2.102898 / 6.876477 (-4.773579) | 2.233404 / 2.142072 (0.091332) | 0.585829 / 4.805227 (-4.219398) | 0.133784 / 6.500664 (-6.366880) | 0.063963 / 0.075469 (-0.011506) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.272234 / 1.841788 (-0.569554) | 19.897647 / 8.074308 (11.823339) | 14.808090 / 10.191392 (4.616698) | 0.167199 / 0.680424 (-0.513224) | 0.018357 / 0.534201 (-0.515844) | 0.391635 / 0.579283 (-0.187648) | 0.409603 / 0.434364 (-0.024761) | 0.467670 / 0.540337 (-0.072668) | 0.639763 / 1.386936 (-0.747173) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006794 / 0.011353 (-0.004559) | 0.004317 / 0.011008 (-0.006692) | 0.065434 / 0.038508 (0.026926) | 0.079066 / 0.023109 (0.055957) | 0.415486 / 0.275898 (0.139588) | 0.448072 / 0.323480 (0.124593) | 0.005705 / 0.007986 (-0.002281) | 0.003589 / 0.004328 (-0.000739) | 0.065195 / 0.004250 (0.060945) | 0.058951 / 0.037052 (0.021899) | 0.414466 / 0.258489 (0.155977) | 0.453844 / 0.293841 (0.160003) | 0.032437 / 0.128546 (-0.096110) | 0.008805 / 0.075646 (-0.066841) | 0.071741 / 0.419271 (-0.347530) | 0.048051 / 0.043533 (0.004518) | 0.413197 / 0.255139 (0.158058) | 0.430071 / 0.283200 (0.146872) | 0.023144 / 0.141683 (-0.118539) | 1.507756 / 1.452155 (0.055601) | 1.572180 / 1.492716 (0.079464) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.326556 / 0.018006 (0.308550) | 0.533664 / 0.000490 (0.533174) | 0.007400 / 0.000200 (0.007200) | 0.000119 / 0.000054 (0.000065) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033397 / 0.037411 (-0.004014) | 0.092486 / 0.014526 (0.077960) | 0.108454 / 0.176557 (-0.068103) | 0.163885 / 0.737135 (-0.573250) | 0.109682 / 0.296338 (-0.186657) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.429283 / 0.215209 (0.214074) | 4.285774 / 2.077655 (2.208119) | 2.245646 / 1.504120 (0.741526) | 2.088460 / 1.541195 (0.547265) | 2.217908 / 1.468490 (0.749418) | 0.500126 / 4.584777 (-4.084651) | 3.640253 / 3.745712 (-0.105459) | 3.435069 / 5.269862 (-1.834793) | 2.158015 / 4.565676 (-2.407662) | 0.059087 / 0.424275 (-0.365188) | 0.007479 / 0.007607 (-0.000128) | 0.518067 / 0.226044 (0.292023) | 5.181891 / 2.268929 (2.912963) | 2.759156 / 55.444624 (-52.685468) | 2.452164 / 6.876477 (-4.424313) | 2.712764 / 2.142072 (0.570692) | 0.604871 / 4.805227 (-4.200356) | 0.137810 / 6.500664 (-6.362854) | 0.061999 / 0.075469 (-0.013470) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.338081 / 1.841788 (-0.503706) | 19.934668 / 8.074308 (11.860360) | 14.482526 / 10.191392 (4.291134) | 0.167615 / 0.680424 (-0.512809) | 0.020257 / 0.534201 (-0.513944) | 0.399103 / 0.579283 (-0.180180) | 0.431785 / 0.434364 (-0.002579) | 0.475470 / 0.540337 (-0.064868) | 0.648003 / 1.386936 (-0.738933) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#153a6c0b0897fc30203ded5a6d6c358c53aa3a0e \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.011916 / 0.011353 (0.000563) | 0.004696 / 0.011008 (-0.006313) | 0.101061 / 0.038508 (0.062553) | 0.093383 / 0.023109 (0.070274) | 0.391517 / 0.275898 (0.115619) | 0.434374 / 0.323480 (0.110894) | 0.006193 / 0.007986 (-0.001792) | 0.003840 / 0.004328 (-0.000489) | 0.077946 / 0.004250 (0.073696) | 0.066332 / 0.037052 (0.029280) | 0.413103 / 0.258489 (0.154614) | 0.452988 / 0.293841 (0.159148) | 0.044899 / 0.128546 (-0.083647) | 0.009969 / 0.075646 (-0.065677) | 0.344569 / 0.419271 (-0.074703) | 0.064688 / 0.043533 (0.021155) | 0.388042 / 0.255139 (0.132903) | 0.417615 / 0.283200 (0.134416) | 0.032899 / 0.141683 (-0.108784) | 1.738834 / 1.452155 (0.286679) | 1.837562 / 1.492716 (0.344845) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.255265 / 0.018006 (0.237259) | 0.547550 / 0.000490 (0.547061) | 0.009018 / 0.000200 (0.008818) | 0.001232 / 0.000054 (0.001178) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033171 / 0.037411 (-0.004241) | 0.102569 / 0.014526 (0.088043) | 0.113611 / 0.176557 (-0.062946) | 0.181805 / 0.737135 (-0.555330) | 0.115015 / 0.296338 (-0.181323) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.456430 / 0.215209 (0.241221) | 4.536000 / 2.077655 (2.458346) | 2.220554 / 1.504120 (0.716434) | 2.037965 / 1.541195 (0.496770) | 2.223780 / 1.468490 (0.755290) | 0.565732 / 4.584777 (-4.019045) | 4.574917 / 3.745712 (0.829205) | 4.085683 / 5.269862 (-1.184178) | 2.529052 / 4.565676 (-2.036624) | 0.067061 / 0.424275 (-0.357214) | 0.009161 / 0.007607 (0.001554) | 0.551377 / 0.226044 (0.325332) | 5.510422 / 2.268929 (3.241493) | 2.788264 / 55.444624 (-52.656360) | 2.432821 / 6.876477 (-4.443656) | 2.500835 / 2.142072 (0.358762) | 0.683645 / 4.805227 (-4.121582) | 0.155595 / 6.500664 (-6.345069) | 0.072265 / 0.075469 (-0.003204) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.512571 / 1.841788 (-0.329217) | 23.752582 / 8.074308 (15.678273) | 16.798834 / 10.191392 (6.607442) | 0.210325 / 0.680424 (-0.470099) | 0.023446 / 0.534201 (-0.510755) | 0.472964 / 0.579283 (-0.106319) | 0.518003 / 0.434364 (0.083639) | 0.588422 / 0.540337 (0.048085) | 0.830762 / 1.386936 (-0.556174) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008075 / 0.011353 (-0.003278) | 0.004569 / 0.011008 (-0.006439) | 0.079786 / 0.038508 (0.041278) | 0.092741 / 0.023109 (0.069632) | 0.500732 / 0.275898 (0.224834) | 0.544108 / 0.323480 (0.220628) | 0.006305 / 0.007986 (-0.001680) | 0.003843 / 0.004328 (-0.000486) | 0.078347 / 0.004250 (0.074096) | 0.066969 / 0.037052 (0.029916) | 0.504116 / 0.258489 (0.245627) | 0.548109 / 0.293841 (0.254268) | 0.038263 / 0.128546 (-0.090283) | 0.010006 / 0.075646 (-0.065640) | 0.085582 / 0.419271 (-0.333690) | 0.056937 / 0.043533 (0.013404) | 0.502861 / 0.255139 (0.247722) | 0.532002 / 0.283200 (0.248802) | 0.027003 / 0.141683 (-0.114679) | 1.811658 / 1.452155 (0.359503) | 1.878863 / 1.492716 (0.386147) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.242297 / 0.018006 (0.224291) | 0.489060 / 0.000490 (0.488570) | 0.005770 / 0.000200 (0.005570) | 0.000129 / 0.000054 (0.000075) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.040368 / 0.037411 (0.002956) | 0.116221 / 0.014526 (0.101695) | 0.125195 / 0.176557 (-0.051361) | 0.188616 / 0.737135 (-0.548519) | 0.126473 / 0.296338 (-0.169866) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.513975 / 0.215209 (0.298766) | 5.122407 / 2.077655 (3.044752) | 2.854024 / 1.504120 (1.349904) | 2.611101 / 1.541195 (1.069906) | 2.704880 / 1.468490 (1.236390) | 0.581568 / 4.584777 (-4.003209) | 4.628965 / 3.745712 (0.883253) | 4.069359 / 5.269862 (-1.200503) | 2.433793 / 4.565676 (-2.131883) | 0.068624 / 0.424275 (-0.355651) | 0.008843 / 0.007607 (0.001235) | 0.609147 / 0.226044 (0.383102) | 6.096923 / 2.268929 (3.827995) | 3.411687 / 55.444624 (-52.032937) | 2.972037 / 6.876477 (-3.904440) | 3.210266 / 2.142072 (1.068194) | 0.697935 / 4.805227 (-4.107292) | 0.156855 / 6.500664 (-6.343809) | 0.072600 / 0.075469 (-0.002869) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.673126 / 1.841788 (-0.168661) | 24.782231 / 8.074308 (16.707923) | 17.945937 / 10.191392 (7.754545) | 0.229063 / 0.680424 (-0.451361) | 0.024264 / 0.534201 (-0.509937) | 0.474904 / 0.579283 (-0.104379) | 0.616602 / 0.434364 (0.182238) | 0.587687 / 0.540337 (0.047350) | 0.875600 / 1.386936 (-0.511336) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#a46ae63ad72c0733c947fa0f2996fa739d80e1ef \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004866 / 0.011353 (-0.006487) | 0.002877 / 0.011008 (-0.008132) | 0.061786 / 0.038508 (0.023277) | 0.051555 / 0.023109 (0.028446) | 0.262182 / 0.275898 (-0.013716) | 0.288908 / 0.323480 (-0.034572) | 0.002929 / 0.007986 (-0.005057) | 0.002358 / 0.004328 (-0.001971) | 0.048246 / 0.004250 (0.043995) | 0.040391 / 0.037052 (0.003339) | 0.268165 / 0.258489 (0.009675) | 0.304844 / 0.293841 (0.011003) | 0.023280 / 0.128546 (-0.105266) | 0.007274 / 0.075646 (-0.068372) | 0.200698 / 0.419271 (-0.218574) | 0.036181 / 0.043533 (-0.007352) | 0.267292 / 0.255139 (0.012153) | 0.286981 / 0.283200 (0.003781) | 0.018686 / 0.141683 (-0.122996) | 1.131903 / 1.452155 (-0.320251) | 1.196631 / 1.492716 (-0.296086) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.092158 / 0.018006 (0.074152) | 0.300621 / 0.000490 (0.300132) | 0.000205 / 0.000200 (0.000006) | 0.000041 / 0.000054 (-0.000013) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018101 / 0.037411 (-0.019310) | 0.062478 / 0.014526 (0.047952) | 0.073092 / 0.176557 (-0.103464) | 0.119397 / 0.737135 (-0.617738) | 0.073768 / 0.296338 (-0.222570) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.286711 / 0.215209 (0.071502) | 2.766663 / 2.077655 (0.689008) | 1.431238 / 1.504120 (-0.072882) | 1.308312 / 1.541195 (-0.232883) | 1.344886 / 1.468490 (-0.123605) | 0.396719 / 4.584777 (-4.188058) | 2.371154 / 3.745712 (-1.374558) | 2.626471 / 5.269862 (-2.643391) | 1.574837 / 4.565676 (-2.990840) | 0.046344 / 0.424275 (-0.377931) | 0.005108 / 0.007607 (-0.002499) | 0.334200 / 0.226044 (0.108156) | 3.277034 / 2.268929 (1.008106) | 1.789338 / 55.444624 (-53.655286) | 1.527584 / 6.876477 (-5.348892) | 1.570417 / 2.142072 (-0.571656) | 0.472663 / 4.805227 (-4.332564) | 0.100825 / 6.500664 (-6.399839) | 0.042270 / 0.075469 (-0.033199) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.965416 / 1.841788 (-0.876372) | 11.827406 / 8.074308 (3.753098) | 10.820703 / 10.191392 (0.629311) | 0.128636 / 0.680424 (-0.551788) | 0.014696 / 0.534201 (-0.519505) | 0.271019 / 0.579283 (-0.308264) | 0.270077 / 0.434364 (-0.164287) | 0.313054 / 0.540337 (-0.227284) | 0.402941 / 1.386936 (-0.983995) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005204 / 0.011353 (-0.006149) | 0.002976 / 0.011008 (-0.008032) | 0.047723 / 0.038508 (0.009215) | 0.056180 / 0.023109 (0.033071) | 0.277751 / 0.275898 (0.001853) | 0.304109 / 0.323480 (-0.019371) | 0.004254 / 0.007986 (-0.003732) | 0.002386 / 0.004328 (-0.001943) | 0.047815 / 0.004250 (0.043564) | 0.041553 / 0.037052 (0.004501) | 0.280958 / 0.258489 (0.022469) | 0.308639 / 0.293841 (0.014799) | 0.023549 / 0.128546 (-0.104997) | 0.007846 / 0.075646 (-0.067800) | 0.053762 / 0.419271 (-0.365509) | 0.031763 / 0.043533 (-0.011770) | 0.278208 / 0.255139 (0.023069) | 0.294024 / 0.283200 (0.010825) | 0.018648 / 0.141683 (-0.123035) | 1.140664 / 1.452155 (-0.311490) | 1.206706 / 1.492716 (-0.286010) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.093211 / 0.018006 (0.075205) | 0.303067 / 0.000490 (0.302577) | 0.000222 / 0.000200 (0.000022) | 0.000055 / 0.000054 (0.000001) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.021745 / 0.037411 (-0.015666) | 0.070400 / 0.014526 (0.055874) | 0.083250 / 0.176557 (-0.093307) | 0.119745 / 0.737135 (-0.617391) | 0.083004 / 0.296338 (-0.213335) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.305841 / 0.215209 (0.090632) | 2.958171 / 2.077655 (0.880516) | 1.596990 / 1.504120 (0.092870) | 1.466522 / 1.541195 (-0.074673) | 1.487050 / 1.468490 (0.018560) | 0.402866 / 4.584777 (-4.181911) | 2.425415 / 3.745712 (-1.320297) | 2.545245 / 5.269862 (-2.724617) | 1.569719 / 4.565676 (-2.995958) | 0.046344 / 0.424275 (-0.377931) | 0.005275 / 0.007607 (-0.002332) | 0.362024 / 0.226044 (0.135980) | 3.556721 / 2.268929 (1.287792) | 1.961359 / 55.444624 (-53.483266) | 1.672835 / 6.876477 (-5.203641) | 1.814036 / 2.142072 (-0.328036) | 0.482012 / 4.805227 (-4.323215) | 0.099275 / 6.500664 (-6.401389) | 0.040988 / 0.075469 (-0.034481) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.984368 / 1.841788 (-0.857420) | 12.251555 / 8.074308 (4.177247) | 10.645975 / 10.191392 (0.454583) | 0.128955 / 0.680424 (-0.551468) | 0.015355 / 0.534201 (-0.518846) | 0.272498 / 0.579283 (-0.306785) | 0.279342 / 0.434364 (-0.155022) | 0.303055 / 0.540337 (-0.237282) | 0.392437 / 1.386936 (-0.994499) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#56458fa98d2670ff6bf47a782b6f418785c017fd \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009502 / 0.011353 (-0.001851) | 0.004957 / 0.011008 (-0.006052) | 0.111062 / 0.038508 (0.072553) | 0.100012 / 0.023109 (0.076903) | 0.415747 / 0.275898 (0.139849) | 0.453910 / 0.323480 (0.130430) | 0.006030 / 0.007986 (-0.001956) | 0.004271 / 0.004328 (-0.000057) | 0.088694 / 0.004250 (0.084444) | 0.064529 / 0.037052 (0.027477) | 0.414999 / 0.258489 (0.156510) | 0.477115 / 0.293841 (0.183274) | 0.047565 / 0.128546 (-0.080982) | 0.013352 / 0.075646 (-0.062294) | 0.367948 / 0.419271 (-0.051324) | 0.067577 / 0.043533 (0.024044) | 0.405107 / 0.255139 (0.149968) | 0.430281 / 0.283200 (0.147081) | 0.041629 / 0.141683 (-0.100054) | 1.784746 / 1.452155 (0.332591) | 1.901539 / 1.492716 (0.408822) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.308456 / 0.018006 (0.290450) | 0.623253 / 0.000490 (0.622763) | 0.014966 / 0.000200 (0.014766) | 0.000393 / 0.000054 (0.000338) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031538 / 0.037411 (-0.005873) | 0.100321 / 0.014526 (0.085796) | 0.112788 / 0.176557 (-0.063769) | 0.180998 / 0.737135 (-0.556138) | 0.111589 / 0.296338 (-0.184750) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.603121 / 0.215209 (0.387912) | 5.769795 / 2.077655 (3.692140) | 2.501168 / 1.504120 (0.997048) | 2.240982 / 1.541195 (0.699787) | 2.333123 / 1.468490 (0.864633) | 0.799246 / 4.584777 (-3.785531) | 5.148529 / 3.745712 (1.402817) | 4.737782 / 5.269862 (-0.532080) | 3.003032 / 4.565676 (-1.562644) | 0.087457 / 0.424275 (-0.336818) | 0.008777 / 0.007607 (0.001170) | 0.692961 / 0.226044 (0.466916) | 7.235537 / 2.268929 (4.966608) | 3.464074 / 55.444624 (-51.980551) | 2.817360 / 6.876477 (-4.059116) | 2.903121 / 2.142072 (0.761049) | 1.026150 / 4.805227 (-3.779077) | 0.231814 / 6.500664 (-6.268850) | 0.088358 / 0.075469 (0.012888) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.527889 / 1.841788 (-0.313898) | 24.374770 / 8.074308 (16.300462) | 21.720415 / 10.191392 (11.529023) | 0.209357 / 0.680424 (-0.471067) | 0.027587 / 0.534201 (-0.506614) | 0.479136 / 0.579283 (-0.100147) | 0.573005 / 0.434364 (0.138641) | 0.537713 / 0.540337 (-0.002625) | 0.753628 / 1.386936 (-0.633308) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009724 / 0.011353 (-0.001629) | 0.004798 / 0.011008 (-0.006210) | 0.076423 / 0.038508 (0.037915) | 0.085693 / 0.023109 (0.062584) | 0.446864 / 0.275898 (0.170966) | 0.482700 / 0.323480 (0.159220) | 0.006448 / 0.007986 (-0.001537) | 0.004451 / 0.004328 (0.000122) | 0.078295 / 0.004250 (0.074045) | 0.061940 / 0.037052 (0.024888) | 0.446091 / 0.258489 (0.187601) | 0.478567 / 0.293841 (0.184726) | 0.047206 / 0.128546 (-0.081340) | 0.012608 / 0.075646 (-0.063038) | 0.089719 / 0.419271 (-0.329552) | 0.057791 / 0.043533 (0.014258) | 0.438357 / 0.255139 (0.183218) | 0.475060 / 0.283200 (0.191860) | 0.035466 / 0.141683 (-0.106216) | 1.691982 / 1.452155 (0.239827) | 1.773834 / 1.492716 (0.281118) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.290053 / 0.018006 (0.272047) | 0.595465 / 0.000490 (0.594976) | 0.007531 / 0.000200 (0.007331) | 0.000179 / 0.000054 (0.000124) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034625 / 0.037411 (-0.002786) | 0.098725 / 0.014526 (0.084200) | 0.111248 / 0.176557 (-0.065308) | 0.172113 / 0.737135 (-0.565022) | 0.111299 / 0.296338 (-0.185040) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.581773 / 0.215209 (0.366564) | 6.150993 / 2.077655 (4.073338) | 2.761099 / 1.504120 (1.256980) | 2.431459 / 1.541195 (0.890264) | 2.501471 / 1.468490 (1.032981) | 0.805751 / 4.584777 (-3.779026) | 5.375406 / 3.745712 (1.629693) | 4.829323 / 5.269862 (-0.440538) | 3.095235 / 4.565676 (-1.470442) | 0.103336 / 0.424275 (-0.320939) | 0.012678 / 0.007607 (0.005071) | 0.730121 / 0.226044 (0.504077) | 7.272025 / 2.268929 (5.003097) | 3.607889 / 55.444624 (-51.836735) | 2.904797 / 6.876477 (-3.971680) | 3.179139 / 2.142072 (1.037067) | 0.997510 / 4.805227 (-3.807717) | 0.219023 / 6.500664 (-6.281641) | 0.076680 / 0.075469 (0.001211) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.712838 / 1.841788 (-0.128950) | 24.242240 / 8.074308 (16.167932) | 19.746825 / 10.191392 (9.555433) | 0.234590 / 0.680424 (-0.445833) | 0.032015 / 0.534201 (-0.502186) | 0.462554 / 0.579283 (-0.116729) | 0.604529 / 0.434364 (0.170165) | 0.537779 / 0.540337 (-0.002558) | 0.777386 / 1.386936 (-0.609550) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#89c1b13d85b8971925440deb84f558e23c224a47 \"CML watermark\")\n",
"Cool ! Nice to simplify this",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004659 / 0.011353 (-0.006693) | 0.002672 / 0.011008 (-0.008337) | 0.062385 / 0.038508 (0.023877) | 0.030581 / 0.023109 (0.007471) | 0.243210 / 0.275898 (-0.032688) | 0.271441 / 0.323480 (-0.052039) | 0.002909 / 0.007986 (-0.005076) | 0.002371 / 0.004328 (-0.001957) | 0.049213 / 0.004250 (0.044962) | 0.043952 / 0.037052 (0.006900) | 0.250257 / 0.258489 (-0.008232) | 0.280470 / 0.293841 (-0.013371) | 0.023048 / 0.128546 (-0.105499) | 0.006893 / 0.075646 (-0.068754) | 0.204026 / 0.419271 (-0.215245) | 0.054067 / 0.043533 (0.010534) | 0.248730 / 0.255139 (-0.006409) | 0.272325 / 0.283200 (-0.010874) | 0.019028 / 0.141683 (-0.122655) | 1.103477 / 1.452155 (-0.348678) | 1.185775 / 1.492716 (-0.306942) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.097295 / 0.018006 (0.079289) | 0.302997 / 0.000490 (0.302507) | 0.000216 / 0.000200 (0.000016) | 0.000044 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018653 / 0.037411 (-0.018759) | 0.062604 / 0.014526 (0.048079) | 0.075652 / 0.176557 (-0.100904) | 0.121298 / 0.737135 (-0.615838) | 0.074129 / 0.296338 (-0.222209) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.283315 / 0.215209 (0.068106) | 2.833975 / 2.077655 (0.756320) | 1.463877 / 1.504120 (-0.040243) | 1.352197 / 1.541195 (-0.188998) | 1.337623 / 1.468490 (-0.130867) | 0.405282 / 4.584777 (-4.179495) | 2.371381 / 3.745712 (-1.374331) | 2.584853 / 5.269862 (-2.685009) | 1.565902 / 4.565676 (-2.999775) | 0.046398 / 0.424275 (-0.377877) | 0.004795 / 0.007607 (-0.002812) | 0.345949 / 0.226044 (0.119905) | 3.326662 / 2.268929 (1.057733) | 1.778394 / 55.444624 (-53.666230) | 1.520788 / 6.876477 (-5.355688) | 1.526517 / 2.142072 (-0.615556) | 0.471788 / 4.805227 (-4.333439) | 0.099236 / 6.500664 (-6.401428) | 0.041886 / 0.075469 (-0.033583) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.958183 / 1.841788 (-0.883605) | 11.474476 / 8.074308 (3.400168) | 10.547550 / 10.191392 (0.356158) | 0.129316 / 0.680424 (-0.551108) | 0.013969 / 0.534201 (-0.520232) | 0.272028 / 0.579283 (-0.307255) | 0.271027 / 0.434364 (-0.163337) | 0.312124 / 0.540337 (-0.228214) | 0.423879 / 1.386936 (-0.963057) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004743 / 0.011353 (-0.006610) | 0.002724 / 0.011008 (-0.008284) | 0.049526 / 0.038508 (0.011018) | 0.051429 / 0.023109 (0.028319) | 0.265202 / 0.275898 (-0.010696) | 0.287498 / 0.323480 (-0.035981) | 0.004034 / 0.007986 (-0.003951) | 0.002460 / 0.004328 (-0.001868) | 0.049367 / 0.004250 (0.045116) | 0.038526 / 0.037052 (0.001474) | 0.271496 / 0.258489 (0.013007) | 0.300969 / 0.293841 (0.007128) | 0.024159 / 0.128546 (-0.104387) | 0.006959 / 0.075646 (-0.068687) | 0.055316 / 0.419271 (-0.363955) | 0.032409 / 0.043533 (-0.011124) | 0.267524 / 0.255139 (0.012385) | 0.284667 / 0.283200 (0.001467) | 0.017305 / 0.141683 (-0.124378) | 1.127560 / 1.452155 (-0.324595) | 1.188271 / 1.492716 (-0.304445) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.093587 / 0.018006 (0.075581) | 0.301834 / 0.000490 (0.301344) | 0.000211 / 0.000200 (0.000011) | 0.000043 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.020899 / 0.037411 (-0.016512) | 0.069999 / 0.014526 (0.055473) | 0.081434 / 0.176557 (-0.095123) | 0.120538 / 0.737135 (-0.616598) | 0.082708 / 0.296338 (-0.213630) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.291845 / 0.215209 (0.076636) | 2.872476 / 2.077655 (0.794822) | 1.579330 / 1.504120 (0.075210) | 1.453083 / 1.541195 (-0.088112) | 1.496675 / 1.468490 (0.028185) | 0.406178 / 4.584777 (-4.178599) | 2.434121 / 3.745712 (-1.311592) | 2.519760 / 5.269862 (-2.750101) | 1.535781 / 4.565676 (-3.029895) | 0.046331 / 0.424275 (-0.377944) | 0.004749 / 0.007607 (-0.002858) | 0.340862 / 0.226044 (0.114817) | 3.362750 / 2.268929 (1.093822) | 1.924707 / 55.444624 (-53.519917) | 1.646820 / 6.876477 (-5.229657) | 1.630885 / 2.142072 (-0.511188) | 0.478623 / 4.805227 (-4.326605) | 0.098235 / 6.500664 (-6.402429) | 0.040741 / 0.075469 (-0.034728) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.989858 / 1.841788 (-0.851929) | 12.111035 / 8.074308 (4.036727) | 11.065284 / 10.191392 (0.873892) | 0.143443 / 0.680424 (-0.536981) | 0.015873 / 0.534201 (-0.518328) | 0.271932 / 0.579283 (-0.307351) | 0.281440 / 0.434364 (-0.152924) | 0.309518 / 0.540337 (-0.230819) | 0.414701 / 1.386936 (-0.972235) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#322ee4bd7d460a5789f9991a45453b9fb5f5aed1 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005840 / 0.011353 (-0.005513) | 0.003580 / 0.011008 (-0.007428) | 0.079921 / 0.038508 (0.041413) | 0.036316 / 0.023109 (0.013206) | 0.321065 / 0.275898 (0.045167) | 0.348594 / 0.323480 (0.025115) | 0.004662 / 0.007986 (-0.003324) | 0.002884 / 0.004328 (-0.001444) | 0.062964 / 0.004250 (0.058714) | 0.052856 / 0.037052 (0.015804) | 0.322087 / 0.258489 (0.063598) | 0.355546 / 0.293841 (0.061705) | 0.027025 / 0.128546 (-0.101521) | 0.007969 / 0.075646 (-0.067678) | 0.261416 / 0.419271 (-0.157855) | 0.066612 / 0.043533 (0.023079) | 0.314631 / 0.255139 (0.059492) | 0.340939 / 0.283200 (0.057739) | 0.019710 / 0.141683 (-0.121972) | 1.446068 / 1.452155 (-0.006086) | 1.510342 / 1.492716 (0.017625) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.219742 / 0.018006 (0.201736) | 0.431794 / 0.000490 (0.431304) | 0.005717 / 0.000200 (0.005517) | 0.000195 / 0.000054 (0.000141) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024486 / 0.037411 (-0.012926) | 0.073231 / 0.014526 (0.058706) | 0.084053 / 0.176557 (-0.092503) | 0.145857 / 0.737135 (-0.591279) | 0.083050 / 0.296338 (-0.213289) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.400532 / 0.215209 (0.185323) | 3.989293 / 2.077655 (1.911638) | 1.935520 / 1.504120 (0.431400) | 1.754146 / 1.541195 (0.212951) | 1.821060 / 1.468490 (0.352570) | 0.512603 / 4.584777 (-4.072173) | 3.070974 / 3.745712 (-0.674738) | 2.984617 / 5.269862 (-2.285245) | 1.875790 / 4.565676 (-2.689886) | 0.057881 / 0.424275 (-0.366394) | 0.006403 / 0.007607 (-0.001204) | 0.465542 / 0.226044 (0.239498) | 4.659589 / 2.268929 (2.390661) | 2.349637 / 55.444624 (-53.094987) | 2.011511 / 6.876477 (-4.864965) | 2.071893 / 2.142072 (-0.070179) | 0.591113 / 4.805227 (-4.214114) | 0.125000 / 6.500664 (-6.375664) | 0.061372 / 0.075469 (-0.014097) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.237068 / 1.841788 (-0.604720) | 17.493192 / 8.074308 (9.418884) | 13.600688 / 10.191392 (3.409296) | 0.142508 / 0.680424 (-0.537916) | 0.017305 / 0.534201 (-0.516896) | 0.333352 / 0.579283 (-0.245931) | 0.366699 / 0.434364 (-0.067665) | 0.381104 / 0.540337 (-0.159233) | 0.562645 / 1.386936 (-0.824291) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006337 / 0.011353 (-0.005016) | 0.003584 / 0.011008 (-0.007424) | 0.063351 / 0.038508 (0.024843) | 0.061351 / 0.023109 (0.038242) | 0.430690 / 0.275898 (0.154792) | 0.462158 / 0.323480 (0.138678) | 0.004922 / 0.007986 (-0.003064) | 0.002898 / 0.004328 (-0.001430) | 0.063722 / 0.004250 (0.059472) | 0.046970 / 0.037052 (0.009918) | 0.436340 / 0.258489 (0.177851) | 0.472842 / 0.293841 (0.179001) | 0.029238 / 0.128546 (-0.099309) | 0.008079 / 0.075646 (-0.067568) | 0.068425 / 0.419271 (-0.350846) | 0.041272 / 0.043533 (-0.002261) | 0.429150 / 0.255139 (0.174011) | 0.451859 / 0.283200 (0.168659) | 0.020135 / 0.141683 (-0.121547) | 1.440388 / 1.452155 (-0.011767) | 1.506784 / 1.492716 (0.014068) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.225810 / 0.018006 (0.207804) | 0.408447 / 0.000490 (0.407957) | 0.002484 / 0.000200 (0.002284) | 0.000079 / 0.000054 (0.000024) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026162 / 0.037411 (-0.011250) | 0.079292 / 0.014526 (0.064766) | 0.091126 / 0.176557 (-0.085431) | 0.141607 / 0.737135 (-0.595528) | 0.090073 / 0.296338 (-0.206266) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.420689 / 0.215209 (0.205479) | 4.207631 / 2.077655 (2.129976) | 2.163469 / 1.504120 (0.659350) | 2.098208 / 1.541195 (0.557013) | 2.217340 / 1.468490 (0.748850) | 0.502599 / 4.584777 (-4.082178) | 3.128151 / 3.745712 (-0.617561) | 2.921041 / 5.269862 (-2.348820) | 1.808352 / 4.565676 (-2.757325) | 0.057724 / 0.424275 (-0.366551) | 0.006423 / 0.007607 (-0.001184) | 0.490631 / 0.226044 (0.264587) | 4.878761 / 2.268929 (2.609833) | 2.614831 / 55.444624 (-52.829793) | 2.214611 / 6.876477 (-4.661866) | 2.253313 / 2.142072 (0.111241) | 0.585643 / 4.805227 (-4.219584) | 0.122436 / 6.500664 (-6.378228) | 0.057974 / 0.075469 (-0.017495) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.334290 / 1.841788 (-0.507498) | 17.778981 / 8.074308 (9.704672) | 14.982837 / 10.191392 (4.791445) | 0.135731 / 0.680424 (-0.544693) | 0.018314 / 0.534201 (-0.515887) | 0.332318 / 0.579283 (-0.246966) | 0.380185 / 0.434364 (-0.054179) | 0.391430 / 0.540337 (-0.148907) | 0.554577 / 1.386936 (-0.832359) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#1715b61a096cafb20caeb136111522432aba04f5 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005248 / 0.011353 (-0.006105) | 0.003188 / 0.011008 (-0.007820) | 0.063045 / 0.038508 (0.024537) | 0.033620 / 0.023109 (0.010511) | 0.244725 / 0.275898 (-0.031173) | 0.283259 / 0.323480 (-0.040220) | 0.003013 / 0.007986 (-0.004973) | 0.002486 / 0.004328 (-0.001842) | 0.048873 / 0.004250 (0.044623) | 0.049431 / 0.037052 (0.012379) | 0.245297 / 0.258489 (-0.013192) | 0.283127 / 0.293841 (-0.010714) | 0.024204 / 0.128546 (-0.104342) | 0.007542 / 0.075646 (-0.068104) | 0.204831 / 0.419271 (-0.214440) | 0.067487 / 0.043533 (0.023954) | 0.251477 / 0.255139 (-0.003662) | 0.273108 / 0.283200 (-0.010091) | 0.021035 / 0.141683 (-0.120648) | 1.108361 / 1.452155 (-0.343793) | 1.172923 / 1.492716 (-0.319793) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.094729 / 0.018006 (0.076722) | 0.301877 / 0.000490 (0.301388) | 0.000223 / 0.000200 (0.000023) | 0.000050 / 0.000054 (-0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019901 / 0.037411 (-0.017511) | 0.068059 / 0.014526 (0.053534) | 0.075333 / 0.176557 (-0.101224) | 0.123276 / 0.737135 (-0.613859) | 0.076810 / 0.296338 (-0.219528) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.283421 / 0.215209 (0.068211) | 2.775511 / 2.077655 (0.697857) | 1.430927 / 1.504120 (-0.073193) | 1.317334 / 1.541195 (-0.223860) | 1.359483 / 1.468490 (-0.109007) | 0.403186 / 4.584777 (-4.181591) | 2.405789 / 3.745712 (-1.339923) | 2.773039 / 5.269862 (-2.496823) | 1.666722 / 4.565676 (-2.898954) | 0.047937 / 0.424275 (-0.376338) | 0.004879 / 0.007607 (-0.002728) | 0.347225 / 0.226044 (0.121180) | 3.380860 / 2.268929 (1.111931) | 1.838532 / 55.444624 (-53.606092) | 1.597681 / 6.876477 (-5.278796) | 1.600123 / 2.142072 (-0.541949) | 0.478836 / 4.805227 (-4.326391) | 0.100332 / 6.500664 (-6.400332) | 0.043334 / 0.075469 (-0.032135) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.942591 / 1.841788 (-0.899196) | 12.588886 / 8.074308 (4.514578) | 11.375666 / 10.191392 (1.184274) | 0.143460 / 0.680424 (-0.536964) | 0.014990 / 0.534201 (-0.519211) | 0.271068 / 0.579283 (-0.308216) | 0.265478 / 0.434364 (-0.168885) | 0.310914 / 0.540337 (-0.229423) | 0.428310 / 1.386936 (-0.958626) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004986 / 0.011353 (-0.006367) | 0.003263 / 0.011008 (-0.007745) | 0.049076 / 0.038508 (0.010567) | 0.063665 / 0.023109 (0.040556) | 0.270352 / 0.275898 (-0.005546) | 0.298849 / 0.323480 (-0.024631) | 0.004083 / 0.007986 (-0.003903) | 0.002503 / 0.004328 (-0.001826) | 0.048586 / 0.004250 (0.044335) | 0.040701 / 0.037052 (0.003648) | 0.274082 / 0.258489 (0.015593) | 0.308279 / 0.293841 (0.014438) | 0.024734 / 0.128546 (-0.103812) | 0.007535 / 0.075646 (-0.068111) | 0.054670 / 0.419271 (-0.364602) | 0.032828 / 0.043533 (-0.010705) | 0.276226 / 0.255139 (0.021087) | 0.289322 / 0.283200 (0.006122) | 0.018789 / 0.141683 (-0.122893) | 1.279837 / 1.452155 (-0.172318) | 1.203010 / 1.492716 (-0.289706) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.095674 / 0.018006 (0.077667) | 0.309754 / 0.000490 (0.309265) | 0.000229 / 0.000200 (0.000029) | 0.000052 / 0.000054 (-0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.021733 / 0.037411 (-0.015678) | 0.074858 / 0.014526 (0.060332) | 0.081845 / 0.176557 (-0.094711) | 0.121991 / 0.737135 (-0.615145) | 0.084057 / 0.296338 (-0.212281) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.298456 / 0.215209 (0.083246) | 2.884930 / 2.077655 (0.807276) | 1.574875 / 1.504120 (0.070755) | 1.451598 / 1.541195 (-0.089597) | 1.548106 / 1.468490 (0.079616) | 0.408662 / 4.584777 (-4.176115) | 2.444306 / 3.745712 (-1.301406) | 2.737027 / 5.269862 (-2.532835) | 1.633085 / 4.565676 (-2.932592) | 0.047349 / 0.424275 (-0.376926) | 0.004864 / 0.007607 (-0.002744) | 0.355434 / 0.226044 (0.129389) | 3.495531 / 2.268929 (1.226603) | 1.972737 / 55.444624 (-53.471888) | 1.706973 / 6.876477 (-5.169504) | 1.798985 / 2.142072 (-0.343087) | 0.490353 / 4.805227 (-4.314874) | 0.099533 / 6.500664 (-6.401131) | 0.042397 / 0.075469 (-0.033073) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.978092 / 1.841788 (-0.863696) | 13.166220 / 8.074308 (5.091912) | 11.673518 / 10.191392 (1.482126) | 0.134253 / 0.680424 (-0.546171) | 0.016478 / 0.534201 (-0.517723) | 0.271629 / 0.579283 (-0.307654) | 0.284082 / 0.434364 (-0.150282) | 0.313352 / 0.540337 (-0.226986) | 0.416913 / 1.386936 (-0.970023) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#01e7144a02825fea3418872c51a8ca93950f3080 \"CML watermark\")\n"
] | 2023-10-27T15:54:18 | 2023-11-15T14:08:29 | 2023-11-15T14:02:02 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6362",
"html_url": "https://github.com/huggingface/datasets/pull/6362",
"diff_url": "https://github.com/huggingface/datasets/pull/6362.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6362.patch",
"merged_at": "2023-11-15T14:02:02"
} | Simplifies the existing filesystem logic (e.g., to avoid unnecessary if-else as mentioned in https://github.com/huggingface/datasets/pull/6098#issue-1827655071) | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6362/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6362/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6360 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6360/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6360/comments | https://api.github.com/repos/huggingface/datasets/issues/6360/events | https://github.com/huggingface/datasets/issues/6360 | 1,965,672,950 | I_kwDODunzps51Kcn2 | 6,360 | Add support for `Sequence(Audio/Image)` feature in `push_to_hub` | {
"login": "Laurent2916",
"id": 21087104,
"node_id": "MDQ6VXNlcjIxMDg3MTA0",
"avatar_url": "https://avatars.githubusercontent.com/u/21087104?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/Laurent2916",
"html_url": "https://github.com/Laurent2916",
"followers_url": "https://api.github.com/users/Laurent2916/followers",
"following_url": "https://api.github.com/users/Laurent2916/following{/other_user}",
"gists_url": "https://api.github.com/users/Laurent2916/gists{/gist_id}",
"starred_url": "https://api.github.com/users/Laurent2916/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Laurent2916/subscriptions",
"organizations_url": "https://api.github.com/users/Laurent2916/orgs",
"repos_url": "https://api.github.com/users/Laurent2916/repos",
"events_url": "https://api.github.com/users/Laurent2916/events{/privacy}",
"received_events_url": "https://api.github.com/users/Laurent2916/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892871,
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement",
"name": "enhancement",
"color": "a2eeef",
"default": true,
"description": "New feature or request"
}
] | open | false | {
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
}
] | [
"This issue stems from https://github.com/huggingface/datasets/blob/6d2f2a5e0fea3827eccfd1717d8021c15fc4292a/src/datasets/table.py#L2203-L2205\r\n\r\nI'll address it as part of https://github.com/huggingface/datasets/pull/6283.\r\n\r\nIn the meantime, this should work\r\n\r\n```python\r\nimport pyarrow as pa\r\nfrom datasets import Image\r\n\r\ndataset = dataset.with_format(\"arrow\")\r\n\r\ndef embed_images(pa_table):\r\n images_arr = pa.chunked_array(\r\n [\r\n pa.ListArray.from_arrays(chunk.offsets, Image().embed_storage(chunk.values), mask=chunk.is_null())\r\n for chunk in pa_table[\"images\"].chunks\r\n ]\r\n )\r\n return pa_table.set_column(pa_table.schema.get_field_index(\"images\"), \"images\", images_arr)\r\n\r\ndataset = dataset.map(embed_images, batched=True)\r\n\r\ndataset = dataset.with_format(\"python\")\r\n\r\ndataset.push_to_hub(...)\r\n```"
] | 2023-10-27T14:39:57 | 2023-11-02T17:49:28 | null | CONTRIBUTOR | null | null | null | ### Feature request
Allow for `Sequence` of `Image` (or `Audio`) to be embedded inside the shards.
### Motivation
Currently, thanks to #3685, when `embed_external_files` is set to True (which is the default) in `push_to_hub`, features of type `Image` and `Audio` are embedded inside the arrow/parquet shards, instead of only storing paths to the files.
I've noticed that this behavior does not extend to `Sequence` of `Image`, when working with a [dataset of timelapse images](https://huggingface.co./datasets/1aurent/Human-Embryo-Timelapse).
### Your contribution
I'll submit a PR if I find a way to add this feature | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6360/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6360/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/6359 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6359/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6359/comments | https://api.github.com/repos/huggingface/datasets/issues/6359/events | https://github.com/huggingface/datasets/issues/6359 | 1,965,378,583 | I_kwDODunzps51JUwX | 6,359 | Stuck in "Resolving data files..." | {
"login": "Luciennnnnnn",
"id": 20135317,
"node_id": "MDQ6VXNlcjIwMTM1MzE3",
"avatar_url": "https://avatars.githubusercontent.com/u/20135317?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/Luciennnnnnn",
"html_url": "https://github.com/Luciennnnnnn",
"followers_url": "https://api.github.com/users/Luciennnnnnn/followers",
"following_url": "https://api.github.com/users/Luciennnnnnn/following{/other_user}",
"gists_url": "https://api.github.com/users/Luciennnnnnn/gists{/gist_id}",
"starred_url": "https://api.github.com/users/Luciennnnnnn/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Luciennnnnnn/subscriptions",
"organizations_url": "https://api.github.com/users/Luciennnnnnn/orgs",
"repos_url": "https://api.github.com/users/Luciennnnnnn/repos",
"events_url": "https://api.github.com/users/Luciennnnnnn/events{/privacy}",
"received_events_url": "https://api.github.com/users/Luciennnnnnn/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | [
"Most likely, the data file inference logic is the problem here.\r\n\r\nYou can run the following code to verify this:\r\n```python\r\nimport time\r\nfrom datasets.data_files import get_data_patterns\r\nstart_time = time.time()\r\nget_data_patterns(\"/path/to/img_dir\")\r\nend_time = time.time()\r\nprint(f\"Elapsed time: {end_time - start_time:.2f}s\")\r\n```\r\n \r\nWe plan to optimize this for the next version (or version after that). In the meantime, specifying the split patterns manually should give better performance:\r\n```python\r\nds = load_dataset(\"imagefolder\", data_files={\"train\": \"path/to/img_dir/train/**\", ...}, split=\"train\")\r\n```",
"Hi, @mariosasko, you are right; data file inference logic is extremely slow.\r\n\r\nI have done a similar test, that is I modify the source code of datasets/load.py to measure the cost of two suspicious operations:\r\n```python\r\ndef get_module(self) -> DatasetModule:\r\n base_path = Path(self.data_dir or \"\").expanduser().resolve().as_posix()\r\n start = time.time()\r\n patterns = sanitize_patterns(self.data_files) if self.data_files is not None else get_data_patterns(base_path)\r\n print(f\"patterns: {time.time() - start}\")\r\n start = time.time()\r\n data_files = DataFilesDict.from_patterns(\r\n patterns,\r\n download_config=self.download_config,\r\n base_path=base_path,\r\n )\r\n print(f\"data_files: {time.time() - start}\")\r\n```\r\nIt gaves:\r\npatterns: 3062.2050700187683\r\ndata_files: 413.9576675891876\r\n\r\nThus, these two operations contribute to almost all of load time. What's going on in them?",
"Furthermore, what's my current workaround about this problem? Should I save it by `save_to_disk()` and load dataset through `load_from_disk`?"
] | 2023-10-27T12:01:51 | 2023-10-28T01:38:21 | null | NONE | null | null | null | ### Describe the bug
I have an image dataset with 300k images, the size of image is 768 * 768.
When I run `dataset = load_dataset("imagefolder", data_dir="/path/to/img_dir", split='train')` in second time, it takes 50 minutes to finish "Resolving data files" part, what's going on in this part?
From my understand, after Arrow files been created in the first run, the second run should not take time longer than one or two minutes.
### Steps to reproduce the bug
# Run following code two times
dataset = load_dataset("imagefolder", data_dir="/path/to/img_dir", split='train')
### Expected behavior
Fast dataset building
### Environment info
- `datasets` version: 2.14.5
- Platform: Linux-5.15.0-60-generic-x86_64-with-glibc2.35
- Python version: 3.10.11
- Huggingface_hub version: 0.17.3
- PyArrow version: 10.0.1
- Pandas version: 1.5.3 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6359/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6359/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/6358 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6358/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6358/comments | https://api.github.com/repos/huggingface/datasets/issues/6358/events | https://github.com/huggingface/datasets/issues/6358 | 1,965,014,595 | I_kwDODunzps51H75D | 6,358 | Mounting datasets cache fails due to absolute paths. | {
"login": "charliebudd",
"id": 72921588,
"node_id": "MDQ6VXNlcjcyOTIxNTg4",
"avatar_url": "https://avatars.githubusercontent.com/u/72921588?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/charliebudd",
"html_url": "https://github.com/charliebudd",
"followers_url": "https://api.github.com/users/charliebudd/followers",
"following_url": "https://api.github.com/users/charliebudd/following{/other_user}",
"gists_url": "https://api.github.com/users/charliebudd/gists{/gist_id}",
"starred_url": "https://api.github.com/users/charliebudd/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/charliebudd/subscriptions",
"organizations_url": "https://api.github.com/users/charliebudd/orgs",
"repos_url": "https://api.github.com/users/charliebudd/repos",
"events_url": "https://api.github.com/users/charliebudd/events{/privacy}",
"received_events_url": "https://api.github.com/users/charliebudd/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | [
"You may be able to make it work by tweaking some environment variables, such as [`HF_HOME`](https://huggingface.co./docs/huggingface_hub/main/en/package_reference/environment_variables#hfhome) or [`HF_DATASETS_CACHE`](https://huggingface.co./docs/datasets/cache#cache-directory).",
"> You may be able to make it work by tweaking some environment variables, such as [`HF_HOME`](https://huggingface.co./docs/huggingface_hub/main/en/package_reference/environment_variables#hfhome) or [`HF_DATASETS_CACHE`](https://huggingface.co./docs/datasets/cache#cache-directory).\r\n\r\nI am already doing this. The problem is that, while this seemingly allows flexibility, the absolute paths written into the cache still have the old cache directory. The paths written into the cache should be relative to the cache location to allow this sort of flexibility. Sorry, I omitted this in the reproduction steps, I have now added it.",
"I'm unable to reproduce this with the cache\r\n```bash\r\nexport HF_CACHE=$PWD/hf_cache\r\npython -c \"import datasets; datasets.load_dataset('imdb')\"\r\n```\r\nimported inside a dummy container that is built from\r\n```bash\r\nFROM python:3.9\r\n\r\nWORKDIR /usr/src/app\r\n\r\nRUN pip install datasets\r\n\r\nCOPY ./hf_cache ./hf_cache\r\n\r\nENV HF_HOME=./hf_cache\r\nENV HF_DATASETS_OFFLINE=1\r\n\r\nCMD [\"python\"]\r\n```\r\nWhat do you mean by \"absolute paths written into the cache\"? Paths inside the HF cache paths are based on hash (hashed URL of the downloaded files, etc.)"
] | 2023-10-27T08:20:27 | 2023-11-28T14:47:12 | 2023-11-28T14:47:12 | NONE | null | null | null | ### Describe the bug
Creating a datasets cache and mounting this into, for example, a docker container, renders the data unreadable due to absolute paths written into the cache.
### Steps to reproduce the bug
1. Create a datasets cache by downloading some data
2. Mount the dataset folder into a docker container or remote system.
3. (Edit) Set `HF_HOME` or `HF_DATASET_CACHE` to point to the mounted cache.
4. Attempt to access the data from within the docker container.
5. An error is thrown saying no file exists at \<absolute path to original cache location\>
### Expected behavior
The data is loaded without error
### Environment info
- `datasets` version: 2.14.4
- Platform: Linux-5.4.0-162-generic-x86_64-with-glibc2.29
- Python version: 3.8.10
- Huggingface_hub version: 0.16.4
- PyArrow version: 13.0.0
- Pandas version: 2.0.3 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6358/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6358/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/6357 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6357/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6357/comments | https://api.github.com/repos/huggingface/datasets/issues/6357/events | https://github.com/huggingface/datasets/issues/6357 | 1,964,653,995 | I_kwDODunzps51Gj2r | 6,357 | Allow passing a multiprocessing context to functions that support `num_proc` | {
"login": "bryant1410",
"id": 3905501,
"node_id": "MDQ6VXNlcjM5MDU1MDE=",
"avatar_url": "https://avatars.githubusercontent.com/u/3905501?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/bryant1410",
"html_url": "https://github.com/bryant1410",
"followers_url": "https://api.github.com/users/bryant1410/followers",
"following_url": "https://api.github.com/users/bryant1410/following{/other_user}",
"gists_url": "https://api.github.com/users/bryant1410/gists{/gist_id}",
"starred_url": "https://api.github.com/users/bryant1410/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/bryant1410/subscriptions",
"organizations_url": "https://api.github.com/users/bryant1410/orgs",
"repos_url": "https://api.github.com/users/bryant1410/repos",
"events_url": "https://api.github.com/users/bryant1410/events{/privacy}",
"received_events_url": "https://api.github.com/users/bryant1410/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892871,
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement",
"name": "enhancement",
"color": "a2eeef",
"default": true,
"description": "New feature or request"
}
] | open | false | null | [] | [] | 2023-10-27T02:31:16 | 2023-10-27T02:31:16 | null | CONTRIBUTOR | null | null | null | ### Feature request
Allow specifying [a multiprocessing context](https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods) to functions that support `num_proc` or use multiprocessing pools. For example, the following could be done:
```python
dataset = dataset.map(_func, num_proc=2, mp_context=multiprocess.get_context("spawn"))
```
Or at least the multiprocessing start method ("fork", "spawn", "fork_server" or `None`):
```python
dataset = dataset.map(_func, num_proc=2, mp_start_method="spawn")
```
Another option could be passing the `pool` as an argument.
### Motivation
By default, `multiprocess` (the `multiprocessing`-fork library that this repo uses) uses the "fork" start method for multiprocessing pools (for the default context). It could be changed by using `set_start_method`. However, this conditions the multiprocessing start method from all processing in a Python program that uses the default context, because [you can't call that function more than once](https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods:~:text=set_start_method()%20should%20not%20be%20used%20more%20than%20once%20in%20the%20program.). My proposal is to allow using a different multiprocessing context, not to condition the whole Python program.
One reason to change the start method is that "fork" (the default) makes child processes likely deadlock if thread pools were created before (and also this is not supported by POSIX). For example, this happens when using PyTorch because OpenMP threads are used for CPU intra-op parallelism, which is enabled by default (e.g., for context see [`torch.set_num_threads`](https://pytorch.org/docs/stable/generated/torch.set_num_threads.html)). This can also be fixed by setting `torch.set_num_threads(1)` (or similarly by other methods) but this conditions the whole Python program as it can only be set once to guarantee its behavior (similarly to). There are noticeable performance differences when setting this number to 1 even when using GPU(s). Using, e.g., a "spawn" start method would solve this issue.
For more context, see:
* https://discuss.huggingface.co/t/dataset-map-stuck-with-torch-set-num-threads-set-to-2-or-larger/37984
* https://discuss.huggingface.co/t/using-num-proc-1-in-dataset-map-hangs/44310
### Your contribution
I'd be happy to review a PR that makes such a change. And if you really don't have the bandwidth for it, I'd consider creating one. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6357/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6357/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/6356 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6356/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6356/comments | https://api.github.com/repos/huggingface/datasets/issues/6356/events | https://github.com/huggingface/datasets/pull/6356 | 1,964,015,802 | PR_kwDODunzps5d5Jri | 6,356 | Add `fsspec` version to the `datasets-cli env` command output | {
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | [
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008775 / 0.011353 (-0.002578) | 0.005304 / 0.011008 (-0.005704) | 0.108912 / 0.038508 (0.070404) | 0.075589 / 0.023109 (0.052479) | 0.456612 / 0.275898 (0.180713) | 0.502303 / 0.323480 (0.178823) | 0.006695 / 0.007986 (-0.001291) | 0.004404 / 0.004328 (0.000076) | 0.084802 / 0.004250 (0.080552) | 0.062711 / 0.037052 (0.025659) | 0.465062 / 0.258489 (0.206573) | 0.505321 / 0.293841 (0.211480) | 0.049401 / 0.128546 (-0.079146) | 0.014784 / 0.075646 (-0.060862) | 0.378202 / 0.419271 (-0.041069) | 0.069826 / 0.043533 (0.026293) | 0.461161 / 0.255139 (0.206022) | 0.484616 / 0.283200 (0.201416) | 0.035998 / 0.141683 (-0.105685) | 1.846343 / 1.452155 (0.394189) | 1.999439 / 1.492716 (0.506723) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.317779 / 0.018006 (0.299773) | 0.605967 / 0.000490 (0.605477) | 0.011412 / 0.000200 (0.011212) | 0.000410 / 0.000054 (0.000356) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031118 / 0.037411 (-0.006293) | 0.095425 / 0.014526 (0.080900) | 0.108002 / 0.176557 (-0.068554) | 0.184625 / 0.737135 (-0.552511) | 0.108180 / 0.296338 (-0.188159) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.587497 / 0.215209 (0.372288) | 5.818632 / 2.077655 (3.740977) | 2.629776 / 1.504120 (1.125656) | 2.266129 / 1.541195 (0.724934) | 2.324618 / 1.468490 (0.856128) | 0.830049 / 4.584777 (-3.754728) | 5.380062 / 3.745712 (1.634350) | 4.808525 / 5.269862 (-0.461336) | 2.960368 / 4.565676 (-1.605309) | 0.093637 / 0.424275 (-0.330638) | 0.009187 / 0.007607 (0.001580) | 0.703468 / 0.226044 (0.477424) | 6.924509 / 2.268929 (4.655580) | 3.380582 / 55.444624 (-52.064043) | 2.689118 / 6.876477 (-4.187358) | 2.712418 / 2.142072 (0.570345) | 1.017144 / 4.805227 (-3.788084) | 0.212874 / 6.500664 (-6.287791) | 0.080053 / 0.075469 (0.004584) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.623663 / 1.841788 (-0.218125) | 23.668872 / 8.074308 (15.594564) | 20.245972 / 10.191392 (10.054580) | 0.236448 / 0.680424 (-0.443976) | 0.029730 / 0.534201 (-0.504470) | 0.491525 / 0.579283 (-0.087758) | 0.593780 / 0.434364 (0.159416) | 0.548776 / 0.540337 (0.008438) | 0.799370 / 1.386936 (-0.587566) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009714 / 0.011353 (-0.001639) | 0.005328 / 0.011008 (-0.005681) | 0.078460 / 0.038508 (0.039952) | 0.077791 / 0.023109 (0.054682) | 0.510124 / 0.275898 (0.234226) | 0.547769 / 0.323480 (0.224289) | 0.006868 / 0.007986 (-0.001118) | 0.004145 / 0.004328 (-0.000183) | 0.088696 / 0.004250 (0.084445) | 0.072387 / 0.037052 (0.035334) | 0.527373 / 0.258489 (0.268884) | 0.561948 / 0.293841 (0.268107) | 0.049769 / 0.128546 (-0.078777) | 0.014401 / 0.075646 (-0.061246) | 0.097541 / 0.419271 (-0.321731) | 0.062237 / 0.043533 (0.018705) | 0.531001 / 0.255139 (0.275862) | 0.561797 / 0.283200 (0.278597) | 0.038482 / 0.141683 (-0.103201) | 1.783558 / 1.452155 (0.331404) | 1.864339 / 1.492716 (0.371622) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.289389 / 0.018006 (0.271383) | 0.595326 / 0.000490 (0.594836) | 0.004583 / 0.000200 (0.004383) | 0.000114 / 0.000054 (0.000060) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034492 / 0.037411 (-0.002919) | 0.102934 / 0.014526 (0.088409) | 0.121689 / 0.176557 (-0.054868) | 0.182121 / 0.737135 (-0.555015) | 0.127087 / 0.296338 (-0.169252) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.645726 / 0.215209 (0.430517) | 6.462235 / 2.077655 (4.384580) | 3.044176 / 1.504120 (1.540056) | 2.731181 / 1.541195 (1.189986) | 2.805508 / 1.468490 (1.337018) | 0.846324 / 4.584777 (-3.738453) | 5.341074 / 3.745712 (1.595362) | 4.687111 / 5.269862 (-0.582751) | 3.035472 / 4.565676 (-1.530205) | 0.099193 / 0.424275 (-0.325082) | 0.008825 / 0.007607 (0.001218) | 0.795102 / 0.226044 (0.569058) | 7.895770 / 2.268929 (5.626842) | 3.826752 / 55.444624 (-51.617873) | 3.112217 / 6.876477 (-3.764259) | 3.526878 / 2.142072 (1.384806) | 1.011352 / 4.805227 (-3.793875) | 0.213424 / 6.500664 (-6.287240) | 0.076228 / 0.075469 (0.000759) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.805232 / 1.841788 (-0.036556) | 24.049100 / 8.074308 (15.974792) | 23.056011 / 10.191392 (12.864619) | 0.261656 / 0.680424 (-0.418767) | 0.032021 / 0.534201 (-0.502179) | 0.483829 / 0.579283 (-0.095454) | 0.602208 / 0.434364 (0.167844) | 0.565848 / 0.540337 (0.025511) | 0.818678 / 1.386936 (-0.568258) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#71fc5e2ca41f5f725b9117f4cf99f348534902f3 \"CML watermark\")\n",
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008043 / 0.011353 (-0.003310) | 0.004642 / 0.011008 (-0.006366) | 0.102592 / 0.038508 (0.064084) | 0.099508 / 0.023109 (0.076399) | 0.377692 / 0.275898 (0.101794) | 0.409929 / 0.323480 (0.086450) | 0.006363 / 0.007986 (-0.001622) | 0.003881 / 0.004328 (-0.000447) | 0.076636 / 0.004250 (0.072386) | 0.067021 / 0.037052 (0.029969) | 0.371454 / 0.258489 (0.112964) | 0.423637 / 0.293841 (0.129796) | 0.038632 / 0.128546 (-0.089914) | 0.010055 / 0.075646 (-0.065591) | 0.352021 / 0.419271 (-0.067251) | 0.064988 / 0.043533 (0.021456) | 0.369614 / 0.255139 (0.114475) | 0.396972 / 0.283200 (0.113773) | 0.028866 / 0.141683 (-0.112817) | 1.757620 / 1.452155 (0.305465) | 1.886283 / 1.492716 (0.393567) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.257579 / 0.018006 (0.239572) | 0.529859 / 0.000490 (0.529369) | 0.011720 / 0.000200 (0.011520) | 0.000455 / 0.000054 (0.000401) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034163 / 0.037411 (-0.003248) | 0.101422 / 0.014526 (0.086896) | 0.114858 / 0.176557 (-0.061698) | 0.180265 / 0.737135 (-0.556870) | 0.116034 / 0.296338 (-0.180305) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.477609 / 0.215209 (0.262400) | 4.830116 / 2.077655 (2.752461) | 2.323844 / 1.504120 (0.819724) | 2.174496 / 1.541195 (0.633301) | 2.268594 / 1.468490 (0.800104) | 0.612429 / 4.584777 (-3.972348) | 4.265277 / 3.745712 (0.519565) | 4.095741 / 5.269862 (-1.174121) | 2.561532 / 4.565676 (-2.004144) | 0.068043 / 0.424275 (-0.356233) | 0.009139 / 0.007607 (0.001532) | 0.545512 / 0.226044 (0.319467) | 5.456403 / 2.268929 (3.187475) | 2.778937 / 55.444624 (-52.665688) | 2.428560 / 6.876477 (-4.447917) | 2.557483 / 2.142072 (0.415411) | 0.696721 / 4.805227 (-4.108506) | 0.157217 / 6.500664 (-6.343447) | 0.071334 / 0.075469 (-0.004135) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.617755 / 1.841788 (-0.224032) | 23.368508 / 8.074308 (15.294200) | 17.028591 / 10.191392 (6.837199) | 0.195881 / 0.680424 (-0.484542) | 0.021788 / 0.534201 (-0.512413) | 0.468484 / 0.579283 (-0.110799) | 0.474604 / 0.434364 (0.040240) | 0.544738 / 0.540337 (0.004400) | 0.771722 / 1.386936 (-0.615214) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007939 / 0.011353 (-0.003414) | 0.004684 / 0.011008 (-0.006324) | 0.077273 / 0.038508 (0.038765) | 0.088763 / 0.023109 (0.065654) | 0.489178 / 0.275898 (0.213280) | 0.531547 / 0.323480 (0.208067) | 0.006214 / 0.007986 (-0.001772) | 0.003988 / 0.004328 (-0.000340) | 0.076685 / 0.004250 (0.072434) | 0.066628 / 0.037052 (0.029576) | 0.497153 / 0.258489 (0.238664) | 0.538301 / 0.293841 (0.244460) | 0.037939 / 0.128546 (-0.090607) | 0.010054 / 0.075646 (-0.065592) | 0.084642 / 0.419271 (-0.334629) | 0.057140 / 0.043533 (0.013608) | 0.487701 / 0.255139 (0.232562) | 0.519676 / 0.283200 (0.236477) | 0.026560 / 0.141683 (-0.115123) | 1.809676 / 1.452155 (0.357521) | 1.864884 / 1.492716 (0.372168) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.259005 / 0.018006 (0.240998) | 0.522900 / 0.000490 (0.522410) | 0.006885 / 0.000200 (0.006685) | 0.000156 / 0.000054 (0.000102) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.039838 / 0.037411 (0.002426) | 0.117777 / 0.014526 (0.103251) | 0.129189 / 0.176557 (-0.047368) | 0.198584 / 0.737135 (-0.538552) | 0.129753 / 0.296338 (-0.166586) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.543366 / 0.215209 (0.328157) | 5.241502 / 2.077655 (3.163847) | 2.719079 / 1.504120 (1.214959) | 2.525337 / 1.541195 (0.984142) | 2.648908 / 1.468490 (1.180418) | 0.589239 / 4.584777 (-3.995538) | 4.379856 / 3.745712 (0.634144) | 4.139919 / 5.269862 (-1.129943) | 2.633412 / 4.565676 (-1.932264) | 0.074582 / 0.424275 (-0.349693) | 0.009106 / 0.007607 (0.001499) | 0.635540 / 0.226044 (0.409495) | 6.072965 / 2.268929 (3.804037) | 3.327233 / 55.444624 (-52.117391) | 3.012637 / 6.876477 (-3.863840) | 3.113226 / 2.142072 (0.971154) | 0.712705 / 4.805227 (-4.092523) | 0.159550 / 6.500664 (-6.341114) | 0.073446 / 0.075469 (-0.002023) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.718732 / 1.841788 (-0.123055) | 23.249445 / 8.074308 (15.175137) | 17.630643 / 10.191392 (7.439251) | 0.201017 / 0.680424 (-0.479407) | 0.024162 / 0.534201 (-0.510039) | 0.475054 / 0.579283 (-0.104229) | 0.492348 / 0.434364 (0.057985) | 0.587118 / 0.540337 (0.046781) | 0.777462 / 1.386936 (-0.609474) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#feb036956a592b9a9ecdf048cc801549f233dbef \"CML watermark\")\n"
] | 2023-10-26T17:19:25 | 2023-10-26T18:42:56 | 2023-10-26T18:32:21 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6356",
"html_url": "https://github.com/huggingface/datasets/pull/6356",
"diff_url": "https://github.com/huggingface/datasets/pull/6356.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6356.patch",
"merged_at": "2023-10-26T18:32:21"
} | ... to make debugging issues easier, as `fsspec`'s releases often introduce breaking changes. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6356/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6356/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6355 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6355/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6355/comments | https://api.github.com/repos/huggingface/datasets/issues/6355/events | https://github.com/huggingface/datasets/pull/6355 | 1,963,979,896 | PR_kwDODunzps5d5B2B | 6,355 | More hub centric docs | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006941 / 0.011353 (-0.004412) | 0.004255 / 0.011008 (-0.006753) | 0.085237 / 0.038508 (0.046729) | 0.080962 / 0.023109 (0.057853) | 0.312016 / 0.275898 (0.036118) | 0.353161 / 0.323480 (0.029681) | 0.005756 / 0.007986 (-0.002230) | 0.003591 / 0.004328 (-0.000738) | 0.065416 / 0.004250 (0.061166) | 0.057837 / 0.037052 (0.020785) | 0.316169 / 0.258489 (0.057680) | 0.372345 / 0.293841 (0.078504) | 0.031958 / 0.128546 (-0.096588) | 0.008798 / 0.075646 (-0.066848) | 0.294764 / 0.419271 (-0.124507) | 0.053954 / 0.043533 (0.010421) | 0.310961 / 0.255139 (0.055822) | 0.330063 / 0.283200 (0.046864) | 0.025298 / 0.141683 (-0.116385) | 1.454715 / 1.452155 (0.002560) | 1.557915 / 1.492716 (0.065198) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.274830 / 0.018006 (0.256824) | 0.565890 / 0.000490 (0.565400) | 0.009242 / 0.000200 (0.009042) | 0.000321 / 0.000054 (0.000266) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031092 / 0.037411 (-0.006320) | 0.087558 / 0.014526 (0.073033) | 0.103395 / 0.176557 (-0.073162) | 0.160078 / 0.737135 (-0.577057) | 0.102356 / 0.296338 (-0.193983) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.402912 / 0.215209 (0.187703) | 4.029374 / 2.077655 (1.951719) | 2.048237 / 1.504120 (0.544117) | 1.887470 / 1.541195 (0.346276) | 1.994807 / 1.468490 (0.526316) | 0.491109 / 4.584777 (-4.093668) | 3.645059 / 3.745712 (-0.100653) | 3.516376 / 5.269862 (-1.753486) | 2.103267 / 4.565676 (-2.462409) | 0.058072 / 0.424275 (-0.366203) | 0.007796 / 0.007607 (0.000189) | 0.480544 / 0.226044 (0.254499) | 4.795422 / 2.268929 (2.526494) | 2.507770 / 55.444624 (-52.936854) | 2.187106 / 6.876477 (-4.689371) | 2.271005 / 2.142072 (0.128933) | 0.585376 / 4.805227 (-4.219851) | 0.134741 / 6.500664 (-6.365923) | 0.060684 / 0.075469 (-0.014785) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.264349 / 1.841788 (-0.577439) | 19.448735 / 8.074308 (11.374427) | 14.521197 / 10.191392 (4.329805) | 0.167295 / 0.680424 (-0.513129) | 0.018352 / 0.534201 (-0.515849) | 0.396345 / 0.579283 (-0.182938) | 0.418690 / 0.434364 (-0.015674) | 0.469703 / 0.540337 (-0.070635) | 0.637852 / 1.386936 (-0.749084) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006939 / 0.011353 (-0.004414) | 0.004196 / 0.011008 (-0.006812) | 0.064719 / 0.038508 (0.026211) | 0.077517 / 0.023109 (0.054407) | 0.401977 / 0.275898 (0.126079) | 0.431089 / 0.323480 (0.107609) | 0.005624 / 0.007986 (-0.002362) | 0.003680 / 0.004328 (-0.000649) | 0.065817 / 0.004250 (0.061567) | 0.058297 / 0.037052 (0.021245) | 0.399614 / 0.258489 (0.141125) | 0.440089 / 0.293841 (0.146248) | 0.032492 / 0.128546 (-0.096054) | 0.008974 / 0.075646 (-0.066672) | 0.071311 / 0.419271 (-0.347961) | 0.048001 / 0.043533 (0.004468) | 0.394763 / 0.255139 (0.139624) | 0.416754 / 0.283200 (0.133554) | 0.023730 / 0.141683 (-0.117953) | 1.509677 / 1.452155 (0.057522) | 1.605711 / 1.492716 (0.112994) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.265490 / 0.018006 (0.247483) | 0.561745 / 0.000490 (0.561255) | 0.004616 / 0.000200 (0.004417) | 0.000105 / 0.000054 (0.000051) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033371 / 0.037411 (-0.004040) | 0.092763 / 0.014526 (0.078238) | 0.108905 / 0.176557 (-0.067652) | 0.160380 / 0.737135 (-0.576756) | 0.106968 / 0.296338 (-0.189370) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.430268 / 0.215209 (0.215059) | 4.299313 / 2.077655 (2.221658) | 2.308971 / 1.504120 (0.804851) | 2.155855 / 1.541195 (0.614661) | 2.392698 / 1.468490 (0.924208) | 0.498464 / 4.584777 (-4.086313) | 3.694473 / 3.745712 (-0.051239) | 3.409625 / 5.269862 (-1.860236) | 2.106144 / 4.565676 (-2.459532) | 0.058992 / 0.424275 (-0.365283) | 0.007395 / 0.007607 (-0.000212) | 0.511291 / 0.226044 (0.285247) | 5.101806 / 2.268929 (2.832877) | 2.853100 / 55.444624 (-52.591524) | 2.527216 / 6.876477 (-4.349260) | 2.819380 / 2.142072 (0.677308) | 0.635155 / 4.805227 (-4.170072) | 0.135816 / 6.500664 (-6.364848) | 0.062056 / 0.075469 (-0.013413) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.353479 / 1.841788 (-0.488308) | 20.318513 / 8.074308 (12.244205) | 15.105336 / 10.191392 (4.913944) | 0.166186 / 0.680424 (-0.514238) | 0.020742 / 0.534201 (-0.513459) | 0.399286 / 0.579283 (-0.179997) | 0.431785 / 0.434364 (-0.002579) | 0.478667 / 0.540337 (-0.061671) | 0.654683 / 1.386936 (-0.732253) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#b39d1ce0b8f231649752f28cb724971f4df1c7ae \"CML watermark\")\n",
"Yea I think some of it should be in the Hub docs indeed, let me open a new PR there.\r\n\r\nThen I'll update the `datasets` docs anyway to avoid redundant stuff and add redirects instead"
] | 2023-10-26T16:54:46 | 2023-10-30T17:33:32 | 2023-10-30T17:32:57 | MEMBER | null | true | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6355",
"html_url": "https://github.com/huggingface/datasets/pull/6355",
"diff_url": "https://github.com/huggingface/datasets/pull/6355.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6355.patch",
"merged_at": null
} | Let's have more hub-centric documentation in the datasets docs
Tutorials
- Add “Configure the dataset viewer” page
- Change order:
- Overview
- and more focused on the Hub rather than the library
- Then all the hub related things
- and mention how to read/write with other tools like pandas
- Then all the datasets lib related things in a subsection
Also:
- Rename “know your dataset” page to “Explore your dataset”
- Remove “Evaluate Predictions” page since it's 'evaluate' stuff (or move to legacy section ?)
TODO:
- [ ] write the “Configure the dataset viewer” page | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6355/reactions",
"total_count": 1,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 1,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6355/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6354 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6354/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6354/comments | https://api.github.com/repos/huggingface/datasets/issues/6354/events | https://github.com/huggingface/datasets/issues/6354 | 1,963,483,324 | I_kwDODunzps51CGC8 | 6,354 | `IterableDataset.from_spark` does not support multiple workers in pytorch `Dataloader` | {
"login": "NazyS",
"id": 50199774,
"node_id": "MDQ6VXNlcjUwMTk5Nzc0",
"avatar_url": "https://avatars.githubusercontent.com/u/50199774?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/NazyS",
"html_url": "https://github.com/NazyS",
"followers_url": "https://api.github.com/users/NazyS/followers",
"following_url": "https://api.github.com/users/NazyS/following{/other_user}",
"gists_url": "https://api.github.com/users/NazyS/gists{/gist_id}",
"starred_url": "https://api.github.com/users/NazyS/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/NazyS/subscriptions",
"organizations_url": "https://api.github.com/users/NazyS/orgs",
"repos_url": "https://api.github.com/users/NazyS/repos",
"events_url": "https://api.github.com/users/NazyS/events{/privacy}",
"received_events_url": "https://api.github.com/users/NazyS/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | [
"I am having issues as well with this. \r\n\r\nHowever, the error I am getting is :\r\n`RuntimeError: It appears that you are attempting to reference SparkContext from a broadcast variable, action, or transformation. SparkContext can only be used on the driver, not in code that it run on workers. For more information, see SPARK-5063.`\r\n\r\nAlso did not work with pyspark==3.3.0 and py4j==0.10.9.5"
] | 2023-10-26T12:43:36 | 2023-11-14T18:46:03 | null | NONE | null | null | null | ### Describe the bug
Looks like `IterableDataset.from_spark` does not support multiple workers in pytorch `Dataloader` if I'm not missing anything.
Also, returns not consistent error messages, which probably depend on the nondeterministic order of worker executions
Some exampes I've encountered:
```
File "/local_disk0/.ephemeral_nfs/envs/pythonEnv-68c05436-3512-41c4-88ca-5630012b70d1/lib/python3.10/site-packages/datasets/packaged_modules/spark/spark.py", line 79, in __iter__
yield from self.generate_examples_fn()
File "/local_disk0/.ephemeral_nfs/envs/pythonEnv-68c05436-3512-41c4-88ca-5630012b70d1/lib/python3.10/site-packages/datasets/packaged_modules/spark/spark.py", line 49, in generate_fn
df_with_partition_id = df.select("*", pyspark.sql.functions.spark_partition_id().alias("part_id"))
File "/databricks/spark/python/pyspark/instrumentation_utils.py", line 54, in wrapper
logger.log_failure(
File "/databricks/spark/python/pyspark/databricks/usage_logger.py", line 70, in log_failure
self.logger.recordFunctionCallFailureEvent(
File "/databricks/spark/python/lib/py4j-0.10.9.7-src.zip/py4j/java_gateway.py", line 1322, in __call__
return_value = get_return_value(
File "/databricks/spark/python/pyspark/errors/exceptions/captured.py", line 188, in deco
return f(*a, **kw)
File "/databricks/spark/python/lib/py4j-0.10.9.7-src.zip/py4j/protocol.py", line 342, in get_return_value
return OUTPUT_CONVERTER[type](answer[2:], gateway_client)
KeyError: 'c'
```
```
File "/local_disk0/.ephemeral_nfs/envs/pythonEnv-68c05436-3512-41c4-88ca-5630012b70d1/lib/python3.10/site-packages/datasets/packaged_modules/spark/spark.py", line 79, in __iter__
yield from self.generate_examples_fn()
File "/local_disk0/.ephemeral_nfs/envs/pythonEnv-68c05436-3512-41c4-88ca-5630012b70d1/lib/python3.10/site-packages/datasets/packaged_modules/spark/spark.py", line 49, in generate_fn
df_with_partition_id = df.select("*", pyspark.sql.functions.spark_partition_id().alias("part_id"))
File "/databricks/spark/python/pyspark/sql/utils.py", line 162, in wrapped
return f(*args, **kwargs)
File "/databricks/spark/python/pyspark/sql/functions.py", line 4893, in spark_partition_id
return _invoke_function("spark_partition_id")
File "/databricks/spark/python/pyspark/sql/functions.py", line 98, in _invoke_function
return Column(jf(*args))
File "/databricks/spark/python/lib/py4j-0.10.9.7-src.zip/py4j/java_gateway.py", line 1322, in __call__
return_value = get_return_value(
File "/databricks/spark/python/pyspark/errors/exceptions/captured.py", line 188, in deco
return f(*a, **kw)
File "/databricks/spark/python/lib/py4j-0.10.9.7-src.zip/py4j/protocol.py", line 342, in get_return_value
return OUTPUT_CONVERTER[type](answer[2:], gateway_client)
KeyError: 'm'
```
```
File "/local_disk0/.ephemeral_nfs/envs/pythonEnv-68c05436-3512-41c4-88ca-5630012b70d1/lib/python3.10/site-packages/datasets/packaged_modules/spark/spark.py", line 79, in __iter__
yield from self.generate_examples_fn()
File "/local_disk0/.ephemeral_nfs/envs/pythonEnv-68c05436-3512-41c4-88ca-5630012b70d1/lib/python3.10/site-packages/datasets/packaged_modules/spark/spark.py", line 49, in generate_fn
df_with_partition_id = df.select("*", pyspark.sql.functions.spark_partition_id().alias("part_id"))
File "/databricks/spark/python/pyspark/sql/utils.py", line 162, in wrapped
return f(*args, **kwargs)
File "/databricks/spark/python/pyspark/sql/functions.py", line 4893, in spark_partition_id
return _invoke_function("spark_partition_id")
File "/databricks/spark/python/pyspark/sql/functions.py", line 97, in _invoke_function
jf = _get_jvm_function(name, SparkContext._active_spark_context)
File "/databricks/spark/python/pyspark/sql/functions.py", line 88, in _get_jvm_function
return getattr(sc._jvm.functions, name)
File "/databricks/spark/python/lib/py4j-0.10.9.7-src.zip/py4j/java_gateway.py", line 1725, in __getattr__
raise Py4JError(message)
py4j.protocol.Py4JError: functions does not exist in the JVM
```
### Steps to reproduce the bug
```python
import pandas as pd
import numpy as np
batch_size = 16
pdf = pd.DataFrame({
key: np.random.rand(16*100) for key in ['feature', 'target']
})
test_df = spark.createDataFrame(pdf)
from datasets import IterableDataset
from torch.utils.data import DataLoader
ids = IterableDataset.from_spark(test_df)
for batch in DataLoader(ids, batch_size=16, num_workers=4):
for k, b in batch.items():
print(k, b.shape, sep='\t')
print('\n')
```
### Expected behavior
For `num_workers` equal to 0 or 1 works fine as expected:
```
feature torch.Size([16])
target torch.Size([16])
feature torch.Size([16])
target torch.Size([16])
....
```
Expected to support workers >1.
### Environment info
Databricks 13.3 LTS ML runtime - Spark 3.4.1
pyspark==3.4.1
py4j==0.10.9.7
datasets==2.13.1 and also tested with datasets==2.14.6 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6354/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6354/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/6353 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6353/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6353/comments | https://api.github.com/repos/huggingface/datasets/issues/6353/events | https://github.com/huggingface/datasets/issues/6353 | 1,962,646,450 | I_kwDODunzps50-5uy | 6,353 | load_dataset save_to_disk load_from_disk error | {
"login": "brisker",
"id": 13804492,
"node_id": "MDQ6VXNlcjEzODA0NDky",
"avatar_url": "https://avatars.githubusercontent.com/u/13804492?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/brisker",
"html_url": "https://github.com/brisker",
"followers_url": "https://api.github.com/users/brisker/followers",
"following_url": "https://api.github.com/users/brisker/following{/other_user}",
"gists_url": "https://api.github.com/users/brisker/gists{/gist_id}",
"starred_url": "https://api.github.com/users/brisker/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/brisker/subscriptions",
"organizations_url": "https://api.github.com/users/brisker/orgs",
"repos_url": "https://api.github.com/users/brisker/repos",
"events_url": "https://api.github.com/users/brisker/events{/privacy}",
"received_events_url": "https://api.github.com/users/brisker/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | [
"solved.\r\nfsspec version problem",
"I'm using the latest datasets and fsspec , but still got this error!\r\n\r\ndatasets : Version: 2.13.0\r\n\r\nfsspec Version: 2023.10.0\r\n\r\n```\r\nFile \"/home/guoby/app/Anaconda3-2021.05/envs/news/lib/python3.8/site-packages/datasets/load.py\", line 1892, in load_from_disk\r\n return DatasetDict.load_from_disk(dataset_path, keep_in_memory=keep_in_memory, storage_options=storage_options)\r\n File \"/home/guoby/app/Anaconda3-2021.05/envs/news/lib/python3.8/site-packages/datasets/dataset_dict.py\", line 1371, in load_from_disk\r\n dataset_dict[k] = Dataset.load_from_disk(\r\n File \"/home/guoby/app/Anaconda3-2021.05/envs/news/lib/python3.8/site-packages/datasets/arrow_dataset.py\", line 1639, in load_from_disk\r\n fs_token_paths = fsspec.get_fs_token_paths(dataset_path, storage_options=storage_options)\r\n File \"/home/guoby/app/Anaconda3-2021.05/envs/news/lib/python3.8/site-packages/fsspec/core.py\", line 610, in get_fs_token_paths\r\n chain = _un_chain(urlpath0, storage_options or {})\r\n File \"/home/guoby/app/Anaconda3-2021.05/envs/news/lib/python3.8/site-packages/fsspec/core.py\", line 325, in _un_chain\r\n cls = get_filesystem_class(protocol)\r\n File \"/home/guoby/app/Anaconda3-2021.05/envs/news/lib/python3.8/site-packages/fsspec/registry.py\", line 232, in get_filesystem_class\r\n raise ValueError(f\"Protocol not known: {protocol}\")\r\n```",
"These two versions work.\r\n<img width=\"807\" alt=\"截圖 2023-11-22 下午5 55 28\" src=\"https://github.com/huggingface/datasets/assets/77866896/faa8333f-0519-4d69-b243-a8880cd7fc1f\">\r\n"
] | 2023-10-26T03:47:06 | 2023-11-22T09:57:17 | 2023-10-26T10:18:04 | NONE | null | null | null | ### Describe the bug
datasets version: 2.10.1
I `load_dataset `and `save_to_disk` sucessfully on windows10( **and I `load_from_disk(/LLM/data/wiki)` succcesfully on windows10**), and I copy the dataset `/LLM/data/wiki`
into a ubuntu system, but when I `load_from_disk(/LLM/data/wiki)` on ubuntu, something weird happens:
```
load_from_disk('/LLM/data/wiki')
File "/usr/local/miniconda3/lib/python3.8/site-packages/datasets/load.py", line 1874, in load_from_disk
return DatasetDict.load_from_disk(dataset_path, keep_in_memory=keep_in_memory, storage_options=storage_options)
File "/usr/local/miniconda3/lib/python3.8/site-packages/datasets/dataset_dict.py", line 1309, in load_from_disk
dataset_dict[k] = Dataset.load_from_disk(
File "/usr/local/miniconda3/lib/python3.8/site-packages/datasets/arrow_dataset.py", line 1543, in load_from_disk
fs_token_paths = fsspec.get_fs_token_paths(dataset_path, storage_options=storage_options)
File "/usr/local/miniconda3/lib/python3.8/site-packages/fsspec/core.py", line 610, in get_fs_token_paths
chain = _un_chain(urlpath0, storage_options or {})
File "/usr/local/miniconda3/lib/python3.8/site-packages/fsspec/core.py", line 325, in _un_chain
cls = get_filesystem_class(protocol)
File "/usr/local/miniconda3/lib/python3.8/site-packages/fsspec/registry.py", line 232, in get_filesystem_class
raise ValueError(f"Protocol not known: {protocol}")
ValueError: Protocol not known: /LLM/data/wiki
```
It seems that something went wrong on the arrow file?
How can I solve this , since currently I can not save_to_disk on ubuntu system
### Steps to reproduce the bug
datasets version: 2.10.1
### Expected behavior
datasets version: 2.10.1
### Environment info
datasets version: 2.10.1 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6353/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6353/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/6352 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6352/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6352/comments | https://api.github.com/repos/huggingface/datasets/issues/6352/events | https://github.com/huggingface/datasets/issues/6352 | 1,962,296,057 | I_kwDODunzps509kL5 | 6,352 | Error loading wikitext data raise NotImplementedError(f"Loading a dataset cached in a {type(self._fs).__name__} is not supported.") | {
"login": "Ahmed-Roushdy",
"id": 68569076,
"node_id": "MDQ6VXNlcjY4NTY5MDc2",
"avatar_url": "https://avatars.githubusercontent.com/u/68569076?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/Ahmed-Roushdy",
"html_url": "https://github.com/Ahmed-Roushdy",
"followers_url": "https://api.github.com/users/Ahmed-Roushdy/followers",
"following_url": "https://api.github.com/users/Ahmed-Roushdy/following{/other_user}",
"gists_url": "https://api.github.com/users/Ahmed-Roushdy/gists{/gist_id}",
"starred_url": "https://api.github.com/users/Ahmed-Roushdy/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Ahmed-Roushdy/subscriptions",
"organizations_url": "https://api.github.com/users/Ahmed-Roushdy/orgs",
"repos_url": "https://api.github.com/users/Ahmed-Roushdy/repos",
"events_url": "https://api.github.com/users/Ahmed-Roushdy/events{/privacy}",
"received_events_url": "https://api.github.com/users/Ahmed-Roushdy/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | [
"+1 \r\n```\r\nFound cached dataset csv (file:///home/ubuntu/.cache/huggingface/datasets/theSquarePond___csv/theSquarePond--XXXXX-bbf0a8365d693d2c/0.0.0/eea64c71ca8b46dd3f537ed218fc9bf495d5707789152eb2764f5c78fa66d59d)\r\n---------------------------------------------------------------------------\r\nNotImplementedError Traceback (most recent call last)\r\nCell In[14], line 4\r\n 1 get_ipython().system('pip install -U datasets')\r\n 3 # Load dataset from the hub\r\n----> 4 dataset = load_dataset(dataset_name)\r\n\r\nFile ~/anaconda3/envs/python38-env/lib/python3.8/site-packages/datasets/load.py:1810, in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, ignore_verifications, keep_in_memory, save_infos, revision, use_auth_token, task, streaming, num_proc, storage_options, **config_kwargs)\r\n 1806 # Build dataset for splits\r\n 1807 keep_in_memory = (\r\n 1808 keep_in_memory if keep_in_memory is not None else is_small_dataset(builder_instance.info.dataset_size)\r\n 1809 )\r\n-> 1810 ds = builder_instance.as_dataset(split=split, verification_mode=verification_mode, in_memory=keep_in_memory)\r\n 1811 # Rename and cast features to match task schema\r\n 1812 if task is not None:\r\n\r\nFile ~/anaconda3/envs/python38-env/lib/python3.8/site-packages/datasets/builder.py:1128, in DatasetBuilder.as_dataset(self, split, run_post_process, verification_mode, ignore_verifications, in_memory)\r\n 1126 is_local = not is_remote_filesystem(self._fs)\r\n 1127 if not is_local:\r\n-> 1128 raise NotImplementedError(f\"Loading a dataset cached in a {type(self._fs).__name__} is not supported.\")\r\n 1129 if not os.path.exists(self._output_dir):\r\n 1130 raise FileNotFoundError(\r\n 1131 f\"Dataset {self.name}: could not find data in {self._output_dir}. Please make sure to call \"\r\n 1132 \"builder.download_and_prepare(), or use \"\r\n 1133 \"datasets.load_dataset() before trying to access the Dataset object.\"\r\n 1134 )\r\n\r\nNotImplementedError: Loading a dataset cached in a LocalFileSystem is not supported.\r\n```",
"+1\r\n\r\n```\r\nFound cached dataset csv ([file://C:/Users/Shady/.cache/huggingface/datasets/knkarthick___csv/knkarthick--dialogsum-cd36827d3490488d/0.0.0/6954658bab30a358235fa864b05cf819af0e179325c740e4bc853bcc7ec513e1](file:///C:/Users/Shady/.cache/huggingface/datasets/knkarthick___csv/knkarthick--dialogsum-cd36827d3490488d/0.0.0/6954658bab30a358235fa864b05cf819af0e179325c740e4bc853bcc7ec513e1))\r\n---------------------------------------------------------------------------\r\nNotImplementedError Traceback (most recent call last)\r\nCell In[38], line 3\r\n 1 huggingface_dataset_name = \"knkarthick/dialogsum\"\r\n----> 3 dataset = load_dataset(huggingface_dataset_name)\r\n\r\nFile D:\\Desktop\\Workspace\\GenAI\\genai\\lib\\site-packages\\datasets\\load.py:1804, in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, ignore_verifications, keep_in_memory, save_infos, revision, use_auth_token, task, streaming, num_proc, storage_options, **config_kwargs)\r\n 1800 # Build dataset for splits\r\n 1801 keep_in_memory = (\r\n 1802 keep_in_memory if keep_in_memory is not None else is_small_dataset(builder_instance.info.dataset_size)\r\n 1803 )\r\n-> 1804 ds = builder_instance.as_dataset(split=split, verification_mode=verification_mode, in_memory=keep_in_memory)\r\n 1805 # Rename and cast features to match task schema\r\n 1806 if task is not None:\r\n\r\nFile D:\\Desktop\\Workspace\\GenAI\\genai\\lib\\site-packages\\datasets\\builder.py:1108, in DatasetBuilder.as_dataset(self, split, run_post_process, verification_mode, ignore_verifications, in_memory)\r\n 1106 is_local = not is_remote_filesystem(self._fs)\r\n 1107 if not is_local:\r\n-> 1108 raise NotImplementedError(f\"Loading a dataset cached in a {type(self._fs).__name__} is not supported.\")\r\n 1109 if not os.path.exists(self._output_dir):\r\n 1110 raise FileNotFoundError(\r\n 1111 f\"Dataset {self.name}: could not find data in {self._output_dir}. Please make sure to call \"\r\n 1112 \"builder.download_and_prepare(), or use \"\r\n 1113 \"datasets.load_dataset() before trying to access the Dataset object.\"\r\n 1114 )\r\n\r\nNotImplementedError: Loading a dataset cached in a LocalFileSystem is not supported.\r\n```",
"This error stems from a breaking change in `fsspec`. It has been fixed in the latest `datasets` release (`2.14.6`). Updating the installation with `pip install -U datasets` should fix the issue.\r\n",
"> 此错误源于 中的重大更改。此问题已在最新版本 () 中修复。更新安装应该可以解决此问题。`fsspec``datasets``2.14.6``pip install -U datasets`\r\n\r\nthanks , 太好啦,刚好解决了我的问题,GPT都没解决了,终于被你搞定了",
"https://stackoverflow.com/questions/77433096/notimplementederror-loading-a-dataset-cached-in-a-localfilesystem-is-not-suppor/77433141#77433141",
"Fixed by:\r\n- https://github.com/huggingface/datasets/pull/6334\r\n\r\nThe fix was released in `datasets-2.14.6`."
] | 2023-10-25T21:55:31 | 2023-11-07T07:26:54 | 2023-11-07T07:26:54 | NONE | null | null | null | I was trying to load the wiki dataset, but i got this error
traindata = load_dataset('wikitext', 'wikitext-2-raw-v1', split='train')
File "/home/aelkordy/.conda/envs/prune_llm/lib/python3.9/site-packages/datasets/load.py", line 1804, in load_dataset
ds = builder_instance.as_dataset(split=split, verification_mode=verification_mode, in_memory=keep_in_memory)
File "/home/aelkordy/.conda/envs/prune_llm/lib/python3.9/site-packages/datasets/builder.py", line 1108, in as_dataset
raise NotImplementedError(f"Loading a dataset cached in a {type(self._fs).__name__} is not supported.")
NotImplementedError: Loading a dataset cached in a LocalFileSystem is not supported. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6352/reactions",
"total_count": 4,
"+1": 4,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6352/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/6351 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6351/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6351/comments | https://api.github.com/repos/huggingface/datasets/issues/6351/events | https://github.com/huggingface/datasets/pull/6351 | 1,961,982,988 | PR_kwDODunzps5dyMvh | 6,351 | Fix use_dataset.mdx | {
"login": "angel-luis",
"id": 17672548,
"node_id": "MDQ6VXNlcjE3NjcyNTQ4",
"avatar_url": "https://avatars.githubusercontent.com/u/17672548?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/angel-luis",
"html_url": "https://github.com/angel-luis",
"followers_url": "https://api.github.com/users/angel-luis/followers",
"following_url": "https://api.github.com/users/angel-luis/following{/other_user}",
"gists_url": "https://api.github.com/users/angel-luis/gists{/gist_id}",
"starred_url": "https://api.github.com/users/angel-luis/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/angel-luis/subscriptions",
"organizations_url": "https://api.github.com/users/angel-luis/orgs",
"repos_url": "https://api.github.com/users/angel-luis/repos",
"events_url": "https://api.github.com/users/angel-luis/events{/privacy}",
"received_events_url": "https://api.github.com/users/angel-luis/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007718 / 0.011353 (-0.003635) | 0.004730 / 0.011008 (-0.006278) | 0.097262 / 0.038508 (0.058754) | 0.077880 / 0.023109 (0.054771) | 0.363855 / 0.275898 (0.087957) | 0.394470 / 0.323480 (0.070990) | 0.006416 / 0.007986 (-0.001570) | 0.003596 / 0.004328 (-0.000732) | 0.076494 / 0.004250 (0.072243) | 0.062656 / 0.037052 (0.025603) | 0.366160 / 0.258489 (0.107671) | 0.421383 / 0.293841 (0.127542) | 0.035756 / 0.128546 (-0.092791) | 0.009430 / 0.075646 (-0.066217) | 0.327722 / 0.419271 (-0.091550) | 0.061252 / 0.043533 (0.017719) | 0.352167 / 0.255139 (0.097028) | 0.385166 / 0.283200 (0.101966) | 0.026656 / 0.141683 (-0.115027) | 1.718533 / 1.452155 (0.266378) | 1.886646 / 1.492716 (0.393930) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.254564 / 0.018006 (0.236558) | 0.490942 / 0.000490 (0.490452) | 0.011656 / 0.000200 (0.011456) | 0.000313 / 0.000054 (0.000259) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028753 / 0.037411 (-0.008659) | 0.093076 / 0.014526 (0.078550) | 0.096441 / 0.176557 (-0.080116) | 0.154848 / 0.737135 (-0.582287) | 0.092903 / 0.296338 (-0.203435) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.395611 / 0.215209 (0.180402) | 3.860736 / 2.077655 (1.783082) | 1.908808 / 1.504120 (0.404688) | 1.708975 / 1.541195 (0.167781) | 1.848173 / 1.468490 (0.379683) | 0.527022 / 4.584777 (-4.057755) | 3.815171 / 3.745712 (0.069459) | 3.621132 / 5.269862 (-1.648730) | 2.220238 / 4.565676 (-2.345439) | 0.063169 / 0.424275 (-0.361106) | 0.008906 / 0.007607 (0.001299) | 0.510478 / 0.226044 (0.284433) | 4.828116 / 2.268929 (2.559187) | 2.340801 / 55.444624 (-53.103824) | 2.040834 / 6.876477 (-4.835642) | 2.092316 / 2.142072 (-0.049757) | 0.579194 / 4.805227 (-4.226033) | 0.135525 / 6.500664 (-6.365139) | 0.062720 / 0.075469 (-0.012749) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.393091 / 1.841788 (-0.448697) | 19.751526 / 8.074308 (11.677218) | 14.161795 / 10.191392 (3.970403) | 0.163340 / 0.680424 (-0.517084) | 0.021504 / 0.534201 (-0.512697) | 0.393183 / 0.579283 (-0.186100) | 0.448407 / 0.434364 (0.014043) | 0.504169 / 0.540337 (-0.036169) | 0.663698 / 1.386936 (-0.723238) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007390 / 0.011353 (-0.003962) | 0.004381 / 0.011008 (-0.006628) | 0.074501 / 0.038508 (0.035993) | 0.078242 / 0.023109 (0.055133) | 0.481108 / 0.275898 (0.205210) | 0.512111 / 0.323480 (0.188631) | 0.006280 / 0.007986 (-0.001705) | 0.003820 / 0.004328 (-0.000509) | 0.071602 / 0.004250 (0.067351) | 0.068359 / 0.037052 (0.031307) | 0.478484 / 0.258489 (0.219995) | 0.519543 / 0.293841 (0.225702) | 0.036211 / 0.128546 (-0.092335) | 0.009433 / 0.075646 (-0.066213) | 0.086140 / 0.419271 (-0.333132) | 0.054177 / 0.043533 (0.010644) | 0.466726 / 0.255139 (0.211587) | 0.514085 / 0.283200 (0.230885) | 0.026729 / 0.141683 (-0.114954) | 1.743770 / 1.452155 (0.291615) | 1.833469 / 1.492716 (0.340753) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.251339 / 0.018006 (0.233333) | 0.472294 / 0.000490 (0.471804) | 0.013381 / 0.000200 (0.013181) | 0.000117 / 0.000054 (0.000062) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.037845 / 0.037411 (0.000433) | 0.105977 / 0.014526 (0.091451) | 0.124446 / 0.176557 (-0.052111) | 0.180432 / 0.737135 (-0.556703) | 0.120844 / 0.296338 (-0.175495) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.470928 / 0.215209 (0.255719) | 4.738154 / 2.077655 (2.660499) | 2.558618 / 1.504120 (1.054498) | 2.359745 / 1.541195 (0.818550) | 2.458438 / 1.468490 (0.989948) | 0.548580 / 4.584777 (-4.036197) | 3.912145 / 3.745712 (0.166433) | 3.764174 / 5.269862 (-1.505687) | 2.325265 / 4.565676 (-2.240411) | 0.078022 / 0.424275 (-0.346254) | 0.008279 / 0.007607 (0.000672) | 0.571635 / 0.226044 (0.345590) | 5.672445 / 2.268929 (3.403517) | 2.760577 / 55.444624 (-52.684047) | 2.544229 / 6.876477 (-4.332248) | 2.537509 / 2.142072 (0.395436) | 0.609858 / 4.805227 (-4.195369) | 0.131053 / 6.500664 (-6.369611) | 0.056433 / 0.075469 (-0.019036) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.567231 / 1.841788 (-0.274556) | 21.415586 / 8.074308 (13.341278) | 15.982328 / 10.191392 (5.790936) | 0.167648 / 0.680424 (-0.512776) | 0.023562 / 0.534201 (-0.510639) | 0.477307 / 0.579283 (-0.101976) | 0.471929 / 0.434364 (0.037566) | 0.549996 / 0.540337 (0.009659) | 0.753927 / 1.386936 (-0.633009) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#1fb2785be9198997e8b9006225b0e231f4d8ed31 \"CML watermark\")\n"
] | 2023-10-25T18:21:08 | 2023-10-26T17:19:49 | 2023-10-26T17:10:27 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6351",
"html_url": "https://github.com/huggingface/datasets/pull/6351",
"diff_url": "https://github.com/huggingface/datasets/pull/6351.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6351.patch",
"merged_at": "2023-10-26T17:10:27"
} | The current example isn't working because it can't find `labels` inside the Dataset object. So I've added an extra step to the process. Tested and working in Colab. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6351/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6351/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6350 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6350/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6350/comments | https://api.github.com/repos/huggingface/datasets/issues/6350/events | https://github.com/huggingface/datasets/issues/6350 | 1,961,869,203 | I_kwDODunzps5077-T | 6,350 | Different objects are returned from calls that should be returning the same kind of object. | {
"login": "phalexo",
"id": 4603365,
"node_id": "MDQ6VXNlcjQ2MDMzNjU=",
"avatar_url": "https://avatars.githubusercontent.com/u/4603365?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/phalexo",
"html_url": "https://github.com/phalexo",
"followers_url": "https://api.github.com/users/phalexo/followers",
"following_url": "https://api.github.com/users/phalexo/following{/other_user}",
"gists_url": "https://api.github.com/users/phalexo/gists{/gist_id}",
"starred_url": "https://api.github.com/users/phalexo/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/phalexo/subscriptions",
"organizations_url": "https://api.github.com/users/phalexo/orgs",
"repos_url": "https://api.github.com/users/phalexo/repos",
"events_url": "https://api.github.com/users/phalexo/events{/privacy}",
"received_events_url": "https://api.github.com/users/phalexo/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | [
"`load_dataset` returns a `DatasetDict` object unless `split` is defined, in which case it returns a `Dataset` (or a list of datasets if `split` is a list). We've discussed dropping `DatasetDict` from the API in https://github.com/huggingface/datasets/issues/5189 to always return the same type in `load_dataset` and support datasets without (explicit) splits. IIRC the main discussion point is deciding what to return when loading a dataset with multiple splits, but `split` is not specified. What would you expect as a return value in that scenario?",
"> `load_dataset` returns a `DatasetDict` object unless `split` is defined, in which case it returns a `Dataset` (or a list of datasets if `split` is a list). We've discussed dropping `DatasetDict` from the API in #5189 to always return the same type in `load_dataset` and support datasets without (explicit) splits. IIRC the main discussion point is deciding what to return when loading a dataset with multiple splits, but `split` is not specified. What would you expect as a return value in that scenario?\r\n\r\nWouldn't a dataset with multiple splits already have keys and their related data arrays?\r\n\r\nLets say the dataset has \"train\" : trainset, \"valid\": validset and \"test\": testset\r\n\r\nSo a dictionary can be returned,, i.e.\r\n\r\n{ \r\n\"train\": trainset,\r\n\"valid\": validset,\r\n\"test\": testset\r\n}\r\n\r\nif a split is provided split=['train[:80%]', 'valid[80%:90%]', 'test[90%:100%]']\r\n\r\nwould also return the same dictionary as above.\r\n\r\nsplit='train[:10%]' should return the same value as split=['train[:10%]']\r\n\r\n{\r\n\"train\": trainset\r\n}\r\n "
] | 2023-10-25T17:08:39 | 2023-10-26T21:03:06 | null | NONE | null | null | null | ### Describe the bug
1. dataset = load_dataset("togethercomputer/RedPajama-Data-1T-Sample", cache_dir=training_args.cache_dir, split='train[:1%]')
2. dataset = load_dataset("togethercomputer/RedPajama-Data-1T-Sample", cache_dir=training_args.cache_dir)
The only difference I would expect these calls to have is the size of the dataset.
But, while 2. returns a dictionary with "train" key in it, 1. returns a dataset WITHOUT any initial "train" keyword.
Both calls are to be used within exactly the same context. They should return identically structured datasets of different size.
### Steps to reproduce the bug
See above.
### Expected behavior
Expect both calls to return the same structured Dataset structure but with different number of elements, i.e. call 1. should have 1% of the data of the call 2.0
### Environment info
Ubuntu 20.04
gcc 9.x.x.
It is really irrelevant. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6350/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6350/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/6349 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6349/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6349/comments | https://api.github.com/repos/huggingface/datasets/issues/6349/events | https://github.com/huggingface/datasets/issues/6349 | 1,961,435,673 | I_kwDODunzps506SIZ | 6,349 | Can't load ds = load_dataset("imdb") | {
"login": "vivianc2",
"id": 86415736,
"node_id": "MDQ6VXNlcjg2NDE1NzM2",
"avatar_url": "https://avatars.githubusercontent.com/u/86415736?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/vivianc2",
"html_url": "https://github.com/vivianc2",
"followers_url": "https://api.github.com/users/vivianc2/followers",
"following_url": "https://api.github.com/users/vivianc2/following{/other_user}",
"gists_url": "https://api.github.com/users/vivianc2/gists{/gist_id}",
"starred_url": "https://api.github.com/users/vivianc2/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/vivianc2/subscriptions",
"organizations_url": "https://api.github.com/users/vivianc2/orgs",
"repos_url": "https://api.github.com/users/vivianc2/repos",
"events_url": "https://api.github.com/users/vivianc2/events{/privacy}",
"received_events_url": "https://api.github.com/users/vivianc2/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | [
"I'm unable to reproduce this error. The server hosting the files may have been down temporarily, so try again."
] | 2023-10-25T13:29:51 | 2023-10-31T19:59:35 | 2023-10-31T19:59:35 | NONE | null | null | null | ### Describe the bug
I did `from datasets import load_dataset, load_metric` and then `ds = load_dataset("imdb")` and it gave me the error:
ExpectedMoreDownloadedFiles: {'http://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz'}
I tried doing `ds = load_dataset("imdb",download_mode="force_redownload")` as well as reinstalling dataset. I still face this problem.
### Steps to reproduce the bug
1. from datasets import load_dataset, load_metric
2. ds = load_dataset("imdb")
### Expected behavior
It should load and give me this when I run `ds`
DatasetDict({
train: Dataset({
features: ['text', 'label'],
num_rows: 25000
})
test: Dataset({
features: ['text', 'label'],
num_rows: 25000
})
unsupervised: Dataset({
features: ['text', 'label'],
num_rows: 50000
})
})
### Environment info
- `datasets` version: 2.14.6
- Platform: Linux-5.4.0-164-generic-x86_64-with-glibc2.17
- Python version: 3.8.18
- Huggingface_hub version: 0.16.2
- PyArrow version: 13.0.0
- Pandas version: 2.0.2 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6349/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6349/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/6348 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6348/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6348/comments | https://api.github.com/repos/huggingface/datasets/issues/6348/events | https://github.com/huggingface/datasets/issues/6348 | 1,961,268,504 | I_kwDODunzps505pUY | 6,348 | Parquet stream-conversion fails to embed images/audio files from gated repos | {
"login": "severo",
"id": 1676121,
"node_id": "MDQ6VXNlcjE2NzYxMjE=",
"avatar_url": "https://avatars.githubusercontent.com/u/1676121?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/severo",
"html_url": "https://github.com/severo",
"followers_url": "https://api.github.com/users/severo/followers",
"following_url": "https://api.github.com/users/severo/following{/other_user}",
"gists_url": "https://api.github.com/users/severo/gists{/gist_id}",
"starred_url": "https://api.github.com/users/severo/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/severo/subscriptions",
"organizations_url": "https://api.github.com/users/severo/orgs",
"repos_url": "https://api.github.com/users/severo/repos",
"events_url": "https://api.github.com/users/severo/events{/privacy}",
"received_events_url": "https://api.github.com/users/severo/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892857,
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug",
"name": "bug",
"color": "d73a4a",
"default": true,
"description": "Something isn't working"
}
] | open | false | null | [] | [] | 2023-10-25T12:12:44 | 2023-10-25T12:13:07 | null | CONTRIBUTOR | null | null | null | it seems to be an issue with datasets not passing the token to embed_table_storage when generating a dataset
See https://github.com/huggingface/datasets-server/issues/2010 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6348/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6348/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/6347 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6347/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6347/comments | https://api.github.com/repos/huggingface/datasets/issues/6347/events | https://github.com/huggingface/datasets/issues/6347 | 1,959,004,835 | I_kwDODunzps50xAqj | 6,347 | Incorrect example code in 'Create a dataset' docs | {
"login": "rwood-97",
"id": 72076688,
"node_id": "MDQ6VXNlcjcyMDc2Njg4",
"avatar_url": "https://avatars.githubusercontent.com/u/72076688?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/rwood-97",
"html_url": "https://github.com/rwood-97",
"followers_url": "https://api.github.com/users/rwood-97/followers",
"following_url": "https://api.github.com/users/rwood-97/following{/other_user}",
"gists_url": "https://api.github.com/users/rwood-97/gists{/gist_id}",
"starred_url": "https://api.github.com/users/rwood-97/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/rwood-97/subscriptions",
"organizations_url": "https://api.github.com/users/rwood-97/orgs",
"repos_url": "https://api.github.com/users/rwood-97/repos",
"events_url": "https://api.github.com/users/rwood-97/events{/privacy}",
"received_events_url": "https://api.github.com/users/rwood-97/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | [
"This was fixed in https://github.com/huggingface/datasets/pull/6247. You can find the fix in the `main` version of the docs",
"Ah great, thanks :)"
] | 2023-10-24T11:01:21 | 2023-10-25T13:05:21 | 2023-10-25T13:05:21 | NONE | null | null | null | ### Describe the bug
On [this](https://huggingface.co./docs/datasets/create_dataset) page, the example code for loading in images and audio is incorrect.
Currently, examples are:
``` python
from datasets import ImageFolder
dataset = load_dataset("imagefolder", data_dir="/path/to/pokemon")
```
and
``` python
from datasets import AudioFolder
dataset = load_dataset("audiofolder", data_dir="/path/to/folder")
```
I'm pretty sure the imports are wrong and should be:
``` python
from datasets import load_dataset
dataset = load_dataset("audiofolder", data_dir="/path/to/folder")
```
I am happy to update this if this is right but just wanted to check before making any changes.
### Steps to reproduce the bug
Go to https://huggingface.co./docs/datasets/create_dataset
### Expected behavior
N/A
### Environment info
N/A | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6347/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6347/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/6346 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6346/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6346/comments | https://api.github.com/repos/huggingface/datasets/issues/6346/events | https://github.com/huggingface/datasets/pull/6346 | 1,958,777,076 | PR_kwDODunzps5dnZM_ | 6,346 | Fix UnboundLocalError if preprocessing returns an empty list | {
"login": "cwallenwein",
"id": 40916592,
"node_id": "MDQ6VXNlcjQwOTE2NTky",
"avatar_url": "https://avatars.githubusercontent.com/u/40916592?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/cwallenwein",
"html_url": "https://github.com/cwallenwein",
"followers_url": "https://api.github.com/users/cwallenwein/followers",
"following_url": "https://api.github.com/users/cwallenwein/following{/other_user}",
"gists_url": "https://api.github.com/users/cwallenwein/gists{/gist_id}",
"starred_url": "https://api.github.com/users/cwallenwein/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/cwallenwein/subscriptions",
"organizations_url": "https://api.github.com/users/cwallenwein/orgs",
"repos_url": "https://api.github.com/users/cwallenwein/repos",
"events_url": "https://api.github.com/users/cwallenwein/events{/privacy}",
"received_events_url": "https://api.github.com/users/cwallenwein/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009286 / 0.011353 (-0.002067) | 0.005478 / 0.011008 (-0.005530) | 0.109768 / 0.038508 (0.071260) | 0.088460 / 0.023109 (0.065351) | 0.387664 / 0.275898 (0.111766) | 0.457379 / 0.323480 (0.133899) | 0.006517 / 0.007986 (-0.001469) | 0.004037 / 0.004328 (-0.000292) | 0.083911 / 0.004250 (0.079661) | 0.071658 / 0.037052 (0.034605) | 0.385065 / 0.258489 (0.126576) | 0.460928 / 0.293841 (0.167087) | 0.048062 / 0.128546 (-0.080484) | 0.016343 / 0.075646 (-0.059303) | 0.373675 / 0.419271 (-0.045597) | 0.067640 / 0.043533 (0.024108) | 0.391730 / 0.255139 (0.136591) | 0.432908 / 0.283200 (0.149708) | 0.035748 / 0.141683 (-0.105935) | 1.767625 / 1.452155 (0.315471) | 1.965606 / 1.492716 (0.472889) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.277405 / 0.018006 (0.259399) | 0.538448 / 0.000490 (0.537958) | 0.013795 / 0.000200 (0.013595) | 0.000518 / 0.000054 (0.000464) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.043962 / 0.037411 (0.006550) | 0.115305 / 0.014526 (0.100780) | 0.117572 / 0.176557 (-0.058985) | 0.182168 / 0.737135 (-0.554968) | 0.114833 / 0.296338 (-0.181505) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.604209 / 0.215209 (0.389000) | 6.186113 / 2.077655 (4.108458) | 2.771067 / 1.504120 (1.266947) | 2.425420 / 1.541195 (0.884226) | 2.475200 / 1.468490 (1.006710) | 0.887096 / 4.584777 (-3.697681) | 5.214349 / 3.745712 (1.468637) | 4.989606 / 5.269862 (-0.280256) | 3.092135 / 4.565676 (-1.473541) | 0.104464 / 0.424275 (-0.319811) | 0.008994 / 0.007607 (0.001387) | 0.732819 / 0.226044 (0.506775) | 7.396007 / 2.268929 (5.127078) | 3.371167 / 55.444624 (-52.073457) | 2.645475 / 6.876477 (-4.231001) | 2.704215 / 2.142072 (0.562143) | 1.034724 / 4.805227 (-3.770504) | 0.219063 / 6.500664 (-6.281601) | 0.073863 / 0.075469 (-0.001606) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.625020 / 1.841788 (-0.216768) | 23.369980 / 8.074308 (15.295671) | 22.480951 / 10.191392 (12.289559) | 0.228219 / 0.680424 (-0.452204) | 0.026981 / 0.534201 (-0.507220) | 0.487670 / 0.579283 (-0.091613) | 0.582310 / 0.434364 (0.147946) | 0.539182 / 0.540337 (-0.001156) | 0.791962 / 1.386936 (-0.594974) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008657 / 0.011353 (-0.002696) | 0.004971 / 0.011008 (-0.006037) | 0.089499 / 0.038508 (0.050991) | 0.075963 / 0.023109 (0.052854) | 0.497719 / 0.275898 (0.221821) | 0.507912 / 0.323480 (0.184432) | 0.006067 / 0.007986 (-0.001919) | 0.004118 / 0.004328 (-0.000210) | 0.079397 / 0.004250 (0.075146) | 0.059181 / 0.037052 (0.022129) | 0.501108 / 0.258489 (0.242619) | 0.565792 / 0.293841 (0.271951) | 0.048818 / 0.128546 (-0.079729) | 0.014813 / 0.075646 (-0.060833) | 0.093863 / 0.419271 (-0.325409) | 0.060824 / 0.043533 (0.017292) | 0.489289 / 0.255139 (0.234150) | 0.533624 / 0.283200 (0.250425) | 0.034997 / 0.141683 (-0.106685) | 1.770574 / 1.452155 (0.318419) | 1.837213 / 1.492716 (0.344496) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.237319 / 0.018006 (0.219313) | 0.594976 / 0.000490 (0.594486) | 0.008888 / 0.000200 (0.008688) | 0.000124 / 0.000054 (0.000070) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.036955 / 0.037411 (-0.000456) | 0.097825 / 0.014526 (0.083299) | 0.111139 / 0.176557 (-0.065418) | 0.174776 / 0.737135 (-0.562359) | 0.117755 / 0.296338 (-0.178584) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.606498 / 0.215209 (0.391289) | 6.089874 / 2.077655 (4.012219) | 2.811135 / 1.504120 (1.307015) | 2.428486 / 1.541195 (0.887292) | 2.399512 / 1.468490 (0.931022) | 0.823492 / 4.584777 (-3.761285) | 4.897107 / 3.745712 (1.151395) | 4.407589 / 5.269862 (-0.862272) | 2.868442 / 4.565676 (-1.697235) | 0.098774 / 0.424275 (-0.325502) | 0.007998 / 0.007607 (0.000391) | 0.699489 / 0.226044 (0.473445) | 7.139214 / 2.268929 (4.870285) | 3.511158 / 55.444624 (-51.933466) | 2.775459 / 6.876477 (-4.101018) | 2.951549 / 2.142072 (0.809477) | 1.006921 / 4.805227 (-3.798306) | 0.200105 / 6.500664 (-6.300559) | 0.071064 / 0.075469 (-0.004405) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.680599 / 1.841788 (-0.161189) | 23.399777 / 8.074308 (15.325469) | 21.776357 / 10.191392 (11.584965) | 0.264697 / 0.680424 (-0.415726) | 0.034272 / 0.534201 (-0.499929) | 0.506984 / 0.579283 (-0.072299) | 0.609556 / 0.434364 (0.175192) | 0.599014 / 0.540337 (0.058677) | 0.824068 / 1.386936 (-0.562868) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#3ab9de69420de8bd5d057579d71d07187b3a2c60 \"CML watermark\")\n"
] | 2023-10-24T08:38:43 | 2023-10-25T17:39:17 | 2023-10-25T16:36:38 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6346",
"html_url": "https://github.com/huggingface/datasets/pull/6346",
"diff_url": "https://github.com/huggingface/datasets/pull/6346.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6346.patch",
"merged_at": "2023-10-25T16:36:38"
} | If this tokenization function is used with IterableDatasets and no sample is as big as the context length, `input_batch` will be an empty list.
```
def tokenize(batch, tokenizer, context_length):
outputs = tokenizer(
batch["text"],
truncation=True,
max_length=context_length,
return_overflowing_tokens=True,
return_length=True
)
input_batch = []
for length, input_ids in zip(outputs["length"], outputs["input_ids"]):
if length == context_length:
input_batch.append(input_ids)
return {"input_ids": input_batch}
dataset.map(tokenize, batched=True, batch_size=batch_size, fn_kwargs={"context_length": context_length, "tokenizer": tokenizer}, remove_columns=dataset.column_names)
```
This will throw the following error: UnboundLocalError: local variable 'batch_idx' referenced before assignment, because the for loop was not executed a single time
```
for batch_idx, example in enumerate(_batch_to_examples(transformed_batch)):
yield new_key, example
current_idx += batch_idx + 1
```
Some of the possible solutions
```
for batch_idx, example in enumerate(_batch_to_examples(transformed_batch)):
yield new_key, example
try:
current_idx += batch_idx + 1
except:
current_idx += 1
```
or
```
batch_idx = 0
for batch_idx, example in enumerate(_batch_to_examples(transformed_batch)):
yield new_key, example
current_idx += batch_idx + 1
``` | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6346/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6346/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6345 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6345/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6345/comments | https://api.github.com/repos/huggingface/datasets/issues/6345/events | https://github.com/huggingface/datasets/issues/6345 | 1,957,707,870 | I_kwDODunzps50sEBe | 6,345 | support squad structure datasets using a YAML parameter | {
"login": "MajdTannous1",
"id": 138524319,
"node_id": "U_kgDOCEG2nw",
"avatar_url": "https://avatars.githubusercontent.com/u/138524319?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/MajdTannous1",
"html_url": "https://github.com/MajdTannous1",
"followers_url": "https://api.github.com/users/MajdTannous1/followers",
"following_url": "https://api.github.com/users/MajdTannous1/following{/other_user}",
"gists_url": "https://api.github.com/users/MajdTannous1/gists{/gist_id}",
"starred_url": "https://api.github.com/users/MajdTannous1/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/MajdTannous1/subscriptions",
"organizations_url": "https://api.github.com/users/MajdTannous1/orgs",
"repos_url": "https://api.github.com/users/MajdTannous1/repos",
"events_url": "https://api.github.com/users/MajdTannous1/events{/privacy}",
"received_events_url": "https://api.github.com/users/MajdTannous1/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892871,
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement",
"name": "enhancement",
"color": "a2eeef",
"default": true,
"description": "New feature or request"
}
] | open | false | null | [] | [] | 2023-10-23T17:55:37 | 2023-10-23T17:55:37 | null | NONE | null | null | null | ### Feature request
Since the squad structure is widely used, I think it could be beneficial to support it using a YAML parameter.
could you implement automatic data loading of squad-like data using squad JSON format, to read it from JSON files and view it in the correct squad structure.
The dataset structure should be like this:
https://huggingface.co./datasets/squad
Columns:id,title,context,question,answers
### Motivation
Dataset repo requires arbitrary Python code execution
### Your contribution
The dataset structure should be like this:
https://huggingface.co./datasets/squad
Columns:id,title,context,question,answers
train and dev sets in squad structure JSON files | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6345/reactions",
"total_count": 1,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 1
} | https://api.github.com/repos/huggingface/datasets/issues/6345/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/6344 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6344/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6344/comments | https://api.github.com/repos/huggingface/datasets/issues/6344/events | https://github.com/huggingface/datasets/pull/6344 | 1,957,412,169 | PR_kwDODunzps5diyd5 | 6,344 | set dev version | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6344). All of your documentation changes will be reflected on that endpoint.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008237 / 0.011353 (-0.003116) | 0.004658 / 0.011008 (-0.006351) | 0.105902 / 0.038508 (0.067394) | 0.082690 / 0.023109 (0.059581) | 0.471745 / 0.275898 (0.195847) | 0.464772 / 0.323480 (0.141292) | 0.006373 / 0.007986 (-0.001613) | 0.003823 / 0.004328 (-0.000505) | 0.077721 / 0.004250 (0.073471) | 0.068371 / 0.037052 (0.031318) | 0.457004 / 0.258489 (0.198515) | 0.500989 / 0.293841 (0.207148) | 0.036688 / 0.128546 (-0.091858) | 0.010004 / 0.075646 (-0.065643) | 0.363398 / 0.419271 (-0.055874) | 0.065354 / 0.043533 (0.021821) | 0.440326 / 0.255139 (0.185187) | 0.475314 / 0.283200 (0.192115) | 0.029024 / 0.141683 (-0.112659) | 1.851005 / 1.452155 (0.398851) | 1.939997 / 1.492716 (0.447281) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.269739 / 0.018006 (0.251732) | 0.510411 / 0.000490 (0.509922) | 0.013423 / 0.000200 (0.013223) | 0.000513 / 0.000054 (0.000458) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032912 / 0.037411 (-0.004499) | 0.097497 / 0.014526 (0.082971) | 0.111945 / 0.176557 (-0.064612) | 0.179264 / 0.737135 (-0.557871) | 0.111901 / 0.296338 (-0.184437) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.480994 / 0.215209 (0.265785) | 4.800969 / 2.077655 (2.723314) | 2.467390 / 1.504120 (0.963270) | 2.283219 / 1.541195 (0.742024) | 2.407735 / 1.468490 (0.939245) | 0.573862 / 4.584777 (-4.010915) | 4.213394 / 3.745712 (0.467682) | 4.120092 / 5.269862 (-1.149770) | 2.479549 / 4.565676 (-2.086128) | 0.077204 / 0.424275 (-0.347071) | 0.009165 / 0.007607 (0.001558) | 0.583887 / 0.226044 (0.357842) | 5.760759 / 2.268929 (3.491830) | 3.089220 / 55.444624 (-52.355404) | 2.652330 / 6.876477 (-4.224146) | 2.746255 / 2.142072 (0.604182) | 0.689010 / 4.805227 (-4.116217) | 0.158042 / 6.500664 (-6.342622) | 0.072789 / 0.075469 (-0.002680) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.658877 / 1.841788 (-0.182911) | 22.928756 / 8.074308 (14.854448) | 17.231823 / 10.191392 (7.040431) | 0.201475 / 0.680424 (-0.478949) | 0.025533 / 0.534201 (-0.508668) | 0.467023 / 0.579283 (-0.112260) | 0.470779 / 0.434364 (0.036415) | 0.643192 / 0.540337 (0.102855) | 0.822006 / 1.386936 (-0.564930) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008096 / 0.011353 (-0.003257) | 0.004708 / 0.011008 (-0.006300) | 0.076607 / 0.038508 (0.038099) | 0.086278 / 0.023109 (0.063168) | 0.478027 / 0.275898 (0.202129) | 0.533121 / 0.323480 (0.209641) | 0.006331 / 0.007986 (-0.001654) | 0.004005 / 0.004328 (-0.000324) | 0.076018 / 0.004250 (0.071767) | 0.067240 / 0.037052 (0.030188) | 0.484882 / 0.258489 (0.226393) | 0.536924 / 0.293841 (0.243083) | 0.045064 / 0.128546 (-0.083482) | 0.010071 / 0.075646 (-0.065575) | 0.084319 / 0.419271 (-0.334953) | 0.066267 / 0.043533 (0.022734) | 0.479283 / 0.255139 (0.224144) | 0.507832 / 0.283200 (0.224633) | 0.026436 / 0.141683 (-0.115247) | 1.820043 / 1.452155 (0.367889) | 1.954663 / 1.492716 (0.461947) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.292672 / 0.018006 (0.274666) | 0.495523 / 0.000490 (0.495033) | 0.020836 / 0.000200 (0.020636) | 0.000143 / 0.000054 (0.000088) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.038326 / 0.037411 (0.000915) | 0.114629 / 0.014526 (0.100103) | 0.126036 / 0.176557 (-0.050521) | 0.191498 / 0.737135 (-0.545638) | 0.128763 / 0.296338 (-0.167575) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.507657 / 0.215209 (0.292448) | 5.062056 / 2.077655 (2.984401) | 2.765895 / 1.504120 (1.261775) | 2.590335 / 1.541195 (1.049141) | 2.790912 / 1.468490 (1.322422) | 0.582819 / 4.584777 (-4.001958) | 4.350034 / 3.745712 (0.604322) | 3.899466 / 5.269862 (-1.370396) | 2.499655 / 4.565676 (-2.066021) | 0.068909 / 0.424275 (-0.355366) | 0.008633 / 0.007607 (0.001026) | 0.593597 / 0.226044 (0.367553) | 5.934398 / 2.268929 (3.665470) | 3.358549 / 55.444624 (-52.086075) | 3.145686 / 6.876477 (-3.730791) | 3.232153 / 2.142072 (1.090080) | 0.753039 / 4.805227 (-4.052188) | 0.164043 / 6.500664 (-6.336621) | 0.072084 / 0.075469 (-0.003385) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.632702 / 1.841788 (-0.209086) | 23.411084 / 8.074308 (15.336776) | 17.035726 / 10.191392 (6.844334) | 0.223460 / 0.680424 (-0.456964) | 0.023723 / 0.534201 (-0.510478) | 0.474160 / 0.579283 (-0.105124) | 0.538638 / 0.434364 (0.104274) | 0.595591 / 0.540337 (0.055254) | 0.803324 / 1.386936 (-0.583612) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#84855c8ddc8d3e33b516f04b687e01d498d0906e \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008300 / 0.011353 (-0.003053) | 0.004667 / 0.011008 (-0.006341) | 0.101028 / 0.038508 (0.062520) | 0.100269 / 0.023109 (0.077160) | 0.418651 / 0.275898 (0.142752) | 0.459061 / 0.323480 (0.135581) | 0.006786 / 0.007986 (-0.001199) | 0.003926 / 0.004328 (-0.000403) | 0.076682 / 0.004250 (0.072432) | 0.066173 / 0.037052 (0.029120) | 0.430644 / 0.258489 (0.172155) | 0.466244 / 0.293841 (0.172403) | 0.040601 / 0.128546 (-0.087946) | 0.009856 / 0.075646 (-0.065790) | 0.351467 / 0.419271 (-0.067805) | 0.068727 / 0.043533 (0.025194) | 0.419527 / 0.255139 (0.164388) | 0.431245 / 0.283200 (0.148045) | 0.028933 / 0.141683 (-0.112750) | 1.749540 / 1.452155 (0.297386) | 1.829076 / 1.492716 (0.336360) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.282248 / 0.018006 (0.264242) | 0.587293 / 0.000490 (0.586803) | 0.014497 / 0.000200 (0.014297) | 0.000383 / 0.000054 (0.000329) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031861 / 0.037411 (-0.005550) | 0.097395 / 0.014526 (0.082869) | 0.113610 / 0.176557 (-0.062946) | 0.181208 / 0.737135 (-0.555927) | 0.115340 / 0.296338 (-0.180999) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.459746 / 0.215209 (0.244537) | 4.582387 / 2.077655 (2.504733) | 2.247968 / 1.504120 (0.743848) | 2.032340 / 1.541195 (0.491145) | 2.151766 / 1.468490 (0.683276) | 0.567664 / 4.584777 (-4.017113) | 4.491732 / 3.745712 (0.746020) | 4.000651 / 5.269862 (-1.269211) | 2.429113 / 4.565676 (-2.136564) | 0.067052 / 0.424275 (-0.357223) | 0.009095 / 0.007607 (0.001488) | 0.546461 / 0.226044 (0.320417) | 5.473524 / 2.268929 (3.204595) | 2.902091 / 55.444624 (-52.542533) | 2.517510 / 6.876477 (-4.358966) | 2.572537 / 2.142072 (0.430464) | 0.683499 / 4.805227 (-4.121728) | 0.154863 / 6.500664 (-6.345801) | 0.071298 / 0.075469 (-0.004171) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.625236 / 1.841788 (-0.216552) | 23.531541 / 8.074308 (15.457233) | 16.762514 / 10.191392 (6.571122) | 0.215922 / 0.680424 (-0.464502) | 0.021928 / 0.534201 (-0.512273) | 0.466055 / 0.579283 (-0.113228) | 0.553036 / 0.434364 (0.118672) | 0.590063 / 0.540337 (0.049725) | 0.789959 / 1.386936 (-0.596977) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008240 / 0.011353 (-0.003113) | 0.004151 / 0.011008 (-0.006858) | 0.077988 / 0.038508 (0.039479) | 0.092865 / 0.023109 (0.069756) | 0.468238 / 0.275898 (0.192340) | 0.512882 / 0.323480 (0.189402) | 0.006632 / 0.007986 (-0.001354) | 0.003879 / 0.004328 (-0.000450) | 0.076238 / 0.004250 (0.071988) | 0.069372 / 0.037052 (0.032319) | 0.481040 / 0.258489 (0.222550) | 0.526332 / 0.293841 (0.232491) | 0.036768 / 0.128546 (-0.091778) | 0.009891 / 0.075646 (-0.065756) | 0.084426 / 0.419271 (-0.334846) | 0.062382 / 0.043533 (0.018849) | 0.480667 / 0.255139 (0.225528) | 0.509001 / 0.283200 (0.225802) | 0.029215 / 0.141683 (-0.112468) | 1.776075 / 1.452155 (0.323920) | 1.948558 / 1.492716 (0.455841) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.257879 / 0.018006 (0.239873) | 0.471038 / 0.000490 (0.470548) | 0.009273 / 0.000200 (0.009073) | 0.000208 / 0.000054 (0.000154) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.039249 / 0.037411 (0.001838) | 0.133281 / 0.014526 (0.118755) | 0.138261 / 0.176557 (-0.038296) | 0.191051 / 0.737135 (-0.546084) | 0.134493 / 0.296338 (-0.161845) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.507165 / 0.215209 (0.291955) | 5.081018 / 2.077655 (3.003364) | 2.747633 / 1.504120 (1.243513) | 2.558265 / 1.541195 (1.017070) | 2.710839 / 1.468490 (1.242348) | 0.579913 / 4.584777 (-4.004864) | 4.843657 / 3.745712 (1.097945) | 3.942503 / 5.269862 (-1.327358) | 2.529641 / 4.565676 (-2.036036) | 0.068826 / 0.424275 (-0.355449) | 0.008847 / 0.007607 (0.001240) | 0.605332 / 0.226044 (0.379287) | 6.039574 / 2.268929 (3.770646) | 3.437291 / 55.444624 (-52.007333) | 3.086631 / 6.876477 (-3.789846) | 3.189340 / 2.142072 (1.047267) | 0.702650 / 4.805227 (-4.102578) | 0.157403 / 6.500664 (-6.343261) | 0.074637 / 0.075469 (-0.000832) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.816532 / 1.841788 (-0.025256) | 24.526675 / 8.074308 (16.452367) | 17.371691 / 10.191392 (7.180299) | 0.236044 / 0.680424 (-0.444380) | 0.024759 / 0.534201 (-0.509442) | 0.530578 / 0.579283 (-0.048705) | 0.527424 / 0.434364 (0.093060) | 0.620267 / 0.540337 (0.079929) | 0.791159 / 1.386936 (-0.595777) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#78cfce823b98b6cce79a9297fe6fa9e8f80a869c \"CML watermark\")\n"
] | 2023-10-23T15:13:28 | 2023-10-23T15:24:31 | 2023-10-23T15:13:38 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6344",
"html_url": "https://github.com/huggingface/datasets/pull/6344",
"diff_url": "https://github.com/huggingface/datasets/pull/6344.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6344.patch",
"merged_at": "2023-10-23T15:13:38"
} | null | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6344/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6344/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6343 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6343/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6343/comments | https://api.github.com/repos/huggingface/datasets/issues/6343/events | https://github.com/huggingface/datasets/pull/6343 | 1,957,370,711 | PR_kwDODunzps5dipeb | 6,343 | Remove unused argument in `_get_data_files_patterns` | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006584 / 0.011353 (-0.004769) | 0.004197 / 0.011008 (-0.006812) | 0.083598 / 0.038508 (0.045090) | 0.075502 / 0.023109 (0.052392) | 0.312986 / 0.275898 (0.037088) | 0.344630 / 0.323480 (0.021150) | 0.005394 / 0.007986 (-0.002591) | 0.003485 / 0.004328 (-0.000843) | 0.064529 / 0.004250 (0.060279) | 0.055003 / 0.037052 (0.017950) | 0.320522 / 0.258489 (0.062033) | 0.362623 / 0.293841 (0.068782) | 0.030900 / 0.128546 (-0.097646) | 0.008459 / 0.075646 (-0.067187) | 0.286986 / 0.419271 (-0.132285) | 0.052310 / 0.043533 (0.008777) | 0.315873 / 0.255139 (0.060734) | 0.333962 / 0.283200 (0.050762) | 0.023836 / 0.141683 (-0.117847) | 1.481806 / 1.452155 (0.029651) | 1.567926 / 1.492716 (0.075209) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.268188 / 0.018006 (0.250182) | 0.520542 / 0.000490 (0.520052) | 0.017617 / 0.000200 (0.017417) | 0.000631 / 0.000054 (0.000577) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028828 / 0.037411 (-0.008584) | 0.083028 / 0.014526 (0.068502) | 0.099808 / 0.176557 (-0.076748) | 0.154282 / 0.737135 (-0.582853) | 0.098590 / 0.296338 (-0.197748) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.407548 / 0.215209 (0.192339) | 4.066128 / 2.077655 (1.988474) | 2.036757 / 1.504120 (0.532637) | 1.870130 / 1.541195 (0.328935) | 1.949031 / 1.468490 (0.480541) | 0.489263 / 4.584777 (-4.095514) | 3.506269 / 3.745712 (-0.239443) | 3.457232 / 5.269862 (-1.812629) | 2.060097 / 4.565676 (-2.505580) | 0.057252 / 0.424275 (-0.367024) | 0.007727 / 0.007607 (0.000120) | 0.480229 / 0.226044 (0.254185) | 4.807064 / 2.268929 (2.538135) | 2.495438 / 55.444624 (-52.949186) | 2.186194 / 6.876477 (-4.690283) | 2.243372 / 2.142072 (0.101300) | 0.580550 / 4.805227 (-4.224678) | 0.135398 / 6.500664 (-6.365266) | 0.061878 / 0.075469 (-0.013591) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.305635 / 1.841788 (-0.536152) | 19.194421 / 8.074308 (11.120113) | 14.531699 / 10.191392 (4.340307) | 0.167144 / 0.680424 (-0.513280) | 0.018270 / 0.534201 (-0.515931) | 0.393702 / 0.579283 (-0.185581) | 0.406518 / 0.434364 (-0.027846) | 0.458126 / 0.540337 (-0.082211) | 0.639839 / 1.386936 (-0.747097) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006742 / 0.011353 (-0.004611) | 0.004092 / 0.011008 (-0.006916) | 0.065547 / 0.038508 (0.027039) | 0.076293 / 0.023109 (0.053184) | 0.389701 / 0.275898 (0.113803) | 0.429158 / 0.323480 (0.105678) | 0.005606 / 0.007986 (-0.002380) | 0.003491 / 0.004328 (-0.000837) | 0.065903 / 0.004250 (0.061653) | 0.057346 / 0.037052 (0.020293) | 0.393233 / 0.258489 (0.134744) | 0.433106 / 0.293841 (0.139265) | 0.032612 / 0.128546 (-0.095934) | 0.008777 / 0.075646 (-0.066869) | 0.073135 / 0.419271 (-0.346137) | 0.048167 / 0.043533 (0.004635) | 0.389309 / 0.255139 (0.134170) | 0.416442 / 0.283200 (0.133242) | 0.022839 / 0.141683 (-0.118844) | 1.531607 / 1.452155 (0.079453) | 1.598950 / 1.492716 (0.106234) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.254856 / 0.018006 (0.236850) | 0.528186 / 0.000490 (0.527697) | 0.006975 / 0.000200 (0.006775) | 0.000102 / 0.000054 (0.000048) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032377 / 0.037411 (-0.005034) | 0.092706 / 0.014526 (0.078180) | 0.107618 / 0.176557 (-0.068939) | 0.160103 / 0.737135 (-0.577032) | 0.107226 / 0.296338 (-0.189112) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.430922 / 0.215209 (0.215713) | 4.312556 / 2.077655 (2.234901) | 2.287686 / 1.504120 (0.783567) | 2.111103 / 1.541195 (0.569908) | 2.284105 / 1.468490 (0.815614) | 0.485987 / 4.584777 (-4.098790) | 3.557320 / 3.745712 (-0.188392) | 3.341150 / 5.269862 (-1.928711) | 2.056705 / 4.565676 (-2.508972) | 0.057265 / 0.424275 (-0.367010) | 0.007264 / 0.007607 (-0.000344) | 0.505191 / 0.226044 (0.279146) | 5.045379 / 2.268929 (2.776450) | 2.732357 / 55.444624 (-52.712267) | 2.390256 / 6.876477 (-4.486220) | 2.643676 / 2.142072 (0.501604) | 0.584630 / 4.805227 (-4.220597) | 0.132402 / 6.500664 (-6.368262) | 0.061387 / 0.075469 (-0.014082) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.340721 / 1.841788 (-0.501066) | 19.744145 / 8.074308 (11.669837) | 14.694482 / 10.191392 (4.503090) | 0.166294 / 0.680424 (-0.514129) | 0.020691 / 0.534201 (-0.513510) | 0.398359 / 0.579283 (-0.180924) | 0.423831 / 0.434364 (-0.010533) | 0.474365 / 0.540337 (-0.065972) | 0.649410 / 1.386936 (-0.737526) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#b29bc9cef6237eb0d18f77c56686705f468bed25 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004369 / 0.011353 (-0.006984) | 0.002728 / 0.011008 (-0.008280) | 0.063754 / 0.038508 (0.025246) | 0.029396 / 0.023109 (0.006287) | 0.269409 / 0.275898 (-0.006489) | 0.287654 / 0.323480 (-0.035826) | 0.003926 / 0.007986 (-0.004060) | 0.002366 / 0.004328 (-0.001963) | 0.048910 / 0.004250 (0.044660) | 0.043126 / 0.037052 (0.006074) | 0.260774 / 0.258489 (0.002285) | 0.299996 / 0.293841 (0.006155) | 0.023359 / 0.128546 (-0.105187) | 0.007259 / 0.075646 (-0.068388) | 0.211412 / 0.419271 (-0.207860) | 0.053883 / 0.043533 (0.010350) | 0.268946 / 0.255139 (0.013807) | 0.287664 / 0.283200 (0.004465) | 0.017600 / 0.141683 (-0.124083) | 1.096478 / 1.452155 (-0.355676) | 1.193063 / 1.492716 (-0.299653) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.090985 / 0.018006 (0.072979) | 0.287168 / 0.000490 (0.286678) | 0.000208 / 0.000200 (0.000009) | 0.000052 / 0.000054 (-0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019238 / 0.037411 (-0.018173) | 0.062660 / 0.014526 (0.048134) | 0.073414 / 0.176557 (-0.103143) | 0.120842 / 0.737135 (-0.616294) | 0.077658 / 0.296338 (-0.218681) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.280285 / 0.215209 (0.065076) | 2.729807 / 2.077655 (0.652152) | 1.430686 / 1.504120 (-0.073434) | 1.307260 / 1.541195 (-0.233935) | 1.321013 / 1.468490 (-0.147477) | 0.387253 / 4.584777 (-4.197524) | 2.415635 / 3.745712 (-1.330077) | 2.557206 / 5.269862 (-2.712656) | 1.553224 / 4.565676 (-3.012453) | 0.045402 / 0.424275 (-0.378873) | 0.004798 / 0.007607 (-0.002809) | 0.330493 / 0.226044 (0.104449) | 3.226835 / 2.268929 (0.957906) | 1.739068 / 55.444624 (-53.705557) | 1.494841 / 6.876477 (-5.381636) | 1.528253 / 2.142072 (-0.613820) | 0.451525 / 4.805227 (-4.353702) | 0.096620 / 6.500664 (-6.404044) | 0.041176 / 0.075469 (-0.034293) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.930892 / 1.841788 (-0.910896) | 11.343351 / 8.074308 (3.269043) | 10.420327 / 10.191392 (0.228935) | 0.137629 / 0.680424 (-0.542795) | 0.013907 / 0.534201 (-0.520293) | 0.267778 / 0.579283 (-0.311505) | 0.260774 / 0.434364 (-0.173590) | 0.308213 / 0.540337 (-0.232124) | 0.419659 / 1.386936 (-0.967277) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004867 / 0.011353 (-0.006486) | 0.002830 / 0.011008 (-0.008178) | 0.048506 / 0.038508 (0.009998) | 0.048190 / 0.023109 (0.025080) | 0.279995 / 0.275898 (0.004097) | 0.296396 / 0.323480 (-0.027083) | 0.004700 / 0.007986 (-0.003285) | 0.003546 / 0.004328 (-0.000782) | 0.048237 / 0.004250 (0.043987) | 0.037102 / 0.037052 (0.000050) | 0.284582 / 0.258489 (0.026093) | 0.315896 / 0.293841 (0.022055) | 0.024699 / 0.128546 (-0.103848) | 0.007077 / 0.075646 (-0.068569) | 0.054471 / 0.419271 (-0.364800) | 0.032537 / 0.043533 (-0.010996) | 0.276761 / 0.255139 (0.021622) | 0.294741 / 0.283200 (0.011542) | 0.017766 / 0.141683 (-0.123917) | 1.118377 / 1.452155 (-0.333778) | 1.186617 / 1.492716 (-0.306100) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.088981 / 0.018006 (0.070975) | 0.297793 / 0.000490 (0.297303) | 0.000220 / 0.000200 (0.000020) | 0.000050 / 0.000054 (-0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.021300 / 0.037411 (-0.016111) | 0.070059 / 0.014526 (0.055533) | 0.080452 / 0.176557 (-0.096104) | 0.118461 / 0.737135 (-0.618674) | 0.081099 / 0.296338 (-0.215240) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.300560 / 0.215209 (0.085351) | 2.951461 / 2.077655 (0.873806) | 1.621978 / 1.504120 (0.117858) | 1.478871 / 1.541195 (-0.062324) | 1.520732 / 1.468490 (0.052242) | 0.408625 / 4.584777 (-4.176152) | 2.407253 / 3.745712 (-1.338459) | 2.546000 / 5.269862 (-2.723861) | 1.525920 / 4.565676 (-3.039757) | 0.046817 / 0.424275 (-0.377458) | 0.004880 / 0.007607 (-0.002727) | 0.350866 / 0.226044 (0.124821) | 3.489379 / 2.268929 (1.220451) | 1.967197 / 55.444624 (-53.477427) | 1.686083 / 6.876477 (-5.190394) | 1.699307 / 2.142072 (-0.442766) | 0.479659 / 4.805227 (-4.325568) | 0.098853 / 6.500664 (-6.401811) | 0.040718 / 0.075469 (-0.034751) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.018352 / 1.841788 (-0.823436) | 12.022551 / 8.074308 (3.948243) | 10.841890 / 10.191392 (0.650498) | 0.130732 / 0.680424 (-0.549692) | 0.016334 / 0.534201 (-0.517867) | 0.271984 / 0.579283 (-0.307299) | 0.276733 / 0.434364 (-0.157631) | 0.308049 / 0.540337 (-0.232289) | 0.415428 / 1.386936 (-0.971508) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#31d95717e4e5fc6dd7699878720f063d51f1d595 \"CML watermark\")\n"
] | 2023-10-23T14:54:18 | 2023-11-16T09:09:42 | 2023-11-16T09:03:39 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6343",
"html_url": "https://github.com/huggingface/datasets/pull/6343",
"diff_url": "https://github.com/huggingface/datasets/pull/6343.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6343.patch",
"merged_at": "2023-11-16T09:03:39"
} | null | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6343/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6343/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6342 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6342/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6342/comments | https://api.github.com/repos/huggingface/datasets/issues/6342/events | https://github.com/huggingface/datasets/pull/6342 | 1,957,344,445 | PR_kwDODunzps5dijxt | 6,342 | Release: 2.14.6 | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | [
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007051 / 0.011353 (-0.004302) | 0.004291 / 0.011008 (-0.006717) | 0.085557 / 0.038508 (0.047048) | 0.087919 / 0.023109 (0.064810) | 0.356912 / 0.275898 (0.081014) | 0.394835 / 0.323480 (0.071355) | 0.004464 / 0.007986 (-0.003522) | 0.003688 / 0.004328 (-0.000640) | 0.065437 / 0.004250 (0.061186) | 0.060156 / 0.037052 (0.023103) | 0.361807 / 0.258489 (0.103318) | 0.420917 / 0.293841 (0.127076) | 0.031704 / 0.128546 (-0.096842) | 0.008921 / 0.075646 (-0.066726) | 0.287828 / 0.419271 (-0.131443) | 0.053600 / 0.043533 (0.010067) | 0.361833 / 0.255139 (0.106694) | 0.396732 / 0.283200 (0.113532) | 0.025874 / 0.141683 (-0.115809) | 1.474926 / 1.452155 (0.022771) | 1.563186 / 1.492716 (0.070469) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.316823 / 0.018006 (0.298817) | 0.604085 / 0.000490 (0.603595) | 0.020828 / 0.000200 (0.020628) | 0.000351 / 0.000054 (0.000297) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030468 / 0.037411 (-0.006943) | 0.083904 / 0.014526 (0.069378) | 0.103019 / 0.176557 (-0.073537) | 0.159018 / 0.737135 (-0.578117) | 0.102737 / 0.296338 (-0.193602) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.405311 / 0.215209 (0.190102) | 4.029060 / 2.077655 (1.951406) | 2.046590 / 1.504120 (0.542470) | 1.919335 / 1.541195 (0.378140) | 2.030371 / 1.468490 (0.561881) | 0.484209 / 4.584777 (-4.100568) | 3.486888 / 3.745712 (-0.258824) | 3.390777 / 5.269862 (-1.879084) | 2.110744 / 4.565676 (-2.454933) | 0.056587 / 0.424275 (-0.367688) | 0.007766 / 0.007607 (0.000159) | 0.488217 / 0.226044 (0.262173) | 4.853904 / 2.268929 (2.584976) | 2.595122 / 55.444624 (-52.849502) | 2.217712 / 6.876477 (-4.658765) | 2.500368 / 2.142072 (0.358296) | 0.580843 / 4.805227 (-4.224384) | 0.132719 / 6.500664 (-6.367945) | 0.060202 / 0.075469 (-0.015267) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.260748 / 1.841788 (-0.581040) | 20.148848 / 8.074308 (12.074540) | 14.738779 / 10.191392 (4.547387) | 0.167562 / 0.680424 (-0.512862) | 0.018944 / 0.534201 (-0.515257) | 0.394314 / 0.579283 (-0.184969) | 0.409345 / 0.434364 (-0.025019) | 0.458743 / 0.540337 (-0.081594) | 0.638175 / 1.386936 (-0.748761) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007097 / 0.011353 (-0.004256) | 0.004304 / 0.011008 (-0.006705) | 0.065539 / 0.038508 (0.027030) | 0.094078 / 0.023109 (0.070969) | 0.412411 / 0.275898 (0.136513) | 0.441900 / 0.323480 (0.118420) | 0.006038 / 0.007986 (-0.001948) | 0.003647 / 0.004328 (-0.000682) | 0.065298 / 0.004250 (0.061048) | 0.062571 / 0.037052 (0.025518) | 0.405156 / 0.258489 (0.146667) | 0.443779 / 0.293841 (0.149938) | 0.034470 / 0.128546 (-0.094077) | 0.008858 / 0.075646 (-0.066789) | 0.071840 / 0.419271 (-0.347431) | 0.050468 / 0.043533 (0.006935) | 0.404198 / 0.255139 (0.149059) | 0.430196 / 0.283200 (0.146997) | 0.025710 / 0.141683 (-0.115973) | 1.525374 / 1.452155 (0.073219) | 1.591830 / 1.492716 (0.099114) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.294330 / 0.018006 (0.276324) | 0.516943 / 0.000490 (0.516453) | 0.004807 / 0.000200 (0.004607) | 0.000103 / 0.000054 (0.000048) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034505 / 0.037411 (-0.002907) | 0.096645 / 0.014526 (0.082119) | 0.111926 / 0.176557 (-0.064630) | 0.165241 / 0.737135 (-0.571894) | 0.111834 / 0.296338 (-0.184504) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.436370 / 0.215209 (0.221161) | 4.357568 / 2.077655 (2.279913) | 2.360529 / 1.504120 (0.856409) | 2.196375 / 1.541195 (0.655180) | 2.307481 / 1.468490 (0.838991) | 0.494072 / 4.584777 (-4.090705) | 3.565078 / 3.745712 (-0.180634) | 3.405174 / 5.269862 (-1.864688) | 2.203307 / 4.565676 (-2.362369) | 0.058582 / 0.424275 (-0.365693) | 0.007410 / 0.007607 (-0.000197) | 0.514323 / 0.226044 (0.288279) | 5.139834 / 2.268929 (2.870905) | 2.884111 / 55.444624 (-52.560513) | 2.589021 / 6.876477 (-4.287456) | 2.787577 / 2.142072 (0.645504) | 0.590765 / 4.805227 (-4.214462) | 0.135237 / 6.500664 (-6.365427) | 0.061078 / 0.075469 (-0.014391) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.346938 / 1.841788 (-0.494850) | 21.009948 / 8.074308 (12.935640) | 15.203281 / 10.191392 (5.011889) | 0.166208 / 0.680424 (-0.514216) | 0.020634 / 0.534201 (-0.513567) | 0.413825 / 0.579283 (-0.165458) | 0.416477 / 0.434364 (-0.017887) | 0.485888 / 0.540337 (-0.054449) | 0.664941 / 1.386936 (-0.721995) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#395b30ee2c0f6088e28fe78a3e61b591e40a4668 \"CML watermark\")\n",
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005927 / 0.011353 (-0.005425) | 0.003622 / 0.011008 (-0.007386) | 0.081414 / 0.038508 (0.042906) | 0.061031 / 0.023109 (0.037922) | 0.358323 / 0.275898 (0.082425) | 0.394192 / 0.323480 (0.070712) | 0.003471 / 0.007986 (-0.004515) | 0.002930 / 0.004328 (-0.001399) | 0.064215 / 0.004250 (0.059964) | 0.048678 / 0.037052 (0.011625) | 0.367966 / 0.258489 (0.109477) | 0.412618 / 0.293841 (0.118777) | 0.027192 / 0.128546 (-0.101355) | 0.007921 / 0.075646 (-0.067725) | 0.262213 / 0.419271 (-0.157059) | 0.044750 / 0.043533 (0.001217) | 0.351573 / 0.255139 (0.096434) | 0.389000 / 0.283200 (0.105800) | 0.020842 / 0.141683 (-0.120840) | 1.448925 / 1.452155 (-0.003229) | 1.530478 / 1.492716 (0.037761) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.227787 / 0.018006 (0.209780) | 0.423161 / 0.000490 (0.422671) | 0.007557 / 0.000200 (0.007357) | 0.000205 / 0.000054 (0.000150) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024703 / 0.037411 (-0.012709) | 0.074044 / 0.014526 (0.059518) | 0.085520 / 0.176557 (-0.091037) | 0.146132 / 0.737135 (-0.591003) | 0.085637 / 0.296338 (-0.210701) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.393177 / 0.215209 (0.177968) | 3.926740 / 2.077655 (1.849085) | 1.892420 / 1.504120 (0.388300) | 1.716844 / 1.541195 (0.175650) | 1.784040 / 1.468490 (0.315550) | 0.499570 / 4.584777 (-4.085207) | 3.057764 / 3.745712 (-0.687948) | 2.885463 / 5.269862 (-2.384399) | 1.905206 / 4.565676 (-2.660471) | 0.058216 / 0.424275 (-0.366059) | 0.006805 / 0.007607 (-0.000802) | 0.465406 / 0.226044 (0.239361) | 4.658569 / 2.268929 (2.389641) | 2.461737 / 55.444624 (-52.982887) | 2.170620 / 6.876477 (-4.705856) | 2.373715 / 2.142072 (0.231643) | 0.592818 / 4.805227 (-4.212409) | 0.127960 / 6.500664 (-6.372704) | 0.061696 / 0.075469 (-0.013773) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.229073 / 1.841788 (-0.612715) | 17.832087 / 8.074308 (9.757778) | 13.889485 / 10.191392 (3.698093) | 0.142237 / 0.680424 (-0.538187) | 0.016752 / 0.534201 (-0.517449) | 0.338342 / 0.579283 (-0.240941) | 0.383933 / 0.434364 (-0.050431) | 0.393017 / 0.540337 (-0.147320) | 0.557621 / 1.386936 (-0.829315) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006218 / 0.011353 (-0.005135) | 0.003679 / 0.011008 (-0.007329) | 0.062934 / 0.038508 (0.024426) | 0.066764 / 0.023109 (0.043655) | 0.482737 / 0.275898 (0.206839) | 0.483241 / 0.323480 (0.159761) | 0.004828 / 0.007986 (-0.003158) | 0.002880 / 0.004328 (-0.001448) | 0.063111 / 0.004250 (0.058861) | 0.049500 / 0.037052 (0.012448) | 0.453155 / 0.258489 (0.194666) | 0.488776 / 0.293841 (0.194935) | 0.028568 / 0.128546 (-0.099978) | 0.008490 / 0.075646 (-0.067157) | 0.068202 / 0.419271 (-0.351069) | 0.040695 / 0.043533 (-0.002838) | 0.457473 / 0.255139 (0.202334) | 0.471968 / 0.283200 (0.188768) | 0.021261 / 0.141683 (-0.120422) | 1.476304 / 1.452155 (0.024150) | 1.503433 / 1.492716 (0.010716) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.227108 / 0.018006 (0.209102) | 0.428330 / 0.000490 (0.427840) | 0.004637 / 0.000200 (0.004437) | 0.000074 / 0.000054 (0.000020) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027253 / 0.037411 (-0.010158) | 0.081990 / 0.014526 (0.067464) | 0.092763 / 0.176557 (-0.083794) | 0.146155 / 0.737135 (-0.590981) | 0.093175 / 0.296338 (-0.203164) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.464585 / 0.215209 (0.249376) | 4.630704 / 2.077655 (2.553050) | 2.583272 / 1.504120 (1.079152) | 2.393810 / 1.541195 (0.852615) | 2.463255 / 1.468490 (0.994765) | 0.507045 / 4.584777 (-4.077732) | 3.181972 / 3.745712 (-0.563740) | 2.902321 / 5.269862 (-2.367541) | 1.905431 / 4.565676 (-2.660246) | 0.059427 / 0.424275 (-0.364848) | 0.006387 / 0.007607 (-0.001220) | 0.542247 / 0.226044 (0.316203) | 5.426868 / 2.268929 (3.157939) | 3.073489 / 55.444624 (-52.371136) | 2.719620 / 6.876477 (-4.156857) | 2.861865 / 2.142072 (0.719793) | 0.593757 / 4.805227 (-4.211471) | 0.125439 / 6.500664 (-6.375225) | 0.060901 / 0.075469 (-0.014568) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.359938 / 1.841788 (-0.481850) | 18.484867 / 8.074308 (10.410559) | 14.685645 / 10.191392 (4.494253) | 0.164098 / 0.680424 (-0.516325) | 0.018090 / 0.534201 (-0.516111) | 0.339760 / 0.579283 (-0.239523) | 0.376668 / 0.434364 (-0.057696) | 0.396963 / 0.540337 (-0.143374) | 0.549305 / 1.386936 (-0.837631) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#0c896f4195ec8a91e09f8bb9a57950bcec8b8450 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006052 / 0.011353 (-0.005301) | 0.003715 / 0.011008 (-0.007293) | 0.079646 / 0.038508 (0.041138) | 0.059053 / 0.023109 (0.035944) | 0.393016 / 0.275898 (0.117118) | 0.424758 / 0.323480 (0.101278) | 0.005407 / 0.007986 (-0.002578) | 0.002920 / 0.004328 (-0.001408) | 0.062145 / 0.004250 (0.057894) | 0.047289 / 0.037052 (0.010237) | 0.399848 / 0.258489 (0.141359) | 0.434239 / 0.293841 (0.140398) | 0.027388 / 0.128546 (-0.101158) | 0.007967 / 0.075646 (-0.067680) | 0.262546 / 0.419271 (-0.156725) | 0.045014 / 0.043533 (0.001482) | 0.398086 / 0.255139 (0.142947) | 0.414615 / 0.283200 (0.131415) | 0.020410 / 0.141683 (-0.121272) | 1.447276 / 1.452155 (-0.004879) | 1.512390 / 1.492716 (0.019673) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.224854 / 0.018006 (0.206847) | 0.434173 / 0.000490 (0.433683) | 0.010091 / 0.000200 (0.009891) | 0.000259 / 0.000054 (0.000205) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025316 / 0.037411 (-0.012095) | 0.073284 / 0.014526 (0.058758) | 0.085177 / 0.176557 (-0.091379) | 0.148905 / 0.737135 (-0.588230) | 0.084696 / 0.296338 (-0.211642) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.438259 / 0.215209 (0.223050) | 4.380679 / 2.077655 (2.303025) | 2.310329 / 1.504120 (0.806209) | 2.144002 / 1.541195 (0.602807) | 2.203761 / 1.468490 (0.735270) | 0.500559 / 4.584777 (-4.084218) | 3.031172 / 3.745712 (-0.714540) | 2.839425 / 5.269862 (-2.430436) | 1.878391 / 4.565676 (-2.687285) | 0.057325 / 0.424275 (-0.366950) | 0.006719 / 0.007607 (-0.000888) | 0.510122 / 0.226044 (0.284078) | 5.108632 / 2.268929 (2.839704) | 2.805716 / 55.444624 (-52.638909) | 2.422183 / 6.876477 (-4.454293) | 2.635280 / 2.142072 (0.493207) | 0.589351 / 4.805227 (-4.215876) | 0.125416 / 6.500664 (-6.375248) | 0.061142 / 0.075469 (-0.014327) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.234997 / 1.841788 (-0.606791) | 17.731828 / 8.074308 (9.657520) | 13.858081 / 10.191392 (3.666689) | 0.145975 / 0.680424 (-0.534449) | 0.016827 / 0.534201 (-0.517374) | 0.335701 / 0.579283 (-0.243582) | 0.361867 / 0.434364 (-0.072497) | 0.394620 / 0.540337 (-0.145718) | 0.532146 / 1.386936 (-0.854790) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006091 / 0.011353 (-0.005262) | 0.003663 / 0.011008 (-0.007345) | 0.062596 / 0.038508 (0.024088) | 0.061649 / 0.023109 (0.038539) | 0.440647 / 0.275898 (0.164749) | 0.472974 / 0.323480 (0.149494) | 0.005009 / 0.007986 (-0.002976) | 0.002879 / 0.004328 (-0.001449) | 0.062815 / 0.004250 (0.058565) | 0.049000 / 0.037052 (0.011947) | 0.442990 / 0.258489 (0.184501) | 0.477622 / 0.293841 (0.183781) | 0.028512 / 0.128546 (-0.100034) | 0.008031 / 0.075646 (-0.067615) | 0.067853 / 0.419271 (-0.351418) | 0.040823 / 0.043533 (-0.002710) | 0.437811 / 0.255139 (0.182672) | 0.464615 / 0.283200 (0.181416) | 0.021348 / 0.141683 (-0.120334) | 1.479230 / 1.452155 (0.027075) | 1.544053 / 1.492716 (0.051337) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.210697 / 0.018006 (0.192691) | 0.436450 / 0.000490 (0.435960) | 0.003413 / 0.000200 (0.003213) | 0.000089 / 0.000054 (0.000035) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027190 / 0.037411 (-0.010222) | 0.083254 / 0.014526 (0.068728) | 0.092936 / 0.176557 (-0.083620) | 0.147261 / 0.737135 (-0.589874) | 0.092910 / 0.296338 (-0.203429) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.454195 / 0.215209 (0.238986) | 4.569122 / 2.077655 (2.491468) | 2.497198 / 1.504120 (0.993079) | 2.314337 / 1.541195 (0.773142) | 2.378471 / 1.468490 (0.909981) | 0.515402 / 4.584777 (-4.069375) | 3.199374 / 3.745712 (-0.546338) | 2.899300 / 5.269862 (-2.370562) | 1.873314 / 4.565676 (-2.692362) | 0.058820 / 0.424275 (-0.365455) | 0.006651 / 0.007607 (-0.000957) | 0.526681 / 0.226044 (0.300636) | 5.275232 / 2.268929 (3.006303) | 2.969107 / 55.444624 (-52.475517) | 2.600959 / 6.876477 (-4.275518) | 2.762930 / 2.142072 (0.620858) | 0.605726 / 4.805227 (-4.199501) | 0.127618 / 6.500664 (-6.373046) | 0.062840 / 0.075469 (-0.012629) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.367276 / 1.841788 (-0.474512) | 18.069385 / 8.074308 (9.995077) | 14.691945 / 10.191392 (4.500553) | 0.147203 / 0.680424 (-0.533221) | 0.018484 / 0.534201 (-0.515717) | 0.333759 / 0.579283 (-0.245524) | 0.395503 / 0.434364 (-0.038861) | 0.387031 / 0.540337 (-0.153306) | 0.550428 / 1.386936 (-0.836508) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#4c8f7eb79dff66dd03211321dcb55f7a7a05ef38 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007675 / 0.011353 (-0.003678) | 0.004532 / 0.011008 (-0.006476) | 0.088176 / 0.038508 (0.049668) | 0.103257 / 0.023109 (0.080148) | 0.314785 / 0.275898 (0.038887) | 0.354280 / 0.323480 (0.030800) | 0.004638 / 0.007986 (-0.003348) | 0.003736 / 0.004328 (-0.000592) | 0.066744 / 0.004250 (0.062493) | 0.064647 / 0.037052 (0.027595) | 0.320227 / 0.258489 (0.061738) | 0.369581 / 0.293841 (0.075740) | 0.032347 / 0.128546 (-0.096199) | 0.009226 / 0.075646 (-0.066421) | 0.292966 / 0.419271 (-0.126306) | 0.055738 / 0.043533 (0.012206) | 0.316537 / 0.255139 (0.061398) | 0.334699 / 0.283200 (0.051499) | 0.027401 / 0.141683 (-0.114282) | 1.482390 / 1.452155 (0.030236) | 1.594771 / 1.492716 (0.102055) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.322181 / 0.018006 (0.304175) | 0.577701 / 0.000490 (0.577212) | 0.014565 / 0.000200 (0.014365) | 0.000393 / 0.000054 (0.000338) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033255 / 0.037411 (-0.004156) | 0.094271 / 0.014526 (0.079745) | 0.105360 / 0.176557 (-0.071197) | 0.163699 / 0.737135 (-0.573436) | 0.105620 / 0.296338 (-0.190719) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.383449 / 0.215209 (0.168240) | 3.824292 / 2.077655 (1.746637) | 1.861809 / 1.504120 (0.357689) | 1.698153 / 1.541195 (0.156958) | 1.819460 / 1.468490 (0.350970) | 0.488277 / 4.584777 (-4.096500) | 3.622772 / 3.745712 (-0.122940) | 3.486041 / 5.269862 (-1.783821) | 2.211679 / 4.565676 (-2.353998) | 0.057637 / 0.424275 (-0.366638) | 0.008028 / 0.007607 (0.000421) | 0.461917 / 0.226044 (0.235873) | 4.626493 / 2.268929 (2.357565) | 2.374846 / 55.444624 (-53.069779) | 1.976003 / 6.876477 (-4.900473) | 2.325342 / 2.142072 (0.183269) | 0.582538 / 4.805227 (-4.222689) | 0.133575 / 6.500664 (-6.367089) | 0.061696 / 0.075469 (-0.013773) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.271846 / 1.841788 (-0.569941) | 20.944702 / 8.074308 (12.870394) | 15.438119 / 10.191392 (5.246727) | 0.167334 / 0.680424 (-0.513090) | 0.019538 / 0.534201 (-0.514663) | 0.401467 / 0.579283 (-0.177816) | 0.428222 / 0.434364 (-0.006142) | 0.466108 / 0.540337 (-0.074229) | 0.645326 / 1.386936 (-0.741610) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007096 / 0.011353 (-0.004257) | 0.004398 / 0.011008 (-0.006610) | 0.066253 / 0.038508 (0.027745) | 0.089415 / 0.023109 (0.066306) | 0.395760 / 0.275898 (0.119862) | 0.436058 / 0.323480 (0.112579) | 0.005944 / 0.007986 (-0.002042) | 0.003821 / 0.004328 (-0.000507) | 0.065286 / 0.004250 (0.061036) | 0.060990 / 0.037052 (0.023937) | 0.394674 / 0.258489 (0.136185) | 0.437672 / 0.293841 (0.143831) | 0.032370 / 0.128546 (-0.096177) | 0.009025 / 0.075646 (-0.066622) | 0.071365 / 0.419271 (-0.347906) | 0.048232 / 0.043533 (0.004699) | 0.395677 / 0.255139 (0.140538) | 0.415869 / 0.283200 (0.132669) | 0.024632 / 0.141683 (-0.117051) | 1.511386 / 1.452155 (0.059231) | 1.604475 / 1.492716 (0.111759) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.312864 / 0.018006 (0.294858) | 0.535432 / 0.000490 (0.534943) | 0.005195 / 0.000200 (0.004995) | 0.000101 / 0.000054 (0.000047) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.035827 / 0.037411 (-0.001584) | 0.099353 / 0.014526 (0.084827) | 0.110796 / 0.176557 (-0.065761) | 0.165224 / 0.737135 (-0.571911) | 0.112111 / 0.296338 (-0.184228) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.428873 / 0.215209 (0.213664) | 4.284264 / 2.077655 (2.206609) | 2.303966 / 1.504120 (0.799847) | 2.153868 / 1.541195 (0.612674) | 2.275669 / 1.468490 (0.807179) | 0.495452 / 4.584777 (-4.089325) | 3.706773 / 3.745712 (-0.038939) | 3.471988 / 5.269862 (-1.797874) | 2.194851 / 4.565676 (-2.370825) | 0.058998 / 0.424275 (-0.365277) | 0.007522 / 0.007607 (-0.000085) | 0.511222 / 0.226044 (0.285177) | 5.097058 / 2.268929 (2.828130) | 2.856793 / 55.444624 (-52.587832) | 2.521907 / 6.876477 (-4.354569) | 2.783133 / 2.142072 (0.641060) | 0.600511 / 4.805227 (-4.204717) | 0.134130 / 6.500664 (-6.366534) | 0.061726 / 0.075469 (-0.013743) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.385272 / 1.841788 (-0.456516) | 21.149260 / 8.074308 (13.074952) | 15.548746 / 10.191392 (5.357354) | 0.167506 / 0.680424 (-0.512918) | 0.020494 / 0.534201 (-0.513707) | 0.400697 / 0.579283 (-0.178586) | 0.427386 / 0.434364 (-0.006978) | 0.478514 / 0.540337 (-0.061824) | 0.655753 / 1.386936 (-0.731183) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#4c8f7eb79dff66dd03211321dcb55f7a7a05ef38 \"CML watermark\")\n"
] | 2023-10-23T14:43:26 | 2023-10-23T15:21:54 | 2023-10-23T15:07:25 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6342",
"html_url": "https://github.com/huggingface/datasets/pull/6342",
"diff_url": "https://github.com/huggingface/datasets/pull/6342.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6342.patch",
"merged_at": "2023-10-23T15:07:25"
} | null | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6342/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6342/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6340 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6340/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6340/comments | https://api.github.com/repos/huggingface/datasets/issues/6340/events | https://github.com/huggingface/datasets/pull/6340 | 1,956,917,893 | PR_kwDODunzps5dhGpW | 6,340 | Release 2.14.5 | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6340). All of your documentation changes will be reflected on that endpoint."
] | 2023-10-23T11:10:22 | 2023-10-23T14:20:46 | 2023-10-23T11:12:40 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6340",
"html_url": "https://github.com/huggingface/datasets/pull/6340",
"diff_url": "https://github.com/huggingface/datasets/pull/6340.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6340.patch",
"merged_at": null
} | (wrong release number - I was continuing the 2.14 branch but 2.14.5 was released from `main`) | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6340/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6340/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6339 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6339/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6339/comments | https://api.github.com/repos/huggingface/datasets/issues/6339/events | https://github.com/huggingface/datasets/pull/6339 | 1,956,912,627 | PR_kwDODunzps5dhFfg | 6,339 | minor release step improvement | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006572 / 0.011353 (-0.004780) | 0.004019 / 0.011008 (-0.006989) | 0.084080 / 0.038508 (0.045572) | 0.070111 / 0.023109 (0.047002) | 0.340440 / 0.275898 (0.064542) | 0.358839 / 0.323480 (0.035359) | 0.005254 / 0.007986 (-0.002732) | 0.003296 / 0.004328 (-0.001032) | 0.064368 / 0.004250 (0.060117) | 0.054549 / 0.037052 (0.017497) | 0.343817 / 0.258489 (0.085328) | 0.369871 / 0.293841 (0.076030) | 0.030621 / 0.128546 (-0.097925) | 0.008457 / 0.075646 (-0.067189) | 0.287839 / 0.419271 (-0.131432) | 0.051700 / 0.043533 (0.008167) | 0.331602 / 0.255139 (0.076463) | 0.339836 / 0.283200 (0.056636) | 0.023224 / 0.141683 (-0.118459) | 1.494597 / 1.452155 (0.042443) | 1.578640 / 1.492716 (0.085924) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.236985 / 0.018006 (0.218979) | 0.506153 / 0.000490 (0.505664) | 0.009753 / 0.000200 (0.009553) | 0.000345 / 0.000054 (0.000291) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028355 / 0.037411 (-0.009056) | 0.082104 / 0.014526 (0.067578) | 0.095141 / 0.176557 (-0.081415) | 0.151054 / 0.737135 (-0.586081) | 0.095139 / 0.296338 (-0.201200) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.403773 / 0.215209 (0.188564) | 4.025567 / 2.077655 (1.947912) | 2.024641 / 1.504120 (0.520521) | 1.857039 / 1.541195 (0.315845) | 1.957346 / 1.468490 (0.488856) | 0.481486 / 4.584777 (-4.103291) | 3.574463 / 3.745712 (-0.171249) | 3.399311 / 5.269862 (-1.870551) | 1.996806 / 4.565676 (-2.568870) | 0.056644 / 0.424275 (-0.367631) | 0.007503 / 0.007607 (-0.000104) | 0.479480 / 0.226044 (0.253435) | 4.793686 / 2.268929 (2.524757) | 2.481011 / 55.444624 (-52.963613) | 2.176473 / 6.876477 (-4.700004) | 2.203192 / 2.142072 (0.061120) | 0.574071 / 4.805227 (-4.231156) | 0.131852 / 6.500664 (-6.368812) | 0.058883 / 0.075469 (-0.016586) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.249945 / 1.841788 (-0.591842) | 18.439267 / 8.074308 (10.364959) | 14.100934 / 10.191392 (3.909542) | 0.164191 / 0.680424 (-0.516233) | 0.018086 / 0.534201 (-0.516115) | 0.390821 / 0.579283 (-0.188462) | 0.414166 / 0.434364 (-0.020198) | 0.460073 / 0.540337 (-0.080265) | 0.636299 / 1.386936 (-0.750637) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006606 / 0.011353 (-0.004747) | 0.003987 / 0.011008 (-0.007021) | 0.064616 / 0.038508 (0.026108) | 0.070830 / 0.023109 (0.047721) | 0.397340 / 0.275898 (0.121442) | 0.426823 / 0.323480 (0.103343) | 0.005345 / 0.007986 (-0.002641) | 0.003264 / 0.004328 (-0.001065) | 0.064728 / 0.004250 (0.060477) | 0.055763 / 0.037052 (0.018711) | 0.405347 / 0.258489 (0.146858) | 0.433163 / 0.293841 (0.139322) | 0.032394 / 0.128546 (-0.096153) | 0.008474 / 0.075646 (-0.067172) | 0.071583 / 0.419271 (-0.347689) | 0.048424 / 0.043533 (0.004892) | 0.400582 / 0.255139 (0.145443) | 0.418111 / 0.283200 (0.134911) | 0.022257 / 0.141683 (-0.119426) | 1.495521 / 1.452155 (0.043366) | 1.554626 / 1.492716 (0.061910) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.218249 / 0.018006 (0.200242) | 0.438527 / 0.000490 (0.438037) | 0.005406 / 0.000200 (0.005206) | 0.000098 / 0.000054 (0.000044) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031600 / 0.037411 (-0.005812) | 0.090836 / 0.014526 (0.076310) | 0.105000 / 0.176557 (-0.071556) | 0.157648 / 0.737135 (-0.579487) | 0.103827 / 0.296338 (-0.192512) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.426428 / 0.215209 (0.211219) | 4.259435 / 2.077655 (2.181780) | 2.300795 / 1.504120 (0.796675) | 2.121302 / 1.541195 (0.580108) | 2.145602 / 1.468490 (0.677112) | 0.486856 / 4.584777 (-4.097921) | 3.673568 / 3.745712 (-0.072144) | 3.278619 / 5.269862 (-1.991243) | 2.037760 / 4.565676 (-2.527917) | 0.057699 / 0.424275 (-0.366576) | 0.007269 / 0.007607 (-0.000338) | 0.499549 / 0.226044 (0.273505) | 4.996214 / 2.268929 (2.727285) | 2.766480 / 55.444624 (-52.678144) | 2.417308 / 6.876477 (-4.459168) | 2.581026 / 2.142072 (0.438953) | 0.589463 / 4.805227 (-4.215765) | 0.134820 / 6.500664 (-6.365844) | 0.061699 / 0.075469 (-0.013770) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.353704 / 1.841788 (-0.488084) | 19.104167 / 8.074308 (11.029859) | 14.652166 / 10.191392 (4.460774) | 0.171885 / 0.680424 (-0.508539) | 0.020222 / 0.534201 (-0.513978) | 0.396777 / 0.579283 (-0.182506) | 0.426304 / 0.434364 (-0.008060) | 0.471347 / 0.540337 (-0.068991) | 0.635887 / 1.386936 (-0.751049) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#ce19ec527c581eddec306a03ad1db554223cc94a \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004686 / 0.011353 (-0.006667) | 0.002998 / 0.011008 (-0.008010) | 0.063604 / 0.038508 (0.025096) | 0.048927 / 0.023109 (0.025818) | 0.247238 / 0.275898 (-0.028660) | 0.272409 / 0.323480 (-0.051071) | 0.003909 / 0.007986 (-0.004077) | 0.002469 / 0.004328 (-0.001859) | 0.048473 / 0.004250 (0.044223) | 0.037514 / 0.037052 (0.000462) | 0.257292 / 0.258489 (-0.001197) | 0.285203 / 0.293841 (-0.008638) | 0.023131 / 0.128546 (-0.105415) | 0.006803 / 0.075646 (-0.068843) | 0.202920 / 0.419271 (-0.216351) | 0.035653 / 0.043533 (-0.007880) | 0.254791 / 0.255139 (-0.000348) | 0.272973 / 0.283200 (-0.010226) | 0.017707 / 0.141683 (-0.123976) | 1.091606 / 1.452155 (-0.360549) | 1.151453 / 1.492716 (-0.341263) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.093701 / 0.018006 (0.075695) | 0.304199 / 0.000490 (0.303709) | 0.000223 / 0.000200 (0.000023) | 0.000051 / 0.000054 (-0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019291 / 0.037411 (-0.018120) | 0.062168 / 0.014526 (0.047642) | 0.073273 / 0.176557 (-0.103284) | 0.119497 / 0.737135 (-0.617638) | 0.075008 / 0.296338 (-0.221331) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.279983 / 0.215209 (0.064774) | 2.774413 / 2.077655 (0.696758) | 1.476678 / 1.504120 (-0.027441) | 1.336273 / 1.541195 (-0.204922) | 1.332349 / 1.468490 (-0.136142) | 0.403150 / 4.584777 (-4.181627) | 2.390026 / 3.745712 (-1.355686) | 2.619151 / 5.269862 (-2.650711) | 1.578607 / 4.565676 (-2.987069) | 0.046632 / 0.424275 (-0.377643) | 0.007352 / 0.007607 (-0.000255) | 0.333419 / 0.226044 (0.107375) | 3.288734 / 2.268929 (1.019805) | 1.843677 / 55.444624 (-53.600947) | 1.536746 / 6.876477 (-5.339731) | 1.573005 / 2.142072 (-0.569067) | 0.475699 / 4.805227 (-4.329529) | 0.104742 / 6.500664 (-6.395922) | 0.042450 / 0.075469 (-0.033019) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.949039 / 1.841788 (-0.892749) | 11.895928 / 8.074308 (3.821620) | 10.650521 / 10.191392 (0.459129) | 0.142308 / 0.680424 (-0.538116) | 0.014207 / 0.534201 (-0.519994) | 0.274011 / 0.579283 (-0.305272) | 0.288259 / 0.434364 (-0.146105) | 0.327729 / 0.540337 (-0.212609) | 0.395728 / 1.386936 (-0.991208) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004830 / 0.011353 (-0.006523) | 0.002978 / 0.011008 (-0.008030) | 0.048623 / 0.038508 (0.010114) | 0.055040 / 0.023109 (0.031930) | 0.276436 / 0.275898 (0.000538) | 0.302403 / 0.323480 (-0.021076) | 0.004080 / 0.007986 (-0.003905) | 0.002479 / 0.004328 (-0.001849) | 0.048078 / 0.004250 (0.043827) | 0.039680 / 0.037052 (0.002627) | 0.279095 / 0.258489 (0.020606) | 0.307399 / 0.293841 (0.013558) | 0.024533 / 0.128546 (-0.104013) | 0.007196 / 0.075646 (-0.068450) | 0.053879 / 0.419271 (-0.365393) | 0.032545 / 0.043533 (-0.010988) | 0.275501 / 0.255139 (0.020362) | 0.298530 / 0.283200 (0.015330) | 0.017992 / 0.141683 (-0.123691) | 1.144191 / 1.452155 (-0.307963) | 1.208309 / 1.492716 (-0.284408) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.095690 / 0.018006 (0.077684) | 0.304932 / 0.000490 (0.304442) | 0.000223 / 0.000200 (0.000023) | 0.000055 / 0.000054 (0.000000) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.021409 / 0.037411 (-0.016003) | 0.069861 / 0.014526 (0.055335) | 0.080959 / 0.176557 (-0.095597) | 0.119432 / 0.737135 (-0.617703) | 0.083649 / 0.296338 (-0.212690) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.297243 / 0.215209 (0.082034) | 2.909288 / 2.077655 (0.831634) | 1.571512 / 1.504120 (0.067392) | 1.452403 / 1.541195 (-0.088792) | 1.481290 / 1.468490 (0.012800) | 0.405795 / 4.584777 (-4.178982) | 2.452923 / 3.745712 (-1.292789) | 2.513371 / 5.269862 (-2.756490) | 1.593216 / 4.565676 (-2.972460) | 0.048073 / 0.424275 (-0.376202) | 0.005312 / 0.007607 (-0.002296) | 0.355783 / 0.226044 (0.129738) | 3.494062 / 2.268929 (1.225133) | 1.947388 / 55.444624 (-53.497236) | 1.651724 / 6.876477 (-5.224753) | 1.789007 / 2.142072 (-0.353065) | 0.487073 / 4.805227 (-4.318154) | 0.100271 / 6.500664 (-6.400393) | 0.041571 / 0.075469 (-0.033898) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.983766 / 1.841788 (-0.858021) | 12.384778 / 8.074308 (4.310469) | 10.669519 / 10.191392 (0.478127) | 0.133105 / 0.680424 (-0.547318) | 0.016665 / 0.534201 (-0.517536) | 0.269479 / 0.579283 (-0.309804) | 0.276498 / 0.434364 (-0.157866) | 0.302105 / 0.540337 (-0.238233) | 0.391204 / 1.386936 (-0.995732) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#12ebe695b4748c5a26e08b44ed51955f74f5801d \"CML watermark\")\n"
] | 2023-10-23T11:07:04 | 2023-11-07T10:38:54 | 2023-11-07T10:32:41 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6339",
"html_url": "https://github.com/huggingface/datasets/pull/6339",
"diff_url": "https://github.com/huggingface/datasets/pull/6339.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6339.patch",
"merged_at": "2023-11-07T10:32:41"
} | null | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6339/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6339/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6338 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6338/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6338/comments | https://api.github.com/repos/huggingface/datasets/issues/6338/events | https://github.com/huggingface/datasets/pull/6338 | 1,956,886,072 | PR_kwDODunzps5dg_sb | 6,338 | pin fsspec before it switches to glob.glob | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | [
"closing in favor of https://github.com/huggingface/datasets/pull/6337",
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6338). All of your documentation changes will be reflected on that endpoint."
] | 2023-10-23T10:50:54 | 2023-10-23T10:57:07 | 2023-10-23T10:51:52 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6338",
"html_url": "https://github.com/huggingface/datasets/pull/6338",
"diff_url": "https://github.com/huggingface/datasets/pull/6338.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6338.patch",
"merged_at": null
} | null | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6338/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6338/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6337 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6337/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6337/comments | https://api.github.com/repos/huggingface/datasets/issues/6337/events | https://github.com/huggingface/datasets/pull/6337 | 1,956,875,259 | PR_kwDODunzps5dg9Uu | 6,337 | Pin supported upper version of fsspec | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | [
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006915 / 0.011353 (-0.004438) | 0.004110 / 0.011008 (-0.006898) | 0.084392 / 0.038508 (0.045884) | 0.079649 / 0.023109 (0.056540) | 0.305760 / 0.275898 (0.029862) | 0.343968 / 0.323480 (0.020488) | 0.005402 / 0.007986 (-0.002584) | 0.003342 / 0.004328 (-0.000986) | 0.064774 / 0.004250 (0.060523) | 0.055919 / 0.037052 (0.018866) | 0.315194 / 0.258489 (0.056705) | 0.355014 / 0.293841 (0.061173) | 0.032140 / 0.128546 (-0.096406) | 0.008865 / 0.075646 (-0.066781) | 0.287684 / 0.419271 (-0.131588) | 0.053504 / 0.043533 (0.009971) | 0.306852 / 0.255139 (0.051713) | 0.331125 / 0.283200 (0.047925) | 0.023476 / 0.141683 (-0.118207) | 1.506590 / 1.452155 (0.054435) | 1.574508 / 1.492716 (0.081792) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.239987 / 0.018006 (0.221981) | 0.459144 / 0.000490 (0.458654) | 0.008509 / 0.000200 (0.008309) | 0.000335 / 0.000054 (0.000280) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028353 / 0.037411 (-0.009058) | 0.082345 / 0.014526 (0.067819) | 0.499524 / 0.176557 (0.322967) | 0.152896 / 0.737135 (-0.584239) | 0.096978 / 0.296338 (-0.199360) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.404855 / 0.215209 (0.189646) | 4.053103 / 2.077655 (1.975448) | 2.069638 / 1.504120 (0.565518) | 1.917354 / 1.541195 (0.376159) | 2.035816 / 1.468490 (0.567326) | 0.480358 / 4.584777 (-4.104419) | 3.594316 / 3.745712 (-0.151396) | 3.582952 / 5.269862 (-1.686910) | 2.101142 / 4.565676 (-2.464535) | 0.057004 / 0.424275 (-0.367271) | 0.007715 / 0.007607 (0.000108) | 0.487417 / 0.226044 (0.261372) | 4.863100 / 2.268929 (2.594172) | 2.569038 / 55.444624 (-52.875587) | 2.187167 / 6.876477 (-4.689310) | 2.270034 / 2.142072 (0.127962) | 0.578095 / 4.805227 (-4.227132) | 0.133283 / 6.500664 (-6.367381) | 0.060164 / 0.075469 (-0.015305) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.269120 / 1.841788 (-0.572667) | 19.493072 / 8.074308 (11.418764) | 14.560576 / 10.191392 (4.369184) | 0.167440 / 0.680424 (-0.512984) | 0.018493 / 0.534201 (-0.515708) | 0.392774 / 0.579283 (-0.186509) | 0.420903 / 0.434364 (-0.013461) | 0.461904 / 0.540337 (-0.078433) | 0.643104 / 1.386936 (-0.743832) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006985 / 0.011353 (-0.004368) | 0.004246 / 0.011008 (-0.006762) | 0.066246 / 0.038508 (0.027738) | 0.080757 / 0.023109 (0.057648) | 0.391774 / 0.275898 (0.115876) | 0.424957 / 0.323480 (0.101478) | 0.005575 / 0.007986 (-0.002411) | 0.003447 / 0.004328 (-0.000881) | 0.066565 / 0.004250 (0.062315) | 0.057597 / 0.037052 (0.020544) | 0.394663 / 0.258489 (0.136174) | 0.430310 / 0.293841 (0.136469) | 0.032746 / 0.128546 (-0.095800) | 0.008783 / 0.075646 (-0.066863) | 0.071940 / 0.419271 (-0.347331) | 0.048877 / 0.043533 (0.005344) | 0.390269 / 0.255139 (0.135130) | 0.411867 / 0.283200 (0.128668) | 0.024101 / 0.141683 (-0.117582) | 1.507370 / 1.452155 (0.055215) | 1.585810 / 1.492716 (0.093093) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.222796 / 0.018006 (0.204790) | 0.459035 / 0.000490 (0.458546) | 0.005322 / 0.000200 (0.005122) | 0.000099 / 0.000054 (0.000045) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033237 / 0.037411 (-0.004174) | 0.098244 / 0.014526 (0.083718) | 0.106654 / 0.176557 (-0.069903) | 0.159675 / 0.737135 (-0.577460) | 0.108470 / 0.296338 (-0.187869) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.429085 / 0.215209 (0.213876) | 4.281206 / 2.077655 (2.203551) | 2.320492 / 1.504120 (0.816372) | 2.153218 / 1.541195 (0.612024) | 2.287122 / 1.468490 (0.818632) | 0.497307 / 4.584777 (-4.087470) | 3.799541 / 3.745712 (0.053828) | 3.380053 / 5.269862 (-1.889809) | 2.100009 / 4.565676 (-2.465667) | 0.057988 / 0.424275 (-0.366287) | 0.007381 / 0.007607 (-0.000226) | 0.506843 / 0.226044 (0.280798) | 5.071286 / 2.268929 (2.802357) | 2.750487 / 55.444624 (-52.694137) | 2.415613 / 6.876477 (-4.460864) | 2.667144 / 2.142072 (0.525072) | 0.624889 / 4.805227 (-4.180338) | 0.134191 / 6.500664 (-6.366473) | 0.060704 / 0.075469 (-0.014765) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.353074 / 1.841788 (-0.488714) | 20.507074 / 8.074308 (12.432766) | 14.911788 / 10.191392 (4.720396) | 0.149248 / 0.680424 (-0.531176) | 0.020593 / 0.534201 (-0.513608) | 0.398458 / 0.579283 (-0.180825) | 0.434846 / 0.434364 (0.000482) | 0.478853 / 0.540337 (-0.061484) | 0.648072 / 1.386936 (-0.738864) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#b30c72a2d3d9c191a590e0f0a6b3a6363ab15e8f \"CML watermark\")\n",
"In particular I expect fsspec to do another breaking change in the next release (switch to glob.glob)",
"_The documentation is not available anymore as the PR was closed or merged._",
"see https://github.com/huggingface/datasets/pull/6338",
"Yes, unfortunately breaking changes are quite usual from their part.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006099 / 0.011353 (-0.005253) | 0.003672 / 0.011008 (-0.007336) | 0.083095 / 0.038508 (0.044587) | 0.059607 / 0.023109 (0.036498) | 0.319591 / 0.275898 (0.043693) | 0.351945 / 0.323480 (0.028465) | 0.004785 / 0.007986 (-0.003201) | 0.002965 / 0.004328 (-0.001364) | 0.062907 / 0.004250 (0.058657) | 0.049122 / 0.037052 (0.012070) | 0.344641 / 0.258489 (0.086152) | 0.361519 / 0.293841 (0.067678) | 0.027254 / 0.128546 (-0.101292) | 0.008081 / 0.075646 (-0.067565) | 0.261569 / 0.419271 (-0.157702) | 0.045101 / 0.043533 (0.001568) | 0.313645 / 0.255139 (0.058506) | 0.337843 / 0.283200 (0.054644) | 0.020968 / 0.141683 (-0.120715) | 1.438450 / 1.452155 (-0.013705) | 1.507567 / 1.492716 (0.014850) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.230826 / 0.018006 (0.212820) | 0.434363 / 0.000490 (0.433873) | 0.008210 / 0.000200 (0.008010) | 0.000212 / 0.000054 (0.000157) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025278 / 0.037411 (-0.012133) | 0.073659 / 0.014526 (0.059133) | 0.085147 / 0.176557 (-0.091409) | 0.145451 / 0.737135 (-0.591684) | 0.086400 / 0.296338 (-0.209939) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.429887 / 0.215209 (0.214678) | 4.292626 / 2.077655 (2.214971) | 2.266824 / 1.504120 (0.762704) | 2.090472 / 1.541195 (0.549277) | 2.186477 / 1.468490 (0.717987) | 0.503684 / 4.584777 (-4.081093) | 3.100791 / 3.745712 (-0.644921) | 3.008938 / 5.269862 (-2.260923) | 1.885559 / 4.565676 (-2.680118) | 0.057434 / 0.424275 (-0.366841) | 0.006639 / 0.007607 (-0.000969) | 0.506579 / 0.226044 (0.280535) | 5.058905 / 2.268929 (2.789977) | 2.708321 / 55.444624 (-52.736304) | 2.367388 / 6.876477 (-4.509089) | 2.422660 / 2.142072 (0.280587) | 0.587562 / 4.805227 (-4.217665) | 0.125260 / 6.500664 (-6.375404) | 0.061856 / 0.075469 (-0.013613) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.280495 / 1.841788 (-0.561292) | 17.968873 / 8.074308 (9.894565) | 13.922838 / 10.191392 (3.731446) | 0.149907 / 0.680424 (-0.530517) | 0.016736 / 0.534201 (-0.517465) | 0.333417 / 0.579283 (-0.245866) | 0.367710 / 0.434364 (-0.066654) | 0.389648 / 0.540337 (-0.150690) | 0.535625 / 1.386936 (-0.851311) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006237 / 0.011353 (-0.005116) | 0.003787 / 0.011008 (-0.007221) | 0.062536 / 0.038508 (0.024028) | 0.062335 / 0.023109 (0.039226) | 0.455209 / 0.275898 (0.179311) | 0.488961 / 0.323480 (0.165482) | 0.004875 / 0.007986 (-0.003111) | 0.002961 / 0.004328 (-0.001368) | 0.063045 / 0.004250 (0.058795) | 0.048624 / 0.037052 (0.011571) | 0.455743 / 0.258489 (0.197254) | 0.494024 / 0.293841 (0.200183) | 0.028690 / 0.128546 (-0.099856) | 0.008147 / 0.075646 (-0.067499) | 0.069479 / 0.419271 (-0.349792) | 0.041613 / 0.043533 (-0.001919) | 0.460472 / 0.255139 (0.205333) | 0.475606 / 0.283200 (0.192406) | 0.020600 / 0.141683 (-0.121083) | 1.464960 / 1.452155 (0.012805) | 1.540942 / 1.492716 (0.048226) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.214558 / 0.018006 (0.196552) | 0.410482 / 0.000490 (0.409992) | 0.005539 / 0.000200 (0.005339) | 0.000076 / 0.000054 (0.000021) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027044 / 0.037411 (-0.010367) | 0.081512 / 0.014526 (0.066986) | 0.101963 / 0.176557 (-0.074593) | 0.146686 / 0.737135 (-0.590449) | 0.092676 / 0.296338 (-0.203663) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.468766 / 0.215209 (0.253557) | 4.680514 / 2.077655 (2.602859) | 2.562454 / 1.504120 (1.058334) | 2.383692 / 1.541195 (0.842497) | 2.481820 / 1.468490 (1.013330) | 0.509122 / 4.584777 (-4.075655) | 3.201597 / 3.745712 (-0.544115) | 2.853539 / 5.269862 (-2.416323) | 1.891535 / 4.565676 (-2.674141) | 0.058594 / 0.424275 (-0.365681) | 0.006448 / 0.007607 (-0.001159) | 0.535950 / 0.226044 (0.309906) | 5.388239 / 2.268929 (3.119311) | 2.999986 / 55.444624 (-52.444638) | 2.733291 / 6.876477 (-4.143186) | 2.841548 / 2.142072 (0.699475) | 0.602388 / 4.805227 (-4.202840) | 0.126369 / 6.500664 (-6.374295) | 0.061519 / 0.075469 (-0.013951) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.322746 / 1.841788 (-0.519042) | 17.940825 / 8.074308 (9.866517) | 14.679559 / 10.191392 (4.488167) | 0.146481 / 0.680424 (-0.533943) | 0.018060 / 0.534201 (-0.516141) | 0.334924 / 0.579283 (-0.244359) | 0.384735 / 0.434364 (-0.049629) | 0.391834 / 0.540337 (-0.148503) | 0.540011 / 1.386936 (-0.846925) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#d82f3c2264436ef60fac8c397fb11c80175c5132 \"CML watermark\")\n"
] | 2023-10-23T10:44:16 | 2023-10-23T12:13:20 | 2023-10-23T12:04:36 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6337",
"html_url": "https://github.com/huggingface/datasets/pull/6337",
"diff_url": "https://github.com/huggingface/datasets/pull/6337.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6337.patch",
"merged_at": "2023-10-23T12:04:36"
} | Pin upper version of `fsspec` to avoid disruptions introduced by breaking changes (and the need of urgent patch releases with hotfixes) on each release on their side. See:
- #6331
- #6210
- #5731
- #5617
- #5447
I propose that we explicitly test, introduce fixes and support each new `fsspec` version release.
CC: @LysandreJik | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6337/reactions",
"total_count": 1,
"+1": 1,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6337/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6336 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6336/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6336/comments | https://api.github.com/repos/huggingface/datasets/issues/6336/events | https://github.com/huggingface/datasets/pull/6336 | 1,956,827,232 | PR_kwDODunzps5dgy0w | 6,336 | unpin-fsspec | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6336). All of your documentation changes will be reflected on that endpoint.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006202 / 0.011353 (-0.005151) | 0.003627 / 0.011008 (-0.007381) | 0.080643 / 0.038508 (0.042135) | 0.057135 / 0.023109 (0.034026) | 0.315853 / 0.275898 (0.039955) | 0.348503 / 0.323480 (0.025023) | 0.004762 / 0.007986 (-0.003224) | 0.002884 / 0.004328 (-0.001445) | 0.063208 / 0.004250 (0.058958) | 0.046777 / 0.037052 (0.009725) | 0.321426 / 0.258489 (0.062937) | 0.362128 / 0.293841 (0.068287) | 0.027494 / 0.128546 (-0.101052) | 0.007931 / 0.075646 (-0.067715) | 0.262262 / 0.419271 (-0.157009) | 0.044330 / 0.043533 (0.000797) | 0.310504 / 0.255139 (0.055366) | 0.339409 / 0.283200 (0.056209) | 0.021030 / 0.141683 (-0.120652) | 1.405333 / 1.452155 (-0.046822) | 1.493497 / 1.492716 (0.000781) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.225431 / 0.018006 (0.207425) | 0.451723 / 0.000490 (0.451233) | 0.007763 / 0.000200 (0.007563) | 0.000310 / 0.000054 (0.000256) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023381 / 0.037411 (-0.014031) | 0.074183 / 0.014526 (0.059657) | 0.084003 / 0.176557 (-0.092553) | 0.143628 / 0.737135 (-0.593507) | 0.084543 / 0.296338 (-0.211796) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.393062 / 0.215209 (0.177853) | 3.905649 / 2.077655 (1.827994) | 1.923155 / 1.504120 (0.419035) | 1.751554 / 1.541195 (0.210359) | 1.816141 / 1.468490 (0.347651) | 0.502789 / 4.584777 (-4.081988) | 3.006149 / 3.745712 (-0.739564) | 2.979645 / 5.269862 (-2.290216) | 1.877408 / 4.565676 (-2.688269) | 0.057544 / 0.424275 (-0.366731) | 0.006733 / 0.007607 (-0.000874) | 0.468469 / 0.226044 (0.242425) | 4.695595 / 2.268929 (2.426667) | 2.367238 / 55.444624 (-53.077387) | 2.041035 / 6.876477 (-4.835442) | 2.087396 / 2.142072 (-0.054676) | 0.586866 / 4.805227 (-4.218361) | 0.125616 / 6.500664 (-6.375049) | 0.060535 / 0.075469 (-0.014934) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.244753 / 1.841788 (-0.597035) | 17.652902 / 8.074308 (9.578594) | 13.733195 / 10.191392 (3.541803) | 0.143741 / 0.680424 (-0.536683) | 0.016775 / 0.534201 (-0.517426) | 0.335487 / 0.579283 (-0.243797) | 0.350292 / 0.434364 (-0.084072) | 0.388744 / 0.540337 (-0.151594) | 0.536630 / 1.386936 (-0.850306) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006008 / 0.011353 (-0.005345) | 0.003708 / 0.011008 (-0.007301) | 0.062504 / 0.038508 (0.023996) | 0.058570 / 0.023109 (0.035461) | 0.450549 / 0.275898 (0.174651) | 0.467768 / 0.323480 (0.144288) | 0.004955 / 0.007986 (-0.003031) | 0.002903 / 0.004328 (-0.001426) | 0.062778 / 0.004250 (0.058528) | 0.048750 / 0.037052 (0.011698) | 0.439848 / 0.258489 (0.181359) | 0.471780 / 0.293841 (0.177939) | 0.028472 / 0.128546 (-0.100074) | 0.008221 / 0.075646 (-0.067425) | 0.068325 / 0.419271 (-0.350946) | 0.040612 / 0.043533 (-0.002921) | 0.435530 / 0.255139 (0.180391) | 0.458992 / 0.283200 (0.175792) | 0.020143 / 0.141683 (-0.121539) | 1.479101 / 1.452155 (0.026947) | 1.507408 / 1.492716 (0.014692) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.207723 / 0.018006 (0.189717) | 0.406596 / 0.000490 (0.406106) | 0.004431 / 0.000200 (0.004231) | 0.000078 / 0.000054 (0.000024) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027037 / 0.037411 (-0.010374) | 0.081576 / 0.014526 (0.067050) | 0.091177 / 0.176557 (-0.085379) | 0.146191 / 0.737135 (-0.590944) | 0.092485 / 0.296338 (-0.203854) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.456676 / 0.215209 (0.241467) | 4.556214 / 2.077655 (2.478559) | 2.500146 / 1.504120 (0.996026) | 2.325175 / 1.541195 (0.783981) | 2.421023 / 1.468490 (0.952533) | 0.512135 / 4.584777 (-4.072641) | 3.167070 / 3.745712 (-0.578642) | 2.897697 / 5.269862 (-2.372165) | 1.881974 / 4.565676 (-2.683702) | 0.058453 / 0.424275 (-0.365823) | 0.006515 / 0.007607 (-0.001092) | 0.530742 / 0.226044 (0.304698) | 5.304943 / 2.268929 (3.036014) | 2.928824 / 55.444624 (-52.515800) | 2.598023 / 6.876477 (-4.278454) | 2.758496 / 2.142072 (0.616423) | 0.601777 / 4.805227 (-4.203450) | 0.126701 / 6.500664 (-6.373964) | 0.061808 / 0.075469 (-0.013661) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.357844 / 1.841788 (-0.483943) | 17.887666 / 8.074308 (9.813358) | 14.561904 / 10.191392 (4.370512) | 0.146788 / 0.680424 (-0.533636) | 0.018277 / 0.534201 (-0.515924) | 0.343168 / 0.579283 (-0.236115) | 0.382220 / 0.434364 (-0.052144) | 0.401234 / 0.540337 (-0.139104) | 0.546246 / 1.386936 (-0.840690) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#b0980a74d58098b8b1738e2411f1212161a211b8 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008919 / 0.011353 (-0.002434) | 0.006110 / 0.011008 (-0.004898) | 0.110554 / 0.038508 (0.072046) | 0.075705 / 0.023109 (0.052596) | 0.391235 / 0.275898 (0.115336) | 0.458331 / 0.323480 (0.134851) | 0.007489 / 0.007986 (-0.000497) | 0.003744 / 0.004328 (-0.000585) | 0.078124 / 0.004250 (0.073874) | 0.057244 / 0.037052 (0.020192) | 0.393251 / 0.258489 (0.134762) | 0.460153 / 0.293841 (0.166312) | 0.047245 / 0.128546 (-0.081301) | 0.014086 / 0.075646 (-0.061560) | 0.421272 / 0.419271 (0.002001) | 0.067668 / 0.043533 (0.024135) | 0.397325 / 0.255139 (0.142186) | 0.432683 / 0.283200 (0.149483) | 0.039086 / 0.141683 (-0.102596) | 1.764898 / 1.452155 (0.312744) | 1.848820 / 1.492716 (0.356104) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.258163 / 0.018006 (0.240156) | 0.498655 / 0.000490 (0.498165) | 0.014959 / 0.000200 (0.014759) | 0.000465 / 0.000054 (0.000410) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028889 / 0.037411 (-0.008522) | 0.091568 / 0.014526 (0.077042) | 0.102700 / 0.176557 (-0.073857) | 0.173580 / 0.737135 (-0.563555) | 0.108763 / 0.296338 (-0.187576) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.610147 / 0.215209 (0.394938) | 5.851239 / 2.077655 (3.773584) | 2.467471 / 1.504120 (0.963351) | 2.117189 / 1.541195 (0.575995) | 2.197947 / 1.468490 (0.729457) | 0.851736 / 4.584777 (-3.733041) | 5.163183 / 3.745712 (1.417471) | 5.039564 / 5.269862 (-0.230297) | 3.067215 / 4.565676 (-1.498462) | 0.098593 / 0.424275 (-0.325682) | 0.008646 / 0.007607 (0.001038) | 0.788397 / 0.226044 (0.562352) | 7.340837 / 2.268929 (5.071909) | 3.511611 / 55.444624 (-51.933013) | 2.767479 / 6.876477 (-4.108998) | 2.687368 / 2.142072 (0.545296) | 1.046387 / 4.805227 (-3.758841) | 0.215902 / 6.500664 (-6.284763) | 0.072939 / 0.075469 (-0.002530) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.512795 / 1.841788 (-0.328992) | 22.086131 / 8.074308 (14.011823) | 20.235550 / 10.191392 (10.044158) | 0.240381 / 0.680424 (-0.440043) | 0.029171 / 0.534201 (-0.505030) | 0.465123 / 0.579283 (-0.114160) | 0.569260 / 0.434364 (0.134896) | 0.540967 / 0.540337 (0.000629) | 0.764006 / 1.386936 (-0.622930) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.011024 / 0.011353 (-0.000329) | 0.005915 / 0.011008 (-0.005094) | 0.076455 / 0.038508 (0.037947) | 0.087842 / 0.023109 (0.064733) | 0.471732 / 0.275898 (0.195834) | 0.513666 / 0.323480 (0.190186) | 0.007062 / 0.007986 (-0.000924) | 0.004013 / 0.004328 (-0.000315) | 0.076016 / 0.004250 (0.071766) | 0.061296 / 0.037052 (0.024244) | 0.487277 / 0.258489 (0.228788) | 0.508185 / 0.293841 (0.214344) | 0.049963 / 0.128546 (-0.078583) | 0.013774 / 0.075646 (-0.061873) | 0.089376 / 0.419271 (-0.329895) | 0.067502 / 0.043533 (0.023969) | 0.471283 / 0.255139 (0.216144) | 0.507365 / 0.283200 (0.224165) | 0.033638 / 0.141683 (-0.108045) | 1.785544 / 1.452155 (0.333390) | 1.878765 / 1.492716 (0.386048) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.230462 / 0.018006 (0.212456) | 0.502458 / 0.000490 (0.501968) | 0.005987 / 0.000200 (0.005787) | 0.000114 / 0.000054 (0.000060) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031588 / 0.037411 (-0.005824) | 0.113566 / 0.014526 (0.099040) | 0.115734 / 0.176557 (-0.060822) | 0.174162 / 0.737135 (-0.562974) | 0.121574 / 0.296338 (-0.174764) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.662837 / 0.215209 (0.447628) | 6.420327 / 2.077655 (4.342672) | 3.033522 / 1.504120 (1.529402) | 2.728294 / 1.541195 (1.187099) | 2.790621 / 1.468490 (1.322131) | 0.852478 / 4.584777 (-3.732299) | 5.033637 / 3.745712 (1.287925) | 4.543152 / 5.269862 (-0.726709) | 2.980261 / 4.565676 (-1.585415) | 0.102444 / 0.424275 (-0.321831) | 0.008362 / 0.007607 (0.000755) | 0.786868 / 0.226044 (0.560823) | 7.887665 / 2.268929 (5.618737) | 4.010614 / 55.444624 (-51.434010) | 3.220715 / 6.876477 (-3.655762) | 3.317316 / 2.142072 (1.175244) | 1.098137 / 4.805227 (-3.707090) | 0.218309 / 6.500664 (-6.282355) | 0.078182 / 0.075469 (0.002713) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.696740 / 1.841788 (-0.145047) | 23.762454 / 8.074308 (15.688146) | 21.802645 / 10.191392 (11.611253) | 0.233654 / 0.680424 (-0.446770) | 0.032911 / 0.534201 (-0.501290) | 0.511760 / 0.579283 (-0.067524) | 0.586299 / 0.434364 (0.151935) | 0.583704 / 0.540337 (0.043367) | 0.780762 / 1.386936 (-0.606174) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#0a94aa2f738075bbc08291583f1b153220d5e6e7 \"CML watermark\")\n"
] | 2023-10-23T10:16:46 | 2023-10-23T10:28:46 | 2023-10-23T10:17:48 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6336",
"html_url": "https://github.com/huggingface/datasets/pull/6336",
"diff_url": "https://github.com/huggingface/datasets/pull/6336.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6336.patch",
"merged_at": "2023-10-23T10:17:48"
} | null | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6336/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6336/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6335 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6335/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6335/comments | https://api.github.com/repos/huggingface/datasets/issues/6335/events | https://github.com/huggingface/datasets/pull/6335 | 1,956,740,818 | PR_kwDODunzps5dggIV | 6,335 | Support fsspec 2023.10.0 | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006013 / 0.011353 (-0.005340) | 0.003647 / 0.011008 (-0.007362) | 0.081781 / 0.038508 (0.043273) | 0.059020 / 0.023109 (0.035911) | 0.321823 / 0.275898 (0.045925) | 0.350159 / 0.323480 (0.026679) | 0.003599 / 0.007986 (-0.004386) | 0.002877 / 0.004328 (-0.001452) | 0.063941 / 0.004250 (0.059690) | 0.049460 / 0.037052 (0.012408) | 0.330185 / 0.258489 (0.071696) | 0.362220 / 0.293841 (0.068379) | 0.027613 / 0.128546 (-0.100934) | 0.007976 / 0.075646 (-0.067670) | 0.263386 / 0.419271 (-0.155885) | 0.045504 / 0.043533 (0.001971) | 0.321172 / 0.255139 (0.066033) | 0.345291 / 0.283200 (0.062091) | 0.023133 / 0.141683 (-0.118550) | 1.435816 / 1.452155 (-0.016339) | 1.557241 / 1.492716 (0.064524) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.222228 / 0.018006 (0.204222) | 0.420008 / 0.000490 (0.419518) | 0.008598 / 0.000200 (0.008398) | 0.000343 / 0.000054 (0.000288) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023725 / 0.037411 (-0.013686) | 0.073023 / 0.014526 (0.058497) | 0.814888 / 0.176557 (0.638332) | 0.294122 / 0.737135 (-0.443013) | 0.088945 / 0.296338 (-0.207393) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.393561 / 0.215209 (0.178352) | 3.946544 / 2.077655 (1.868890) | 1.916476 / 1.504120 (0.412356) | 1.721544 / 1.541195 (0.180349) | 1.768583 / 1.468490 (0.300093) | 0.508067 / 4.584777 (-4.076710) | 3.047832 / 3.745712 (-0.697880) | 2.952842 / 5.269862 (-2.317020) | 1.869337 / 4.565676 (-2.696339) | 0.057812 / 0.424275 (-0.366463) | 0.006694 / 0.007607 (-0.000913) | 0.463007 / 0.226044 (0.236963) | 4.635087 / 2.268929 (2.366158) | 2.419833 / 55.444624 (-53.024792) | 2.018519 / 6.876477 (-4.857958) | 2.043430 / 2.142072 (-0.098643) | 0.590895 / 4.805227 (-4.214333) | 0.126113 / 6.500664 (-6.374552) | 0.061045 / 0.075469 (-0.014424) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.226850 / 1.841788 (-0.614937) | 17.336630 / 8.074308 (9.262322) | 13.651049 / 10.191392 (3.459656) | 0.143308 / 0.680424 (-0.537116) | 0.016938 / 0.534201 (-0.517263) | 0.332829 / 0.579283 (-0.246454) | 0.368684 / 0.434364 (-0.065680) | 0.385848 / 0.540337 (-0.154489) | 0.546391 / 1.386936 (-0.840545) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006149 / 0.011353 (-0.005204) | 0.003818 / 0.011008 (-0.007191) | 0.064012 / 0.038508 (0.025504) | 0.059846 / 0.023109 (0.036737) | 0.455928 / 0.275898 (0.180030) | 0.480736 / 0.323480 (0.157256) | 0.004874 / 0.007986 (-0.003111) | 0.002877 / 0.004328 (-0.001451) | 0.064195 / 0.004250 (0.059944) | 0.048146 / 0.037052 (0.011094) | 0.452638 / 0.258489 (0.194149) | 0.484339 / 0.293841 (0.190499) | 0.028832 / 0.128546 (-0.099715) | 0.008162 / 0.075646 (-0.067485) | 0.069855 / 0.419271 (-0.349417) | 0.041429 / 0.043533 (-0.002104) | 0.453282 / 0.255139 (0.198143) | 0.473812 / 0.283200 (0.190613) | 0.021186 / 0.141683 (-0.120497) | 1.465207 / 1.452155 (0.013052) | 1.508216 / 1.492716 (0.015500) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.242491 / 0.018006 (0.224485) | 0.421219 / 0.000490 (0.420730) | 0.011201 / 0.000200 (0.011001) | 0.000083 / 0.000054 (0.000028) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027015 / 0.037411 (-0.010396) | 0.080465 / 0.014526 (0.065939) | 0.092622 / 0.176557 (-0.083934) | 0.146111 / 0.737135 (-0.591024) | 0.091546 / 0.296338 (-0.204793) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.458351 / 0.215209 (0.243142) | 4.591454 / 2.077655 (2.513799) | 2.508156 / 1.504120 (1.004037) | 2.328771 / 1.541195 (0.787576) | 2.423251 / 1.468490 (0.954761) | 0.508504 / 4.584777 (-4.076273) | 3.133789 / 3.745712 (-0.611923) | 2.862777 / 5.269862 (-2.407084) | 1.886327 / 4.565676 (-2.679350) | 0.058017 / 0.424275 (-0.366258) | 0.006496 / 0.007607 (-0.001111) | 0.529629 / 0.226044 (0.303585) | 5.310338 / 2.268929 (3.041409) | 2.973075 / 55.444624 (-52.471549) | 2.601313 / 6.876477 (-4.275163) | 2.777348 / 2.142072 (0.635275) | 0.593711 / 4.805227 (-4.211516) | 0.125453 / 6.500664 (-6.375211) | 0.061034 / 0.075469 (-0.014435) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.374391 / 1.841788 (-0.467397) | 18.768026 / 8.074308 (10.693718) | 15.053637 / 10.191392 (4.862245) | 0.158253 / 0.680424 (-0.522171) | 0.018126 / 0.534201 (-0.516075) | 0.337427 / 0.579283 (-0.241856) | 0.391678 / 0.434364 (-0.042686) | 0.398524 / 0.540337 (-0.141813) | 0.558629 / 1.386936 (-0.828307) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#e0b79660f180c88517884f831eca620bc46a0957 \"CML watermark\")\n",
"I think https://github.com/huggingface/datasets/pull/6334 fixes it already no ?",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006432 / 0.011353 (-0.004921) | 0.003861 / 0.011008 (-0.007147) | 0.084132 / 0.038508 (0.045624) | 0.069391 / 0.023109 (0.046282) | 0.341081 / 0.275898 (0.065183) | 0.375975 / 0.323480 (0.052495) | 0.003962 / 0.007986 (-0.004024) | 0.003235 / 0.004328 (-0.001094) | 0.064927 / 0.004250 (0.060677) | 0.054190 / 0.037052 (0.017137) | 0.350719 / 0.258489 (0.092230) | 0.393216 / 0.293841 (0.099375) | 0.031002 / 0.128546 (-0.097544) | 0.008416 / 0.075646 (-0.067230) | 0.289268 / 0.419271 (-0.130003) | 0.052167 / 0.043533 (0.008634) | 0.347559 / 0.255139 (0.092420) | 0.370908 / 0.283200 (0.087709) | 0.022540 / 0.141683 (-0.119142) | 1.486297 / 1.452155 (0.034143) | 1.576968 / 1.492716 (0.084252) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.237048 / 0.018006 (0.219042) | 0.452065 / 0.000490 (0.451575) | 0.013963 / 0.000200 (0.013763) | 0.000242 / 0.000054 (0.000188) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028084 / 0.037411 (-0.009327) | 0.081271 / 0.014526 (0.066745) | 0.096490 / 0.176557 (-0.080067) | 0.152106 / 0.737135 (-0.585030) | 0.096174 / 0.296338 (-0.200164) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.386585 / 0.215209 (0.171375) | 3.854996 / 2.077655 (1.777342) | 1.832898 / 1.504120 (0.328778) | 1.662832 / 1.541195 (0.121638) | 1.730753 / 1.468490 (0.262263) | 0.485286 / 4.584777 (-4.099491) | 3.571410 / 3.745712 (-0.174302) | 3.373035 / 5.269862 (-1.896826) | 1.995570 / 4.565676 (-2.570107) | 0.056711 / 0.424275 (-0.367564) | 0.007447 / 0.007607 (-0.000160) | 0.462985 / 0.226044 (0.236941) | 4.617186 / 2.268929 (2.348257) | 2.313915 / 55.444624 (-53.130709) | 1.961697 / 6.876477 (-4.914780) | 1.990410 / 2.142072 (-0.151662) | 0.580536 / 4.805227 (-4.224692) | 0.146275 / 6.500664 (-6.354389) | 0.059458 / 0.075469 (-0.016011) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.274841 / 1.841788 (-0.566947) | 18.641853 / 8.074308 (10.567545) | 13.977525 / 10.191392 (3.786133) | 0.151469 / 0.680424 (-0.528955) | 0.018111 / 0.534201 (-0.516090) | 0.393243 / 0.579283 (-0.186040) | 0.412310 / 0.434364 (-0.022054) | 0.461646 / 0.540337 (-0.078692) | 0.633016 / 1.386936 (-0.753920) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006496 / 0.011353 (-0.004857) | 0.003973 / 0.011008 (-0.007035) | 0.064527 / 0.038508 (0.026019) | 0.069390 / 0.023109 (0.046281) | 0.401162 / 0.275898 (0.125264) | 0.431031 / 0.323480 (0.107551) | 0.005244 / 0.007986 (-0.002741) | 0.003283 / 0.004328 (-0.001046) | 0.064931 / 0.004250 (0.060680) | 0.054402 / 0.037052 (0.017350) | 0.397917 / 0.258489 (0.139428) | 0.436728 / 0.293841 (0.142887) | 0.031932 / 0.128546 (-0.096614) | 0.008557 / 0.075646 (-0.067089) | 0.073336 / 0.419271 (-0.345935) | 0.047559 / 0.043533 (0.004026) | 0.395825 / 0.255139 (0.140686) | 0.423002 / 0.283200 (0.139802) | 0.021708 / 0.141683 (-0.119975) | 1.501140 / 1.452155 (0.048985) | 1.558376 / 1.492716 (0.065660) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.289522 / 0.018006 (0.271516) | 0.449078 / 0.000490 (0.448589) | 0.034174 / 0.000200 (0.033974) | 0.000396 / 0.000054 (0.000342) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032533 / 0.037411 (-0.004878) | 0.093398 / 0.014526 (0.078872) | 0.106930 / 0.176557 (-0.069626) | 0.158743 / 0.737135 (-0.578393) | 0.106904 / 0.296338 (-0.189435) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.427479 / 0.215209 (0.212270) | 4.271758 / 2.077655 (2.194103) | 2.298770 / 1.504120 (0.794650) | 2.134906 / 1.541195 (0.593712) | 2.220487 / 1.468490 (0.751996) | 0.490506 / 4.584777 (-4.094270) | 3.593876 / 3.745712 (-0.151836) | 3.225656 / 5.269862 (-2.044205) | 2.004434 / 4.565676 (-2.561243) | 0.058015 / 0.424275 (-0.366260) | 0.007221 / 0.007607 (-0.000387) | 0.504928 / 0.226044 (0.278884) | 5.049547 / 2.268929 (2.780618) | 2.743843 / 55.444624 (-52.700781) | 2.398399 / 6.876477 (-4.478078) | 2.562939 / 2.142072 (0.420867) | 0.597229 / 4.805227 (-4.207998) | 0.134664 / 6.500664 (-6.366001) | 0.059612 / 0.075469 (-0.015857) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.369692 / 1.841788 (-0.472095) | 19.065326 / 8.074308 (10.991018) | 14.404508 / 10.191392 (4.213116) | 0.175809 / 0.680424 (-0.504615) | 0.020137 / 0.534201 (-0.514064) | 0.394043 / 0.579283 (-0.185240) | 0.424772 / 0.434364 (-0.009592) | 0.475587 / 0.540337 (-0.064751) | 0.644275 / 1.386936 (-0.742661) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#224977971accd63d97ba0a90cc108c4754055ebb \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007259 / 0.011353 (-0.004094) | 0.004396 / 0.011008 (-0.006612) | 0.096456 / 0.038508 (0.057948) | 0.078752 / 0.023109 (0.055643) | 0.359215 / 0.275898 (0.083317) | 0.396927 / 0.323480 (0.073448) | 0.005611 / 0.007986 (-0.002375) | 0.003687 / 0.004328 (-0.000641) | 0.072794 / 0.004250 (0.068544) | 0.059794 / 0.037052 (0.022741) | 0.372352 / 0.258489 (0.113863) | 0.414038 / 0.293841 (0.120197) | 0.034490 / 0.128546 (-0.094056) | 0.009790 / 0.075646 (-0.065857) | 0.326338 / 0.419271 (-0.092934) | 0.058582 / 0.043533 (0.015049) | 0.354221 / 0.255139 (0.099082) | 0.386669 / 0.283200 (0.103469) | 0.025356 / 0.141683 (-0.116327) | 1.664104 / 1.452155 (0.211950) | 1.766825 / 1.492716 (0.274108) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.251107 / 0.018006 (0.233101) | 0.478833 / 0.000490 (0.478344) | 0.010776 / 0.000200 (0.010577) | 0.000292 / 0.000054 (0.000238) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032869 / 0.037411 (-0.004543) | 0.098449 / 0.014526 (0.083923) | 0.109954 / 0.176557 (-0.066602) | 0.176786 / 0.737135 (-0.560350) | 0.113477 / 0.296338 (-0.182862) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.431169 / 0.215209 (0.215960) | 4.303239 / 2.077655 (2.225585) | 2.088885 / 1.504120 (0.584765) | 1.895900 / 1.541195 (0.354706) | 1.997442 / 1.468490 (0.528952) | 0.541840 / 4.584777 (-4.042937) | 3.991982 / 3.745712 (0.246270) | 3.842421 / 5.269862 (-1.427440) | 2.281150 / 4.565676 (-2.284526) | 0.063851 / 0.424275 (-0.360425) | 0.008470 / 0.007607 (0.000863) | 0.515886 / 0.226044 (0.289841) | 5.202908 / 2.268929 (2.933980) | 2.662789 / 55.444624 (-52.781835) | 2.266731 / 6.876477 (-4.609746) | 2.343760 / 2.142072 (0.201688) | 0.641050 / 4.805227 (-4.164177) | 0.148236 / 6.500664 (-6.352428) | 0.067422 / 0.075469 (-0.008047) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.475729 / 1.841788 (-0.366059) | 22.401583 / 8.074308 (14.327274) | 15.886237 / 10.191392 (5.694845) | 0.171828 / 0.680424 (-0.508595) | 0.022161 / 0.534201 (-0.512040) | 0.465873 / 0.579283 (-0.113411) | 0.476386 / 0.434364 (0.042022) | 0.538317 / 0.540337 (-0.002020) | 0.754375 / 1.386936 (-0.632561) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007429 / 0.011353 (-0.003924) | 0.004592 / 0.011008 (-0.006416) | 0.072315 / 0.038508 (0.033807) | 0.080806 / 0.023109 (0.057697) | 0.444607 / 0.275898 (0.168709) | 0.476970 / 0.323480 (0.153490) | 0.006030 / 0.007986 (-0.001956) | 0.003755 / 0.004328 (-0.000573) | 0.074602 / 0.004250 (0.070352) | 0.061846 / 0.037052 (0.024794) | 0.450928 / 0.258489 (0.192439) | 0.493932 / 0.293841 (0.200091) | 0.037398 / 0.128546 (-0.091148) | 0.009807 / 0.075646 (-0.065840) | 0.080531 / 0.419271 (-0.338741) | 0.054052 / 0.043533 (0.010519) | 0.453034 / 0.255139 (0.197895) | 0.464959 / 0.283200 (0.181760) | 0.024718 / 0.141683 (-0.116965) | 1.687552 / 1.452155 (0.235397) | 1.765746 / 1.492716 (0.273029) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.266998 / 0.018006 (0.248992) | 0.479832 / 0.000490 (0.479342) | 0.005429 / 0.000200 (0.005229) | 0.000117 / 0.000054 (0.000062) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.038885 / 0.037411 (0.001474) | 0.105931 / 0.014526 (0.091405) | 0.120880 / 0.176557 (-0.055677) | 0.184006 / 0.737135 (-0.553130) | 0.120750 / 0.296338 (-0.175589) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.478626 / 0.215209 (0.263417) | 4.797355 / 2.077655 (2.719700) | 2.582758 / 1.504120 (1.078638) | 2.396488 / 1.541195 (0.855293) | 2.515597 / 1.468490 (1.047107) | 0.544541 / 4.584777 (-4.040236) | 4.150702 / 3.745712 (0.404990) | 3.676837 / 5.269862 (-1.593024) | 2.287275 / 4.565676 (-2.278402) | 0.064602 / 0.424275 (-0.359673) | 0.008253 / 0.007607 (0.000646) | 0.576201 / 0.226044 (0.350157) | 5.859839 / 2.268929 (3.590910) | 3.248603 / 55.444624 (-52.196021) | 2.841959 / 6.876477 (-4.034518) | 2.991120 / 2.142072 (0.849047) | 0.667755 / 4.805227 (-4.137472) | 0.151219 / 6.500664 (-6.349445) | 0.068990 / 0.075469 (-0.006479) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.572359 / 1.841788 (-0.269429) | 21.890279 / 8.074308 (13.815971) | 15.927473 / 10.191392 (5.736081) | 0.170388 / 0.680424 (-0.510036) | 0.023282 / 0.534201 (-0.510919) | 0.459371 / 0.579283 (-0.119912) | 0.468838 / 0.434364 (0.034475) | 0.546438 / 0.540337 (0.006101) | 0.746912 / 1.386936 (-0.640024) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#8197ce872d2e24bd1ffbb07213faea25078f1386 \"CML watermark\")\n",
"Yes, @lhoestq, you are right. I think we cross-send fixing PRs in a 15 minute interval... :sweat_smile: \r\n\r\nI would say the code in this PR is simpler and easier to understand, but feel free to ignore it.",
"I think the correct way it to check if \"file\" in in the tuple if it's a tuple (in case someone adds another protocol name for the local filesystem)"
] | 2023-10-23T09:29:17 | 2023-11-14T14:18:12 | 2023-11-14T14:17:40 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6335",
"html_url": "https://github.com/huggingface/datasets/pull/6335",
"diff_url": "https://github.com/huggingface/datasets/pull/6335.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6335.patch",
"merged_at": null
} | Fix #6333. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6335/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6335/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6334 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6334/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6334/comments | https://api.github.com/repos/huggingface/datasets/issues/6334/events | https://github.com/huggingface/datasets/pull/6334 | 1,956,719,774 | PR_kwDODunzps5dgbpR | 6,334 | datasets.filesystems: fix is_remote_filesystems | {
"login": "ap--",
"id": 1463443,
"node_id": "MDQ6VXNlcjE0NjM0NDM=",
"avatar_url": "https://avatars.githubusercontent.com/u/1463443?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/ap--",
"html_url": "https://github.com/ap--",
"followers_url": "https://api.github.com/users/ap--/followers",
"following_url": "https://api.github.com/users/ap--/following{/other_user}",
"gists_url": "https://api.github.com/users/ap--/gists{/gist_id}",
"starred_url": "https://api.github.com/users/ap--/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/ap--/subscriptions",
"organizations_url": "https://api.github.com/users/ap--/orgs",
"repos_url": "https://api.github.com/users/ap--/repos",
"events_url": "https://api.github.com/users/ap--/events{/privacy}",
"received_events_url": "https://api.github.com/users/ap--/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006648 / 0.011353 (-0.004705) | 0.004104 / 0.011008 (-0.006904) | 0.084718 / 0.038508 (0.046210) | 0.075342 / 0.023109 (0.052232) | 0.332624 / 0.275898 (0.056726) | 0.376758 / 0.323480 (0.053278) | 0.005371 / 0.007986 (-0.002614) | 0.003317 / 0.004328 (-0.001011) | 0.065153 / 0.004250 (0.060902) | 0.055270 / 0.037052 (0.018218) | 0.342410 / 0.258489 (0.083920) | 0.397484 / 0.293841 (0.103643) | 0.031168 / 0.128546 (-0.097379) | 0.008545 / 0.075646 (-0.067101) | 0.297641 / 0.419271 (-0.121631) | 0.052404 / 0.043533 (0.008871) | 0.327633 / 0.255139 (0.072494) | 0.362177 / 0.283200 (0.078977) | 0.025056 / 0.141683 (-0.116627) | 1.459023 / 1.452155 (0.006868) | 1.529651 / 1.492716 (0.036935) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.242838 / 0.018006 (0.224832) | 0.451007 / 0.000490 (0.450517) | 0.013732 / 0.000200 (0.013532) | 0.000345 / 0.000054 (0.000290) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028068 / 0.037411 (-0.009343) | 0.081970 / 0.014526 (0.067444) | 0.096148 / 0.176557 (-0.080409) | 0.151758 / 0.737135 (-0.585377) | 0.095617 / 0.296338 (-0.200721) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.389188 / 0.215209 (0.173979) | 3.867506 / 2.077655 (1.789852) | 1.941912 / 1.504120 (0.437792) | 1.759270 / 1.541195 (0.218076) | 1.774714 / 1.468490 (0.306224) | 0.476587 / 4.584777 (-4.108190) | 3.539342 / 3.745712 (-0.206370) | 3.434389 / 5.269862 (-1.835472) | 2.047581 / 4.565676 (-2.518096) | 0.056322 / 0.424275 (-0.367954) | 0.007286 / 0.007607 (-0.000321) | 0.461826 / 0.226044 (0.235781) | 4.604179 / 2.268929 (2.335251) | 2.405267 / 55.444624 (-53.039357) | 2.133998 / 6.876477 (-4.742479) | 2.187724 / 2.142072 (0.045652) | 0.566578 / 4.805227 (-4.238650) | 0.130007 / 6.500664 (-6.370657) | 0.059685 / 0.075469 (-0.015784) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.256204 / 1.841788 (-0.585584) | 18.829475 / 8.074308 (10.755167) | 13.937879 / 10.191392 (3.746487) | 0.163948 / 0.680424 (-0.516475) | 0.018118 / 0.534201 (-0.516083) | 0.389369 / 0.579283 (-0.189914) | 0.399988 / 0.434364 (-0.034376) | 0.459504 / 0.540337 (-0.080834) | 0.674696 / 1.386936 (-0.712240) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006806 / 0.011353 (-0.004547) | 0.004103 / 0.011008 (-0.006905) | 0.064477 / 0.038508 (0.025969) | 0.079514 / 0.023109 (0.056405) | 0.391657 / 0.275898 (0.115759) | 0.422997 / 0.323480 (0.099517) | 0.005485 / 0.007986 (-0.002501) | 0.003461 / 0.004328 (-0.000868) | 0.064621 / 0.004250 (0.060371) | 0.057686 / 0.037052 (0.020633) | 0.396885 / 0.258489 (0.138396) | 0.431508 / 0.293841 (0.137667) | 0.032305 / 0.128546 (-0.096241) | 0.008617 / 0.075646 (-0.067030) | 0.071577 / 0.419271 (-0.347694) | 0.047769 / 0.043533 (0.004236) | 0.394037 / 0.255139 (0.138898) | 0.412593 / 0.283200 (0.129393) | 0.023800 / 0.141683 (-0.117883) | 1.479114 / 1.452155 (0.026959) | 1.562422 / 1.492716 (0.069706) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.229822 / 0.018006 (0.211816) | 0.452465 / 0.000490 (0.451975) | 0.005877 / 0.000200 (0.005677) | 0.000097 / 0.000054 (0.000043) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033528 / 0.037411 (-0.003884) | 0.091819 / 0.014526 (0.077294) | 0.106188 / 0.176557 (-0.070368) | 0.159480 / 0.737135 (-0.577655) | 0.106326 / 0.296338 (-0.190013) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.427396 / 0.215209 (0.212187) | 4.275196 / 2.077655 (2.197541) | 2.287446 / 1.504120 (0.783326) | 2.137089 / 1.541195 (0.595894) | 2.198439 / 1.468490 (0.729949) | 0.491006 / 4.584777 (-4.093771) | 3.531067 / 3.745712 (-0.214645) | 3.264357 / 5.269862 (-2.005505) | 2.047760 / 4.565676 (-2.517916) | 0.057982 / 0.424275 (-0.366293) | 0.007278 / 0.007607 (-0.000329) | 0.507471 / 0.226044 (0.281426) | 5.073901 / 2.268929 (2.804973) | 2.781799 / 55.444624 (-52.662825) | 2.410759 / 6.876477 (-4.465718) | 2.623331 / 2.142072 (0.481258) | 0.601601 / 4.805227 (-4.203626) | 0.131461 / 6.500664 (-6.369204) | 0.060045 / 0.075469 (-0.015424) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.372946 / 1.841788 (-0.468842) | 19.560818 / 8.074308 (11.486509) | 14.388468 / 10.191392 (4.197076) | 0.177310 / 0.680424 (-0.503114) | 0.020233 / 0.534201 (-0.513967) | 0.395938 / 0.579283 (-0.183345) | 0.418336 / 0.434364 (-0.016028) | 0.471731 / 0.540337 (-0.068607) | 0.684679 / 1.386936 (-0.702257) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#4bedb7dcbaedd292ae5764f0fe6d44c16e1c2c10 \"CML watermark\")\n",
"We did a patch release containing your fix @ap-- !"
] | 2023-10-23T09:17:54 | 2023-10-23T17:30:55 | 2023-10-23T10:14:10 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6334",
"html_url": "https://github.com/huggingface/datasets/pull/6334",
"diff_url": "https://github.com/huggingface/datasets/pull/6334.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6334.patch",
"merged_at": "2023-10-23T10:14:10"
} | Close #6330
`fsspec.implementations.LocalFilesystem.protocol`
was changed from `str` "file" to `tuple[str,...]` ("file", "local") in `fsspec>=2023.10.0`
This commit supports both styles. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6334/reactions",
"total_count": 2,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 2,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6334/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6333 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6333/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6333/comments | https://api.github.com/repos/huggingface/datasets/issues/6333/events | https://github.com/huggingface/datasets/issues/6333 | 1,956,714,423 | I_kwDODunzps50oRe3 | 6,333 | Support fsspec 2023.10.0 | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
}
] | [] | 2023-10-23T09:14:53 | 2023-10-23T09:15:10 | null | MEMBER | null | null | null | Once root issue is fixed, remove temporary pin of fsspec < 2023.10.0 introduced by:
- #6331
Related to issue:
- #6330
As @ZachNagengast suggested, the issue might be related to:
- https://github.com/fsspec/filesystem_spec/pull/1381 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6333/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6333/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/6332 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6332/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6332/comments | https://api.github.com/repos/huggingface/datasets/issues/6332/events | https://github.com/huggingface/datasets/pull/6332 | 1,956,697,328 | PR_kwDODunzps5dgW3w | 6,332 | Replace deprecated license_file in setup.cfg | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006884 / 0.011353 (-0.004469) | 0.004132 / 0.011008 (-0.006877) | 0.085993 / 0.038508 (0.047485) | 0.084049 / 0.023109 (0.060940) | 0.346194 / 0.275898 (0.070296) | 0.386999 / 0.323480 (0.063519) | 0.004185 / 0.007986 (-0.003801) | 0.004354 / 0.004328 (0.000026) | 0.065137 / 0.004250 (0.060886) | 0.057629 / 0.037052 (0.020577) | 0.353639 / 0.258489 (0.095150) | 0.400815 / 0.293841 (0.106974) | 0.031370 / 0.128546 (-0.097176) | 0.008719 / 0.075646 (-0.066927) | 0.289579 / 0.419271 (-0.129693) | 0.052826 / 0.043533 (0.009293) | 0.351110 / 0.255139 (0.095971) | 0.375663 / 0.283200 (0.092464) | 0.025892 / 0.141683 (-0.115791) | 1.481943 / 1.452155 (0.029789) | 1.541494 / 1.492716 (0.048778) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.240007 / 0.018006 (0.222000) | 0.456216 / 0.000490 (0.455726) | 0.009348 / 0.000200 (0.009148) | 0.000370 / 0.000054 (0.000315) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029541 / 0.037411 (-0.007870) | 0.088394 / 0.014526 (0.073868) | 0.098460 / 0.176557 (-0.078096) | 0.154053 / 0.737135 (-0.583083) | 0.098821 / 0.296338 (-0.197518) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.386751 / 0.215209 (0.171542) | 3.809818 / 2.077655 (1.732164) | 1.833439 / 1.504120 (0.329319) | 1.686924 / 1.541195 (0.145729) | 1.796882 / 1.468490 (0.328392) | 0.488853 / 4.584777 (-4.095924) | 3.606369 / 3.745712 (-0.139343) | 3.460003 / 5.269862 (-1.809858) | 2.087493 / 4.565676 (-2.478184) | 0.056838 / 0.424275 (-0.367437) | 0.007679 / 0.007607 (0.000072) | 0.455080 / 0.226044 (0.229036) | 4.539227 / 2.268929 (2.270299) | 2.337245 / 55.444624 (-53.107379) | 1.988195 / 6.876477 (-4.888281) | 2.067473 / 2.142072 (-0.074600) | 0.576640 / 4.805227 (-4.228587) | 0.132140 / 6.500664 (-6.368525) | 0.060737 / 0.075469 (-0.014732) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.268866 / 1.841788 (-0.572922) | 19.695296 / 8.074308 (11.620988) | 14.431254 / 10.191392 (4.239862) | 0.166779 / 0.680424 (-0.513645) | 0.018262 / 0.534201 (-0.515939) | 0.390406 / 0.579283 (-0.188877) | 0.411284 / 0.434364 (-0.023080) | 0.456696 / 0.540337 (-0.083642) | 0.629660 / 1.386936 (-0.757276) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007210 / 0.011353 (-0.004143) | 0.004124 / 0.011008 (-0.006884) | 0.065877 / 0.038508 (0.027368) | 0.086242 / 0.023109 (0.063133) | 0.420087 / 0.275898 (0.144189) | 0.454327 / 0.323480 (0.130847) | 0.005586 / 0.007986 (-0.002399) | 0.003465 / 0.004328 (-0.000863) | 0.065153 / 0.004250 (0.060902) | 0.059337 / 0.037052 (0.022285) | 0.420913 / 0.258489 (0.162424) | 0.458552 / 0.293841 (0.164711) | 0.032335 / 0.128546 (-0.096211) | 0.008672 / 0.075646 (-0.066974) | 0.072029 / 0.419271 (-0.347242) | 0.048148 / 0.043533 (0.004615) | 0.423334 / 0.255139 (0.168196) | 0.440616 / 0.283200 (0.157416) | 0.023761 / 0.141683 (-0.117922) | 1.487022 / 1.452155 (0.034868) | 1.554028 / 1.492716 (0.061312) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.216693 / 0.018006 (0.198687) | 0.446359 / 0.000490 (0.445869) | 0.005294 / 0.000200 (0.005094) | 0.000100 / 0.000054 (0.000045) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034655 / 0.037411 (-0.002756) | 0.099479 / 0.014526 (0.084953) | 0.111822 / 0.176557 (-0.064735) | 0.160675 / 0.737135 (-0.576461) | 0.108718 / 0.296338 (-0.187621) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.440270 / 0.215209 (0.225061) | 4.389013 / 2.077655 (2.311358) | 2.408007 / 1.504120 (0.903887) | 2.237233 / 1.541195 (0.696038) | 2.344131 / 1.468490 (0.875641) | 0.493143 / 4.584777 (-4.091634) | 3.620024 / 3.745712 (-0.125688) | 3.335810 / 5.269862 (-1.934052) | 2.079256 / 4.565676 (-2.486420) | 0.058324 / 0.424275 (-0.365951) | 0.007410 / 0.007607 (-0.000197) | 0.512057 / 0.226044 (0.286013) | 5.120629 / 2.268929 (2.851701) | 2.913268 / 55.444624 (-52.531356) | 2.558214 / 6.876477 (-4.318262) | 2.784146 / 2.142072 (0.642074) | 0.593308 / 4.805227 (-4.211920) | 0.134941 / 6.500664 (-6.365723) | 0.062292 / 0.075469 (-0.013177) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.351795 / 1.841788 (-0.489993) | 20.489559 / 8.074308 (12.415251) | 15.046116 / 10.191392 (4.854724) | 0.166339 / 0.680424 (-0.514085) | 0.020449 / 0.534201 (-0.513752) | 0.406570 / 0.579283 (-0.172713) | 0.423405 / 0.434364 (-0.010959) | 0.474541 / 0.540337 (-0.065796) | 0.653280 / 1.386936 (-0.733656) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#3bde0f0f0e556e55b95c72b0f83bdcf7145c813c \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006362 / 0.011353 (-0.004991) | 0.003990 / 0.011008 (-0.007018) | 0.084020 / 0.038508 (0.045512) | 0.072198 / 0.023109 (0.049089) | 0.335992 / 0.275898 (0.060094) | 0.362056 / 0.323480 (0.038576) | 0.005298 / 0.007986 (-0.002688) | 0.003421 / 0.004328 (-0.000908) | 0.065343 / 0.004250 (0.061092) | 0.053310 / 0.037052 (0.016258) | 0.344855 / 0.258489 (0.086366) | 0.385524 / 0.293841 (0.091683) | 0.030209 / 0.128546 (-0.098337) | 0.008465 / 0.075646 (-0.067181) | 0.287359 / 0.419271 (-0.131912) | 0.051371 / 0.043533 (0.007838) | 0.338716 / 0.255139 (0.083577) | 0.351730 / 0.283200 (0.068530) | 0.023581 / 0.141683 (-0.118102) | 1.473772 / 1.452155 (0.021617) | 1.560594 / 1.492716 (0.067878) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.309019 / 0.018006 (0.291013) | 0.561428 / 0.000490 (0.560939) | 0.007237 / 0.000200 (0.007038) | 0.000266 / 0.000054 (0.000212) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028172 / 0.037411 (-0.009239) | 0.081050 / 0.014526 (0.066524) | 0.095952 / 0.176557 (-0.080604) | 0.151796 / 0.737135 (-0.585340) | 0.096132 / 0.296338 (-0.200206) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.384287 / 0.215209 (0.169078) | 3.840797 / 2.077655 (1.763142) | 1.891120 / 1.504120 (0.387000) | 1.743498 / 1.541195 (0.202303) | 1.821037 / 1.468490 (0.352547) | 0.484946 / 4.584777 (-4.099831) | 3.586053 / 3.745712 (-0.159659) | 3.446215 / 5.269862 (-1.823647) | 2.054352 / 4.565676 (-2.511325) | 0.057315 / 0.424275 (-0.366960) | 0.007541 / 0.007607 (-0.000066) | 0.464088 / 0.226044 (0.238044) | 4.634005 / 2.268929 (2.365076) | 2.355818 / 55.444624 (-53.088806) | 2.045584 / 6.876477 (-4.830893) | 2.039455 / 2.142072 (-0.102617) | 0.576137 / 4.805227 (-4.229090) | 0.132071 / 6.500664 (-6.368593) | 0.059611 / 0.075469 (-0.015858) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.280078 / 1.841788 (-0.561710) | 19.054079 / 8.074308 (10.979771) | 14.291090 / 10.191392 (4.099698) | 0.170607 / 0.680424 (-0.509817) | 0.018489 / 0.534201 (-0.515712) | 0.391802 / 0.579283 (-0.187481) | 0.418945 / 0.434364 (-0.015419) | 0.464084 / 0.540337 (-0.076254) | 0.638099 / 1.386936 (-0.748837) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006735 / 0.011353 (-0.004618) | 0.004133 / 0.011008 (-0.006876) | 0.064620 / 0.038508 (0.026112) | 0.076395 / 0.023109 (0.053286) | 0.399659 / 0.275898 (0.123761) | 0.426821 / 0.323480 (0.103341) | 0.006407 / 0.007986 (-0.001578) | 0.003472 / 0.004328 (-0.000857) | 0.064922 / 0.004250 (0.060671) | 0.058312 / 0.037052 (0.021260) | 0.403286 / 0.258489 (0.144797) | 0.437772 / 0.293841 (0.143931) | 0.032323 / 0.128546 (-0.096223) | 0.008727 / 0.075646 (-0.066919) | 0.071344 / 0.419271 (-0.347927) | 0.048673 / 0.043533 (0.005141) | 0.400693 / 0.255139 (0.145554) | 0.418668 / 0.283200 (0.135468) | 0.022871 / 0.141683 (-0.118812) | 1.517691 / 1.452155 (0.065536) | 1.552021 / 1.492716 (0.059305) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.305279 / 0.018006 (0.287272) | 0.520054 / 0.000490 (0.519564) | 0.007247 / 0.000200 (0.007047) | 0.000098 / 0.000054 (0.000044) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032001 / 0.037411 (-0.005410) | 0.091273 / 0.014526 (0.076747) | 0.106480 / 0.176557 (-0.070077) | 0.163122 / 0.737135 (-0.574014) | 0.105244 / 0.296338 (-0.191094) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.432207 / 0.215209 (0.216998) | 4.304856 / 2.077655 (2.227202) | 2.326790 / 1.504120 (0.822670) | 2.150081 / 1.541195 (0.608886) | 2.150558 / 1.468490 (0.682068) | 0.488808 / 4.584777 (-4.095969) | 3.690435 / 3.745712 (-0.055277) | 3.302625 / 5.269862 (-1.967236) | 2.044193 / 4.565676 (-2.521483) | 0.057520 / 0.424275 (-0.366755) | 0.007281 / 0.007607 (-0.000326) | 0.521078 / 0.226044 (0.295034) | 5.162620 / 2.268929 (2.893691) | 2.744041 / 55.444624 (-52.700583) | 2.407211 / 6.876477 (-4.469266) | 2.606290 / 2.142072 (0.464217) | 0.586412 / 4.805227 (-4.218815) | 0.132152 / 6.500664 (-6.368512) | 0.059424 / 0.075469 (-0.016045) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.351879 / 1.841788 (-0.489908) | 19.460608 / 8.074308 (11.386299) | 14.643413 / 10.191392 (4.452021) | 0.168062 / 0.680424 (-0.512362) | 0.020396 / 0.534201 (-0.513805) | 0.395885 / 0.579283 (-0.183398) | 0.439551 / 0.434364 (0.005187) | 0.473051 / 0.540337 (-0.067286) | 0.644614 / 1.386936 (-0.742322) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#732b2ed47728fffc8d74f92691c21de8ac7423fe \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.014708 / 0.011353 (0.003355) | 0.008309 / 0.011008 (-0.002699) | 0.138986 / 0.038508 (0.100478) | 0.121781 / 0.023109 (0.098671) | 0.495536 / 0.275898 (0.219637) | 0.565195 / 0.323480 (0.241715) | 0.008018 / 0.007986 (0.000032) | 0.004904 / 0.004328 (0.000575) | 0.080622 / 0.004250 (0.076371) | 0.078917 / 0.037052 (0.041865) | 0.489424 / 0.258489 (0.230935) | 0.540496 / 0.293841 (0.246656) | 0.061110 / 0.128546 (-0.067437) | 0.021443 / 0.075646 (-0.054203) | 0.395789 / 0.419271 (-0.023482) | 0.076727 / 0.043533 (0.033194) | 0.427808 / 0.255139 (0.172669) | 0.519672 / 0.283200 (0.236473) | 0.041607 / 0.141683 (-0.100076) | 2.098675 / 1.452155 (0.646520) | 2.175123 / 1.492716 (0.682407) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.275784 / 0.018006 (0.257777) | 0.707103 / 0.000490 (0.706613) | 0.011524 / 0.000200 (0.011324) | 0.000390 / 0.000054 (0.000336) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032897 / 0.037411 (-0.004514) | 0.123239 / 0.014526 (0.108713) | 0.151815 / 0.176557 (-0.024741) | 0.214790 / 0.737135 (-0.522345) | 0.139166 / 0.296338 (-0.157173) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.740662 / 0.215209 (0.525453) | 7.540376 / 2.077655 (5.462721) | 3.168207 / 1.504120 (1.664087) | 2.745663 / 1.541195 (1.204468) | 2.714020 / 1.468490 (1.245530) | 1.182632 / 4.584777 (-3.402145) | 6.365807 / 3.745712 (2.620095) | 6.317228 / 5.269862 (1.047366) | 4.061107 / 4.565676 (-0.504569) | 0.146939 / 0.424275 (-0.277336) | 0.011765 / 0.007607 (0.004158) | 0.910564 / 0.226044 (0.684519) | 9.020618 / 2.268929 (6.751689) | 4.180748 / 55.444624 (-51.263876) | 3.290257 / 6.876477 (-3.586220) | 3.363172 / 2.142072 (1.221099) | 1.239142 / 4.805227 (-3.566086) | 0.294965 / 6.500664 (-6.205699) | 0.088520 / 0.075469 (0.013051) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.867528 / 1.841788 (0.025741) | 29.494058 / 8.074308 (21.419750) | 31.386703 / 10.191392 (21.195311) | 0.302488 / 0.680424 (-0.377936) | 0.036116 / 0.534201 (-0.498085) | 0.622112 / 0.579283 (0.042829) | 0.775658 / 0.434364 (0.341294) | 0.632452 / 0.540337 (0.092115) | 0.909424 / 1.386936 (-0.477512) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.016002 / 0.011353 (0.004649) | 0.007007 / 0.011008 (-0.004002) | 0.100463 / 0.038508 (0.061955) | 0.124423 / 0.023109 (0.101314) | 0.556014 / 0.275898 (0.280116) | 0.600909 / 0.323480 (0.277429) | 0.007272 / 0.007986 (-0.000714) | 0.006743 / 0.004328 (0.002415) | 0.088575 / 0.004250 (0.084324) | 0.066003 / 0.037052 (0.028951) | 0.580080 / 0.258489 (0.321591) | 0.655567 / 0.293841 (0.361726) | 0.065295 / 0.128546 (-0.063252) | 0.021105 / 0.075646 (-0.054541) | 0.120044 / 0.419271 (-0.299227) | 0.081133 / 0.043533 (0.037600) | 0.570322 / 0.255139 (0.315183) | 0.581134 / 0.283200 (0.297934) | 0.046298 / 0.141683 (-0.095385) | 2.113200 / 1.452155 (0.661045) | 2.344187 / 1.492716 (0.851471) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.284517 / 0.018006 (0.266511) | 0.611834 / 0.000490 (0.611345) | 0.005581 / 0.000200 (0.005381) | 0.000153 / 0.000054 (0.000098) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.042162 / 0.037411 (0.004750) | 0.114496 / 0.014526 (0.099970) | 0.134034 / 0.176557 (-0.042523) | 0.201649 / 0.737135 (-0.535486) | 0.143235 / 0.296338 (-0.153103) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.764863 / 0.215209 (0.549654) | 7.603076 / 2.077655 (5.525421) | 3.318911 / 1.504120 (1.814791) | 2.939815 / 1.541195 (1.398620) | 2.870911 / 1.468490 (1.402421) | 1.171978 / 4.584777 (-3.412799) | 6.479933 / 3.745712 (2.734221) | 5.944387 / 5.269862 (0.674526) | 4.282625 / 4.565676 (-0.283051) | 0.123672 / 0.424275 (-0.300603) | 0.009666 / 0.007607 (0.002059) | 0.870683 / 0.226044 (0.644638) | 9.187788 / 2.268929 (6.918859) | 4.431818 / 55.444624 (-51.012807) | 3.460457 / 6.876477 (-3.416020) | 3.708198 / 2.142072 (1.566126) | 1.353673 / 4.805227 (-3.451554) | 0.264274 / 6.500664 (-6.236390) | 0.074943 / 0.075469 (-0.000526) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 2.073810 / 1.841788 (0.232023) | 29.182464 / 8.074308 (21.108156) | 30.527040 / 10.191392 (20.335648) | 0.307561 / 0.680424 (-0.372863) | 0.047384 / 0.534201 (-0.486817) | 0.662760 / 0.579283 (0.083477) | 0.768321 / 0.434364 (0.333957) | 0.692296 / 0.540337 (0.151959) | 0.955197 / 1.386936 (-0.431739) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#1e82d6f017c7fc0ab6b65847c1e34772c880d3b7 \"CML watermark\")\n"
] | 2023-10-23T09:05:26 | 2023-11-07T08:23:10 | 2023-11-07T08:09:06 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6332",
"html_url": "https://github.com/huggingface/datasets/pull/6332",
"diff_url": "https://github.com/huggingface/datasets/pull/6332.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6332.patch",
"merged_at": "2023-11-07T08:09:06"
} | Replace deprecated license_file in `setup.cfg`.
See: https://github.com/huggingface/datasets/actions/runs/6610930650/job/17953825724?pr=6331
```
/tmp/pip-build-env-a51hls20/overlay/lib/python3.8/site-packages/setuptools/config/setupcfg.py:293: _DeprecatedConfig: Deprecated config in `setup.cfg`
!!
********************************************************************************
The license_file parameter is deprecated, use license_files instead.
By 2023-Oct-30, you need to update your project and remove deprecated calls
or your builds will no longer be supported.
See https://setuptools.pypa.io/en/latest/userguide/declarative_config.html for details.
********************************************************************************
!!
``` | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6332/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6332/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6331 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6331/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6331/comments | https://api.github.com/repos/huggingface/datasets/issues/6331/events | https://github.com/huggingface/datasets/pull/6331 | 1,956,671,256 | PR_kwDODunzps5dgRQt | 6,331 | Temporarily pin fsspec < 2023.10.0 | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009605 / 0.011353 (-0.001747) | 0.004864 / 0.011008 (-0.006144) | 0.114605 / 0.038508 (0.076097) | 0.090874 / 0.023109 (0.067765) | 0.429203 / 0.275898 (0.153305) | 0.489888 / 0.323480 (0.166408) | 0.006542 / 0.007986 (-0.001443) | 0.004585 / 0.004328 (0.000257) | 0.090251 / 0.004250 (0.086001) | 0.066612 / 0.037052 (0.029560) | 0.437491 / 0.258489 (0.179002) | 0.515196 / 0.293841 (0.221355) | 0.047756 / 0.128546 (-0.080791) | 0.013587 / 0.075646 (-0.062059) | 0.376960 / 0.419271 (-0.042311) | 0.069701 / 0.043533 (0.026168) | 0.430850 / 0.255139 (0.175711) | 0.475061 / 0.283200 (0.191861) | 0.034800 / 0.141683 (-0.106883) | 1.799947 / 1.452155 (0.347793) | 1.941863 / 1.492716 (0.449147) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.316685 / 0.018006 (0.298679) | 0.595098 / 0.000490 (0.594608) | 0.015447 / 0.000200 (0.015247) | 0.000463 / 0.000054 (0.000409) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.039364 / 0.037411 (0.001953) | 0.091295 / 0.014526 (0.076769) | 0.109380 / 0.176557 (-0.067177) | 0.185454 / 0.737135 (-0.551681) | 0.104476 / 0.296338 (-0.191862) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.626291 / 0.215209 (0.411082) | 5.869948 / 2.077655 (3.792293) | 2.466267 / 1.504120 (0.962147) | 2.183572 / 1.541195 (0.642377) | 2.208286 / 1.468490 (0.739796) | 0.817175 / 4.584777 (-3.767602) | 5.255141 / 3.745712 (1.509429) | 4.878668 / 5.269862 (-0.391193) | 2.917020 / 4.565676 (-1.648657) | 0.104995 / 0.424275 (-0.319280) | 0.008687 / 0.007607 (0.001080) | 0.678993 / 0.226044 (0.452948) | 7.004983 / 2.268929 (4.736054) | 3.444040 / 55.444624 (-52.000584) | 2.745075 / 6.876477 (-4.131402) | 2.720151 / 2.142072 (0.578078) | 0.995803 / 4.805227 (-3.809424) | 0.205928 / 6.500664 (-6.294736) | 0.077053 / 0.075469 (0.001584) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.587354 / 1.841788 (-0.254434) | 23.843227 / 8.074308 (15.768919) | 21.355771 / 10.191392 (11.164379) | 0.225593 / 0.680424 (-0.454831) | 0.029054 / 0.534201 (-0.505147) | 0.469676 / 0.579283 (-0.109607) | 0.582619 / 0.434364 (0.148255) | 0.576932 / 0.540337 (0.036594) | 0.946182 / 1.386936 (-0.440754) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009819 / 0.011353 (-0.001534) | 0.005562 / 0.011008 (-0.005446) | 0.075512 / 0.038508 (0.037004) | 0.084294 / 0.023109 (0.061185) | 0.549516 / 0.275898 (0.273618) | 0.550364 / 0.323480 (0.226884) | 0.006603 / 0.007986 (-0.001383) | 0.004587 / 0.004328 (0.000259) | 0.084040 / 0.004250 (0.079789) | 0.066815 / 0.037052 (0.029762) | 0.549224 / 0.258489 (0.290735) | 0.556213 / 0.293841 (0.262372) | 0.048538 / 0.128546 (-0.080008) | 0.014050 / 0.075646 (-0.061596) | 0.088955 / 0.419271 (-0.330317) | 0.062393 / 0.043533 (0.018860) | 0.528770 / 0.255139 (0.273631) | 0.564854 / 0.283200 (0.281655) | 0.033976 / 0.141683 (-0.107707) | 1.858558 / 1.452155 (0.406403) | 1.894616 / 1.492716 (0.401899) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.378597 / 0.018006 (0.360591) | 0.650586 / 0.000490 (0.650097) | 0.033179 / 0.000200 (0.032979) | 0.000477 / 0.000054 (0.000423) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031779 / 0.037411 (-0.005632) | 0.103393 / 0.014526 (0.088867) | 0.119810 / 0.176557 (-0.056747) | 0.192188 / 0.737135 (-0.544948) | 0.114545 / 0.296338 (-0.181794) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.623571 / 0.215209 (0.408362) | 6.350249 / 2.077655 (4.272594) | 3.207773 / 1.504120 (1.703653) | 2.861118 / 1.541195 (1.319923) | 2.864445 / 1.468490 (1.395955) | 0.827451 / 4.584777 (-3.757326) | 5.323860 / 3.745712 (1.578148) | 4.569197 / 5.269862 (-0.700665) | 2.967595 / 4.565676 (-1.598081) | 0.090926 / 0.424275 (-0.333349) | 0.007820 / 0.007607 (0.000213) | 0.731610 / 0.226044 (0.505565) | 7.342651 / 2.268929 (5.073723) | 3.781727 / 55.444624 (-51.662897) | 3.222100 / 6.876477 (-3.654377) | 3.546145 / 2.142072 (1.404073) | 1.030500 / 4.805227 (-3.774728) | 0.226563 / 6.500664 (-6.274101) | 0.078633 / 0.075469 (0.003164) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.733677 / 1.841788 (-0.108111) | 24.650616 / 8.074308 (16.576308) | 22.033745 / 10.191392 (11.842353) | 0.211055 / 0.680424 (-0.469369) | 0.031658 / 0.534201 (-0.502543) | 0.467190 / 0.579283 (-0.112094) | 0.598303 / 0.434364 (0.163939) | 0.569318 / 0.540337 (0.028981) | 0.825984 / 1.386936 (-0.560952) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#7eef7749031232d0b29f7ca10e3fa9f997b19ef7 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006873 / 0.011353 (-0.004479) | 0.004174 / 0.011008 (-0.006835) | 0.085874 / 0.038508 (0.047366) | 0.074207 / 0.023109 (0.051098) | 0.307342 / 0.275898 (0.031444) | 0.339972 / 0.323480 (0.016493) | 0.005522 / 0.007986 (-0.002463) | 0.003576 / 0.004328 (-0.000753) | 0.065680 / 0.004250 (0.061430) | 0.056274 / 0.037052 (0.019222) | 0.313121 / 0.258489 (0.054632) | 0.364699 / 0.293841 (0.070858) | 0.031297 / 0.128546 (-0.097249) | 0.008652 / 0.075646 (-0.066994) | 0.288431 / 0.419271 (-0.130840) | 0.053081 / 0.043533 (0.009548) | 0.309076 / 0.255139 (0.053937) | 0.329251 / 0.283200 (0.046052) | 0.024840 / 0.141683 (-0.116843) | 1.484155 / 1.452155 (0.032001) | 1.598665 / 1.492716 (0.105949) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.270933 / 0.018006 (0.252927) | 0.565867 / 0.000490 (0.565377) | 0.006964 / 0.000200 (0.006764) | 0.000298 / 0.000054 (0.000244) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028393 / 0.037411 (-0.009018) | 0.081756 / 0.014526 (0.067230) | 0.095733 / 0.176557 (-0.080823) | 0.152426 / 0.737135 (-0.584710) | 0.096655 / 0.296338 (-0.199683) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.403992 / 0.215209 (0.188783) | 4.027230 / 2.077655 (1.949576) | 2.031102 / 1.504120 (0.526982) | 1.843727 / 1.541195 (0.302532) | 1.898342 / 1.468490 (0.429852) | 0.479186 / 4.584777 (-4.105591) | 3.488153 / 3.745712 (-0.257559) | 3.523953 / 5.269862 (-1.745909) | 2.078392 / 4.565676 (-2.487284) | 0.056104 / 0.424275 (-0.368171) | 0.007368 / 0.007607 (-0.000239) | 0.479630 / 0.226044 (0.253585) | 4.787400 / 2.268929 (2.518471) | 2.488268 / 55.444624 (-52.956356) | 2.229955 / 6.876477 (-4.646522) | 2.260468 / 2.142072 (0.118396) | 0.587934 / 4.805227 (-4.217294) | 0.147124 / 6.500664 (-6.353540) | 0.059954 / 0.075469 (-0.015515) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.283155 / 1.841788 (-0.558632) | 19.013574 / 8.074308 (10.939266) | 13.915188 / 10.191392 (3.723796) | 0.174101 / 0.680424 (-0.506323) | 0.018172 / 0.534201 (-0.516029) | 0.390322 / 0.579283 (-0.188961) | 0.405493 / 0.434364 (-0.028871) | 0.456914 / 0.540337 (-0.083424) | 0.635213 / 1.386936 (-0.751723) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006622 / 0.011353 (-0.004731) | 0.003997 / 0.011008 (-0.007011) | 0.064542 / 0.038508 (0.026034) | 0.074165 / 0.023109 (0.051056) | 0.392285 / 0.275898 (0.116387) | 0.423522 / 0.323480 (0.100042) | 0.006361 / 0.007986 (-0.001625) | 0.003463 / 0.004328 (-0.000866) | 0.064891 / 0.004250 (0.060641) | 0.058485 / 0.037052 (0.021433) | 0.425217 / 0.258489 (0.166728) | 0.435907 / 0.293841 (0.142066) | 0.031501 / 0.128546 (-0.097045) | 0.008575 / 0.075646 (-0.067071) | 0.072094 / 0.419271 (-0.347178) | 0.047904 / 0.043533 (0.004371) | 0.397174 / 0.255139 (0.142035) | 0.417940 / 0.283200 (0.134741) | 0.023324 / 0.141683 (-0.118358) | 1.517245 / 1.452155 (0.065090) | 1.586497 / 1.492716 (0.093781) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.268311 / 0.018006 (0.250305) | 0.561118 / 0.000490 (0.560628) | 0.004352 / 0.000200 (0.004152) | 0.000095 / 0.000054 (0.000041) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033039 / 0.037411 (-0.004373) | 0.091596 / 0.014526 (0.077071) | 0.111520 / 0.176557 (-0.065036) | 0.161755 / 0.737135 (-0.575381) | 0.107681 / 0.296338 (-0.188657) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.427170 / 0.215209 (0.211961) | 4.252648 / 2.077655 (2.174994) | 2.257623 / 1.504120 (0.753503) | 2.098446 / 1.541195 (0.557251) | 2.128544 / 1.468490 (0.660054) | 0.496639 / 4.584777 (-4.088138) | 3.593385 / 3.745712 (-0.152328) | 3.396367 / 5.269862 (-1.873494) | 2.073369 / 4.565676 (-2.492308) | 0.058386 / 0.424275 (-0.365889) | 0.007515 / 0.007607 (-0.000093) | 0.502358 / 0.226044 (0.276313) | 5.015224 / 2.268929 (2.746296) | 2.735740 / 55.444624 (-52.708885) | 2.388368 / 6.876477 (-4.488109) | 2.682857 / 2.142072 (0.540785) | 0.595003 / 4.805227 (-4.210225) | 0.135419 / 6.500664 (-6.365245) | 0.062824 / 0.075469 (-0.012645) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.367507 / 1.841788 (-0.474281) | 19.569288 / 8.074308 (11.494979) | 14.748693 / 10.191392 (4.557301) | 0.198659 / 0.680424 (-0.481765) | 0.020954 / 0.534201 (-0.513247) | 0.414858 / 0.579283 (-0.164426) | 0.421226 / 0.434364 (-0.013138) | 0.477774 / 0.540337 (-0.062563) | 0.676173 / 1.386936 (-0.710763) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#87ed467af77d87ad7e38279cf9a24c341545cbac \"CML watermark\")\n"
] | 2023-10-23T08:51:50 | 2023-10-23T09:26:42 | 2023-10-23T09:17:55 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6331",
"html_url": "https://github.com/huggingface/datasets/pull/6331",
"diff_url": "https://github.com/huggingface/datasets/pull/6331.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6331.patch",
"merged_at": "2023-10-23T09:17:55"
} | Temporarily pin fsspec < 2023.10.0 until permanent solution is found.
Hot fix #6330.
See: https://github.com/huggingface/datasets/actions/runs/6610904287/job/17953774987
```
...
ERROR tests/test_iterable_dataset.py::test_iterable_dataset_from_file - NotImplementedError: Loading a dataset cached in a LocalFileSystem is not supported.
= 373 failed, 2055 passed, 17 skipped, 8 warnings, 6 errors in 228.14s (0:03:48) =
``` | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6331/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6331/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6330 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6330/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6330/comments | https://api.github.com/repos/huggingface/datasets/issues/6330/events | https://github.com/huggingface/datasets/issues/6330 | 1,956,053,294 | I_kwDODunzps50lwEu | 6,330 | Latest fsspec==2023.10.0 issue with streaming datasets | {
"login": "ZachNagengast",
"id": 1981179,
"node_id": "MDQ6VXNlcjE5ODExNzk=",
"avatar_url": "https://avatars.githubusercontent.com/u/1981179?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/ZachNagengast",
"html_url": "https://github.com/ZachNagengast",
"followers_url": "https://api.github.com/users/ZachNagengast/followers",
"following_url": "https://api.github.com/users/ZachNagengast/following{/other_user}",
"gists_url": "https://api.github.com/users/ZachNagengast/gists{/gist_id}",
"starred_url": "https://api.github.com/users/ZachNagengast/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/ZachNagengast/subscriptions",
"organizations_url": "https://api.github.com/users/ZachNagengast/orgs",
"repos_url": "https://api.github.com/users/ZachNagengast/repos",
"events_url": "https://api.github.com/users/ZachNagengast/events{/privacy}",
"received_events_url": "https://api.github.com/users/ZachNagengast/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
}
] | [
"I also encountered a similar error below.\r\nAppreciate the team could shed some light on this issue.\r\n\r\n```\r\n---------------------------------------------------------------------------\r\nNotImplementedError Traceback (most recent call last)\r\n[/home/ubuntu/work/EveryDream2trainer/prepare_dataset.ipynb](https://vscode-remote+ssh-002dremote-002braspberry-002dg5-002e4x.vscode-resource.vscode-cdn.net/home/ubuntu/work/EveryDream2trainer/prepare_dataset.ipynb) Cell 1 line 4\r\n [1](vscode-notebook-cell://ssh-remote%2Braspberry-g5.4x/home/ubuntu/work/EveryDream2trainer/prepare_dataset.ipynb#W0sdnNjb2RlLXJlbW90ZQ%3D%3D?line=0) from datasets import load_dataset, load_dataset\r\n [3](vscode-notebook-cell://ssh-remote%2Braspberry-g5.4x/home/ubuntu/work/EveryDream2trainer/prepare_dataset.ipynb#W0sdnNjb2RlLXJlbW90ZQ%3D%3D?line=2) # ds = load_dataset(\"parquet\", data_dir=\"/home/ubuntu/work/EveryDream2trainer/datasets/monse_v1/data\")\r\n----> [4](vscode-notebook-cell://ssh-remote%2Braspberry-g5.4x/home/ubuntu/work/EveryDream2trainer/prepare_dataset.ipynb#W0sdnNjb2RlLXJlbW90ZQ%3D%3D?line=3) ds = load_dataset(\"Raspberry-ai/monse-v1\")\r\n\r\nFile [/opt/conda/envs/everydream/lib/python3.10/site-packages/datasets/load.py:1804](https://vscode-remote+ssh-002dremote-002braspberry-002dg5-002e4x.vscode-resource.vscode-cdn.net/opt/conda/envs/everydream/lib/python3.10/site-packages/datasets/load.py:1804), in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, ignore_verifications, keep_in_memory, save_infos, revision, use_auth_token, task, streaming, num_proc, storage_options, **config_kwargs)\r\n 1800 # Build dataset for splits\r\n 1801 keep_in_memory = (\r\n 1802 keep_in_memory if keep_in_memory is not None else is_small_dataset(builder_instance.info.dataset_size)\r\n 1803 )\r\n-> 1804 ds = builder_instance.as_dataset(split=split, verification_mode=verification_mode, in_memory=keep_in_memory)\r\n 1805 # Rename and cast features to match task schema\r\n 1806 if task is not None:\r\n\r\nFile [/opt/conda/envs/everydream/lib/python3.10/site-packages/datasets/builder.py:1108](https://vscode-remote+ssh-002dremote-002braspberry-002dg5-002e4x.vscode-resource.vscode-cdn.net/opt/conda/envs/everydream/lib/python3.10/site-packages/datasets/builder.py:1108), in DatasetBuilder.as_dataset(self, split, run_post_process, verification_mode, ignore_verifications, in_memory)\r\n 1106 is_local = not is_remote_filesystem(self._fs)\r\n 1107 if not is_local:\r\n-> 1108 raise NotImplementedError(f\"Loading a dataset cached in a {type(self._fs).__name__} is not supported.\")\r\n 1109 if not os.path.exists(self._output_dir):\r\n 1110 raise FileNotFoundError(\r\n 1111 f\"Dataset {self.name}: could not find data in {self._output_dir}. Please make sure to call \"\r\n 1112 \"builder.download_and_prepare(), or use \"\r\n 1113 \"datasets.load_dataset() before trying to access the Dataset object.\"\r\n 1114 )\r\n\r\nNotImplementedError: Loading a dataset cached in a LocalFileSystem is not supported.\r\n```\r\n\r\nCode to reproduce the issue:\r\n\r\n```\r\nfrom datasets import load_dataset\r\n\r\nds = load_dataset(\"Raspberry-ai/monse-v1\")\r\n```\r\n\r\n\r\nDependencies:\r\n```\r\nPackage Version\r\n------------------------- ------------\r\nabsl-py 2.0.0\r\naccelerate 0.23.0\r\naiohttp 3.8.4\r\naiosignal 1.3.1\r\nantlr4-python3-runtime 4.9.3\r\nanyio 4.0.0\r\nappdirs 1.4.4\r\nargon2-cffi 23.1.0\r\nargon2-cffi-bindings 21.2.0\r\narrow 1.3.0\r\nasttokens 2.4.0\r\nasync-lru 2.0.4\r\nasync-timeout 4.0.3\r\nattrs 23.1.0\r\nBabel 2.13.0\r\nbackcall 0.2.0\r\nbeautifulsoup4 4.12.2\r\nbitsandbytes 0.41.1\r\nbleach 6.1.0\r\nbraceexpand 0.1.7\r\ncachetools 5.3.1\r\ncertifi 2023.7.22\r\ncffi 1.16.0\r\ncharset-normalizer 3.3.1\r\nclick 8.1.7\r\ncmake 3.27.7\r\ncolorama 0.4.6\r\ncomm 0.1.4\r\ncompel 1.1.6\r\ndatasets 2.11.0\r\ndebugpy 1.8.0\r\ndecorator 5.1.1\r\ndefusedxml 0.7.1\r\ndiffusers 0.18.0\r\ndill 0.3.6\r\ndocker-pycreds 0.4.0\r\ndowg 0.3.1\r\neinops 0.7.0\r\neinops-exts 0.0.4\r\nexceptiongroup 1.1.3\r\nexecuting 2.0.0\r\nfastjsonschema 2.18.1\r\nfilelock 3.12.4\r\nfqdn 1.5.1\r\nfrozenlist 1.4.0\r\nfsspec 2023.10.0\r\nftfy 6.1.1\r\ngitdb 4.0.11\r\nGitPython 3.1.40\r\ngoogle-auth 2.23.3\r\ngoogle-auth-oauthlib 1.1.0\r\ngrpcio 1.59.0\r\nhuggingface-hub 0.18.0\r\nidna 3.4\r\nimportlib-metadata 6.8.0\r\ninflection 0.5.1\r\nipykernel 6.25.2\r\nipython 8.16.1\r\nisoduration 20.11.0\r\njedi 0.19.1\r\nJinja2 3.1.2\r\njoblib 1.3.2\r\njson5 0.9.14\r\njsonpointer 2.4\r\njsonschema 4.19.1\r\njsonschema-specifications 2023.7.1\r\njupyter_client 8.4.0\r\njupyter_core 5.4.0\r\njupyter-events 0.8.0\r\njupyter-lsp 2.2.0\r\njupyter_server 2.8.0\r\njupyter_server_terminals 0.4.4\r\njupyterlab 4.0.7\r\njupyterlab-pygments 0.2.2\r\njupyterlab_server 2.25.0\r\nlightning-utilities 0.9.0\r\nlion-pytorch 0.1.2\r\nlit 17.0.3\r\nMarkdown 3.5\r\nMarkupSafe 2.1.3\r\nmatplotlib-inline 0.1.6\r\nmistune 3.0.2\r\nmore-itertools 10.1.0\r\nmpmath 1.3.0\r\nmultidict 6.0.4\r\nmultiprocess 0.70.14\r\nmypy-extensions 1.0.0\r\nnbclient 0.8.0\r\nnbconvert 7.9.2\r\nnbformat 5.9.2\r\nnest-asyncio 1.5.8\r\nnetworkx 3.2\r\nnltk 3.8.1\r\nnotebook_shim 0.2.3\r\nnumpy 1.23.5\r\noauthlib 3.2.2\r\nomegaconf 2.2.3\r\nopen-clip-torch 2.22.0\r\nopen-flamingo 2.0.0\r\noverrides 7.4.0\r\npackaging 23.2\r\npandas 2.1.1\r\npandocfilters 1.5.0\r\nparso 0.8.3\r\npathtools 0.1.2\r\npexpect 4.8.0\r\npickleshare 0.7.5\r\nPillow 10.1.0\r\npip 23.3.1\r\nplatformdirs 3.11.0\r\nprometheus-client 0.17.1\r\nprompt-toolkit 3.0.39\r\nprotobuf 3.20.1\r\npsutil 5.9.6\r\nptyprocess 0.7.0\r\npure-eval 0.2.2\r\npyarrow 13.0.0\r\npyasn1 0.5.0\r\npyasn1-modules 0.3.0\r\npycparser 2.21\r\npyDeprecate 0.3.2\r\nPygments 2.16.1\r\npynvml 11.4.1\r\npyparsing 3.1.1\r\npyre-extensions 0.0.29\r\npython-dateutil 2.8.2\r\npython-json-logger 2.0.7\r\npytorch-lightning 1.6.5\r\npytz 2023.3.post1\r\nPyYAML 6.0.1\r\npyzmq 25.1.1\r\nreferencing 0.30.2\r\nregex 2023.10.3\r\nrequests 2.31.0\r\nrequests-oauthlib 1.3.1\r\nresponses 0.18.0\r\nrfc3339-validator 0.1.4\r\nrfc3986-validator 0.1.1\r\nrpds-py 0.10.6\r\nrsa 4.9\r\nsafetensors 0.4.0\r\nscipy 1.11.3\r\nSend2Trash 1.8.2\r\nsentencepiece 0.1.98\r\nsentry-sdk 1.32.0\r\nsetproctitle 1.3.3\r\nsetuptools 68.2.2\r\nsix 1.16.0\r\nsmmap 5.0.1\r\nsniffio 1.3.0\r\nsoupsieve 2.5\r\nstack-data 0.6.3\r\nsympy 1.12\r\ntensorboard 2.15.0\r\ntensorboard-data-server 0.7.1\r\nterminado 0.17.1\r\ntimm 0.9.8\r\ntinycss2 1.2.1\r\ntokenizers 0.13.3\r\ntomli 2.0.1\r\ntorch 2.0.1+cu118\r\ntorchmetrics 1.2.0\r\ntorchvision 0.15.2+cu118\r\ntornado 6.3.3\r\ntqdm 4.66.1\r\ntraitlets 5.11.2\r\ntransformers 4.29.2\r\ntriton 2.0.0\r\ntypes-python-dateutil 2.8.19.14\r\ntyping_extensions 4.8.0\r\ntyping-inspect 0.9.0\r\ntzdata 2023.3\r\nuri-template 1.3.0\r\nurllib3 2.0.7\r\nwandb 0.15.12\r\nwcwidth 0.2.8\r\nwebcolors 1.13\r\nwebdataset 0.2.62\r\nwebencodings 0.5.1\r\nwebsocket-client 1.6.4\r\nWerkzeug 3.0.0\r\nwheel 0.41.2\r\nxformers 0.0.20\r\nxxhash 3.4.1\r\nyarl 1.9.2\r\nzipp 3.17.0\r\n```",
"@humpydonkey FWIW setting fsspec down to 2023.9.2 fixed the issue\r\n\r\n`pip install fsspec==2023.9.2`",
"got it, thanks @ZachNagengast ",
"Thanks for reporting and for the investigation, @ZachNagengast! :hugs: \r\n\r\nWe are investigating the root cause of the issue. In the meantime, we are going to pin fsspec < 2023.10.0. ",
"https://stackoverflow.com/questions/77433096/notimplementederror-loading-a-dataset-cached-in-a-localfilesystem-is-not-suppor/77433141#77433141",
"You can also update `datasets`:\r\n\r\n```\r\npip install -U datasets\r\n```\r\n\r\nIt will also update `fsspec` to use the right version"
] | 2023-10-22T20:57:10 | 2023-11-07T10:02:14 | 2023-10-23T09:17:56 | CONTRIBUTOR | null | null | null | ### Describe the bug
Loading a streaming dataset with this version of fsspec fails with the following error:
`NotImplementedError: Loading a streaming dataset cached in a LocalFileSystem is not supported yet.`
I suspect the issue is with this PR
https://github.com/fsspec/filesystem_spec/pull/1381
### Steps to reproduce the bug
1. Upgrade fsspec to version `2023.10.0`
2. Attempt to load a streaming dataset e.g. `load_dataset("laion/gpt4v-emotion-dataset", split="train", streaming=True)`
3. Observe the following exception:
```
File "/opt/hostedtoolcache/Python/3.11.6/x64/lib/python3.11/site-packages/datasets/load.py", line 2146, in load_dataset
return builder_instance.as_streaming_dataset(split=split)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/opt/hostedtoolcache/Python/3.11.6/x64/lib/python3.11/site-packages/datasets/builder.py", line 1318, in as_streaming_dataset
raise NotImplementedError(
NotImplementedError: Loading a streaming dataset cached in a LocalFileSystem is not supported yet.
```
### Expected behavior
Should stream the dataset as normal.
### Environment info
datasets@main
fsspec==2023.10.0 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6330/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6330/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/6329 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6329/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6329/comments | https://api.github.com/repos/huggingface/datasets/issues/6329/events | https://github.com/huggingface/datasets/issues/6329 | 1,955,858,020 | I_kwDODunzps50lAZk | 6,329 | شبکه های متن به گفتار ابتدا متن داده شده را به بازنمایی میانی | {
"login": "shabnam706",
"id": 147399213,
"node_id": "U_kgDOCMkiLQ",
"avatar_url": "https://avatars.githubusercontent.com/u/147399213?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/shabnam706",
"html_url": "https://github.com/shabnam706",
"followers_url": "https://api.github.com/users/shabnam706/followers",
"following_url": "https://api.github.com/users/shabnam706/following{/other_user}",
"gists_url": "https://api.github.com/users/shabnam706/gists{/gist_id}",
"starred_url": "https://api.github.com/users/shabnam706/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/shabnam706/subscriptions",
"organizations_url": "https://api.github.com/users/shabnam706/orgs",
"repos_url": "https://api.github.com/users/shabnam706/repos",
"events_url": "https://api.github.com/users/shabnam706/events{/privacy}",
"received_events_url": "https://api.github.com/users/shabnam706/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | [] | 2023-10-22T11:07:46 | 2023-10-23T09:22:58 | 2023-10-23T09:22:58 | NONE | null | null | null | شبکه های متن به گفتار ابتدا متن داده شده را به بازنمایی میانی
| {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6329/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6329/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/6328 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6328/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6328/comments | https://api.github.com/repos/huggingface/datasets/issues/6328/events | https://github.com/huggingface/datasets/issues/6328 | 1,955,857,904 | I_kwDODunzps50lAXw | 6,328 | شبکه های متن به گفتار ابتدا متن داده شده را به بازنمایی میانی | {
"login": "shabnam706",
"id": 147399213,
"node_id": "U_kgDOCMkiLQ",
"avatar_url": "https://avatars.githubusercontent.com/u/147399213?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/shabnam706",
"html_url": "https://github.com/shabnam706",
"followers_url": "https://api.github.com/users/shabnam706/followers",
"following_url": "https://api.github.com/users/shabnam706/following{/other_user}",
"gists_url": "https://api.github.com/users/shabnam706/gists{/gist_id}",
"starred_url": "https://api.github.com/users/shabnam706/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/shabnam706/subscriptions",
"organizations_url": "https://api.github.com/users/shabnam706/orgs",
"repos_url": "https://api.github.com/users/shabnam706/repos",
"events_url": "https://api.github.com/users/shabnam706/events{/privacy}",
"received_events_url": "https://api.github.com/users/shabnam706/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | [
"شبکه های متن به گفتار ابتدا متن داده شده را به بازنمایی میانی"
] | 2023-10-22T11:07:21 | 2023-10-23T09:22:38 | 2023-10-23T09:22:38 | NONE | null | null | null | null | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6328/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6328/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/6327 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6327/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6327/comments | https://api.github.com/repos/huggingface/datasets/issues/6327/events | https://github.com/huggingface/datasets/issues/6327 | 1,955,470,755 | I_kwDODunzps50jh2j | 6,327 | FileNotFoundError when trying to load the downloaded dataset with `load_dataset(..., streaming=True)` | {
"login": "yzhangcs",
"id": 18402347,
"node_id": "MDQ6VXNlcjE4NDAyMzQ3",
"avatar_url": "https://avatars.githubusercontent.com/u/18402347?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/yzhangcs",
"html_url": "https://github.com/yzhangcs",
"followers_url": "https://api.github.com/users/yzhangcs/followers",
"following_url": "https://api.github.com/users/yzhangcs/following{/other_user}",
"gists_url": "https://api.github.com/users/yzhangcs/gists{/gist_id}",
"starred_url": "https://api.github.com/users/yzhangcs/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/yzhangcs/subscriptions",
"organizations_url": "https://api.github.com/users/yzhangcs/orgs",
"repos_url": "https://api.github.com/users/yzhangcs/repos",
"events_url": "https://api.github.com/users/yzhangcs/events{/privacy}",
"received_events_url": "https://api.github.com/users/yzhangcs/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | [
"You can clone the `togethercomputer/RedPajama-Data-1T-Sample` repo and load the dataset with `load_dataset(\"path/to/cloned_repo\")` to use it offline.",
"@mariosasko Thank you for your kind reply! I'll try it as a workaround.\r\nDoes that mean that currently it's not supported to simply load with a short name?",
"It is, but manually downloading repo files to the cache can easily lead to failure (the HF cache is not meant to be modified by a user besides deleting the files 🙂), as in your case. Hence, the clone + `load_dataset(\"path/to/cloned_repo\")` workflow should be used instead."
] | 2023-10-21T12:27:03 | 2023-10-23T18:50:07 | 2023-10-23T18:50:07 | NONE | null | null | null | ### Describe the bug
Hi, I'm trying to load the dataset `togethercomputer/RedPajama-Data-1T-Sample` with `load_dataset` in streaming mode, i.e., `streaming=True`, but `FileNotFoundError` occurs.
### Steps to reproduce the bug
I've downloaded the dataset and save it to the cache dir in advance. My hope is loading the files in offline environment and without taking too much hours to prepross the entire data before running into the training process.
So I try the following code to load the files streamingly
```py
dataset = load_dataset('togethercomputer/RedPajama-Data-1T-Sample', streaming=True)
print(next(iter(dataset['train'])))
```
Sadly, it raises the following:
```
FileNotFoundError: [Errno 2] No such file or directory: 'CURRENT_CODE_PATH/arxiv_sample.jsonl'
```
I've noticed that the dataset can be properly found in the begining
```
Using the latest cached version of the module from /root/.cache/huggingface/modules/datasets_modules/datasets/togethercomputer--RedPajama-Data-1T-Sample/6ea3bc8ec2e84ec6d2df1930942e9028ace8c5b9d9143823cf911c50bbd92039 (last modified on Sat Oct 21 20:12:57 2023) since it couldn't be found locally at togethercomputer/RedPajama-Data-1T-Sample., or remotely on the Hugging Face Hub.
```
But it seems that the paths couldn't be properly parsed when loading iteratively.
How should I fix this error. I've tried specifying `data_files` or `data_dir` as `.../arxiv_sample.jsonl` but none of them works.
Thanks.
### Expected behavior
Properly load the dataset.
### Environment info
`datasets==2.14.5` | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6327/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6327/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/6326 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6326/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6326/comments | https://api.github.com/repos/huggingface/datasets/issues/6326/events | https://github.com/huggingface/datasets/pull/6326 | 1,955,420,536 | PR_kwDODunzps5dcSRa | 6,326 | Create battery_analysis.py | {
"login": "vinitkm",
"id": 130216732,
"node_id": "U_kgDOB8LzHA",
"avatar_url": "https://avatars.githubusercontent.com/u/130216732?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/vinitkm",
"html_url": "https://github.com/vinitkm",
"followers_url": "https://api.github.com/users/vinitkm/followers",
"following_url": "https://api.github.com/users/vinitkm/following{/other_user}",
"gists_url": "https://api.github.com/users/vinitkm/gists{/gist_id}",
"starred_url": "https://api.github.com/users/vinitkm/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/vinitkm/subscriptions",
"organizations_url": "https://api.github.com/users/vinitkm/orgs",
"repos_url": "https://api.github.com/users/vinitkm/repos",
"events_url": "https://api.github.com/users/vinitkm/events{/privacy}",
"received_events_url": "https://api.github.com/users/vinitkm/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | [] | 2023-10-21T10:07:48 | 2023-10-23T14:56:20 | 2023-10-23T14:56:20 | NONE | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6326",
"html_url": "https://github.com/huggingface/datasets/pull/6326",
"diff_url": "https://github.com/huggingface/datasets/pull/6326.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6326.patch",
"merged_at": null
} | null | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6326/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6326/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6325 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6325/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6325/comments | https://api.github.com/repos/huggingface/datasets/issues/6325/events | https://github.com/huggingface/datasets/pull/6325 | 1,955,420,178 | PR_kwDODunzps5dcSM3 | 6,325 | Create battery_analysis.py | {
"login": "vinitkm",
"id": 130216732,
"node_id": "U_kgDOB8LzHA",
"avatar_url": "https://avatars.githubusercontent.com/u/130216732?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/vinitkm",
"html_url": "https://github.com/vinitkm",
"followers_url": "https://api.github.com/users/vinitkm/followers",
"following_url": "https://api.github.com/users/vinitkm/following{/other_user}",
"gists_url": "https://api.github.com/users/vinitkm/gists{/gist_id}",
"starred_url": "https://api.github.com/users/vinitkm/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/vinitkm/subscriptions",
"organizations_url": "https://api.github.com/users/vinitkm/orgs",
"repos_url": "https://api.github.com/users/vinitkm/repos",
"events_url": "https://api.github.com/users/vinitkm/events{/privacy}",
"received_events_url": "https://api.github.com/users/vinitkm/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | [] | 2023-10-21T10:06:37 | 2023-10-23T14:55:58 | 2023-10-23T14:55:58 | NONE | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6325",
"html_url": "https://github.com/huggingface/datasets/pull/6325",
"diff_url": "https://github.com/huggingface/datasets/pull/6325.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6325.patch",
"merged_at": null
} | null | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6325/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6325/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6324 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6324/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6324/comments | https://api.github.com/repos/huggingface/datasets/issues/6324/events | https://github.com/huggingface/datasets/issues/6324 | 1,955,126,687 | I_kwDODunzps50iN2f | 6,324 | Conversion to Arrow fails due to wrong type heuristic | {
"login": "jphme",
"id": 2862336,
"node_id": "MDQ6VXNlcjI4NjIzMzY=",
"avatar_url": "https://avatars.githubusercontent.com/u/2862336?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/jphme",
"html_url": "https://github.com/jphme",
"followers_url": "https://api.github.com/users/jphme/followers",
"following_url": "https://api.github.com/users/jphme/following{/other_user}",
"gists_url": "https://api.github.com/users/jphme/gists{/gist_id}",
"starred_url": "https://api.github.com/users/jphme/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/jphme/subscriptions",
"organizations_url": "https://api.github.com/users/jphme/orgs",
"repos_url": "https://api.github.com/users/jphme/repos",
"events_url": "https://api.github.com/users/jphme/events{/privacy}",
"received_events_url": "https://api.github.com/users/jphme/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | [
"Unlike Pandas, Arrow is strict with types, so converting the problematic strings to ints (or ints to strings) to ensure all the values have the same type is the only fix. \r\n\r\nJSON support has been requested in Arrow [here](https://github.com/apache/arrow/issues/32538), but I don't expect this to be implemented soon. \r\n\r\nAlso, this type could be represented with the Arrow Union type. However, due to low usage, the Union type has limited support in the Arrow ecosystem (e.g., IIRC Parquet still does not support it). So, we should probably wait a bit more before adding support for it in `datasets`",
"> Unlike Pandas, Arrow is strict with types, so converting the problematic strings to ints (or ints to strings) to ensure all the values have the same type is the only fix.\r\n> \r\n> JSON support has been requested in Arrow [here](https://github.com/apache/arrow/issues/32538), but I don't expect this to be implemented soon.\r\n> \r\n> Also, this type could be represented with the Arrow Union type. However, due to low usage, the Union type has limited support in the Arrow ecosystem (e.g., IIRC Parquet still does not support it). So, we should probably wait a bit more before adding support for it in `datasets`\r\n\r\nOk many thanks, I was able to mitigate the problem by manually checking and converting all problematic fields now."
] | 2023-10-20T23:20:58 | 2023-10-23T20:52:57 | 2023-10-23T20:52:57 | NONE | null | null | null | ### Describe the bug
I have a list of dictionaries with valid/JSON-serializable values.
One key is the denominator for a paragraph. In 99.9% of cases its a number, but there are some occurences of '1a', '2b' and so on.
If trying to convert this list to a dataset with `Dataset.from_list()`, I always get
`ArrowInvalid: Could not convert '1' with type str: tried to convert to int64`, presumably because pyarrow tries to convert the keys to integers.
Is there any way to circumvent this and fix dtypes? I didn't find anything in the documentation.
### Steps to reproduce the bug
* create a list of dicts with one key being a string of an integer for the first few thousand occurences and try to convert to dataset.
### Expected behavior
There shouldn't be an error (e.g. some flag to turn off automatic str to numeric conversion).
### Environment info
- `datasets` version: 2.14.5
- Platform: Linux-5.15.0-84-generic-x86_64-with-glibc2.35
- Python version: 3.9.18
- Huggingface_hub version: 0.17.3
- PyArrow version: 13.0.0
- Pandas version: 2.1.1 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6324/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6324/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/6323 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6323/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6323/comments | https://api.github.com/repos/huggingface/datasets/issues/6323/events | https://github.com/huggingface/datasets/issues/6323 | 1,954,245,980 | I_kwDODunzps50e21c | 6,323 | Loading dataset from large GCS bucket very slow since 2.14 | {
"login": "jbcdnr",
"id": 6209990,
"node_id": "MDQ6VXNlcjYyMDk5OTA=",
"avatar_url": "https://avatars.githubusercontent.com/u/6209990?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/jbcdnr",
"html_url": "https://github.com/jbcdnr",
"followers_url": "https://api.github.com/users/jbcdnr/followers",
"following_url": "https://api.github.com/users/jbcdnr/following{/other_user}",
"gists_url": "https://api.github.com/users/jbcdnr/gists{/gist_id}",
"starred_url": "https://api.github.com/users/jbcdnr/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/jbcdnr/subscriptions",
"organizations_url": "https://api.github.com/users/jbcdnr/orgs",
"repos_url": "https://api.github.com/users/jbcdnr/repos",
"events_url": "https://api.github.com/users/jbcdnr/events{/privacy}",
"received_events_url": "https://api.github.com/users/jbcdnr/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | [] | 2023-10-20T12:59:55 | 2023-10-20T12:59:55 | null | NONE | null | null | null | ### Describe the bug
Since updating to >2.14 we have very slow access to our parquet files on GCS when loading a dataset (>30 min vs 3s). Our GCS bucket has many objects and resolving globs is very slow. I could track down the problem to this change:
https://github.com/huggingface/datasets/blame/bade7af74437347a760830466eb74f7a8ce0d799/src/datasets/data_files.py#L348
The underlying implementation with gcsfs is really slow. Could you go back to the old way if we are simply giving the parquet files and no glob pattern?
Thank you.
### Steps to reproduce the bug
Load a dataset from a GCS bucket that has many files.
### Expected behavior
Used to be fast (3s) in 2.13
### Environment info
datasets==2.14.5 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6323/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6323/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/6322 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6322/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6322/comments | https://api.github.com/repos/huggingface/datasets/issues/6322/events | https://github.com/huggingface/datasets/pull/6322 | 1,952,947,461 | PR_kwDODunzps5dT5vG | 6,322 | Fix regex `get_data_files` formatting for base paths | {
"login": "ZachNagengast",
"id": 1981179,
"node_id": "MDQ6VXNlcjE5ODExNzk=",
"avatar_url": "https://avatars.githubusercontent.com/u/1981179?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/ZachNagengast",
"html_url": "https://github.com/ZachNagengast",
"followers_url": "https://api.github.com/users/ZachNagengast/followers",
"following_url": "https://api.github.com/users/ZachNagengast/following{/other_user}",
"gists_url": "https://api.github.com/users/ZachNagengast/gists{/gist_id}",
"starred_url": "https://api.github.com/users/ZachNagengast/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/ZachNagengast/subscriptions",
"organizations_url": "https://api.github.com/users/ZachNagengast/orgs",
"repos_url": "https://api.github.com/users/ZachNagengast/repos",
"events_url": "https://api.github.com/users/ZachNagengast/events{/privacy}",
"received_events_url": "https://api.github.com/users/ZachNagengast/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | [
"_The documentation is not available anymore as the PR was closed or merged._",
"> The reason why I used the the glob_pattern_to_regex in the entire pattern is because otherwise I got an error for Windows local paths: a base_path like 'C:\\\\Users\\\\runneradmin... made the function string_to_dict raise re.error: incomplete escape \\U at position 2\r\n\r\nWhat is the expected inputs and outputs for the windows `base_path`\r\n\r\n> That issue was fixed once we pass the base_path as POSIX.\r\n\r\nI'm not sure what you meant by that, are there still changes needed?\r\n",
"We took the liberty of continuing this PR to include it in today's patch release :)\r\nI hope you don't mind",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007109 / 0.011353 (-0.004244) | 0.004209 / 0.011008 (-0.006799) | 0.097401 / 0.038508 (0.058892) | 0.079532 / 0.023109 (0.056423) | 0.341300 / 0.275898 (0.065402) | 0.402165 / 0.323480 (0.078685) | 0.005838 / 0.007986 (-0.002148) | 0.003310 / 0.004328 (-0.001018) | 0.072804 / 0.004250 (0.068553) | 0.059418 / 0.037052 (0.022366) | 0.339277 / 0.258489 (0.080788) | 0.418495 / 0.293841 (0.124654) | 0.035975 / 0.128546 (-0.092571) | 0.008101 / 0.075646 (-0.067546) | 0.339236 / 0.419271 (-0.080035) | 0.059326 / 0.043533 (0.015794) | 0.326880 / 0.255139 (0.071741) | 0.393614 / 0.283200 (0.110414) | 0.025830 / 0.141683 (-0.115852) | 1.657726 / 1.452155 (0.205571) | 1.817250 / 1.492716 (0.324534) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.256015 / 0.018006 (0.238008) | 0.482447 / 0.000490 (0.481957) | 0.012166 / 0.000200 (0.011966) | 0.000343 / 0.000054 (0.000288) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029898 / 0.037411 (-0.007514) | 0.088218 / 0.014526 (0.073692) | 0.102353 / 0.176557 (-0.074203) | 0.165863 / 0.737135 (-0.571272) | 0.100342 / 0.296338 (-0.195996) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.429362 / 0.215209 (0.214153) | 4.147327 / 2.077655 (2.069672) | 2.014653 / 1.504120 (0.510533) | 1.824394 / 1.541195 (0.283199) | 1.936408 / 1.468490 (0.467917) | 0.542960 / 4.584777 (-4.041817) | 3.917215 / 3.745712 (0.171503) | 3.714825 / 5.269862 (-1.555036) | 2.180279 / 4.565676 (-2.385398) | 0.057808 / 0.424275 (-0.366467) | 0.008426 / 0.007607 (0.000819) | 0.472372 / 0.226044 (0.246327) | 4.879656 / 2.268929 (2.610728) | 2.602729 / 55.444624 (-52.841896) | 2.142593 / 6.876477 (-4.733884) | 2.206070 / 2.142072 (0.063997) | 0.635591 / 4.805227 (-4.169636) | 0.140928 / 6.500664 (-6.359736) | 0.065119 / 0.075469 (-0.010350) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.455909 / 1.841788 (-0.385879) | 20.803592 / 8.074308 (12.729284) | 14.788713 / 10.191392 (4.597321) | 0.170546 / 0.680424 (-0.509878) | 0.021189 / 0.534201 (-0.513012) | 0.432368 / 0.579283 (-0.146915) | 0.444664 / 0.434364 (0.010300) | 0.517744 / 0.540337 (-0.022593) | 0.699265 / 1.386936 (-0.687671) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007592 / 0.011353 (-0.003760) | 0.004045 / 0.011008 (-0.006964) | 0.073434 / 0.038508 (0.034926) | 0.076962 / 0.023109 (0.053853) | 0.468873 / 0.275898 (0.192975) | 0.479968 / 0.323480 (0.156488) | 0.006270 / 0.007986 (-0.001716) | 0.003652 / 0.004328 (-0.000677) | 0.069893 / 0.004250 (0.065643) | 0.061902 / 0.037052 (0.024850) | 0.443379 / 0.258489 (0.184890) | 0.492627 / 0.293841 (0.198786) | 0.035967 / 0.128546 (-0.092579) | 0.009276 / 0.075646 (-0.066370) | 0.083060 / 0.419271 (-0.336212) | 0.050870 / 0.043533 (0.007337) | 0.438246 / 0.255139 (0.183107) | 0.472074 / 0.283200 (0.188874) | 0.023724 / 0.141683 (-0.117959) | 1.677178 / 1.452155 (0.225023) | 1.732273 / 1.492716 (0.239557) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.244693 / 0.018006 (0.226687) | 0.470067 / 0.000490 (0.469577) | 0.005574 / 0.000200 (0.005374) | 0.000105 / 0.000054 (0.000051) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.036242 / 0.037411 (-0.001169) | 0.099166 / 0.014526 (0.084641) | 0.116785 / 0.176557 (-0.059772) | 0.174986 / 0.737135 (-0.562149) | 0.118130 / 0.296338 (-0.178209) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.475907 / 0.215209 (0.260698) | 4.708125 / 2.077655 (2.630470) | 2.600855 / 1.504120 (1.096735) | 2.446498 / 1.541195 (0.905303) | 2.538786 / 1.468490 (1.070296) | 0.566787 / 4.584777 (-4.017990) | 4.066187 / 3.745712 (0.320475) | 3.743632 / 5.269862 (-1.526229) | 2.337737 / 4.565676 (-2.227939) | 0.068402 / 0.424275 (-0.355873) | 0.008674 / 0.007607 (0.001067) | 0.593428 / 0.226044 (0.367384) | 5.840687 / 2.268929 (3.571759) | 3.194937 / 55.444624 (-52.249688) | 2.899033 / 6.876477 (-3.977444) | 2.977870 / 2.142072 (0.835797) | 0.683673 / 4.805227 (-4.121554) | 0.154933 / 6.500664 (-6.345731) | 0.071619 / 0.075469 (-0.003850) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.501895 / 1.841788 (-0.339893) | 21.709792 / 8.074308 (13.635484) | 15.679556 / 10.191392 (5.488164) | 0.188028 / 0.680424 (-0.492396) | 0.022555 / 0.534201 (-0.511646) | 0.439840 / 0.579283 (-0.139443) | 0.452140 / 0.434364 (0.017776) | 0.526421 / 0.540337 (-0.013916) | 0.731692 / 1.386936 (-0.655244) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#02ecc84a2e2ed664f574ccbcab0e525a7377a01d \"CML watermark\")\n"
] | 2023-10-19T19:45:10 | 2023-10-23T14:40:45 | 2023-10-23T14:31:21 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6322",
"html_url": "https://github.com/huggingface/datasets/pull/6322",
"diff_url": "https://github.com/huggingface/datasets/pull/6322.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6322.patch",
"merged_at": "2023-10-23T14:31:21"
} | With this pr https://github.com/huggingface/datasets/pull/6309, it is formatting the entire base path into regex, which results in the undesired formatting error `doesn't match the pattern` because of the line in `glob_pattern_to_regex`: `.replace("//", "/")`:
- Input: `hf://datasets/...`
- Output: `hf:/datasets/...`
This fix will only convert the `split_pattern` to regex and keep the `base_path` unchanged.
cc @albertvillanova hopefully this still works with your implementation | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6322/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6322/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6321 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6321/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6321/comments | https://api.github.com/repos/huggingface/datasets/issues/6321/events | https://github.com/huggingface/datasets/pull/6321 | 1,952,643,483 | PR_kwDODunzps5dS3Mc | 6,321 | Fix typos | {
"login": "python273",
"id": 3097956,
"node_id": "MDQ6VXNlcjMwOTc5NTY=",
"avatar_url": "https://avatars.githubusercontent.com/u/3097956?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/python273",
"html_url": "https://github.com/python273",
"followers_url": "https://api.github.com/users/python273/followers",
"following_url": "https://api.github.com/users/python273/following{/other_user}",
"gists_url": "https://api.github.com/users/python273/gists{/gist_id}",
"starred_url": "https://api.github.com/users/python273/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/python273/subscriptions",
"organizations_url": "https://api.github.com/users/python273/orgs",
"repos_url": "https://api.github.com/users/python273/repos",
"events_url": "https://api.github.com/users/python273/events{/privacy}",
"received_events_url": "https://api.github.com/users/python273/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007809 / 0.011353 (-0.003544) | 0.004573 / 0.011008 (-0.006435) | 0.101201 / 0.038508 (0.062693) | 0.089703 / 0.023109 (0.066594) | 0.416502 / 0.275898 (0.140604) | 0.463352 / 0.323480 (0.139872) | 0.006101 / 0.007986 (-0.001885) | 0.003783 / 0.004328 (-0.000545) | 0.076531 / 0.004250 (0.072281) | 0.064017 / 0.037052 (0.026964) | 0.422453 / 0.258489 (0.163964) | 0.485926 / 0.293841 (0.192085) | 0.036797 / 0.128546 (-0.091749) | 0.010172 / 0.075646 (-0.065474) | 0.344442 / 0.419271 (-0.074829) | 0.062240 / 0.043533 (0.018707) | 0.422685 / 0.255139 (0.167546) | 0.451457 / 0.283200 (0.168257) | 0.027831 / 0.141683 (-0.113852) | 1.737187 / 1.452155 (0.285033) | 1.847631 / 1.492716 (0.354915) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.270336 / 0.018006 (0.252330) | 0.500540 / 0.000490 (0.500050) | 0.017042 / 0.000200 (0.016842) | 0.000704 / 0.000054 (0.000650) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033450 / 0.037411 (-0.003962) | 0.100314 / 0.014526 (0.085788) | 0.117216 / 0.176557 (-0.059340) | 0.182352 / 0.737135 (-0.554784) | 0.114903 / 0.296338 (-0.181436) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.458562 / 0.215209 (0.243353) | 4.570492 / 2.077655 (2.492837) | 2.230286 / 1.504120 (0.726167) | 2.032229 / 1.541195 (0.491034) | 2.130431 / 1.468490 (0.661941) | 0.563254 / 4.584777 (-4.021523) | 4.108455 / 3.745712 (0.362743) | 3.994059 / 5.269862 (-1.275802) | 2.424589 / 4.565676 (-2.141087) | 0.067534 / 0.424275 (-0.356741) | 0.008774 / 0.007607 (0.001167) | 0.546356 / 0.226044 (0.320312) | 5.527772 / 2.268929 (3.258843) | 2.934410 / 55.444624 (-52.510215) | 2.536871 / 6.876477 (-4.339605) | 2.598704 / 2.142072 (0.456632) | 0.676721 / 4.805227 (-4.128506) | 0.155904 / 6.500664 (-6.344760) | 0.073274 / 0.075469 (-0.002195) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.559170 / 1.841788 (-0.282618) | 23.228524 / 8.074308 (15.154216) | 16.743246 / 10.191392 (6.551854) | 0.184113 / 0.680424 (-0.496310) | 0.021804 / 0.534201 (-0.512397) | 0.466158 / 0.579283 (-0.113125) | 0.539911 / 0.434364 (0.105547) | 0.544377 / 0.540337 (0.004040) | 0.765779 / 1.386936 (-0.621157) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008249 / 0.011353 (-0.003104) | 0.004734 / 0.011008 (-0.006275) | 0.077083 / 0.038508 (0.038575) | 0.096959 / 0.023109 (0.073850) | 0.497501 / 0.275898 (0.221603) | 0.530687 / 0.323480 (0.207207) | 0.006379 / 0.007986 (-0.001607) | 0.003899 / 0.004328 (-0.000430) | 0.076165 / 0.004250 (0.071915) | 0.069406 / 0.037052 (0.032354) | 0.515847 / 0.258489 (0.257358) | 0.540639 / 0.293841 (0.246798) | 0.038334 / 0.128546 (-0.090213) | 0.010112 / 0.075646 (-0.065534) | 0.084918 / 0.419271 (-0.334353) | 0.056866 / 0.043533 (0.013333) | 0.495555 / 0.255139 (0.240416) | 0.518988 / 0.283200 (0.235789) | 0.028556 / 0.141683 (-0.113127) | 1.799320 / 1.452155 (0.347165) | 1.874647 / 1.492716 (0.381931) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.264283 / 0.018006 (0.246277) | 0.510278 / 0.000490 (0.509788) | 0.015219 / 0.000200 (0.015019) | 0.000160 / 0.000054 (0.000105) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.038462 / 0.037411 (0.001051) | 0.115420 / 0.014526 (0.100894) | 0.124250 / 0.176557 (-0.052306) | 0.187724 / 0.737135 (-0.549411) | 0.126674 / 0.296338 (-0.169664) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.499345 / 0.215209 (0.284136) | 4.983924 / 2.077655 (2.906269) | 2.705099 / 1.504120 (1.200980) | 2.516344 / 1.541195 (0.975149) | 2.621103 / 1.468490 (1.152613) | 0.583254 / 4.584777 (-4.001523) | 4.231215 / 3.745712 (0.485503) | 4.028326 / 5.269862 (-1.241536) | 2.459171 / 4.565676 (-2.106505) | 0.069194 / 0.424275 (-0.355081) | 0.008850 / 0.007607 (0.001243) | 0.593878 / 0.226044 (0.367834) | 5.926478 / 2.268929 (3.657549) | 3.287435 / 55.444624 (-52.157189) | 2.902104 / 6.876477 (-3.974372) | 3.151307 / 2.142072 (1.009234) | 0.696922 / 4.805227 (-4.108306) | 0.161140 / 6.500664 (-6.339524) | 0.073728 / 0.075469 (-0.001741) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.636456 / 1.841788 (-0.205331) | 23.884606 / 8.074308 (15.810298) | 17.180875 / 10.191392 (6.989483) | 0.176782 / 0.680424 (-0.503642) | 0.023731 / 0.534201 (-0.510470) | 0.475191 / 0.579283 (-0.104092) | 0.506603 / 0.434364 (0.072239) | 0.571976 / 0.540337 (0.031638) | 0.826935 / 1.386936 (-0.560002) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#2b19f6b30f49e09b0d1f0c4a38b10d76f35ac483 \"CML watermark\")\n"
] | 2023-10-19T16:24:35 | 2023-10-19T17:18:00 | 2023-10-19T17:07:35 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6321",
"html_url": "https://github.com/huggingface/datasets/pull/6321",
"diff_url": "https://github.com/huggingface/datasets/pull/6321.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6321.patch",
"merged_at": "2023-10-19T17:07:35"
} | null | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6321/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6321/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6320 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6320/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6320/comments | https://api.github.com/repos/huggingface/datasets/issues/6320/events | https://github.com/huggingface/datasets/issues/6320 | 1,952,618,316 | I_kwDODunzps50YpdM | 6,320 | Dataset slice splits can't load training and validation at the same time | {
"login": "timlac",
"id": 32488097,
"node_id": "MDQ6VXNlcjMyNDg4MDk3",
"avatar_url": "https://avatars.githubusercontent.com/u/32488097?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/timlac",
"html_url": "https://github.com/timlac",
"followers_url": "https://api.github.com/users/timlac/followers",
"following_url": "https://api.github.com/users/timlac/following{/other_user}",
"gists_url": "https://api.github.com/users/timlac/gists{/gist_id}",
"starred_url": "https://api.github.com/users/timlac/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/timlac/subscriptions",
"organizations_url": "https://api.github.com/users/timlac/orgs",
"repos_url": "https://api.github.com/users/timlac/repos",
"events_url": "https://api.github.com/users/timlac/events{/privacy}",
"received_events_url": "https://api.github.com/users/timlac/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | [
"The expression \"train+test\" concatenates the splits.\r\n\r\nThe individual splits as separate datasets can be obtained as follows:\r\n```python\r\ntrain_ds, test_ds = load_dataset(\"<dataset_name>\", split=[\"train\", \"test\"])\r\ntrain_10pct_ds, test_10pct_ds = load_dataset(\"<dataset_name>\", split=[\"train[:10%]\", \"test[:%10]\"])\r\n```"
] | 2023-10-19T16:09:22 | 2023-11-30T16:21:15 | 2023-11-30T16:21:15 | NONE | null | null | null | ### Describe the bug
According to the [documentation](https://huggingface.co./docs/datasets/v2.14.5/loading#slice-splits) is should be possible to run the following command:
`train_test_ds = datasets.load_dataset("bookcorpus", split="train+test")`
to load the train and test sets from the dataset.
However executing the equivalent code:
`speech_commands_v1 = load_dataset("superb", "ks", split="train+test")`
only yields the following output:
> Dataset({
> features: ['file', 'audio', 'label'],
> num_rows: 54175
> })
Where loading the dataset without the split argument yields:
> DatasetDict({
> train: Dataset({
> features: ['file', 'audio', 'label'],
> num_rows: 51094
> })
> validation: Dataset({
> features: ['file', 'audio', 'label'],
> num_rows: 6798
> })
> test: Dataset({
> features: ['file', 'audio', 'label'],
> num_rows: 3081
> })
> })
Thus, the API seems to be broken in this regard.
This is a bit annoying since I want to be able to use the split argument with `split="train[:10%]+test[:10%]"` to have smaller dataset to work with when validating my model is working correctly.
### Steps to reproduce the bug
`speech_commands_v1 = load_dataset("superb", "ks", split="train+test")`
### Expected behavior
> DatasetDict({
> train: Dataset({
> features: ['file', 'audio', 'label'],
> num_rows: 51094
> })
> test: Dataset({
> features: ['file', 'audio', 'label'],
> num_rows: 3081
> })
> })
### Environment info
```
import datasets
print(datasets.__version__)
```
> 2.14.5
```
import sys
print(sys.version)
```
> 3.9.17 (main, Jul 5 2023, 20:41:20)
> [GCC 11.2.0] | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6320/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6320/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/6319 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6319/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6319/comments | https://api.github.com/repos/huggingface/datasets/issues/6319/events | https://github.com/huggingface/datasets/issues/6319 | 1,952,101,717 | I_kwDODunzps50WrVV | 6,319 | Datasets.map is severely broken | {
"login": "phalexo",
"id": 4603365,
"node_id": "MDQ6VXNlcjQ2MDMzNjU=",
"avatar_url": "https://avatars.githubusercontent.com/u/4603365?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/phalexo",
"html_url": "https://github.com/phalexo",
"followers_url": "https://api.github.com/users/phalexo/followers",
"following_url": "https://api.github.com/users/phalexo/following{/other_user}",
"gists_url": "https://api.github.com/users/phalexo/gists{/gist_id}",
"starred_url": "https://api.github.com/users/phalexo/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/phalexo/subscriptions",
"organizations_url": "https://api.github.com/users/phalexo/orgs",
"repos_url": "https://api.github.com/users/phalexo/repos",
"events_url": "https://api.github.com/users/phalexo/events{/privacy}",
"received_events_url": "https://api.github.com/users/phalexo/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | [
"Hi! Instead of processing a single example at a time, you should use the batched `map` for the best performance (with `num_proc=1`) - the fast tokenizers can process a batch's samples in parallel in that scenario.\r\n\r\nE.g., the following code in Colab takes an hour to complete:\r\n```python\r\n# !pip install datasets transformers\r\nfrom datasets import load_dataset\r\nfrom transformers import AutoTokenizer\r\ntokenizer = AutoTokenizer.from_pretrained(\"bert-base-cased\")\r\ndataset = dataset.map(lambda ex: tokenizer(ex[\"text\"]), batched=True, remove_columns=[\"text\", \"meta\"])\r\n```",
"Batched is far worse. A single batch of 1000 took hours and that was only 1%\r\n\r\n\r\nOn Thu, Oct 19, 2023, 2:26 PM Mario Šaško ***@***.***> wrote:\r\n\r\n> Hi! You should use the batched map for the best performance (with\r\n> num_proc=1) - the fast tokenizers can process a batch's samples in\r\n> parallel.\r\n>\r\n> E.g., the following code in Colab takes an hour to complete:\r\n>\r\n> # !pip install datasets transformersfrom datasets import load_datasetfrom transformers import AutoTokenizertokenizer = AutoTokenizer.from_pretrained(\"bert-base-cased\")dataset = dataset.map(lambda ex: tokenizer(ex[\"text\"]), batched=True, remove_columns=[\"text\", \"meta\"])\r\n>\r\n> —\r\n> Reply to this email directly, view it on GitHub\r\n> <https://github.com/huggingface/datasets/issues/6319#issuecomment-1771503757>,\r\n> or unsubscribe\r\n> <https://github.com/notifications/unsubscribe-auth/ABDD3ZJHPSRVDEXFNMXR2N3YAFWFZAVCNFSM6AAAAAA6HDKPSCVHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMYTONZRGUYDGNZVG4>\r\n> .\r\n> You are receiving this because you authored the thread.Message ID:\r\n> ***@***.***>\r\n>\r\n",
"Can you please provide a self-contained reproducer?",
"Which specific version of datasets are you using?\r\n\r\nWhat is the architecture of your colab setup? Ram? Cores? OS?\r\n\r\n\r\nOn Thu, Oct 19, 2023, 2:27 PM pensive introvert ***@***.***>\r\nwrote:\r\n\r\n> Batched is far worse. A single batch of 1000 took hours and that was only\r\n> 1%\r\n>\r\n>\r\n> On Thu, Oct 19, 2023, 2:26 PM Mario Šaško ***@***.***>\r\n> wrote:\r\n>\r\n>> Hi! You should use the batched map for the best performance (with\r\n>> num_proc=1) - the fast tokenizers can process a batch's samples in\r\n>> parallel.\r\n>>\r\n>> E.g., the following code in Colab takes an hour to complete:\r\n>>\r\n>> # !pip install datasets transformersfrom datasets import load_datasetfrom transformers import AutoTokenizertokenizer = AutoTokenizer.from_pretrained(\"bert-base-cased\")dataset = dataset.map(lambda ex: tokenizer(ex[\"text\"]), batched=True, remove_columns=[\"text\", \"meta\"])\r\n>>\r\n>> —\r\n>> Reply to this email directly, view it on GitHub\r\n>> <https://github.com/huggingface/datasets/issues/6319#issuecomment-1771503757>,\r\n>> or unsubscribe\r\n>> <https://github.com/notifications/unsubscribe-auth/ABDD3ZJHPSRVDEXFNMXR2N3YAFWFZAVCNFSM6AAAAAA6HDKPSCVHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMYTONZRGUYDGNZVG4>\r\n>> .\r\n>> You are receiving this because you authored the thread.Message ID:\r\n>> ***@***.***>\r\n>>\r\n>\r\n",
"from functools import partial\r\nimport transformers\r\nfrom datasets import load_dataset, concatenate_datasets, load_from_disk\r\n\r\nmodel_name_or_path=\"/opt/data/data/daryl149/llama-2-7b-chat-hf\"\r\noutput_dir=\"/opt/data/data/LongLoRA/checkpoints\"\r\ncache_dir=\"/opt/data/data/LongLoRA/cache\"\r\nmodel_max_length=16384\r\n\r\nIGNORE_INDEX = -100\r\nDEFAULT_PAD_TOKEN = \"[PAD]\"\r\nDEFAULT_EOS_TOKEN = \"</s>\"\r\nDEFAULT_BOS_TOKEN = \"<s>\"\r\nDEFAULT_UNK_TOKEN = \"<unk>\"\r\n\r\n\r\ntokenizer = transformers.LlamaTokenizerFast.from_pretrained(\r\n model_name_or_path,\r\n cache_dir=cache_dir,\r\n model_max_length=model_max_length,\r\n padding_side=\"right\",\r\n use_fast=True,\r\n #use_fast=False\r\n)\r\n\r\nspecial_tokens_dict = dict()\r\nif tokenizer.pad_token is None:\r\n special_tokens_dict[\"pad_token\"] = DEFAULT_PAD_TOKEN\r\nif tokenizer.eos_token is None:\r\n special_tokens_dict[\"eos_token\"] = DEFAULT_EOS_TOKEN\r\nif tokenizer.bos_token is None:\r\n special_tokens_dict[\"bos_token\"] = DEFAULT_BOS_TOKEN\r\nif tokenizer.unk_token is None:\r\n special_tokens_dict[\"unk_token\"] = DEFAULT_UNK_TOKEN\r\n\r\ntokenizer.add_special_tokens(special_tokens_dict)\r\n\r\ndef tokenize_fn(tokenizer, example):\r\n context_length = tokenizer.model_max_length\r\n outputs = tokenizer(\r\n tokenizer.eos_token.join(example[\"text\"]),\r\n #truncation=False,\r\n truncation=True,\r\n return_tensors=\"pt\",\r\n #return_tensors=\"np\",\r\n pad_to_multiple_of=context_length,\r\n padding=True,\r\n )\r\n return {\"input_ids\": outputs[\"input_ids\"].view(-1, context_length)}\r\n\r\nfor idx in range(100):\r\n dataset = load_dataset(\"togethercomputer/RedPajama-Data-1T-Sample\",\r\ncache_dir=cache_dir, split=f'train[{idx}%:{idx+1}%]')\r\n dataset = dataset.map(partial(tokenize_fn, tokenizer), batched=False,\r\nnum_proc=16, remove_columns=[\"text\", \"meta\"])\r\n dataset.save_to_disk(training_args.cache_dir + f\"/training_data_{idx}\")\r\n\r\n\r\nOn Thu, Oct 19, 2023 at 2:30 PM Mario Šaško ***@***.***>\r\nwrote:\r\n\r\n> Can you please provide a self-contained reproducer?\r\n>\r\n> —\r\n> Reply to this email directly, view it on GitHub\r\n> <https://github.com/huggingface/datasets/issues/6319#issuecomment-1771509229>,\r\n> or unsubscribe\r\n> <https://github.com/notifications/unsubscribe-auth/ABDD3ZNBZ3BE7Q4EQZZK6MLYAFWURAVCNFSM6AAAAAA6HDKPSCVHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMYTONZRGUYDSMRSHE>\r\n> .\r\n> You are receiving this because you authored the thread.Message ID:\r\n> ***@***.***>\r\n>\r\n",
"I changed the tokenizer to one without \"Fast suffix, and something changed.\r\nThe fraction, although still slowed a lot at 80% was able to get over the\r\nfinish line of 100%\r\n\r\nI have to do more testng, see if the whole set can be processed\r\n\r\n\r\n\r\nOn Thu, Oct 19, 2023 at 3:03 PM pensive introvert <\r\n***@***.***> wrote:\r\n\r\n> from functools import partial\r\n> import transformers\r\n> from datasets import load_dataset, concatenate_datasets, load_from_disk\r\n>\r\n> model_name_or_path=\"/opt/data/data/daryl149/llama-2-7b-chat-hf\"\r\n> output_dir=\"/opt/data/data/LongLoRA/checkpoints\"\r\n> cache_dir=\"/opt/data/data/LongLoRA/cache\"\r\n> model_max_length=16384\r\n>\r\n> IGNORE_INDEX = -100\r\n> DEFAULT_PAD_TOKEN = \"[PAD]\"\r\n> DEFAULT_EOS_TOKEN = \"</s>\"\r\n> DEFAULT_BOS_TOKEN = \"<s>\"\r\n> DEFAULT_UNK_TOKEN = \"<unk>\"\r\n>\r\n>\r\n> tokenizer = transformers.LlamaTokenizerFast.from_pretrained(\r\n> model_name_or_path,\r\n> cache_dir=cache_dir,\r\n> model_max_length=model_max_length,\r\n> padding_side=\"right\",\r\n> use_fast=True,\r\n> #use_fast=False\r\n> )\r\n>\r\n> special_tokens_dict = dict()\r\n> if tokenizer.pad_token is None:\r\n> special_tokens_dict[\"pad_token\"] = DEFAULT_PAD_TOKEN\r\n> if tokenizer.eos_token is None:\r\n> special_tokens_dict[\"eos_token\"] = DEFAULT_EOS_TOKEN\r\n> if tokenizer.bos_token is None:\r\n> special_tokens_dict[\"bos_token\"] = DEFAULT_BOS_TOKEN\r\n> if tokenizer.unk_token is None:\r\n> special_tokens_dict[\"unk_token\"] = DEFAULT_UNK_TOKEN\r\n>\r\n> tokenizer.add_special_tokens(special_tokens_dict)\r\n>\r\n> def tokenize_fn(tokenizer, example):\r\n> context_length = tokenizer.model_max_length\r\n> outputs = tokenizer(\r\n> tokenizer.eos_token.join(example[\"text\"]),\r\n> #truncation=False,\r\n> truncation=True,\r\n> return_tensors=\"pt\",\r\n> #return_tensors=\"np\",\r\n> pad_to_multiple_of=context_length,\r\n> padding=True,\r\n> )\r\n> return {\"input_ids\": outputs[\"input_ids\"].view(-1, context_length)}\r\n>\r\n> for idx in range(100):\r\n> dataset = load_dataset(\"togethercomputer/RedPajama-Data-1T-Sample\",\r\n> cache_dir=cache_dir, split=f'train[{idx}%:{idx+1}%]')\r\n> dataset = dataset.map(partial(tokenize_fn, tokenizer), batched=False,\r\n> num_proc=16, remove_columns=[\"text\", \"meta\"])\r\n> dataset.save_to_disk(training_args.cache_dir + f\"/training_data_{idx}\")\r\n>\r\n>\r\n> On Thu, Oct 19, 2023 at 2:30 PM Mario Šaško ***@***.***>\r\n> wrote:\r\n>\r\n>> Can you please provide a self-contained reproducer?\r\n>>\r\n>> —\r\n>> Reply to this email directly, view it on GitHub\r\n>> <https://github.com/huggingface/datasets/issues/6319#issuecomment-1771509229>,\r\n>> or unsubscribe\r\n>> <https://github.com/notifications/unsubscribe-auth/ABDD3ZNBZ3BE7Q4EQZZK6MLYAFWURAVCNFSM6AAAAAA6HDKPSCVHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMYTONZRGUYDSMRSHE>\r\n>> .\r\n>> You are receiving this because you authored the thread.Message ID:\r\n>> ***@***.***>\r\n>>\r\n>\r\n",
"So, using LlamaTokenizerFast was the problem. Changing it to LlamaTokenizer\r\nfixed things,\r\n\r\nOn Thu, Oct 19, 2023 at 4:04 PM pensive introvert <\r\n***@***.***> wrote:\r\n\r\n> I changed the tokenizer to one without \"Fast suffix, and something\r\n> changed. The fraction, although still slowed a lot at 80% was able to get\r\n> over the finish line of 100%\r\n>\r\n> I have to do more testng, see if the whole set can be processed\r\n>\r\n>\r\n>\r\n> On Thu, Oct 19, 2023 at 3:03 PM pensive introvert <\r\n> ***@***.***> wrote:\r\n>\r\n>> from functools import partial\r\n>> import transformers\r\n>> from datasets import load_dataset, concatenate_datasets, load_from_disk\r\n>>\r\n>> model_name_or_path=\"/opt/data/data/daryl149/llama-2-7b-chat-hf\"\r\n>> output_dir=\"/opt/data/data/LongLoRA/checkpoints\"\r\n>> cache_dir=\"/opt/data/data/LongLoRA/cache\"\r\n>> model_max_length=16384\r\n>>\r\n>> IGNORE_INDEX = -100\r\n>> DEFAULT_PAD_TOKEN = \"[PAD]\"\r\n>> DEFAULT_EOS_TOKEN = \"</s>\"\r\n>> DEFAULT_BOS_TOKEN = \"<s>\"\r\n>> DEFAULT_UNK_TOKEN = \"<unk>\"\r\n>>\r\n>>\r\n>> tokenizer = transformers.LlamaTokenizerFast.from_pretrained(\r\n>> model_name_or_path,\r\n>> cache_dir=cache_dir,\r\n>> model_max_length=model_max_length,\r\n>> padding_side=\"right\",\r\n>> use_fast=True,\r\n>> #use_fast=False\r\n>> )\r\n>>\r\n>> special_tokens_dict = dict()\r\n>> if tokenizer.pad_token is None:\r\n>> special_tokens_dict[\"pad_token\"] = DEFAULT_PAD_TOKEN\r\n>> if tokenizer.eos_token is None:\r\n>> special_tokens_dict[\"eos_token\"] = DEFAULT_EOS_TOKEN\r\n>> if tokenizer.bos_token is None:\r\n>> special_tokens_dict[\"bos_token\"] = DEFAULT_BOS_TOKEN\r\n>> if tokenizer.unk_token is None:\r\n>> special_tokens_dict[\"unk_token\"] = DEFAULT_UNK_TOKEN\r\n>>\r\n>> tokenizer.add_special_tokens(special_tokens_dict)\r\n>>\r\n>> def tokenize_fn(tokenizer, example):\r\n>> context_length = tokenizer.model_max_length\r\n>> outputs = tokenizer(\r\n>> tokenizer.eos_token.join(example[\"text\"]),\r\n>> #truncation=False,\r\n>> truncation=True,\r\n>> return_tensors=\"pt\",\r\n>> #return_tensors=\"np\",\r\n>> pad_to_multiple_of=context_length,\r\n>> padding=True,\r\n>> )\r\n>> return {\"input_ids\": outputs[\"input_ids\"].view(-1, context_length)}\r\n>>\r\n>> for idx in range(100):\r\n>> dataset = load_dataset(\"togethercomputer/RedPajama-Data-1T-Sample\",\r\n>> cache_dir=cache_dir, split=f'train[{idx}%:{idx+1}%]')\r\n>> dataset = dataset.map(partial(tokenize_fn, tokenizer), batched=False,\r\n>> num_proc=16, remove_columns=[\"text\", \"meta\"])\r\n>> dataset.save_to_disk(training_args.cache_dir +\r\n>> f\"/training_data_{idx}\")\r\n>>\r\n>>\r\n>> On Thu, Oct 19, 2023 at 2:30 PM Mario Šaško ***@***.***>\r\n>> wrote:\r\n>>\r\n>>> Can you please provide a self-contained reproducer?\r\n>>>\r\n>>> —\r\n>>> Reply to this email directly, view it on GitHub\r\n>>> <https://github.com/huggingface/datasets/issues/6319#issuecomment-1771509229>,\r\n>>> or unsubscribe\r\n>>> <https://github.com/notifications/unsubscribe-auth/ABDD3ZNBZ3BE7Q4EQZZK6MLYAFWURAVCNFSM6AAAAAA6HDKPSCVHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMYTONZRGUYDSMRSHE>\r\n>>> .\r\n>>> You are receiving this because you authored the thread.Message ID:\r\n>>> ***@***.***>\r\n>>>\r\n>>\r\n",
"Indeed, the tokenizer is super slow. Perhaps @ArthurZucker knows the reason why.\r\n\r\n([This](https://colab.research.google.com/drive/1VgeurX-4Fl2X6aBQTwh_X4kuQKZ6K9L1?usp=sharing) simplified Colab can be used to reproduce the behavior)",
"same issue here\r\nsample to reproduce: https://github.com/philschmid/document-ai-transformers/blob/main/training/donut_sroie.ipynb\r\nwith following map line\r\nhttps://github.com/philschmid/document-ai-transformers/blob/main/training/donut_sroie.ipynb\r\n\r\nIf I directly iterate over the dataset and call the mapping method, it is very fast\r\n```py\r\nfor sample in dataset:\r\n def preprocess_documents_for_donut(sample):\r\n```\r\n\r\nif i removed `.convert('RGB')` It can run to completion without getting stuck. I suspect it has something to do with the Image.\r\n\r\nIf I use batch, it's even slower.",
"@ewfian \r\n\r\n> If I directly iterate over the dataset and call the mapping method, it is very fast\r\n\r\n`Dataset.map` must also convert the images into bytes to write them to an Arrow file (the write itself takes some time, too). \r\n\r\nYou can make the `map` faster by manually converting the images into an \"arrow-compatible\" representation. Otherwise, the Pillow defaults are used when saving an image, which seems particularly slow for the notebook's case.\r\n\r\n```python\r\ndef preprocess_documents_for_donut(sample):\r\n text = json.loads(sample[\"text\"])\r\n d_doc = task_start_token + json2token(text) + eos_token\r\n image = sample[\"image\"].convert('RGB')\r\n # convert image to bytes\r\n buffer = io.BytesIO()\r\n image.save(buffer, format=\"PNG\", compress_level=1)\r\n return {\"image\": {\"bytes\": buffer.getvalue()}, \"text\": d_doc}\r\n\r\nproc_dataset = dataset.map(preprocess_documents_for_donut, writer_batch_size=50)\r\n```",
"The problem I had was to do with map using fork and copying locks from the\r\nparent process in acquired state. I ended up changing the context to use\r\nforkserver instead.\r\n\r\n\r\nOn Wed, Nov 29, 2023, 10:04 PM Mario Šaško ***@***.***> wrote:\r\n\r\n> @ewfian <https://github.com/ewfian>\r\n>\r\n> If I directly iterate over the dataset and call the mapping method, it is\r\n> very fast\r\n>\r\n> Dataset.map must also convert the images into bytes to write them to an\r\n> Arrow file (the write itself takes some time, too).\r\n>\r\n> You can make the map faster by manually converting the images into an\r\n> \"arrow-compatible\" representation. Otherwise, the Pillow defaults are used\r\n> when saving an image, which seems particularly slow for the notebook's case.\r\n>\r\n> def preprocess_documents_for_donut(sample):\r\n> text = json.loads(sample[\"text\"])\r\n> d_doc = task_start_token + json2token(text) + eos_token\r\n> image = sample[\"image\"].convert('RGB')\r\n> # convert image to bytes\r\n> buffer = io.BytesIO()\r\n> image.save(buffer, format=\"PNG\", compress_level=1)\r\n> return {\"image\": {\"bytes\": buffer.getvalue()}, \"text\": d_doc}\r\n> proc_dataset = dataset.map(preprocess_documents_for_donut, writer_batch_size=50)\r\n>\r\n> —\r\n> Reply to this email directly, view it on GitHub\r\n> <https://github.com/huggingface/datasets/issues/6319#issuecomment-1833033973>,\r\n> or unsubscribe\r\n> <https://github.com/notifications/unsubscribe-auth/ABDD3ZKKEKJVWBFH7QHLRJ3YG7ZUJAVCNFSM6AAAAAA6HDKPSCVHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMYTQMZTGAZTGOJXGM>\r\n> .\r\n> You are receiving this because you authored the thread.Message ID:\r\n> ***@***.***>\r\n>\r\n"
] | 2023-10-19T12:19:33 | 2023-11-30T03:27:26 | null | NONE | null | null | null | ### Describe the bug
Regardless of how many cores I used, I have 16 or 32 threads, map slows down to a crawl at around 80% done, lingers maybe until 97% extremely slowly and NEVER finishes the job. It just hangs.
After watching this for 27 hours I control-C out of it. Until the end one process appears to be doing something, but it never ends.
I saw some comments about fast tokenizers using Rust and all and tried different variations. NOTHING works.
### Steps to reproduce the bug
Running it without breaking the dataset into parts results in the same behavior. The loop was an attempt to see if this was a RAM issue.
for idx in range(100):
dataset = load_dataset("togethercomputer/RedPajama-Data-1T-Sample", cache_dir=cache_dir, split=f'train[{idx}%:{idx+1}%]')
dataset = dataset.map(partial(tokenize_fn, tokenizer), batched=False, num_proc=1, remove_columns=["text", "meta"])
dataset.save_to_disk(training_args.cache_dir + f"/training_data_{idx}")
### Expected behavior
I expect map to run at more or less the same speed it starts with and FINISH its processing.
### Environment info
Python 3.8, same with 3.10 makes no difference.
Ubuntu 20.04, | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6319/reactions",
"total_count": 1,
"+1": 1,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6319/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/6318 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6318/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6318/comments | https://api.github.com/repos/huggingface/datasets/issues/6318/events | https://github.com/huggingface/datasets/pull/6318 | 1,952,100,706 | PR_kwDODunzps5dRC9V | 6,318 | Deterministic set hash | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006827 / 0.011353 (-0.004526) | 0.004468 / 0.011008 (-0.006540) | 0.088687 / 0.038508 (0.050179) | 0.072560 / 0.023109 (0.049451) | 0.333421 / 0.275898 (0.057523) | 0.374977 / 0.323480 (0.051497) | 0.005829 / 0.007986 (-0.002156) | 0.003284 / 0.004328 (-0.001045) | 0.068929 / 0.004250 (0.064678) | 0.057212 / 0.037052 (0.020160) | 0.328911 / 0.258489 (0.070422) | 0.389107 / 0.293841 (0.095266) | 0.033518 / 0.128546 (-0.095029) | 0.009919 / 0.075646 (-0.065728) | 0.308100 / 0.419271 (-0.111171) | 0.059380 / 0.043533 (0.015847) | 0.345587 / 0.255139 (0.090448) | 0.353703 / 0.283200 (0.070503) | 0.026454 / 0.141683 (-0.115229) | 1.573309 / 1.452155 (0.121155) | 1.663812 / 1.492716 (0.171095) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.255081 / 0.018006 (0.237075) | 0.472613 / 0.000490 (0.472123) | 0.016120 / 0.000200 (0.015920) | 0.000383 / 0.000054 (0.000328) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028219 / 0.037411 (-0.009192) | 0.086600 / 0.014526 (0.072074) | 0.099484 / 0.176557 (-0.077073) | 0.154604 / 0.737135 (-0.582531) | 0.099168 / 0.296338 (-0.197171) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.421703 / 0.215209 (0.206494) | 4.188600 / 2.077655 (2.110945) | 2.037575 / 1.504120 (0.533456) | 1.843389 / 1.541195 (0.302194) | 1.912554 / 1.468490 (0.444064) | 0.517452 / 4.584777 (-4.067325) | 3.838002 / 3.745712 (0.092290) | 3.698899 / 5.269862 (-1.570963) | 2.175393 / 4.565676 (-2.390283) | 0.066059 / 0.424275 (-0.358216) | 0.008455 / 0.007607 (0.000848) | 0.506813 / 0.226044 (0.280768) | 4.826994 / 2.268929 (2.558066) | 2.544437 / 55.444624 (-52.900187) | 2.164938 / 6.876477 (-4.711539) | 2.171725 / 2.142072 (0.029652) | 0.603757 / 4.805227 (-4.201470) | 0.149113 / 6.500664 (-6.351551) | 0.065093 / 0.075469 (-0.010376) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.366887 / 1.841788 (-0.474901) | 20.508089 / 8.074308 (12.433780) | 14.836531 / 10.191392 (4.645139) | 0.167418 / 0.680424 (-0.513006) | 0.019707 / 0.534201 (-0.514494) | 0.409897 / 0.579283 (-0.169387) | 0.439412 / 0.434364 (0.005048) | 0.495784 / 0.540337 (-0.044553) | 0.685367 / 1.386936 (-0.701569) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007604 / 0.011353 (-0.003749) | 0.004368 / 0.011008 (-0.006640) | 0.072628 / 0.038508 (0.034120) | 0.084187 / 0.023109 (0.061077) | 0.461396 / 0.275898 (0.185498) | 0.481429 / 0.323480 (0.157949) | 0.005894 / 0.007986 (-0.002092) | 0.003472 / 0.004328 (-0.000857) | 0.068717 / 0.004250 (0.064466) | 0.061066 / 0.037052 (0.024014) | 0.464217 / 0.258489 (0.205728) | 0.498061 / 0.293841 (0.204220) | 0.035458 / 0.128546 (-0.093089) | 0.009474 / 0.075646 (-0.066173) | 0.079633 / 0.419271 (-0.339639) | 0.053966 / 0.043533 (0.010433) | 0.454911 / 0.255139 (0.199772) | 0.470837 / 0.283200 (0.187637) | 0.026358 / 0.141683 (-0.115325) | 1.665131 / 1.452155 (0.212976) | 1.730365 / 1.492716 (0.237648) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.234810 / 0.018006 (0.216804) | 0.453672 / 0.000490 (0.453183) | 0.004620 / 0.000200 (0.004420) | 0.000119 / 0.000054 (0.000064) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.035310 / 0.037411 (-0.002101) | 0.100379 / 0.014526 (0.085853) | 0.118802 / 0.176557 (-0.057754) | 0.173853 / 0.737135 (-0.563282) | 0.115714 / 0.296338 (-0.180624) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.466797 / 0.215209 (0.251588) | 4.698324 / 2.077655 (2.620670) | 2.446897 / 1.504120 (0.942777) | 2.277346 / 1.541195 (0.736151) | 2.347211 / 1.468490 (0.878721) | 0.514377 / 4.584777 (-4.070400) | 3.931269 / 3.745712 (0.185557) | 3.573575 / 5.269862 (-1.696286) | 2.208122 / 4.565676 (-2.357554) | 0.061081 / 0.424275 (-0.363194) | 0.007803 / 0.007607 (0.000196) | 0.544376 / 0.226044 (0.318332) | 5.440003 / 2.268929 (3.171074) | 3.012559 / 55.444624 (-52.432065) | 2.617286 / 6.876477 (-4.259191) | 2.863978 / 2.142072 (0.721906) | 0.610024 / 4.805227 (-4.195203) | 0.133643 / 6.500664 (-6.367021) | 0.064766 / 0.075469 (-0.010703) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.465225 / 1.841788 (-0.376563) | 21.308351 / 8.074308 (13.234043) | 15.176634 / 10.191392 (4.985242) | 0.172701 / 0.680424 (-0.507723) | 0.020345 / 0.534201 (-0.513855) | 0.433923 / 0.579283 (-0.145360) | 0.450183 / 0.434364 (0.015819) | 0.514048 / 0.540337 (-0.026289) | 0.736302 / 1.386936 (-0.650634) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#7f1a7d621fff3b08ace02643466097654a5e010f \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008305 / 0.011353 (-0.003048) | 0.006007 / 0.011008 (-0.005001) | 0.103521 / 0.038508 (0.065013) | 0.075776 / 0.023109 (0.052666) | 0.378888 / 0.275898 (0.102990) | 0.405245 / 0.323480 (0.081765) | 0.004596 / 0.007986 (-0.003390) | 0.003687 / 0.004328 (-0.000641) | 0.079043 / 0.004250 (0.074792) | 0.055895 / 0.037052 (0.018843) | 0.406565 / 0.258489 (0.148076) | 0.433869 / 0.293841 (0.140028) | 0.045321 / 0.128546 (-0.083226) | 0.014317 / 0.075646 (-0.061329) | 0.345312 / 0.419271 (-0.073960) | 0.064485 / 0.043533 (0.020953) | 0.381744 / 0.255139 (0.126605) | 0.401162 / 0.283200 (0.117962) | 0.035973 / 0.141683 (-0.105709) | 1.829616 / 1.452155 (0.377461) | 1.868487 / 1.492716 (0.375771) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.245432 / 0.018006 (0.227426) | 0.494249 / 0.000490 (0.493759) | 0.010878 / 0.000200 (0.010678) | 0.000492 / 0.000054 (0.000437) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032778 / 0.037411 (-0.004633) | 0.103418 / 0.014526 (0.088892) | 0.108010 / 0.176557 (-0.068547) | 0.176477 / 0.737135 (-0.560658) | 0.107732 / 0.296338 (-0.188606) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.572471 / 0.215209 (0.357262) | 5.647039 / 2.077655 (3.569384) | 2.385069 / 1.504120 (0.880949) | 2.048928 / 1.541195 (0.507733) | 2.108538 / 1.468490 (0.640048) | 0.861436 / 4.584777 (-3.723341) | 4.933452 / 3.745712 (1.187739) | 4.735219 / 5.269862 (-0.534642) | 2.926971 / 4.565676 (-1.638705) | 0.097687 / 0.424275 (-0.326588) | 0.008346 / 0.007607 (0.000739) | 0.677754 / 0.226044 (0.451709) | 6.798433 / 2.268929 (4.529504) | 3.129862 / 55.444624 (-52.314762) | 2.454033 / 6.876477 (-4.422444) | 2.464590 / 2.142072 (0.322517) | 1.034497 / 4.805227 (-3.770730) | 0.205753 / 6.500664 (-6.294911) | 0.076618 / 0.075469 (0.001149) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.617569 / 1.841788 (-0.224219) | 22.091489 / 8.074308 (14.017181) | 20.406312 / 10.191392 (10.214920) | 0.222012 / 0.680424 (-0.458411) | 0.027787 / 0.534201 (-0.506414) | 0.441669 / 0.579283 (-0.137615) | 0.564773 / 0.434364 (0.130409) | 0.510389 / 0.540337 (-0.029948) | 0.753672 / 1.386936 (-0.633264) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.011107 / 0.011353 (-0.000246) | 0.004973 / 0.011008 (-0.006035) | 0.078331 / 0.038508 (0.039823) | 0.083964 / 0.023109 (0.060855) | 0.518980 / 0.275898 (0.243082) | 0.528264 / 0.323480 (0.204784) | 0.007452 / 0.007986 (-0.000534) | 0.003931 / 0.004328 (-0.000397) | 0.079724 / 0.004250 (0.075474) | 0.061739 / 0.037052 (0.024686) | 0.517804 / 0.258489 (0.259315) | 0.582764 / 0.293841 (0.288923) | 0.049674 / 0.128546 (-0.078873) | 0.014540 / 0.075646 (-0.061106) | 0.093130 / 0.419271 (-0.326141) | 0.060647 / 0.043533 (0.017114) | 0.492628 / 0.255139 (0.237489) | 0.549761 / 0.283200 (0.266562) | 0.034313 / 0.141683 (-0.107369) | 1.824574 / 1.452155 (0.372419) | 2.013664 / 1.492716 (0.520947) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.231335 / 0.018006 (0.213329) | 0.521477 / 0.000490 (0.520987) | 0.011314 / 0.000200 (0.011114) | 0.000397 / 0.000054 (0.000343) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033303 / 0.037411 (-0.004108) | 0.098238 / 0.014526 (0.083712) | 0.119527 / 0.176557 (-0.057030) | 0.169163 / 0.737135 (-0.567972) | 0.114536 / 0.296338 (-0.181803) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.578401 / 0.215209 (0.363191) | 5.966438 / 2.077655 (3.888783) | 2.646370 / 1.504120 (1.142250) | 2.361833 / 1.541195 (0.820638) | 2.476573 / 1.468490 (1.008083) | 0.777411 / 4.584777 (-3.807366) | 4.811070 / 3.745712 (1.065357) | 4.314221 / 5.269862 (-0.955641) | 2.743317 / 4.565676 (-1.822359) | 0.110394 / 0.424275 (-0.313881) | 0.008333 / 0.007607 (0.000726) | 0.729588 / 0.226044 (0.503543) | 7.743226 / 2.268929 (5.474298) | 3.606294 / 55.444624 (-51.838330) | 2.838069 / 6.876477 (-4.038408) | 3.087494 / 2.142072 (0.945421) | 1.053341 / 4.805227 (-3.751886) | 0.205105 / 6.500664 (-6.295559) | 0.075204 / 0.075469 (-0.000265) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.561959 / 1.841788 (-0.279829) | 21.407849 / 8.074308 (13.333541) | 19.084263 / 10.191392 (8.892871) | 0.226129 / 0.680424 (-0.454295) | 0.029695 / 0.534201 (-0.504506) | 0.427035 / 0.579283 (-0.152248) | 0.565353 / 0.434364 (0.130989) | 0.526789 / 0.540337 (-0.013548) | 0.734820 / 1.386936 (-0.652116) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#5b52536f4e39df3b98f7e0b03ee71b24c4fff49a \"CML watermark\")\n"
] | 2023-10-19T12:19:13 | 2023-10-19T16:27:20 | 2023-10-19T16:16:31 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6318",
"html_url": "https://github.com/huggingface/datasets/pull/6318",
"diff_url": "https://github.com/huggingface/datasets/pull/6318.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6318.patch",
"merged_at": "2023-10-19T16:16:31"
} | Sort the items in a set according to their `datasets.fingerprint.Hasher.hash` hash to get a deterministic hash of sets.
This is useful to get deterministic hashes of tokenizers that use a trie based on python sets.
reported in https://github.com/huggingface/datasets/issues/3847 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6318/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6318/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6317 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6317/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6317/comments | https://api.github.com/repos/huggingface/datasets/issues/6317/events | https://github.com/huggingface/datasets/issues/6317 | 1,951,965,668 | I_kwDODunzps50WKHk | 6,317 | sentiment140 dataset unavailable | {
"login": "AndreasKarasenko",
"id": 52670382,
"node_id": "MDQ6VXNlcjUyNjcwMzgy",
"avatar_url": "https://avatars.githubusercontent.com/u/52670382?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/AndreasKarasenko",
"html_url": "https://github.com/AndreasKarasenko",
"followers_url": "https://api.github.com/users/AndreasKarasenko/followers",
"following_url": "https://api.github.com/users/AndreasKarasenko/following{/other_user}",
"gists_url": "https://api.github.com/users/AndreasKarasenko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/AndreasKarasenko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/AndreasKarasenko/subscriptions",
"organizations_url": "https://api.github.com/users/AndreasKarasenko/orgs",
"repos_url": "https://api.github.com/users/AndreasKarasenko/repos",
"events_url": "https://api.github.com/users/AndreasKarasenko/events{/privacy}",
"received_events_url": "https://api.github.com/users/AndreasKarasenko/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
}
] | [
"Thanks for reporting. We are investigating the issue.",
"We have opened an issue in the corresponding Hub dataset: https://huggingface.co./datasets/sentiment140/discussions/3\r\n\r\nLet's continue the discussion there."
] | 2023-10-19T11:25:21 | 2023-10-19T13:04:56 | 2023-10-19T13:04:56 | NONE | null | null | null | ### Describe the bug
loading the dataset using load_dataset("sentiment140") returns the following error
ConnectionError: Couldn't reach http://cs.stanford.edu/people/alecmgo/trainingandtestdata.zip (error 403)
### Steps to reproduce the bug
Run the following code (version should not matter).
```
from datasets import load_dataset
data = load_dataset("sentiment140")
```
### Expected behavior
The dataset should be loaded just like any other.
The main issue is that it is no longer hosted by stanford. It is still available from a [Google Drive Link](https://docs.google.com/file/d/0B04GJPshIjmPRnZManQwWEdTZjg/edit).
### Environment info
- `datasets` version: 2.14.5
- Platform: Windows-10-10.0.19045-SP0
- Python version: 3.10.8
- Huggingface_hub version: 0.17.3
- PyArrow version: 13.0.0
- Pandas version: 2.1.1 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6317/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6317/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/6316 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6316/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6316/comments | https://api.github.com/repos/huggingface/datasets/issues/6316/events | https://github.com/huggingface/datasets/pull/6316 | 1,951,819,869 | PR_kwDODunzps5dQGpg | 6,316 | Fix loading Hub datasets with CSV metadata file | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | [
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008896 / 0.011353 (-0.002456) | 0.005811 / 0.011008 (-0.005197) | 0.108582 / 0.038508 (0.070074) | 0.096509 / 0.023109 (0.073399) | 0.481725 / 0.275898 (0.205827) | 0.534743 / 0.323480 (0.211263) | 0.005517 / 0.007986 (-0.002468) | 0.006479 / 0.004328 (0.002151) | 0.081313 / 0.004250 (0.077062) | 0.063578 / 0.037052 (0.026525) | 0.493977 / 0.258489 (0.235488) | 0.551897 / 0.293841 (0.258056) | 0.051835 / 0.128546 (-0.076711) | 0.014105 / 0.075646 (-0.061541) | 0.385866 / 0.419271 (-0.033405) | 0.069131 / 0.043533 (0.025598) | 0.484780 / 0.255139 (0.229641) | 0.493221 / 0.283200 (0.210021) | 0.039560 / 0.141683 (-0.102123) | 1.782331 / 1.452155 (0.330176) | 1.899193 / 1.492716 (0.406477) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.329978 / 0.018006 (0.311972) | 0.600839 / 0.000490 (0.600349) | 0.013187 / 0.000200 (0.012987) | 0.000499 / 0.000054 (0.000444) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031835 / 0.037411 (-0.005576) | 0.103740 / 0.014526 (0.089214) | 0.115875 / 0.176557 (-0.060681) | 0.189880 / 0.737135 (-0.547255) | 0.132614 / 0.296338 (-0.163725) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.596255 / 0.215209 (0.381046) | 5.967993 / 2.077655 (3.890339) | 2.612675 / 1.504120 (1.108555) | 2.251461 / 1.541195 (0.710266) | 2.308585 / 1.468490 (0.840095) | 0.816516 / 4.584777 (-3.768261) | 5.241791 / 3.745712 (1.496079) | 4.680745 / 5.269862 (-0.589117) | 2.997370 / 4.565676 (-1.568307) | 0.098632 / 0.424275 (-0.325643) | 0.010912 / 0.007607 (0.003305) | 0.659092 / 0.226044 (0.433047) | 6.825562 / 2.268929 (4.556634) | 3.323844 / 55.444624 (-52.120780) | 2.796203 / 6.876477 (-4.080274) | 2.946994 / 2.142072 (0.804922) | 1.002814 / 4.805227 (-3.802413) | 0.202613 / 6.500664 (-6.298051) | 0.072011 / 0.075469 (-0.003459) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.613873 / 1.841788 (-0.227914) | 24.500990 / 8.074308 (16.426682) | 21.941599 / 10.191392 (11.750207) | 0.214450 / 0.680424 (-0.465974) | 0.031227 / 0.534201 (-0.502974) | 0.498297 / 0.579283 (-0.080986) | 0.597460 / 0.434364 (0.163096) | 0.558152 / 0.540337 (0.017815) | 0.789693 / 1.386936 (-0.597243) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.011299 / 0.011353 (-0.000053) | 0.005103 / 0.011008 (-0.005905) | 0.083161 / 0.038508 (0.044653) | 0.094201 / 0.023109 (0.071092) | 0.560457 / 0.275898 (0.284559) | 0.590459 / 0.323480 (0.266980) | 0.007059 / 0.007986 (-0.000926) | 0.004418 / 0.004328 (0.000090) | 0.081343 / 0.004250 (0.077093) | 0.067069 / 0.037052 (0.030016) | 0.538137 / 0.258489 (0.279648) | 0.600416 / 0.293841 (0.306575) | 0.049046 / 0.128546 (-0.079500) | 0.014299 / 0.075646 (-0.061347) | 0.093631 / 0.419271 (-0.325641) | 0.062536 / 0.043533 (0.019003) | 0.557238 / 0.255139 (0.302099) | 0.571050 / 0.283200 (0.287850) | 0.035881 / 0.141683 (-0.105802) | 1.918487 / 1.452155 (0.466332) | 2.013979 / 1.492716 (0.521263) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.400995 / 0.018006 (0.382989) | 0.634898 / 0.000490 (0.634408) | 0.041809 / 0.000200 (0.041609) | 0.000279 / 0.000054 (0.000224) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034160 / 0.037411 (-0.003251) | 0.109996 / 0.014526 (0.095470) | 0.124335 / 0.176557 (-0.052222) | 0.188100 / 0.737135 (-0.549035) | 0.135897 / 0.296338 (-0.160442) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.639751 / 0.215209 (0.424542) | 6.403312 / 2.077655 (4.325657) | 3.146453 / 1.504120 (1.642333) | 2.840358 / 1.541195 (1.299164) | 2.908667 / 1.468490 (1.440177) | 0.818767 / 4.584777 (-3.766010) | 5.416939 / 3.745712 (1.671227) | 4.853498 / 5.269862 (-0.416364) | 3.023526 / 4.565676 (-1.542150) | 0.110850 / 0.424275 (-0.313425) | 0.013103 / 0.007607 (0.005496) | 0.799720 / 0.226044 (0.573676) | 7.837704 / 2.268929 (5.568775) | 4.016526 / 55.444624 (-51.428099) | 3.338965 / 6.876477 (-3.537512) | 3.715721 / 2.142072 (1.573648) | 1.088340 / 4.805227 (-3.716887) | 0.213610 / 6.500664 (-6.287054) | 0.079244 / 0.075469 (0.003775) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.833175 / 1.841788 (-0.008612) | 25.307218 / 8.074308 (17.232910) | 23.716075 / 10.191392 (13.524683) | 0.259114 / 0.680424 (-0.421310) | 0.035171 / 0.534201 (-0.499029) | 0.530128 / 0.579283 (-0.049155) | 0.651484 / 0.434364 (0.217120) | 0.589414 / 0.540337 (0.049077) | 0.862691 / 1.386936 (-0.524245) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#1bdfba93b8a739b9d885b8fb1909d47ff689bbc2 \"CML watermark\")\n",
"_The documentation is not available anymore as the PR was closed or merged._",
"Me too, I thought the same... quite surprised... :open_mouth: ",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006929 / 0.011353 (-0.004423) | 0.004345 / 0.011008 (-0.006663) | 0.085522 / 0.038508 (0.047014) | 0.083380 / 0.023109 (0.060271) | 0.310332 / 0.275898 (0.034434) | 0.350525 / 0.323480 (0.027045) | 0.004367 / 0.007986 (-0.003618) | 0.005503 / 0.004328 (0.001175) | 0.066311 / 0.004250 (0.062061) | 0.059545 / 0.037052 (0.022492) | 0.314090 / 0.258489 (0.055601) | 0.366661 / 0.293841 (0.072821) | 0.031581 / 0.128546 (-0.096965) | 0.008852 / 0.075646 (-0.066794) | 0.289312 / 0.419271 (-0.129960) | 0.052960 / 0.043533 (0.009427) | 0.308134 / 0.255139 (0.052995) | 0.330342 / 0.283200 (0.047142) | 0.026157 / 0.141683 (-0.115526) | 1.488463 / 1.452155 (0.036308) | 1.561441 / 1.492716 (0.068725) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.327735 / 0.018006 (0.309729) | 0.568162 / 0.000490 (0.567672) | 0.012097 / 0.000200 (0.011897) | 0.000438 / 0.000054 (0.000383) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029503 / 0.037411 (-0.007909) | 0.084327 / 0.014526 (0.069801) | 0.102065 / 0.176557 (-0.074492) | 0.157392 / 0.737135 (-0.579744) | 0.101428 / 0.296338 (-0.194910) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.386767 / 0.215209 (0.171558) | 3.870757 / 2.077655 (1.793102) | 1.870048 / 1.504120 (0.365928) | 1.678221 / 1.541195 (0.137026) | 1.799423 / 1.468490 (0.330933) | 0.477718 / 4.584777 (-4.107059) | 3.618351 / 3.745712 (-0.127361) | 3.577921 / 5.269862 (-1.691941) | 2.146217 / 4.565676 (-2.419459) | 0.056290 / 0.424275 (-0.367985) | 0.007378 / 0.007607 (-0.000229) | 0.460678 / 0.226044 (0.234633) | 4.606243 / 2.268929 (2.337314) | 2.303460 / 55.444624 (-53.141164) | 1.982662 / 6.876477 (-4.893814) | 2.103891 / 2.142072 (-0.038182) | 0.570700 / 4.805227 (-4.234527) | 0.131747 / 6.500664 (-6.368918) | 0.060915 / 0.075469 (-0.014554) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.286364 / 1.841788 (-0.555424) | 20.106330 / 8.074308 (12.032022) | 14.780833 / 10.191392 (4.589441) | 0.164301 / 0.680424 (-0.516123) | 0.018730 / 0.534201 (-0.515471) | 0.398530 / 0.579283 (-0.180754) | 0.418084 / 0.434364 (-0.016280) | 0.468735 / 0.540337 (-0.071602) | 0.690122 / 1.386936 (-0.696814) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007262 / 0.011353 (-0.004091) | 0.004228 / 0.011008 (-0.006780) | 0.065866 / 0.038508 (0.027358) | 0.096151 / 0.023109 (0.073042) | 0.409352 / 0.275898 (0.133454) | 0.441234 / 0.323480 (0.117754) | 0.005946 / 0.007986 (-0.002039) | 0.003630 / 0.004328 (-0.000698) | 0.066271 / 0.004250 (0.062020) | 0.061567 / 0.037052 (0.024515) | 0.409097 / 0.258489 (0.150608) | 0.447675 / 0.293841 (0.153834) | 0.032804 / 0.128546 (-0.095743) | 0.008793 / 0.075646 (-0.066853) | 0.070790 / 0.419271 (-0.348482) | 0.048650 / 0.043533 (0.005117) | 0.411021 / 0.255139 (0.155882) | 0.421398 / 0.283200 (0.138198) | 0.025305 / 0.141683 (-0.116378) | 1.494826 / 1.452155 (0.042671) | 1.580441 / 1.492716 (0.087724) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.321871 / 0.018006 (0.303865) | 0.526471 / 0.000490 (0.525982) | 0.006913 / 0.000200 (0.006713) | 0.000108 / 0.000054 (0.000054) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034889 / 0.037411 (-0.002522) | 0.096096 / 0.014526 (0.081570) | 0.111920 / 0.176557 (-0.064636) | 0.166103 / 0.737135 (-0.571032) | 0.111162 / 0.296338 (-0.185176) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.428037 / 0.215209 (0.212828) | 4.294150 / 2.077655 (2.216495) | 2.270331 / 1.504120 (0.766211) | 2.108235 / 1.541195 (0.567041) | 2.242560 / 1.468490 (0.774070) | 0.489941 / 4.584777 (-4.094836) | 3.688111 / 3.745712 (-0.057601) | 3.450180 / 5.269862 (-1.819681) | 2.175106 / 4.565676 (-2.390570) | 0.057657 / 0.424275 (-0.366619) | 0.007478 / 0.007607 (-0.000130) | 0.505242 / 0.226044 (0.279198) | 5.047817 / 2.268929 (2.778888) | 2.724125 / 55.444624 (-52.720500) | 2.419765 / 6.876477 (-4.456711) | 2.723231 / 2.142072 (0.581159) | 0.602382 / 4.805227 (-4.202846) | 0.132362 / 6.500664 (-6.368302) | 0.060600 / 0.075469 (-0.014869) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.363356 / 1.841788 (-0.478431) | 21.446474 / 8.074308 (13.372165) | 15.074732 / 10.191392 (4.883340) | 0.191837 / 0.680424 (-0.488587) | 0.020565 / 0.534201 (-0.513636) | 0.396692 / 0.579283 (-0.182591) | 0.432390 / 0.434364 (-0.001974) | 0.491747 / 0.540337 (-0.048591) | 0.699203 / 1.386936 (-0.687733) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#c3a8a87c841426495d3a7ed1863c26660a6a551f \"CML watermark\")\n"
] | 2023-10-19T10:21:34 | 2023-10-20T06:23:21 | 2023-10-20T06:14:09 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6316",
"html_url": "https://github.com/huggingface/datasets/pull/6316",
"diff_url": "https://github.com/huggingface/datasets/pull/6316.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6316.patch",
"merged_at": "2023-10-20T06:14:09"
} | Currently, the reading of the metadata file infers the file extension (.jsonl or .csv) from the passed filename. However, downloaded files from the Hub don't have file extension. For example:
- the original file: `hf://datasets/__DUMMY_TRANSFORMERS_USER__/test-dataset-5916a4-16977085077831/metadata.jsonl`
- corresponds to the downloaded path: `/tmp/pytest-of-username/pytest-46/cache/datasets/downloads/9f5374dbb470f711f6b89d66a5eec1f19cc96324b26bcbebe29138bda6cb20e6`, which does not have extension
In the case where the metadata file does not have an extension, the reader assumes it is a JSONL file, thus the reported error when trying to read a CSV file as a JSONL one: `ArrowInvalid: JSON parse error: Invalid value. in row 0`
This behavior was introduced by:
- #4837
This PR extracts the metadata file extension from the original filename (instead of the downloaded one) and passes it as a parameter to the read_metadata function.
Fix #6315. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6316/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6316/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6315 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6315/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6315/comments | https://api.github.com/repos/huggingface/datasets/issues/6315/events | https://github.com/huggingface/datasets/issues/6315 | 1,951,800,819 | I_kwDODunzps50Vh3z | 6,315 | Hub datasets with CSV metadata raise ArrowInvalid: JSON parse error: Invalid value. in row 0 | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892857,
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug",
"name": "bug",
"color": "d73a4a",
"default": true,
"description": "Something isn't working"
}
] | closed | false | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
}
] | [] | 2023-10-19T10:11:29 | 2023-10-20T06:14:10 | 2023-10-20T06:14:10 | MEMBER | null | null | null | When trying to load a Hub dataset that contains a CSV metadata file, it raises an `ArrowInvalid` error:
```
E pyarrow.lib.ArrowInvalid: JSON parse error: Invalid value. in row 0
pyarrow/error.pxi:100: ArrowInvalid
```
See: https://huggingface.co./datasets/lukarape/public_small_papers/discussions/1 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6315/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6315/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/6314 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6314/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6314/comments | https://api.github.com/repos/huggingface/datasets/issues/6314/events | https://github.com/huggingface/datasets/pull/6314 | 1,951,684,763 | PR_kwDODunzps5dPo25 | 6,314 | Support creating new branch in push_to_hub | {
"login": "jmif",
"id": 1000442,
"node_id": "MDQ6VXNlcjEwMDA0NDI=",
"avatar_url": "https://avatars.githubusercontent.com/u/1000442?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/jmif",
"html_url": "https://github.com/jmif",
"followers_url": "https://api.github.com/users/jmif/followers",
"following_url": "https://api.github.com/users/jmif/following{/other_user}",
"gists_url": "https://api.github.com/users/jmif/gists{/gist_id}",
"starred_url": "https://api.github.com/users/jmif/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/jmif/subscriptions",
"organizations_url": "https://api.github.com/users/jmif/orgs",
"repos_url": "https://api.github.com/users/jmif/repos",
"events_url": "https://api.github.com/users/jmif/events{/privacy}",
"received_events_url": "https://api.github.com/users/jmif/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | [] | 2023-10-19T09:12:39 | 2023-10-19T09:20:06 | 2023-10-19T09:19:48 | NONE | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6314",
"html_url": "https://github.com/huggingface/datasets/pull/6314",
"diff_url": "https://github.com/huggingface/datasets/pull/6314.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6314.patch",
"merged_at": null
} | This adds support for creating a new branch when pushing a dataset to the hub. Tested both methods locally and branches are created. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6314/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6314/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6313 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6313/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6313/comments | https://api.github.com/repos/huggingface/datasets/issues/6313/events | https://github.com/huggingface/datasets/pull/6313 | 1,951,527,712 | PR_kwDODunzps5dPGmL | 6,313 | Fix commit message formatting in multi-commit uploads | {
"login": "qgallouedec",
"id": 45557362,
"node_id": "MDQ6VXNlcjQ1NTU3MzYy",
"avatar_url": "https://avatars.githubusercontent.com/u/45557362?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/qgallouedec",
"html_url": "https://github.com/qgallouedec",
"followers_url": "https://api.github.com/users/qgallouedec/followers",
"following_url": "https://api.github.com/users/qgallouedec/following{/other_user}",
"gists_url": "https://api.github.com/users/qgallouedec/gists{/gist_id}",
"starred_url": "https://api.github.com/users/qgallouedec/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/qgallouedec/subscriptions",
"organizations_url": "https://api.github.com/users/qgallouedec/orgs",
"repos_url": "https://api.github.com/users/qgallouedec/repos",
"events_url": "https://api.github.com/users/qgallouedec/events{/privacy}",
"received_events_url": "https://api.github.com/users/qgallouedec/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006760 / 0.011353 (-0.004593) | 0.003918 / 0.011008 (-0.007091) | 0.084016 / 0.038508 (0.045508) | 0.069927 / 0.023109 (0.046818) | 0.307898 / 0.275898 (0.032000) | 0.337453 / 0.323480 (0.013973) | 0.004132 / 0.007986 (-0.003854) | 0.003248 / 0.004328 (-0.001081) | 0.064526 / 0.004250 (0.060275) | 0.056424 / 0.037052 (0.019371) | 0.316313 / 0.258489 (0.057824) | 0.356302 / 0.293841 (0.062461) | 0.030634 / 0.128546 (-0.097912) | 0.008467 / 0.075646 (-0.067180) | 0.286676 / 0.419271 (-0.132595) | 0.051813 / 0.043533 (0.008280) | 0.309874 / 0.255139 (0.054735) | 0.332513 / 0.283200 (0.049313) | 0.023919 / 0.141683 (-0.117764) | 1.509033 / 1.452155 (0.056878) | 1.549636 / 1.492716 (0.056920) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.221464 / 0.018006 (0.203458) | 0.447873 / 0.000490 (0.447384) | 0.002408 / 0.000200 (0.002208) | 0.000090 / 0.000054 (0.000035) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027634 / 0.037411 (-0.009777) | 0.081802 / 0.014526 (0.067276) | 0.781489 / 0.176557 (0.604933) | 0.165184 / 0.737135 (-0.571951) | 0.121526 / 0.296338 (-0.174813) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.408215 / 0.215209 (0.193006) | 4.091192 / 2.077655 (2.013538) | 2.062608 / 1.504120 (0.558488) | 1.895747 / 1.541195 (0.354552) | 1.873682 / 1.468490 (0.405192) | 0.484184 / 4.584777 (-4.100593) | 3.469096 / 3.745712 (-0.276616) | 3.365325 / 5.269862 (-1.904537) | 2.000333 / 4.565676 (-2.565343) | 0.056661 / 0.424275 (-0.367614) | 0.007100 / 0.007607 (-0.000507) | 0.478587 / 0.226044 (0.252542) | 4.768703 / 2.268929 (2.499774) | 2.472432 / 55.444624 (-52.972192) | 2.133611 / 6.876477 (-4.742865) | 2.154296 / 2.142072 (0.012223) | 0.582293 / 4.805227 (-4.222934) | 0.131932 / 6.500664 (-6.368732) | 0.060259 / 0.075469 (-0.015211) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.259167 / 1.841788 (-0.582620) | 18.465604 / 8.074308 (10.391296) | 14.024528 / 10.191392 (3.833136) | 0.162320 / 0.680424 (-0.518104) | 0.018144 / 0.534201 (-0.516057) | 0.389931 / 0.579283 (-0.189352) | 0.396456 / 0.434364 (-0.037908) | 0.454734 / 0.540337 (-0.085603) | 0.636406 / 1.386936 (-0.750530) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006565 / 0.011353 (-0.004788) | 0.004008 / 0.011008 (-0.007000) | 0.064526 / 0.038508 (0.026018) | 0.071963 / 0.023109 (0.048854) | 0.415456 / 0.275898 (0.139557) | 0.441199 / 0.323480 (0.117719) | 0.005619 / 0.007986 (-0.002366) | 0.003261 / 0.004328 (-0.001067) | 0.064817 / 0.004250 (0.060567) | 0.055349 / 0.037052 (0.018296) | 0.425172 / 0.258489 (0.166683) | 0.452629 / 0.293841 (0.158788) | 0.031676 / 0.128546 (-0.096870) | 0.008432 / 0.075646 (-0.067214) | 0.071752 / 0.419271 (-0.347519) | 0.047176 / 0.043533 (0.003643) | 0.408641 / 0.255139 (0.153502) | 0.428579 / 0.283200 (0.145380) | 0.021548 / 0.141683 (-0.120135) | 1.495153 / 1.452155 (0.042999) | 1.557933 / 1.492716 (0.065217) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.212749 / 0.018006 (0.194743) | 0.441263 / 0.000490 (0.440773) | 0.005831 / 0.000200 (0.005631) | 0.000092 / 0.000054 (0.000037) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031844 / 0.037411 (-0.005567) | 0.091590 / 0.014526 (0.077064) | 0.102859 / 0.176557 (-0.073697) | 0.155859 / 0.737135 (-0.581276) | 0.104717 / 0.296338 (-0.191622) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.425924 / 0.215209 (0.210715) | 4.292829 / 2.077655 (2.215174) | 2.314350 / 1.504120 (0.810230) | 2.163087 / 1.541195 (0.621892) | 2.217310 / 1.468490 (0.748820) | 0.490889 / 4.584777 (-4.093887) | 3.498287 / 3.745712 (-0.247425) | 3.224980 / 5.269862 (-2.044881) | 1.987739 / 4.565676 (-2.577938) | 0.057486 / 0.424275 (-0.366790) | 0.007199 / 0.007607 (-0.000408) | 0.501194 / 0.226044 (0.275149) | 5.015202 / 2.268929 (2.746273) | 2.816307 / 55.444624 (-52.628318) | 2.474593 / 6.876477 (-4.401884) | 2.649510 / 2.142072 (0.507437) | 0.597167 / 4.805227 (-4.208060) | 0.131199 / 6.500664 (-6.369465) | 0.059532 / 0.075469 (-0.015938) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.384053 / 1.841788 (-0.457734) | 18.964201 / 8.074308 (10.889893) | 14.336209 / 10.191392 (4.144817) | 0.187522 / 0.680424 (-0.492902) | 0.020201 / 0.534201 (-0.514000) | 0.394778 / 0.579283 (-0.184505) | 0.408393 / 0.434364 (-0.025971) | 0.470965 / 0.540337 (-0.069373) | 0.667974 / 1.386936 (-0.718962) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#3b3333d790800ddaa3bf386ee71dc800258c921c \"CML watermark\")\n"
] | 2023-10-19T07:53:56 | 2023-10-20T14:06:13 | 2023-10-20T13:57:39 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6313",
"html_url": "https://github.com/huggingface/datasets/pull/6313",
"diff_url": "https://github.com/huggingface/datasets/pull/6313.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6313.patch",
"merged_at": "2023-10-20T13:57:38"
} | Currently, the commit message keeps on adding:
- `Upload dataset (part 00000-of-00002)`
- `Upload dataset (part 00000-of-00002) (part 00001-of-00002)`
Introduced in https://github.com/huggingface/datasets/pull/6269
This PR fixes this issue to have
- `Upload dataset (part 00000-of-00002)`
- `Upload dataset (part 00001-of-00002)` | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6313/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6313/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6312 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6312/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6312/comments | https://api.github.com/repos/huggingface/datasets/issues/6312/events | https://github.com/huggingface/datasets/pull/6312 | 1,950,128,416 | PR_kwDODunzps5dKWDF | 6,312 | docs: resolving namespace conflict, refactored variable | {
"login": "smty2018",
"id": 74114936,
"node_id": "MDQ6VXNlcjc0MTE0OTM2",
"avatar_url": "https://avatars.githubusercontent.com/u/74114936?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/smty2018",
"html_url": "https://github.com/smty2018",
"followers_url": "https://api.github.com/users/smty2018/followers",
"following_url": "https://api.github.com/users/smty2018/following{/other_user}",
"gists_url": "https://api.github.com/users/smty2018/gists{/gist_id}",
"starred_url": "https://api.github.com/users/smty2018/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/smty2018/subscriptions",
"organizations_url": "https://api.github.com/users/smty2018/orgs",
"repos_url": "https://api.github.com/users/smty2018/repos",
"events_url": "https://api.github.com/users/smty2018/events{/privacy}",
"received_events_url": "https://api.github.com/users/smty2018/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | [
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006209 / 0.011353 (-0.005144) | 0.003708 / 0.011008 (-0.007300) | 0.080435 / 0.038508 (0.041926) | 0.060105 / 0.023109 (0.036995) | 0.392962 / 0.275898 (0.117064) | 0.429381 / 0.323480 (0.105902) | 0.003596 / 0.007986 (-0.004390) | 0.003849 / 0.004328 (-0.000480) | 0.062377 / 0.004250 (0.058127) | 0.048718 / 0.037052 (0.011666) | 0.400906 / 0.258489 (0.142417) | 0.440335 / 0.293841 (0.146494) | 0.027807 / 0.128546 (-0.100739) | 0.008066 / 0.075646 (-0.067580) | 0.262542 / 0.419271 (-0.156730) | 0.045513 / 0.043533 (0.001980) | 0.399608 / 0.255139 (0.144469) | 0.418007 / 0.283200 (0.134807) | 0.023475 / 0.141683 (-0.118208) | 1.476563 / 1.452155 (0.024409) | 1.528898 / 1.492716 (0.036182) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.223798 / 0.018006 (0.205792) | 0.430526 / 0.000490 (0.430036) | 0.009232 / 0.000200 (0.009032) | 0.000082 / 0.000054 (0.000028) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024921 / 0.037411 (-0.012490) | 0.077692 / 0.014526 (0.063166) | 0.085382 / 0.176557 (-0.091174) | 0.146220 / 0.737135 (-0.590915) | 0.086396 / 0.296338 (-0.209943) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.439986 / 0.215209 (0.224777) | 4.384552 / 2.077655 (2.306897) | 2.373697 / 1.504120 (0.869577) | 2.176138 / 1.541195 (0.634943) | 2.225914 / 1.468490 (0.757424) | 0.505776 / 4.584777 (-4.079001) | 3.053744 / 3.745712 (-0.691968) | 3.080443 / 5.269862 (-2.189419) | 1.904392 / 4.565676 (-2.661285) | 0.058112 / 0.424275 (-0.366163) | 0.006631 / 0.007607 (-0.000976) | 0.503409 / 0.226044 (0.277365) | 5.053375 / 2.268929 (2.784447) | 2.789963 / 55.444624 (-52.654661) | 2.452659 / 6.876477 (-4.423818) | 2.512353 / 2.142072 (0.370280) | 0.590095 / 4.805227 (-4.215132) | 0.126267 / 6.500664 (-6.374397) | 0.061246 / 0.075469 (-0.014223) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.249884 / 1.841788 (-0.591903) | 17.684730 / 8.074308 (9.610422) | 13.967467 / 10.191392 (3.776075) | 0.144202 / 0.680424 (-0.536222) | 0.017004 / 0.534201 (-0.517197) | 0.333634 / 0.579283 (-0.245649) | 0.387251 / 0.434364 (-0.047113) | 0.390189 / 0.540337 (-0.150148) | 0.535662 / 1.386936 (-0.851274) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006379 / 0.011353 (-0.004974) | 0.003681 / 0.011008 (-0.007327) | 0.063005 / 0.038508 (0.024497) | 0.064221 / 0.023109 (0.041112) | 0.446074 / 0.275898 (0.170176) | 0.471997 / 0.323480 (0.148517) | 0.005074 / 0.007986 (-0.002911) | 0.002945 / 0.004328 (-0.001383) | 0.063305 / 0.004250 (0.059054) | 0.050608 / 0.037052 (0.013556) | 0.443260 / 0.258489 (0.184771) | 0.478497 / 0.293841 (0.184656) | 0.028980 / 0.128546 (-0.099566) | 0.008145 / 0.075646 (-0.067502) | 0.068412 / 0.419271 (-0.350859) | 0.041552 / 0.043533 (-0.001980) | 0.436649 / 0.255139 (0.181510) | 0.462397 / 0.283200 (0.179198) | 0.019929 / 0.141683 (-0.121753) | 1.530248 / 1.452155 (0.078093) | 1.611117 / 1.492716 (0.118401) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.232894 / 0.018006 (0.214888) | 0.421451 / 0.000490 (0.420961) | 0.003984 / 0.000200 (0.003784) | 0.000084 / 0.000054 (0.000030) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027776 / 0.037411 (-0.009635) | 0.081632 / 0.014526 (0.067106) | 0.094031 / 0.176557 (-0.082526) | 0.147930 / 0.737135 (-0.589206) | 0.094226 / 0.296338 (-0.202112) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.471722 / 0.215209 (0.256513) | 4.713241 / 2.077655 (2.635587) | 2.662660 / 1.504120 (1.158540) | 2.490778 / 1.541195 (0.949583) | 2.555786 / 1.468490 (1.087296) | 0.512209 / 4.584777 (-4.072568) | 3.210612 / 3.745712 (-0.535100) | 2.863346 / 5.269862 (-2.406516) | 1.884664 / 4.565676 (-2.681012) | 0.058514 / 0.424275 (-0.365761) | 0.006473 / 0.007607 (-0.001134) | 0.543279 / 0.226044 (0.317235) | 5.441485 / 2.268929 (3.172556) | 3.145398 / 55.444624 (-52.299226) | 2.749603 / 6.876477 (-4.126874) | 2.925738 / 2.142072 (0.783666) | 0.598725 / 4.805227 (-4.206502) | 0.125616 / 6.500664 (-6.375048) | 0.061314 / 0.075469 (-0.014155) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.384270 / 1.841788 (-0.457518) | 18.307618 / 8.074308 (10.233310) | 14.635768 / 10.191392 (4.444376) | 0.148787 / 0.680424 (-0.531637) | 0.018191 / 0.534201 (-0.516010) | 0.333166 / 0.579283 (-0.246117) | 0.405116 / 0.434364 (-0.029247) | 0.392798 / 0.540337 (-0.147540) | 0.582299 / 1.386936 (-0.804637) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#7004f0f2ec59832fe53af033efdca10d00377760 \"CML watermark\")\n"
] | 2023-10-18T16:10:59 | 2023-10-19T16:31:59 | 2023-10-19T16:23:07 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6312",
"html_url": "https://github.com/huggingface/datasets/pull/6312",
"diff_url": "https://github.com/huggingface/datasets/pull/6312.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6312.patch",
"merged_at": "2023-10-19T16:23:07"
} | In docs of about_arrow.md, in the below example code
![image](https://github.com/huggingface/datasets/assets/74114936/fc70e152-e15f-422e-949a-1c4c4c9aa116)
The variable name 'time' was being used in a way that could potentially lead to a namespace conflict with Python's built-in 'time' module. It is not a good convention and can lead to unintended variable shadowing for any user re-using the example code.
To ensure code clarity, and prevent potential naming conflicts renamed the variable 'time' to 'elapsed_time' in the example code. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6312/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6312/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6311 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6311/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6311/comments | https://api.github.com/repos/huggingface/datasets/issues/6311/events | https://github.com/huggingface/datasets/issues/6311 | 1,949,304,993 | I_kwDODunzps50MAih | 6,311 | cast_column to Sequence with length=4 occur exception raise in datasets/table.py:2146 | {
"login": "neiblegy",
"id": 16574677,
"node_id": "MDQ6VXNlcjE2NTc0Njc3",
"avatar_url": "https://avatars.githubusercontent.com/u/16574677?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/neiblegy",
"html_url": "https://github.com/neiblegy",
"followers_url": "https://api.github.com/users/neiblegy/followers",
"following_url": "https://api.github.com/users/neiblegy/following{/other_user}",
"gists_url": "https://api.github.com/users/neiblegy/gists{/gist_id}",
"starred_url": "https://api.github.com/users/neiblegy/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/neiblegy/subscriptions",
"organizations_url": "https://api.github.com/users/neiblegy/orgs",
"repos_url": "https://api.github.com/users/neiblegy/repos",
"events_url": "https://api.github.com/users/neiblegy/events{/privacy}",
"received_events_url": "https://api.github.com/users/neiblegy/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | [
"Thanks for reporting! We've spotted the bugs with the `array.values` handling and are fixing them in https://github.com/huggingface/datasets/pull/6283 (should be part of the next release).",
"> Thanks for reporting! We've spotted the bugs with the `array.values` handling and are fixing them in #6283 (should be part of the next release).\r\n\r\ni encounter another exception while cast_column to type `Sequence(feature={\"points\": Array2D(shape=(-1, 2), dtype=\"int64\"), \"label\": ClassLabel(num_classes=num_classes, names=names)})`\r\n\r\nwhile my data like this: '{\"points\": [[0.6,0.6], [0.7,0.7], [0.8,0.8]], \"label\": \"A1\"}'\r\n\r\nhere is the backtrace info:\r\n\r\n```\r\n out = func(dataset, *args, **kwargs)\r\n File \"/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/arrow_dataset.py\", line 2110, in cast_column\r\n return self.cast(features)\r\n File \"/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/arrow_dataset.py\", line 2055, in cast\r\n dataset = dataset.map(\r\n File \"/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/arrow_dataset.py\", line 592, in wrapper\r\n out: Union[\"Dataset\", \"DatasetDict\"] = func(self, *args, **kwargs)\r\n File \"/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/arrow_dataset.py\", line 557, in wrapper\r\n out: Union[\"Dataset\", \"DatasetDict\"] = func(self, *args, **kwargs)\r\n File \"/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/arrow_dataset.py\", line 3097, in map\r\n for rank, done, content in Dataset._map_single(**dataset_kwargs):\r\n File \"/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/arrow_dataset.py\", line 3474, in _map_single\r\n batch = apply_function_on_filtered_inputs(\r\n File \"/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/arrow_dataset.py\", line 3353, in apply_function_on_filtered_inputs\r\n processed_inputs = function(*fn_args, *additional_args, **fn_kwargs)\r\n File \"/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/table.py\", line 2329, in table_cast\r\n return cast_table_to_schema(table, schema)\r\n File \"/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/table.py\", line 2288, in cast_table_to_schema\r\n arrays = [cast_array_to_feature(table[name], feature) for name, feature in features.items()]\r\n File \"/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/table.py\", line 2288, in <listcomp>\r\n arrays = [cast_array_to_feature(table[name], feature) for name, feature in features.items()]\r\n File \"/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/table.py\", line 1831, in wrapper\r\n return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks])\r\n File \"/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/table.py\", line 1831, in <listcomp>\r\n return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks])\r\n File \"/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/table.py\", line 2073, in cast_array_to_feature\r\n arrays = [_c(array.field(name), subfeature) for name, subfeature in feature.items()]\r\n File \"/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/table.py\", line 2073, in <listcomp>\r\n arrays = [_c(array.field(name), subfeature) for name, subfeature in feature.items()]\r\n File \"/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/table.py\", line 1833, in wrapper\r\n return func(array, *args, **kwargs)\r\n File \"/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/table.py\", line 2095, in cast_array_to_feature\r\n casted_values = _c(array.values, feature.feature)\r\n File \"/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/table.py\", line 1833, in wrapper\r\n return func(array, *args, **kwargs)\r\n File \"/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/table.py\", line 2144, in cast_array_to_feature\r\n return array_cast(array, feature(), allow_number_to_str=allow_number_to_str)\r\n File \"/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/table.py\", line 1833, in wrapper\r\n return func(array, *args, **kwargs)\r\n File \"/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/table.py\", line 1967, in array_cast\r\n return pa_type.wrap_array(array)\r\n File \"pyarrow/types.pxi\", line 1369, in pyarrow.lib.BaseExtensionType.wrap_array\r\nTypeError: Incompatible storage type for extension<arrow.py_extension_type<Array2DExtensionType>>: expected list<item: list<item: double>>, got list<item: double>\r\n```\r\nand i print(array) in datasets/table.py:1967 indeed get 2D list. is that same issue in #6283 ?\r\n\r\nbesides this, hugging face datasets seems don't naturally support multi-labels which means `Sequence(ClassLabel)` illegal if data is [\"label1\", \"label2\"]. so i have to define a class derived from `ClassLabel`, like this:\r\n\r\n```\r\nclass AisClassLabels(ClassLabel):\r\n def encode_example(self, example_data):\r\n if self.num_classes is None:\r\n raise ValueError(\r\n \"Trying to use ClassLabel feature with undefined number of class. \"\r\n \"Please set ClassLabel.names or num_classes.\"\r\n )\r\n if not isinstance(example_data, list):\r\n example_data = [example_data]\r\n\r\n for i in range(len(example_data)):\r\n if isinstance(example_data[i], str):\r\n example_data[i] = self.str2int(example_data[i])\r\n if not -1 <= example_data[i] < self.num_classes:\r\n raise ValueError(f\"Class label {example_data:d} greater than configured num_classes {self.num_classes}\")\r\n return example_data\r\n```\r\nand it works well in my case. but is there any recommend way to implement multi-labels?",
"`Incompatible storage type for extension<arrow.py_extension_type<Array2DExtensionType>>: expected list<item: list<item: double>>, got list<item: double>`\r\nif i change `Array2D(shape=(-1, 2), dtype=\"int64\")` to `Sequence(Value(\"int64\"))` , every thing goes well. but my data is 2D int list",
"i test Sequence(ClassLabel) is ok if one column is label list. but it is not ok in nested column such as `Sequence(feature= {\"points\": Sequence(Value(\"int32\")), \"label\": Sequence(ClassLabel(num_classes....)))`. in this case i need override ClassLabels. encode_example as i given above."
] | 2023-10-18T09:38:05 | 2023-10-20T10:17:43 | null | NONE | null | null | null | ### Describe the bug
i load a dataset from local csv file which has 187383612 examples, then use `map` to generate new columns for test.
here is my code :
```
import os
from datasets import load_dataset
from datasets.features import Sequence, Value
def add_new_path(example):
example["ais_bbox"] = [100,100,200,200]
example["ais_image_path"] = os.path.join("images", example["image_path"]) if example["image_path"] else ""
return example
ais_dataset = load_dataset("/data/ryan.gao/ais_dataset_cache/raw/1749/")
hf_ds = ais_dataset.map(add_new_path, batched=False, num_proc=32)
ds = hf_ds.cast_column("ais_bbox", Sequence(Value("int32"), length=4))
```
and the `cast_column` raise an exception
```
Casting the dataset: 3%|███▉
...
File "/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 2110, in cast_column
return self.cast(features)
File "/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 2055, in cast
dataset = dataset.map(
File "/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 592, in wrapper
out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs)
File "/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 557, in wrapper
out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs)
File "/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 3097, in map
for rank, done, content in Dataset._map_single(**dataset_kwargs):
File "/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 3474, in _map_single
batch = apply_function_on_filtered_inputs(
File "/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 3353, in apply_function_on_filtered_inputs
processed_inputs = function(*fn_args, *additional_args, **fn_kwargs)
File "/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/table.py", line 2329, in table_cast
return cast_table_to_schema(table, schema)
File "/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/table.py", line 2288, in cast_table_to_schema
arrays = [cast_array_to_feature(table[name], feature) for name, feature in features.items()]
File "/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/table.py", line 2288, in <listcomp>
arrays = [cast_array_to_feature(table[name], feature) for name, feature in features.items()]
File "/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/table.py", line 1831, in wrapper
return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks])
File "/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/table.py", line 1831, in <listcomp>
return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks])
File "/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/table.py", line 2145, in cast_array_to_feature
raise TypeError(f"Couldn't cast array of type\n{array.type}\nto\n{feature}")
TypeError: Couldn't cast array of type
list<item: int64>
to
Sequence(feature=Value(dtype='int32', id=None), length=4, id=None)
```
i check the source code and make debug info:
in datasets/table.py:2092
```
2091 if feature.length > -1:
2092 if feature.length * len(array) == len(array.values):
2093 return pa.FixedSizeListArray.from_arrays(_c(array.values, feature.feature), feature.length)
2094 print(len(array))
2095 print(len(array.values))
```
my feature.length is 4. but feature.length * len(array) == len(array.values) is false.
print(len(array)) is 262
print(len(array.values)) is 4000
then I use "for item in array" to print each item then get 262 * [100,100,200,200]
and use "for item in array.values" to print each item and get 4000 int32 which are 1000 * [100,100,200,200]
i'm wondering the `chunk` in each `array.chunks`, the "chunk.values" may get all the chunks's value rather than single chunk? but i check the pyarrow's doc seems chunk.values is chunk's value not all.
### Steps to reproduce the bug
code provided above.
### Expected behavior
feature.length * len(array) == len(array.values) should be true. and there should not has Exception.
### Environment info
python3.9
x86_64
datasets: 2.14.4
pyarrow: 13.0.0 or 10.0.0 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6311/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6311/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/6310 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6310/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6310/comments | https://api.github.com/repos/huggingface/datasets/issues/6310/events | https://github.com/huggingface/datasets/pull/6310 | 1,947,457,988 | PR_kwDODunzps5dBPnY | 6,310 | Add return_file_name in load_dataset | {
"login": "juliendenize",
"id": 40604584,
"node_id": "MDQ6VXNlcjQwNjA0NTg0",
"avatar_url": "https://avatars.githubusercontent.com/u/40604584?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/juliendenize",
"html_url": "https://github.com/juliendenize",
"followers_url": "https://api.github.com/users/juliendenize/followers",
"following_url": "https://api.github.com/users/juliendenize/following{/other_user}",
"gists_url": "https://api.github.com/users/juliendenize/gists{/gist_id}",
"starred_url": "https://api.github.com/users/juliendenize/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/juliendenize/subscriptions",
"organizations_url": "https://api.github.com/users/juliendenize/orgs",
"repos_url": "https://api.github.com/users/juliendenize/repos",
"events_url": "https://api.github.com/users/juliendenize/events{/privacy}",
"received_events_url": "https://api.github.com/users/juliendenize/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6310). All of your documentation changes will be reflected on that endpoint.",
"> Thanks for the change !\r\n> \r\n> Since `return` in python often refers to what is actually returned by the function (here `load_dataset`), I think we can use another word for the parameter. Maybe name it `with_file_names`?\r\n> \r\n> cc @mariosasko in case you have an opinion\r\n\r\nI changed the argument name to your suggestion, I agree that it should be less confusing :)",
"> Thanks! I've left some comments.\r\n> \r\n> @lhoestq WDYT about returning a data file's name (the last part) instead of the full path? This way we could have the same values in the streaming and the non-streaming mode. (In the non-streaming mode, we would also have to iterate over remote files to not output the files' hash (from the HF cache))\r\n\r\nConcerning the last part of the file name, do you have suggestions on how to do that? Because it can happen that the files are located in different folders with the same name so I am wondering what would be the way to go."
] | 2023-10-17T13:36:57 | 2023-11-27T21:11:14 | null | NONE | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6310",
"html_url": "https://github.com/huggingface/datasets/pull/6310",
"diff_url": "https://github.com/huggingface/datasets/pull/6310.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6310.patch",
"merged_at": null
} | Proposition to fix #5806.
Added an optional parameter `return_file_name` in the dataset builder config. When set to `True`, the function will include the file name corresponding to the sample in the returned output.
There is a difference between arrow-based and folder-based datasets to return the file name:
- for arrow-based: a column is concatenated after the table is cast.
- for folder-based: `dataset.info.features` has the entry `file_name` and the original file name is passed to the `sample_metadata` dictionary.
The difference in behavior might be a concern, also I do not know whether the `file_name` should return the original file path or the downloaded one for folder-based datasets.
I added some tests for the datasets that already had a test file. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6310/reactions",
"total_count": 1,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 1,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6310/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6309 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6309/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6309/comments | https://api.github.com/repos/huggingface/datasets/issues/6309/events | https://github.com/huggingface/datasets/pull/6309 | 1,946,916,969 | PR_kwDODunzps5c_YcX | 6,309 | Fix get_data_patterns for directories with the word data twice | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | [
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006461 / 0.011353 (-0.004891) | 0.004035 / 0.011008 (-0.006973) | 0.085037 / 0.038508 (0.046529) | 0.072434 / 0.023109 (0.049325) | 0.308565 / 0.275898 (0.032667) | 0.330455 / 0.323480 (0.006975) | 0.003782 / 0.007986 (-0.004204) | 0.004363 / 0.004328 (0.000034) | 0.065242 / 0.004250 (0.060991) | 0.056111 / 0.037052 (0.019058) | 0.318008 / 0.258489 (0.059519) | 0.357904 / 0.293841 (0.064063) | 0.030702 / 0.128546 (-0.097844) | 0.008741 / 0.075646 (-0.066905) | 0.287666 / 0.419271 (-0.131605) | 0.052281 / 0.043533 (0.008748) | 0.306894 / 0.255139 (0.051755) | 0.335739 / 0.283200 (0.052540) | 0.023712 / 0.141683 (-0.117971) | 1.492304 / 1.452155 (0.040149) | 1.544540 / 1.492716 (0.051823) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.299419 / 0.018006 (0.281413) | 0.547195 / 0.000490 (0.546705) | 0.011571 / 0.000200 (0.011371) | 0.000223 / 0.000054 (0.000168) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028364 / 0.037411 (-0.009048) | 0.081445 / 0.014526 (0.066919) | 0.626670 / 0.176557 (0.450114) | 0.159964 / 0.737135 (-0.577171) | 0.100528 / 0.296338 (-0.195811) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.409915 / 0.215209 (0.194705) | 4.108689 / 2.077655 (2.031034) | 2.046247 / 1.504120 (0.542127) | 1.851081 / 1.541195 (0.309887) | 1.857857 / 1.468490 (0.389367) | 0.493246 / 4.584777 (-4.091531) | 3.581557 / 3.745712 (-0.164155) | 3.456708 / 5.269862 (-1.813153) | 2.051054 / 4.565676 (-2.514623) | 0.057553 / 0.424275 (-0.366722) | 0.007287 / 0.007607 (-0.000320) | 0.493094 / 0.226044 (0.267050) | 4.873051 / 2.268929 (2.604122) | 2.515266 / 55.444624 (-52.929358) | 2.144743 / 6.876477 (-4.731733) | 2.159412 / 2.142072 (0.017340) | 0.595627 / 4.805227 (-4.209601) | 0.133773 / 6.500664 (-6.366891) | 0.059965 / 0.075469 (-0.015504) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.259625 / 1.841788 (-0.582163) | 19.030742 / 8.074308 (10.956434) | 14.039246 / 10.191392 (3.847854) | 0.168116 / 0.680424 (-0.512308) | 0.018168 / 0.534201 (-0.516033) | 0.391187 / 0.579283 (-0.188096) | 0.420901 / 0.434364 (-0.013463) | 0.465827 / 0.540337 (-0.074511) | 0.718373 / 1.386936 (-0.668563) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006616 / 0.011353 (-0.004737) | 0.004048 / 0.011008 (-0.006960) | 0.064568 / 0.038508 (0.026060) | 0.075933 / 0.023109 (0.052824) | 0.396353 / 0.275898 (0.120455) | 0.424159 / 0.323480 (0.100679) | 0.005446 / 0.007986 (-0.002540) | 0.003393 / 0.004328 (-0.000935) | 0.064673 / 0.004250 (0.060422) | 0.056983 / 0.037052 (0.019930) | 0.402478 / 0.258489 (0.143989) | 0.433240 / 0.293841 (0.139399) | 0.032100 / 0.128546 (-0.096446) | 0.008664 / 0.075646 (-0.066983) | 0.070502 / 0.419271 (-0.348770) | 0.047800 / 0.043533 (0.004267) | 0.399506 / 0.255139 (0.144367) | 0.418376 / 0.283200 (0.135176) | 0.022654 / 0.141683 (-0.119029) | 1.487280 / 1.452155 (0.035125) | 1.543733 / 1.492716 (0.051017) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.317660 / 0.018006 (0.299654) | 0.523922 / 0.000490 (0.523432) | 0.007086 / 0.000200 (0.006886) | 0.000109 / 0.000054 (0.000055) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032381 / 0.037411 (-0.005030) | 0.091636 / 0.014526 (0.077110) | 0.104743 / 0.176557 (-0.071814) | 0.158793 / 0.737135 (-0.578342) | 0.103164 / 0.296338 (-0.193175) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.434081 / 0.215209 (0.218872) | 4.329448 / 2.077655 (2.251794) | 2.335855 / 1.504120 (0.831735) | 2.177513 / 1.541195 (0.636319) | 2.205406 / 1.468490 (0.736916) | 0.500117 / 4.584777 (-4.084660) | 3.693715 / 3.745712 (-0.051997) | 3.305803 / 5.269862 (-1.964059) | 2.048283 / 4.565676 (-2.517394) | 0.058301 / 0.424275 (-0.365974) | 0.007196 / 0.007607 (-0.000411) | 0.512917 / 0.226044 (0.286873) | 5.129283 / 2.268929 (2.860355) | 2.836200 / 55.444624 (-52.608425) | 2.499022 / 6.876477 (-4.377455) | 2.652305 / 2.142072 (0.510232) | 0.604219 / 4.805227 (-4.201008) | 0.137310 / 6.500664 (-6.363354) | 0.060880 / 0.075469 (-0.014589) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.346948 / 1.841788 (-0.494839) | 19.499516 / 8.074308 (11.425208) | 14.701500 / 10.191392 (4.510108) | 0.168626 / 0.680424 (-0.511798) | 0.020002 / 0.534201 (-0.514199) | 0.394729 / 0.579283 (-0.184554) | 0.428323 / 0.434364 (-0.006040) | 0.481202 / 0.540337 (-0.059136) | 0.684768 / 1.386936 (-0.702169) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#fed9c07458afc73870e8ec9846bf1fc5cac0b378 \"CML watermark\")\n",
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6309). All of your documentation changes will be reflected on that endpoint.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007033 / 0.011353 (-0.004320) | 0.004411 / 0.011008 (-0.006597) | 0.086146 / 0.038508 (0.047638) | 0.086669 / 0.023109 (0.063560) | 0.329145 / 0.275898 (0.053247) | 0.348728 / 0.323480 (0.025248) | 0.004404 / 0.007986 (-0.003582) | 0.003656 / 0.004328 (-0.000673) | 0.066120 / 0.004250 (0.061869) | 0.059157 / 0.037052 (0.022105) | 0.316537 / 0.258489 (0.058048) | 0.369065 / 0.293841 (0.075224) | 0.031921 / 0.128546 (-0.096625) | 0.008877 / 0.075646 (-0.066770) | 0.290068 / 0.419271 (-0.129204) | 0.054007 / 0.043533 (0.010475) | 0.308823 / 0.255139 (0.053684) | 0.331189 / 0.283200 (0.047989) | 0.027313 / 0.141683 (-0.114370) | 1.486772 / 1.452155 (0.034617) | 1.570359 / 1.492716 (0.077643) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.315991 / 0.018006 (0.297985) | 0.577876 / 0.000490 (0.577386) | 0.011207 / 0.000200 (0.011007) | 0.000089 / 0.000054 (0.000035) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031753 / 0.037411 (-0.005658) | 0.089270 / 0.014526 (0.074744) | 0.102518 / 0.176557 (-0.074038) | 0.160260 / 0.737135 (-0.576875) | 0.103365 / 0.296338 (-0.192973) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.405789 / 0.215209 (0.190580) | 4.052740 / 2.077655 (1.975085) | 2.052076 / 1.504120 (0.547956) | 1.873966 / 1.541195 (0.332771) | 1.997156 / 1.468490 (0.528665) | 0.494975 / 4.584777 (-4.089802) | 3.600007 / 3.745712 (-0.145705) | 3.626459 / 5.269862 (-1.643403) | 2.176927 / 4.565676 (-2.388750) | 0.057894 / 0.424275 (-0.366381) | 0.007469 / 0.007607 (-0.000138) | 0.487422 / 0.226044 (0.261377) | 4.868744 / 2.268929 (2.599815) | 2.528707 / 55.444624 (-52.915918) | 2.149520 / 6.876477 (-4.726956) | 2.275491 / 2.142072 (0.133419) | 0.589112 / 4.805227 (-4.216115) | 0.136644 / 6.500664 (-6.364020) | 0.062144 / 0.075469 (-0.013325) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.286625 / 1.841788 (-0.555163) | 20.528128 / 8.074308 (12.453819) | 15.290866 / 10.191392 (5.099474) | 0.168380 / 0.680424 (-0.512044) | 0.018908 / 0.534201 (-0.515293) | 0.397210 / 0.579283 (-0.182073) | 0.426133 / 0.434364 (-0.008231) | 0.471754 / 0.540337 (-0.068584) | 0.653343 / 1.386936 (-0.733593) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007599 / 0.011353 (-0.003754) | 0.004499 / 0.011008 (-0.006509) | 0.066248 / 0.038508 (0.027740) | 0.097704 / 0.023109 (0.074595) | 0.414558 / 0.275898 (0.138660) | 0.451088 / 0.323480 (0.127609) | 0.005932 / 0.007986 (-0.002054) | 0.003698 / 0.004328 (-0.000630) | 0.065784 / 0.004250 (0.061534) | 0.064777 / 0.037052 (0.027725) | 0.443318 / 0.258489 (0.184829) | 0.456896 / 0.293841 (0.163055) | 0.033436 / 0.128546 (-0.095111) | 0.008977 / 0.075646 (-0.066669) | 0.072067 / 0.419271 (-0.347205) | 0.049571 / 0.043533 (0.006038) | 0.420325 / 0.255139 (0.165186) | 0.443588 / 0.283200 (0.160388) | 0.026723 / 0.141683 (-0.114960) | 1.512566 / 1.452155 (0.060411) | 1.647591 / 1.492716 (0.154875) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.326410 / 0.018006 (0.308404) | 0.532878 / 0.000490 (0.532388) | 0.006257 / 0.000200 (0.006057) | 0.000104 / 0.000054 (0.000049) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.037289 / 0.037411 (-0.000122) | 0.104940 / 0.014526 (0.090414) | 0.113597 / 0.176557 (-0.062960) | 0.170562 / 0.737135 (-0.566573) | 0.114583 / 0.296338 (-0.181755) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.435530 / 0.215209 (0.220321) | 4.332659 / 2.077655 (2.255005) | 2.343576 / 1.504120 (0.839456) | 2.190517 / 1.541195 (0.649322) | 2.323101 / 1.468490 (0.854611) | 0.493019 / 4.584777 (-4.091758) | 3.686726 / 3.745712 (-0.058986) | 3.437143 / 5.269862 (-1.832719) | 2.167193 / 4.565676 (-2.398483) | 0.059636 / 0.424275 (-0.364639) | 0.007696 / 0.007607 (0.000089) | 0.511159 / 0.226044 (0.285115) | 5.119358 / 2.268929 (2.850429) | 2.814934 / 55.444624 (-52.629690) | 2.477871 / 6.876477 (-4.398606) | 2.774473 / 2.142072 (0.632401) | 0.590258 / 4.805227 (-4.214969) | 0.135923 / 6.500664 (-6.364741) | 0.062793 / 0.075469 (-0.012676) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.350192 / 1.841788 (-0.491596) | 21.382135 / 8.074308 (13.307827) | 16.024198 / 10.191392 (5.832806) | 0.163623 / 0.680424 (-0.516801) | 0.020749 / 0.534201 (-0.513452) | 0.402578 / 0.579283 (-0.176705) | 0.436569 / 0.434364 (0.002205) | 0.477217 / 0.540337 (-0.063121) | 0.682929 / 1.386936 (-0.704007) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#fa36173f2e8c6f266efd236933eff3a95af0382c \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006671 / 0.011353 (-0.004681) | 0.004176 / 0.011008 (-0.006832) | 0.084095 / 0.038508 (0.045587) | 0.076345 / 0.023109 (0.053236) | 0.341201 / 0.275898 (0.065303) | 0.381920 / 0.323480 (0.058440) | 0.005578 / 0.007986 (-0.002408) | 0.003535 / 0.004328 (-0.000794) | 0.065227 / 0.004250 (0.060976) | 0.054983 / 0.037052 (0.017931) | 0.345938 / 0.258489 (0.087449) | 0.398708 / 0.293841 (0.104867) | 0.031029 / 0.128546 (-0.097518) | 0.008643 / 0.075646 (-0.067004) | 0.287286 / 0.419271 (-0.131985) | 0.052424 / 0.043533 (0.008892) | 0.342914 / 0.255139 (0.087775) | 0.366982 / 0.283200 (0.083782) | 0.024511 / 0.141683 (-0.117172) | 1.510575 / 1.452155 (0.058421) | 1.593214 / 1.492716 (0.100497) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.272703 / 0.018006 (0.254697) | 0.583235 / 0.000490 (0.582746) | 0.008467 / 0.000200 (0.008267) | 0.000295 / 0.000054 (0.000240) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029654 / 0.037411 (-0.007757) | 0.085078 / 0.014526 (0.070552) | 0.106391 / 0.176557 (-0.070165) | 0.155790 / 0.737135 (-0.581345) | 0.104835 / 0.296338 (-0.191503) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.408584 / 0.215209 (0.193375) | 4.082557 / 2.077655 (2.004902) | 2.054001 / 1.504120 (0.549881) | 1.868470 / 1.541195 (0.327275) | 1.950600 / 1.468490 (0.482110) | 0.492572 / 4.584777 (-4.092205) | 3.497105 / 3.745712 (-0.248607) | 3.464596 / 5.269862 (-1.805265) | 2.106399 / 4.565676 (-2.459278) | 0.057413 / 0.424275 (-0.366862) | 0.007449 / 0.007607 (-0.000158) | 0.482900 / 0.226044 (0.256856) | 4.844152 / 2.268929 (2.575223) | 2.499930 / 55.444624 (-52.944695) | 2.180396 / 6.876477 (-4.696081) | 2.282830 / 2.142072 (0.140758) | 0.581371 / 4.805227 (-4.223857) | 0.134641 / 6.500664 (-6.366023) | 0.063137 / 0.075469 (-0.012332) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.274291 / 1.841788 (-0.567496) | 19.426189 / 8.074308 (11.351881) | 14.292833 / 10.191392 (4.101441) | 0.166321 / 0.680424 (-0.514102) | 0.018419 / 0.534201 (-0.515782) | 0.392433 / 0.579283 (-0.186850) | 0.415128 / 0.434364 (-0.019236) | 0.459274 / 0.540337 (-0.081063) | 0.714668 / 1.386936 (-0.672268) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006740 / 0.011353 (-0.004613) | 0.004283 / 0.011008 (-0.006725) | 0.063845 / 0.038508 (0.025337) | 0.077037 / 0.023109 (0.053927) | 0.425103 / 0.275898 (0.149205) | 0.445525 / 0.323480 (0.122046) | 0.005755 / 0.007986 (-0.002230) | 0.003589 / 0.004328 (-0.000739) | 0.064515 / 0.004250 (0.060265) | 0.057398 / 0.037052 (0.020346) | 0.424781 / 0.258489 (0.166292) | 0.452162 / 0.293841 (0.158321) | 0.032164 / 0.128546 (-0.096382) | 0.008660 / 0.075646 (-0.066986) | 0.069873 / 0.419271 (-0.349399) | 0.048100 / 0.043533 (0.004567) | 0.409097 / 0.255139 (0.153958) | 0.441533 / 0.283200 (0.158333) | 0.024122 / 0.141683 (-0.117560) | 1.503431 / 1.452155 (0.051277) | 1.577518 / 1.492716 (0.084802) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.264433 / 0.018006 (0.246426) | 0.553631 / 0.000490 (0.553141) | 0.006354 / 0.000200 (0.006154) | 0.000106 / 0.000054 (0.000051) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033259 / 0.037411 (-0.004152) | 0.094908 / 0.014526 (0.080382) | 0.108238 / 0.176557 (-0.068318) | 0.161354 / 0.737135 (-0.575781) | 0.109073 / 0.296338 (-0.187265) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.434450 / 0.215209 (0.219241) | 4.347501 / 2.077655 (2.269847) | 2.362225 / 1.504120 (0.858105) | 2.189285 / 1.541195 (0.648090) | 2.288797 / 1.468490 (0.820307) | 0.487782 / 4.584777 (-4.096995) | 3.598732 / 3.745712 (-0.146980) | 3.343263 / 5.269862 (-1.926599) | 2.086256 / 4.565676 (-2.479420) | 0.057838 / 0.424275 (-0.366437) | 0.007412 / 0.007607 (-0.000195) | 0.510098 / 0.226044 (0.284054) | 5.088743 / 2.268929 (2.819814) | 2.809105 / 55.444624 (-52.635519) | 2.476005 / 6.876477 (-4.400471) | 2.753785 / 2.142072 (0.611712) | 0.585045 / 4.805227 (-4.220182) | 0.131162 / 6.500664 (-6.369502) | 0.060431 / 0.075469 (-0.015038) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.342149 / 1.841788 (-0.499639) | 20.602369 / 8.074308 (12.528061) | 14.973301 / 10.191392 (4.781909) | 0.151655 / 0.680424 (-0.528769) | 0.020793 / 0.534201 (-0.513408) | 0.401657 / 0.579283 (-0.177626) | 0.419845 / 0.434364 (-0.014519) | 0.467225 / 0.540337 (-0.073113) | 0.672469 / 1.386936 (-0.714467) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#474beafbc1c2735ff4747f5675855583be2ede06 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007006 / 0.011353 (-0.004346) | 0.004282 / 0.011008 (-0.006726) | 0.085413 / 0.038508 (0.046905) | 0.085148 / 0.023109 (0.062038) | 0.336543 / 0.275898 (0.060645) | 0.367959 / 0.323480 (0.044479) | 0.004337 / 0.007986 (-0.003648) | 0.004535 / 0.004328 (0.000207) | 0.065379 / 0.004250 (0.061128) | 0.059993 / 0.037052 (0.022941) | 0.343162 / 0.258489 (0.084673) | 0.383766 / 0.293841 (0.089925) | 0.031520 / 0.128546 (-0.097026) | 0.008605 / 0.075646 (-0.067042) | 0.288620 / 0.419271 (-0.130651) | 0.053617 / 0.043533 (0.010084) | 0.339389 / 0.255139 (0.084250) | 0.350842 / 0.283200 (0.067642) | 0.027816 / 0.141683 (-0.113867) | 1.505500 / 1.452155 (0.053346) | 1.566511 / 1.492716 (0.073795) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.272203 / 0.018006 (0.254197) | 0.569729 / 0.000490 (0.569240) | 0.010061 / 0.000200 (0.009861) | 0.000328 / 0.000054 (0.000273) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030015 / 0.037411 (-0.007396) | 0.083991 / 0.014526 (0.069465) | 0.099796 / 0.176557 (-0.076761) | 0.159131 / 0.737135 (-0.578004) | 0.099102 / 0.296338 (-0.197237) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.390076 / 0.215209 (0.174867) | 3.897157 / 2.077655 (1.819502) | 1.935912 / 1.504120 (0.431793) | 1.815109 / 1.541195 (0.273915) | 1.875041 / 1.468490 (0.406551) | 0.482168 / 4.584777 (-4.102609) | 3.556140 / 3.745712 (-0.189572) | 3.528889 / 5.269862 (-1.740972) | 2.132767 / 4.565676 (-2.432909) | 0.057761 / 0.424275 (-0.366514) | 0.007353 / 0.007607 (-0.000254) | 0.464801 / 0.226044 (0.238757) | 4.637301 / 2.268929 (2.368372) | 2.362239 / 55.444624 (-53.082386) | 2.049811 / 6.876477 (-4.826665) | 2.143485 / 2.142072 (0.001412) | 0.580929 / 4.805227 (-4.224299) | 0.140252 / 6.500664 (-6.360412) | 0.061352 / 0.075469 (-0.014117) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.257487 / 1.841788 (-0.584301) | 19.453319 / 8.074308 (11.379011) | 14.276332 / 10.191392 (4.084940) | 0.166772 / 0.680424 (-0.513652) | 0.018339 / 0.534201 (-0.515862) | 0.393008 / 0.579283 (-0.186275) | 0.420960 / 0.434364 (-0.013404) | 0.464331 / 0.540337 (-0.076007) | 0.717973 / 1.386936 (-0.668963) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007255 / 0.011353 (-0.004098) | 0.004230 / 0.011008 (-0.006778) | 0.065191 / 0.038508 (0.026683) | 0.085765 / 0.023109 (0.062655) | 0.412464 / 0.275898 (0.136566) | 0.446067 / 0.323480 (0.122587) | 0.005875 / 0.007986 (-0.002110) | 0.003700 / 0.004328 (-0.000628) | 0.065430 / 0.004250 (0.061179) | 0.060284 / 0.037052 (0.023231) | 0.419984 / 0.258489 (0.161495) | 0.453779 / 0.293841 (0.159938) | 0.032595 / 0.128546 (-0.095952) | 0.008873 / 0.075646 (-0.066773) | 0.072124 / 0.419271 (-0.347148) | 0.048072 / 0.043533 (0.004539) | 0.408725 / 0.255139 (0.153586) | 0.432485 / 0.283200 (0.149285) | 0.024662 / 0.141683 (-0.117021) | 1.540434 / 1.452155 (0.088279) | 1.624768 / 1.492716 (0.132051) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.253220 / 0.018006 (0.235214) | 0.555469 / 0.000490 (0.554980) | 0.007765 / 0.000200 (0.007565) | 0.000101 / 0.000054 (0.000046) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032666 / 0.037411 (-0.004745) | 0.094786 / 0.014526 (0.080260) | 0.108219 / 0.176557 (-0.068337) | 0.161546 / 0.737135 (-0.575589) | 0.109828 / 0.296338 (-0.186510) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.437024 / 0.215209 (0.221815) | 4.354065 / 2.077655 (2.276411) | 2.336832 / 1.504120 (0.832713) | 2.161959 / 1.541195 (0.620764) | 2.257214 / 1.468490 (0.788724) | 0.501576 / 4.584777 (-4.083201) | 3.654292 / 3.745712 (-0.091420) | 3.349504 / 5.269862 (-1.920357) | 2.092998 / 4.565676 (-2.472679) | 0.058740 / 0.424275 (-0.365535) | 0.007420 / 0.007607 (-0.000187) | 0.513443 / 0.226044 (0.287399) | 5.151247 / 2.268929 (2.882319) | 2.816036 / 55.444624 (-52.628589) | 2.451863 / 6.876477 (-4.424613) | 2.709908 / 2.142072 (0.567836) | 0.597834 / 4.805227 (-4.207394) | 0.136547 / 6.500664 (-6.364117) | 0.062030 / 0.075469 (-0.013439) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.371412 / 1.841788 (-0.470375) | 20.398981 / 8.074308 (12.324673) | 14.932307 / 10.191392 (4.740915) | 0.167796 / 0.680424 (-0.512628) | 0.020740 / 0.534201 (-0.513461) | 0.397162 / 0.579283 (-0.182121) | 0.435493 / 0.434364 (0.001129) | 0.477074 / 0.540337 (-0.063264) | 0.697546 / 1.386936 (-0.689390) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#017cefbc832bfe662afd87d9d1241104bf67c53e \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007388 / 0.011353 (-0.003964) | 0.004408 / 0.011008 (-0.006600) | 0.098225 / 0.038508 (0.059717) | 0.079368 / 0.023109 (0.056259) | 0.381866 / 0.275898 (0.105968) | 0.425942 / 0.323480 (0.102462) | 0.005978 / 0.007986 (-0.002007) | 0.003677 / 0.004328 (-0.000651) | 0.075488 / 0.004250 (0.071238) | 0.061725 / 0.037052 (0.024672) | 0.389126 / 0.258489 (0.130637) | 0.444099 / 0.293841 (0.150258) | 0.036222 / 0.128546 (-0.092324) | 0.009926 / 0.075646 (-0.065720) | 0.336632 / 0.419271 (-0.082640) | 0.060867 / 0.043533 (0.017335) | 0.385437 / 0.255139 (0.130298) | 0.416599 / 0.283200 (0.133399) | 0.025118 / 0.141683 (-0.116565) | 1.728073 / 1.452155 (0.275919) | 1.847750 / 1.492716 (0.355033) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.263774 / 0.018006 (0.245768) | 0.491242 / 0.000490 (0.490752) | 0.013621 / 0.000200 (0.013421) | 0.000333 / 0.000054 (0.000279) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032911 / 0.037411 (-0.004500) | 0.095738 / 0.014526 (0.081212) | 0.110482 / 0.176557 (-0.066075) | 0.175533 / 0.737135 (-0.561603) | 0.109240 / 0.296338 (-0.187098) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.453967 / 0.215209 (0.238758) | 4.489384 / 2.077655 (2.411730) | 2.185496 / 1.504120 (0.681376) | 1.979126 / 1.541195 (0.437931) | 2.016364 / 1.468490 (0.547874) | 0.565539 / 4.584777 (-4.019238) | 4.106561 / 3.745712 (0.360849) | 3.906402 / 5.269862 (-1.363460) | 2.342186 / 4.565676 (-2.223491) | 0.067815 / 0.424275 (-0.356460) | 0.008663 / 0.007607 (0.001056) | 0.543841 / 0.226044 (0.317796) | 5.433491 / 2.268929 (3.164563) | 2.785723 / 55.444624 (-52.658901) | 2.355716 / 6.876477 (-4.520760) | 2.397563 / 2.142072 (0.255491) | 0.682587 / 4.805227 (-4.122641) | 0.156548 / 6.500664 (-6.344116) | 0.070654 / 0.075469 (-0.004815) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.475183 / 1.841788 (-0.366605) | 21.353030 / 8.074308 (13.278722) | 15.938324 / 10.191392 (5.746932) | 0.167010 / 0.680424 (-0.513413) | 0.020931 / 0.534201 (-0.513270) | 0.464376 / 0.579283 (-0.114907) | 0.472546 / 0.434364 (0.038182) | 0.544645 / 0.540337 (0.004308) | 0.752940 / 1.386936 (-0.633996) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007359 / 0.011353 (-0.003994) | 0.004276 / 0.011008 (-0.006732) | 0.075345 / 0.038508 (0.036837) | 0.080105 / 0.023109 (0.056995) | 0.480456 / 0.275898 (0.204558) | 0.514974 / 0.323480 (0.191494) | 0.006087 / 0.007986 (-0.001899) | 0.003717 / 0.004328 (-0.000611) | 0.075067 / 0.004250 (0.070816) | 0.063739 / 0.037052 (0.026686) | 0.487569 / 0.258489 (0.229080) | 0.530198 / 0.293841 (0.236357) | 0.036056 / 0.128546 (-0.092491) | 0.009606 / 0.075646 (-0.066041) | 0.082343 / 0.419271 (-0.336929) | 0.055488 / 0.043533 (0.011956) | 0.484789 / 0.255139 (0.229650) | 0.501918 / 0.283200 (0.218718) | 0.025340 / 0.141683 (-0.116342) | 1.784417 / 1.452155 (0.332262) | 1.854202 / 1.492716 (0.361486) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.252476 / 0.018006 (0.234470) | 0.484967 / 0.000490 (0.484478) | 0.005471 / 0.000200 (0.005271) | 0.000111 / 0.000054 (0.000057) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.037084 / 0.037411 (-0.000327) | 0.106648 / 0.014526 (0.092122) | 0.123393 / 0.176557 (-0.053164) | 0.183088 / 0.737135 (-0.554047) | 0.122572 / 0.296338 (-0.173767) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.516003 / 0.215209 (0.300793) | 5.107748 / 2.077655 (3.030093) | 2.778044 / 1.504120 (1.273924) | 2.589944 / 1.541195 (1.048749) | 2.649921 / 1.468490 (1.181431) | 0.572783 / 4.584777 (-4.011994) | 4.211331 / 3.745712 (0.465619) | 3.738859 / 5.269862 (-1.531003) | 2.331628 / 4.565676 (-2.234048) | 0.067347 / 0.424275 (-0.356928) | 0.008513 / 0.007607 (0.000905) | 0.601056 / 0.226044 (0.375012) | 5.990921 / 2.268929 (3.721992) | 3.311544 / 55.444624 (-52.133081) | 2.929850 / 6.876477 (-3.946627) | 3.118741 / 2.142072 (0.976669) | 0.685975 / 4.805227 (-4.119253) | 0.155105 / 6.500664 (-6.345559) | 0.069629 / 0.075469 (-0.005840) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.602367 / 1.841788 (-0.239421) | 22.577072 / 8.074308 (14.502764) | 17.049655 / 10.191392 (6.858263) | 0.182412 / 0.680424 (-0.498011) | 0.023137 / 0.534201 (-0.511064) | 0.466988 / 0.579283 (-0.112295) | 0.483887 / 0.434364 (0.049523) | 0.556099 / 0.540337 (0.015761) | 0.798332 / 1.386936 (-0.588604) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#3e6d8318bd73a91852c22d14f1d788ac6dc8ae90 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009086 / 0.011353 (-0.002267) | 0.004755 / 0.011008 (-0.006253) | 0.128866 / 0.038508 (0.090358) | 0.086099 / 0.023109 (0.062990) | 0.378079 / 0.275898 (0.102181) | 0.487431 / 0.323480 (0.163951) | 0.004712 / 0.007986 (-0.003274) | 0.003622 / 0.004328 (-0.000706) | 0.081214 / 0.004250 (0.076963) | 0.057226 / 0.037052 (0.020174) | 0.407655 / 0.258489 (0.149166) | 0.448630 / 0.293841 (0.154789) | 0.049051 / 0.128546 (-0.079495) | 0.014537 / 0.075646 (-0.061110) | 0.467343 / 0.419271 (0.048071) | 0.070482 / 0.043533 (0.026949) | 0.379664 / 0.255139 (0.124525) | 0.464181 / 0.283200 (0.180981) | 0.039973 / 0.141683 (-0.101710) | 1.731164 / 1.452155 (0.279010) | 1.886895 / 1.492716 (0.394178) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.251327 / 0.018006 (0.233321) | 0.502670 / 0.000490 (0.502180) | 0.012183 / 0.000200 (0.011984) | 0.000111 / 0.000054 (0.000057) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028892 / 0.037411 (-0.008519) | 0.093789 / 0.014526 (0.079263) | 0.104255 / 0.176557 (-0.072301) | 0.170257 / 0.737135 (-0.566879) | 0.115430 / 0.296338 (-0.180909) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.573745 / 0.215209 (0.358536) | 5.873732 / 2.077655 (3.796077) | 2.485188 / 1.504120 (0.981068) | 2.018476 / 1.541195 (0.477282) | 2.062765 / 1.468490 (0.594275) | 0.913816 / 4.584777 (-3.670961) | 5.362338 / 3.745712 (1.616626) | 4.698758 / 5.269862 (-0.571103) | 3.132973 / 4.565676 (-1.432703) | 0.093594 / 0.424275 (-0.330681) | 0.008359 / 0.007607 (0.000751) | 0.693997 / 0.226044 (0.467953) | 7.042645 / 2.268929 (4.773717) | 3.196180 / 55.444624 (-52.248445) | 2.384585 / 6.876477 (-4.491892) | 2.301256 / 2.142072 (0.159183) | 1.048025 / 4.805227 (-3.757202) | 0.206931 / 6.500664 (-6.293733) | 0.069401 / 0.075469 (-0.006068) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.598898 / 1.841788 (-0.242889) | 22.963667 / 8.074308 (14.889359) | 20.373688 / 10.191392 (10.182296) | 0.239716 / 0.680424 (-0.440707) | 0.040213 / 0.534201 (-0.493988) | 0.503268 / 0.579283 (-0.076015) | 0.630750 / 0.434364 (0.196386) | 0.578007 / 0.540337 (0.037669) | 0.789564 / 1.386936 (-0.597372) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009129 / 0.011353 (-0.002224) | 0.005453 / 0.011008 (-0.005555) | 0.101040 / 0.038508 (0.062532) | 0.099172 / 0.023109 (0.076062) | 0.508453 / 0.275898 (0.232555) | 0.570858 / 0.323480 (0.247378) | 0.006584 / 0.007986 (-0.001401) | 0.003800 / 0.004328 (-0.000528) | 0.094349 / 0.004250 (0.090098) | 0.064642 / 0.037052 (0.027590) | 0.563008 / 0.258489 (0.304518) | 0.625560 / 0.293841 (0.331719) | 0.050121 / 0.128546 (-0.078426) | 0.014183 / 0.075646 (-0.061463) | 0.106564 / 0.419271 (-0.312707) | 0.061030 / 0.043533 (0.017498) | 0.522311 / 0.255139 (0.267172) | 0.598356 / 0.283200 (0.315156) | 0.042008 / 0.141683 (-0.099675) | 1.879999 / 1.452155 (0.427844) | 1.963879 / 1.492716 (0.471162) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.270573 / 0.018006 (0.252567) | 0.554356 / 0.000490 (0.553866) | 0.008145 / 0.000200 (0.007945) | 0.000218 / 0.000054 (0.000163) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031089 / 0.037411 (-0.006322) | 0.099568 / 0.014526 (0.085043) | 0.118304 / 0.176557 (-0.058253) | 0.182991 / 0.737135 (-0.554144) | 0.115874 / 0.296338 (-0.180465) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.615020 / 0.215209 (0.399811) | 6.279740 / 2.077655 (4.202085) | 2.882094 / 1.504120 (1.377974) | 2.559265 / 1.541195 (1.018070) | 2.639259 / 1.468490 (1.170769) | 0.903727 / 4.584777 (-3.681050) | 5.248555 / 3.745712 (1.502843) | 4.817340 / 5.269862 (-0.452522) | 3.056880 / 4.565676 (-1.508797) | 0.096602 / 0.424275 (-0.327673) | 0.008660 / 0.007607 (0.001053) | 0.794347 / 0.226044 (0.568303) | 7.625127 / 2.268929 (5.356198) | 3.766826 / 55.444624 (-51.677798) | 2.968254 / 6.876477 (-3.908223) | 3.260595 / 2.142072 (1.118523) | 1.066228 / 4.805227 (-3.739000) | 0.207158 / 6.500664 (-6.293506) | 0.076920 / 0.075469 (0.001451) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.741442 / 1.841788 (-0.100345) | 23.499552 / 8.074308 (15.425244) | 22.064966 / 10.191392 (11.873574) | 0.239173 / 0.680424 (-0.441251) | 0.032105 / 0.534201 (-0.502096) | 0.484709 / 0.579283 (-0.094574) | 0.583632 / 0.434364 (0.149268) | 0.569018 / 0.540337 (0.028681) | 0.815764 / 1.386936 (-0.571172) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#3aeb078ba1afd713e901df43343c160877403d07 \"CML watermark\")\n"
] | 2023-10-17T09:00:39 | 2023-10-18T14:01:52 | 2023-10-18T13:50:35 | MEMBER | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6309",
"html_url": "https://github.com/huggingface/datasets/pull/6309",
"diff_url": "https://github.com/huggingface/datasets/pull/6309.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6309.patch",
"merged_at": "2023-10-18T13:50:35"
} | Before the fix, `get_data_patterns` inferred wrongly the split name for paths with the word "data" twice:
- For the URL path: `hf://datasets/piuba-bigdata/articles_and_comments@f328d536425ae8fcac5d098c8408f437bffdd357/data/train-00001-of-00009.parquet` (note the org name `piuba-bigdata/` ending with `data/`)
- The inferred split name was: `articles_and_comments@f328d536425ae8fcac5d098c8408f437bffdd357/data/train` instead of `train`
This PR fixes this issue by passing the `base_path` (`hf://datasets/piuba-bigdata/articles_and_comments@f328d536425ae8fcac5d098c8408f437bffdd357`) to `_get_data_files_patterns` and prepending it to the regex split pattern (`data/{split}-[0-9][0-9][0-9][0-9][0-9]-of-[0-9][0-9][0-9][0-9][0-9].*\\..*`).
Fix #6305.
Fix https://huggingface.co./datasets/piuba-bigdata/articles_and_comments/discussions/1 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6309/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6309/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6308 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6308/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6308/comments | https://api.github.com/repos/huggingface/datasets/issues/6308/events | https://github.com/huggingface/datasets/issues/6308 | 1,946,810,625 | I_kwDODunzps50CfkB | 6,308 | module 'resource' has no attribute 'error' | {
"login": "NeoWang9999",
"id": 48009681,
"node_id": "MDQ6VXNlcjQ4MDA5Njgx",
"avatar_url": "https://avatars.githubusercontent.com/u/48009681?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/NeoWang9999",
"html_url": "https://github.com/NeoWang9999",
"followers_url": "https://api.github.com/users/NeoWang9999/followers",
"following_url": "https://api.github.com/users/NeoWang9999/following{/other_user}",
"gists_url": "https://api.github.com/users/NeoWang9999/gists{/gist_id}",
"starred_url": "https://api.github.com/users/NeoWang9999/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/NeoWang9999/subscriptions",
"organizations_url": "https://api.github.com/users/NeoWang9999/orgs",
"repos_url": "https://api.github.com/users/NeoWang9999/repos",
"events_url": "https://api.github.com/users/NeoWang9999/events{/privacy}",
"received_events_url": "https://api.github.com/users/NeoWang9999/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | [
"This (Windows) issue was fixed in `fsspec` in https://github.com/fsspec/filesystem_spec/pull/1275. So, to avoid the error, update the `fsspec` installation with `pip install -U fsspec`.",
"> This (Windows) issue was fixed in `fsspec` in [fsspec/filesystem_spec#1275](https://github.com/fsspec/filesystem_spec/pull/1275). So, to avoid the error, update the `fsspec` installation with `pip install -U fsspec`.\r\n\r\nafter I run `pip install -U fsspec`\r\n\r\nit occurs a new error:\r\n```\r\nERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflict\r\ns.\r\ndatasets 2.14.5 requires fsspec[http]<2023.9.0,>=2023.1.0, but you have fsspec 2023.9.2 which is incompatible.\r\n\r\n```",
"The `fsspec<2023.9.0` upper bound will be removed in the next release. The `ResourceError` fix is also present in version 2023.6.0, so use that version in the meantime (`pip install fsspec==2023.6.0`).",
"> The `fsspec<2023.9.0` upper bound will be removed in the next release. The `ResourceError` fix is also present in version 2023.6.0, so use that version in the meantime (`pip install fsspec==2023.6.0`).\r\n\r\nthanks for reply!"
] | 2023-10-17T08:08:54 | 2023-10-25T17:09:22 | 2023-10-25T17:09:22 | NONE | null | null | null | ### Describe the bug
just run import:
`from datasets import load_dataset`
and then:
```
File "C:\ProgramData\anaconda3\envs\py310\lib\site-packages\datasets\__init__.py", line 22, in <module>
from .arrow_dataset import Dataset
File "C:\ProgramData\anaconda3\envs\py310\lib\site-packages\datasets\arrow_dataset.py", line 66, in <module>
from .arrow_reader import ArrowReader
File "C:\ProgramData\anaconda3\envs\py310\lib\site-packages\datasets\arrow_reader.py", line 30, in <module>
from .download.download_config import DownloadConfig
File "C:\ProgramData\anaconda3\envs\py310\lib\site-packages\datasets\download\__init__.py", line 10, in <module>
from .streaming_download_manager import StreamingDownloadManager
File "C:\ProgramData\anaconda3\envs\py310\lib\site-packages\datasets\download\streaming_download_manager.py", line 21, in <module>
from ..filesystems import COMPRESSION_FILESYSTEMS
File "C:\ProgramData\anaconda3\envs\py310\lib\site-packages\datasets\filesystems\__init__.py", line 8, in <module>
import fsspec.asyn
File "C:\ProgramData\anaconda3\envs\py310\lib\site-packages\fsspec\asyn.py", line 157, in <module>
ResourceEror = resource.error
AttributeError: module 'resource' has no attribute 'error'
Process finished with exit code 1
```
and the error codes are:
```
try:
import resource
except ImportError:
resource = None
ResourceError = OSError
else:
ResourceEror = resource.error
```
1. miss spelling : "ResourceEror " should be "ResourceErorr"
2. module 'resource' has no attribute 'error'
### Steps to reproduce the bug
only one step:
`from datasets import load_dataset`
### Expected behavior
slove error: module 'resource' has no attribute 'error'
### Environment info
python=3.10
datasets==2.14.5
| {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6308/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6308/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/6307 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6307/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6307/comments | https://api.github.com/repos/huggingface/datasets/issues/6307/events | https://github.com/huggingface/datasets/pull/6307 | 1,946,414,808 | PR_kwDODunzps5c9s0j | 6,307 | Fix typo in code example in docs | {
"login": "bryant1410",
"id": 3905501,
"node_id": "MDQ6VXNlcjM5MDU1MDE=",
"avatar_url": "https://avatars.githubusercontent.com/u/3905501?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/bryant1410",
"html_url": "https://github.com/bryant1410",
"followers_url": "https://api.github.com/users/bryant1410/followers",
"following_url": "https://api.github.com/users/bryant1410/following{/other_user}",
"gists_url": "https://api.github.com/users/bryant1410/gists{/gist_id}",
"starred_url": "https://api.github.com/users/bryant1410/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/bryant1410/subscriptions",
"organizations_url": "https://api.github.com/users/bryant1410/orgs",
"repos_url": "https://api.github.com/users/bryant1410/repos",
"events_url": "https://api.github.com/users/bryant1410/events{/privacy}",
"received_events_url": "https://api.github.com/users/bryant1410/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.011548 / 0.011353 (0.000196) | 0.004630 / 0.011008 (-0.006378) | 0.105349 / 0.038508 (0.066841) | 0.110557 / 0.023109 (0.087448) | 0.395463 / 0.275898 (0.119565) | 0.448391 / 0.323480 (0.124912) | 0.005112 / 0.007986 (-0.002873) | 0.003854 / 0.004328 (-0.000474) | 0.088513 / 0.004250 (0.084263) | 0.073081 / 0.037052 (0.036028) | 0.391572 / 0.258489 (0.133083) | 0.459543 / 0.293841 (0.165702) | 0.040424 / 0.128546 (-0.088122) | 0.010306 / 0.075646 (-0.065340) | 0.365493 / 0.419271 (-0.053778) | 0.068154 / 0.043533 (0.024622) | 0.397675 / 0.255139 (0.142536) | 0.447147 / 0.283200 (0.163947) | 0.033482 / 0.141683 (-0.108201) | 1.857087 / 1.452155 (0.404932) | 1.973311 / 1.492716 (0.480595) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.257938 / 0.018006 (0.239932) | 0.569572 / 0.000490 (0.569083) | 0.012155 / 0.000200 (0.011955) | 0.000112 / 0.000054 (0.000058) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033094 / 0.037411 (-0.004318) | 0.102370 / 0.014526 (0.087844) | 0.122421 / 0.176557 (-0.054136) | 0.189983 / 0.737135 (-0.547152) | 0.117902 / 0.296338 (-0.178437) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.468419 / 0.215209 (0.253210) | 4.671410 / 2.077655 (2.593755) | 2.371136 / 1.504120 (0.867016) | 2.191877 / 1.541195 (0.650682) | 2.301894 / 1.468490 (0.833404) | 0.572260 / 4.584777 (-4.012517) | 4.302031 / 3.745712 (0.556319) | 4.128431 / 5.269862 (-1.141431) | 2.464543 / 4.565676 (-2.101133) | 0.067663 / 0.424275 (-0.356612) | 0.008947 / 0.007607 (0.001340) | 0.570063 / 0.226044 (0.344018) | 5.684460 / 2.268929 (3.415531) | 2.969708 / 55.444624 (-52.474916) | 2.573568 / 6.876477 (-4.302909) | 2.666074 / 2.142072 (0.524001) | 0.710098 / 4.805227 (-4.095129) | 0.158413 / 6.500664 (-6.342251) | 0.072776 / 0.075469 (-0.002693) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.564166 / 1.841788 (-0.277622) | 23.612774 / 8.074308 (15.538465) | 17.725070 / 10.191392 (7.533678) | 0.178982 / 0.680424 (-0.501442) | 0.021615 / 0.534201 (-0.512586) | 0.467090 / 0.579283 (-0.112193) | 0.472648 / 0.434364 (0.038284) | 0.578820 / 0.540337 (0.038483) | 0.783533 / 1.386936 (-0.603403) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008895 / 0.011353 (-0.002458) | 0.004617 / 0.011008 (-0.006392) | 0.077677 / 0.038508 (0.039169) | 0.090283 / 0.023109 (0.067174) | 0.491115 / 0.275898 (0.215217) | 0.525189 / 0.323480 (0.201709) | 0.007845 / 0.007986 (-0.000141) | 0.003742 / 0.004328 (-0.000586) | 0.077856 / 0.004250 (0.073606) | 0.067447 / 0.037052 (0.030394) | 0.488423 / 0.258489 (0.229933) | 0.532938 / 0.293841 (0.239097) | 0.041035 / 0.128546 (-0.087511) | 0.009917 / 0.075646 (-0.065730) | 0.085313 / 0.419271 (-0.333958) | 0.063374 / 0.043533 (0.019841) | 0.472287 / 0.255139 (0.217148) | 0.509773 / 0.283200 (0.226573) | 0.028706 / 0.141683 (-0.112977) | 1.775558 / 1.452155 (0.323403) | 1.967778 / 1.492716 (0.475061) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.249834 / 0.018006 (0.231828) | 0.467266 / 0.000490 (0.466776) | 0.005837 / 0.000200 (0.005637) | 0.000128 / 0.000054 (0.000074) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.038759 / 0.037411 (0.001347) | 0.113156 / 0.014526 (0.098630) | 0.123936 / 0.176557 (-0.052621) | 0.186831 / 0.737135 (-0.550304) | 0.125195 / 0.296338 (-0.171143) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.545666 / 0.215209 (0.330457) | 5.465713 / 2.077655 (3.388058) | 2.941279 / 1.504120 (1.437159) | 2.688377 / 1.541195 (1.147182) | 2.619501 / 1.468490 (1.151010) | 0.577974 / 4.584777 (-4.006803) | 4.300966 / 3.745712 (0.555254) | 3.879552 / 5.269862 (-1.390310) | 2.454932 / 4.565676 (-2.110745) | 0.069233 / 0.424275 (-0.355043) | 0.009729 / 0.007607 (0.002122) | 0.595290 / 0.226044 (0.369245) | 5.945445 / 2.268929 (3.676516) | 3.314607 / 55.444624 (-52.130017) | 2.894474 / 6.876477 (-3.982002) | 3.140790 / 2.142072 (0.998718) | 0.695808 / 4.805227 (-4.109419) | 0.158087 / 6.500664 (-6.342577) | 0.071374 / 0.075469 (-0.004095) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.706482 / 1.841788 (-0.135306) | 24.022666 / 8.074308 (15.948358) | 17.658003 / 10.191392 (7.466611) | 0.196771 / 0.680424 (-0.483653) | 0.023928 / 0.534201 (-0.510273) | 0.471992 / 0.579283 (-0.107291) | 0.510463 / 0.434364 (0.076099) | 0.621250 / 0.540337 (0.080912) | 0.807670 / 1.386936 (-0.579266) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#f77539cbd88d00ec1ab2b9d4edfd01d5a58ef88a \"CML watermark\")\n"
] | 2023-10-17T02:28:50 | 2023-10-17T12:59:26 | 2023-10-17T06:36:19 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6307",
"html_url": "https://github.com/huggingface/datasets/pull/6307",
"diff_url": "https://github.com/huggingface/datasets/pull/6307.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6307.patch",
"merged_at": "2023-10-17T06:36:18"
} | null | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6307/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6307/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6306 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6306/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6306/comments | https://api.github.com/repos/huggingface/datasets/issues/6306/events | https://github.com/huggingface/datasets/issues/6306 | 1,946,363,452 | I_kwDODunzps50AyY8 | 6,306 | pyinstaller : OSError: could not get source code | {
"login": "dusk877647949",
"id": 57702070,
"node_id": "MDQ6VXNlcjU3NzAyMDcw",
"avatar_url": "https://avatars.githubusercontent.com/u/57702070?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/dusk877647949",
"html_url": "https://github.com/dusk877647949",
"followers_url": "https://api.github.com/users/dusk877647949/followers",
"following_url": "https://api.github.com/users/dusk877647949/following{/other_user}",
"gists_url": "https://api.github.com/users/dusk877647949/gists{/gist_id}",
"starred_url": "https://api.github.com/users/dusk877647949/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/dusk877647949/subscriptions",
"organizations_url": "https://api.github.com/users/dusk877647949/orgs",
"repos_url": "https://api.github.com/users/dusk877647949/repos",
"events_url": "https://api.github.com/users/dusk877647949/events{/privacy}",
"received_events_url": "https://api.github.com/users/dusk877647949/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | [
"more information:\r\n``` \r\nFile \"text2vec\\__init__.py\", line 8, in <module>\r\nFile \"<frozen importlib._bootstrap>\", line 1027, in _find_and_load\r\nFile \"<frozen importlib._bootstrap>\", line 1006, in _find_and_load_unlocked\r\nFile \"<frozen importlib._bootstrap>\", line 688, in _load_unlocked\r\nFile \"PyInstaller\\loader\\pyimod02_importers.py\", line 499, in exec_module\r\nFile \"text2vec\\bertmatching_model.py\", line 19, in <module>\r\nFile \"<frozen importlib._bootstrap>\", line 1027, in _find_and_load\r\nFile \"<frozen importlib._bootstrap>\", line 1006, in _find_and_load_unlocked\r\nFile \"<frozen importlib._bootstrap>\", line 688, in _load_unlocked\r\nFile \"PyInstaller\\loader\\pyimod02_importers.py\", line 499, in exec_module\r\nFile \"text2vec\\bertmatching_dataset.py\", line 7, in <module>\r\nFile \"<frozen importlib._bootstrap>\", line 1027, in _find_and_load\r\nFile \"<frozen importlib._bootstrap>\", line 1006, in _find_and_load_unlocked\r\nFile \"<frozen importlib._bootstrap>\", line 688, in _load_unlocked\r\nFile \"PyInstaller\\loader\\pyimod02_importers.py\", line 499, in exec_module\r\nFile \"datasets\\__init__.py\", line 52, in <module>\r\nFile \"<frozen importlib._bootstrap>\", line 1027, in _find_and_load\r\nFile \"<frozen importlib._bootstrap>\", line 1006, in _find_and_load_unlocked\r\nFile \"<frozen importlib._bootstrap>\", line 688, in _load_unlocked\r\nFile \"PyInstaller\\loader\\pyimod02_importers.py\", line 499, in exec_module\r\nFile \"datasets\\inspect.py\", line 30, in <module>\r\nFile \"<frozen importlib._bootstrap>\", line 1027, in _find_and_load\r\nFile \"<frozen importlib._bootstrap>\", line 1006, in _find_and_load_unlocked\r\nFile \"<frozen importlib._bootstrap>\", line 688, in _load_unlocked\r\nFile \"PyInstaller\\loader\\pyimod02_importers.py\", line 499, in exec_module\r\nFile \"datasets\\load.py\", line 58, in <module>\r\nFile \"<frozen importlib._bootstrap>\", line 1027, in _find_and_load\r\nFile \"<frozen importlib._bootstrap>\", line 1006, in _find_and_load_unlocked\r\nFile \"<frozen importlib._bootstrap>\", line 688, in _load_unlocked\r\nFile \"PyInstaller\\loader\\pyimod02_importers.py\", line 499, in exec_module\r\nFile \"datasets\\packaged_modules\\__init__.py\", line 31, in <module>\r\nFile \"inspect.py\", line 1147, in getsource\r\nFile \"inspect.py\", line 1129, in getsourcelines\r\nFile \"inspect.py\", line 958, in findsource\r\nOSError: could not get source code\r\n```\r\n",
"Can you share a reproducer? I haven't been able to reproduce the error myself.",
"> '\r\n\r\nthanks,I solve it.it's about pyinstaller.",
"1",
"> > '\r\n> \r\n> thanks,I solve it.it's about pyinstaller.\r\n\r\nI encountered the same error, how to solve it?"
] | 2023-10-17T01:41:51 | 2023-11-02T07:24:51 | 2023-10-18T14:03:42 | NONE | null | null | null | ### Describe the bug
I ran a package with pyinstaller and got the following error:
### Steps to reproduce the bug
```
...
File "datasets\__init__.py", line 52, in <module>
File "<frozen importlib._bootstrap>", line 1027, in _find_and_load
File "<frozen importlib._bootstrap>", line 1006, in _find_and_load_unlocked
File "<frozen importlib._bootstrap>", line 688, in _load_unlocked
File "PyInstaller\loader\pyimod02_importers.py", line 499, in exec_module
File "datasets\inspect.py", line 30, in <module>
File "<frozen importlib._bootstrap>", line 1027, in _find_and_load
File "<frozen importlib._bootstrap>", line 1006, in _find_and_load_unlocked
File "<frozen importlib._bootstrap>", line 688, in _load_unlocked
File "PyInstaller\loader\pyimod02_importers.py", line 499, in exec_module
File "datasets\load.py", line 58, in <module>
File "<frozen importlib._bootstrap>", line 1027, in _find_and_load
File "<frozen importlib._bootstrap>", line 1006, in _find_and_load_unlocked
File "<frozen importlib._bootstrap>", line 688, in _load_unlocked
File "PyInstaller\loader\pyimod02_importers.py", line 499, in exec_module
File "datasets\packaged_modules\__init__.py", line 31, in <module>
File "inspect.py", line 1147, in getsource
File "inspect.py", line 1129, in getsourcelines
File "inspect.py", line 958, in findsource
OSError: could not get source code
```
### Expected behavior
I have looked up the relevant information, but I can't find a suitable reason
### Environment info
```python
python 3.10
datasets 2.14.4
pyinstaller 5.6.2
``` | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6306/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6306/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/6305 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6305/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6305/comments | https://api.github.com/repos/huggingface/datasets/issues/6305/events | https://github.com/huggingface/datasets/issues/6305 | 1,946,010,912 | I_kwDODunzps5z_cUg | 6,305 | Cannot load dataset with `2.14.5`: `FileNotFound` error | {
"login": "finiteautomata",
"id": 167943,
"node_id": "MDQ6VXNlcjE2Nzk0Mw==",
"avatar_url": "https://avatars.githubusercontent.com/u/167943?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/finiteautomata",
"html_url": "https://github.com/finiteautomata",
"followers_url": "https://api.github.com/users/finiteautomata/followers",
"following_url": "https://api.github.com/users/finiteautomata/following{/other_user}",
"gists_url": "https://api.github.com/users/finiteautomata/gists{/gist_id}",
"starred_url": "https://api.github.com/users/finiteautomata/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/finiteautomata/subscriptions",
"organizations_url": "https://api.github.com/users/finiteautomata/orgs",
"repos_url": "https://api.github.com/users/finiteautomata/repos",
"events_url": "https://api.github.com/users/finiteautomata/events{/privacy}",
"received_events_url": "https://api.github.com/users/finiteautomata/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
}
] | [
"Thanks for reporting, @finiteautomata.\r\n\r\nWe are investigating it. ",
"There is a bug in `datasets`. You can see our proposed fix:\r\n- #6309 "
] | 2023-10-16T20:11:27 | 2023-10-18T13:50:36 | 2023-10-18T13:50:36 | NONE | null | null | null | ### Describe the bug
I'm trying to load [piuba-bigdata/articles_and_comments] and I'm stumbling with this error on `2.14.5`. However, this works on `2.10.0`.
### Steps to reproduce the bug
[Colab link](https://colab.research.google.com/drive/1SAftFMQnFE708ikRnJJHIXZV7R5IBOCE#scrollTo=r2R2ipCCDmsg)
```python
Downloading readme: 100%
1.19k/1.19k [00:00<00:00, 30.9kB/s]
---------------------------------------------------------------------------
FileNotFoundError Traceback (most recent call last)
[<ipython-input-2-807c3583d297>](https://localhost:8080/#) in <cell line: 3>()
1 from datasets import load_dataset
2
----> 3 load_dataset("piuba-bigdata/articles_and_comments", split="train")
2 frames
[/usr/local/lib/python3.10/dist-packages/datasets/load.py](https://localhost:8080/#) in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, ignore_verifications, keep_in_memory, save_infos, revision, token, use_auth_token, task, streaming, num_proc, storage_options, **config_kwargs)
2127
2128 # Create a dataset builder
-> 2129 builder_instance = load_dataset_builder(
2130 path=path,
2131 name=name,
[/usr/local/lib/python3.10/dist-packages/datasets/load.py](https://localhost:8080/#) in load_dataset_builder(path, name, data_dir, data_files, cache_dir, features, download_config, download_mode, revision, token, use_auth_token, storage_options, **config_kwargs)
1813 download_config = download_config.copy() if download_config else DownloadConfig()
1814 download_config.storage_options.update(storage_options)
-> 1815 dataset_module = dataset_module_factory(
1816 path,
1817 revision=revision,
[/usr/local/lib/python3.10/dist-packages/datasets/load.py](https://localhost:8080/#) in dataset_module_factory(path, revision, download_config, download_mode, dynamic_modules_path, data_dir, data_files, **download_kwargs)
1506 raise e1 from None
1507 if isinstance(e1, FileNotFoundError):
-> 1508 raise FileNotFoundError(
1509 f"Couldn't find a dataset script at {relative_to_absolute_path(combined_path)} or any data file in the same directory. "
1510 f"Couldn't find '{path}' on the Hugging Face Hub either: {type(e1).__name__}: {e1}"
FileNotFoundError: Couldn't find a dataset script at /content/piuba-bigdata/articles_and_comments/articles_and_comments.py or any data file in the same directory. Couldn't find 'piuba-bigdata/articles_and_comments' on the Hugging Face Hub either: FileNotFoundError: No (supported) data files or dataset script found in piuba-bigdata/articles_and_comments.
```
### Expected behavior
It should load normally.
### Environment info
```
- `datasets` version: 2.14.5
- Platform: Linux-5.15.120+-x86_64-with-glibc2.35
- Python version: 3.10.12
- Huggingface_hub version: 0.18.0
- PyArrow version: 9.0.0
- Pandas version: 1.5.3
``` | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6305/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6305/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/6304 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6304/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6304/comments | https://api.github.com/repos/huggingface/datasets/issues/6304/events | https://github.com/huggingface/datasets/pull/6304 | 1,945,913,521 | PR_kwDODunzps5c7-4q | 6,304 | Update README.md | {
"login": "smty2018",
"id": 74114936,
"node_id": "MDQ6VXNlcjc0MTE0OTM2",
"avatar_url": "https://avatars.githubusercontent.com/u/74114936?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/smty2018",
"html_url": "https://github.com/smty2018",
"followers_url": "https://api.github.com/users/smty2018/followers",
"following_url": "https://api.github.com/users/smty2018/following{/other_user}",
"gists_url": "https://api.github.com/users/smty2018/gists{/gist_id}",
"starred_url": "https://api.github.com/users/smty2018/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/smty2018/subscriptions",
"organizations_url": "https://api.github.com/users/smty2018/orgs",
"repos_url": "https://api.github.com/users/smty2018/repos",
"events_url": "https://api.github.com/users/smty2018/events{/privacy}",
"received_events_url": "https://api.github.com/users/smty2018/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | [
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006678 / 0.011353 (-0.004675) | 0.004013 / 0.011008 (-0.006995) | 0.083372 / 0.038508 (0.044864) | 0.070339 / 0.023109 (0.047230) | 0.339026 / 0.275898 (0.063128) | 0.370945 / 0.323480 (0.047465) | 0.004050 / 0.007986 (-0.003935) | 0.003283 / 0.004328 (-0.001046) | 0.064956 / 0.004250 (0.060705) | 0.055427 / 0.037052 (0.018374) | 0.341787 / 0.258489 (0.083297) | 0.385030 / 0.293841 (0.091189) | 0.031791 / 0.128546 (-0.096755) | 0.008511 / 0.075646 (-0.067135) | 0.286538 / 0.419271 (-0.132734) | 0.052893 / 0.043533 (0.009360) | 0.338522 / 0.255139 (0.083383) | 0.371821 / 0.283200 (0.088622) | 0.023731 / 0.141683 (-0.117951) | 1.485857 / 1.452155 (0.033702) | 1.515218 / 1.492716 (0.022502) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.232798 / 0.018006 (0.214792) | 0.446783 / 0.000490 (0.446293) | 0.007395 / 0.000200 (0.007195) | 0.000385 / 0.000054 (0.000330) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028866 / 0.037411 (-0.008545) | 0.081653 / 0.014526 (0.067127) | 0.094457 / 0.176557 (-0.082099) | 0.151761 / 0.737135 (-0.585375) | 0.095579 / 0.296338 (-0.200760) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.379926 / 0.215209 (0.164717) | 3.801839 / 2.077655 (1.724184) | 1.830302 / 1.504120 (0.326182) | 1.686912 / 1.541195 (0.145717) | 1.803418 / 1.468490 (0.334928) | 0.484431 / 4.584777 (-4.100346) | 3.592748 / 3.745712 (-0.152964) | 3.402578 / 5.269862 (-1.867284) | 2.043434 / 4.565676 (-2.522242) | 0.057274 / 0.424275 (-0.367001) | 0.007211 / 0.007607 (-0.000396) | 0.462611 / 0.226044 (0.236567) | 4.610703 / 2.268929 (2.341775) | 2.397668 / 55.444624 (-53.046956) | 2.149983 / 6.876477 (-4.726494) | 2.199100 / 2.142072 (0.057028) | 0.575883 / 4.805227 (-4.229344) | 0.133421 / 6.500664 (-6.367243) | 0.061168 / 0.075469 (-0.014301) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.246792 / 1.841788 (-0.594995) | 18.974385 / 8.074308 (10.900077) | 14.268859 / 10.191392 (4.077467) | 0.166340 / 0.680424 (-0.514084) | 0.018227 / 0.534201 (-0.515974) | 0.389646 / 0.579283 (-0.189637) | 0.418780 / 0.434364 (-0.015584) | 0.458063 / 0.540337 (-0.082275) | 0.635156 / 1.386936 (-0.751780) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006613 / 0.011353 (-0.004740) | 0.003977 / 0.011008 (-0.007031) | 0.064609 / 0.038508 (0.026101) | 0.070418 / 0.023109 (0.047308) | 0.395814 / 0.275898 (0.119916) | 0.424803 / 0.323480 (0.101323) | 0.005342 / 0.007986 (-0.002644) | 0.003252 / 0.004328 (-0.001076) | 0.065177 / 0.004250 (0.060927) | 0.055299 / 0.037052 (0.018247) | 0.403983 / 0.258489 (0.145494) | 0.438522 / 0.293841 (0.144681) | 0.032336 / 0.128546 (-0.096210) | 0.008524 / 0.075646 (-0.067122) | 0.071645 / 0.419271 (-0.347627) | 0.048137 / 0.043533 (0.004604) | 0.395170 / 0.255139 (0.140031) | 0.421727 / 0.283200 (0.138528) | 0.023028 / 0.141683 (-0.118655) | 1.500739 / 1.452155 (0.048584) | 1.568887 / 1.492716 (0.076170) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.227542 / 0.018006 (0.209536) | 0.447882 / 0.000490 (0.447393) | 0.005416 / 0.000200 (0.005216) | 0.000089 / 0.000054 (0.000035) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032954 / 0.037411 (-0.004457) | 0.091994 / 0.014526 (0.077468) | 0.105957 / 0.176557 (-0.070600) | 0.158728 / 0.737135 (-0.578407) | 0.104734 / 0.296338 (-0.191605) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.436275 / 0.215209 (0.221066) | 4.344864 / 2.077655 (2.267209) | 2.304949 / 1.504120 (0.800829) | 2.123963 / 1.541195 (0.582768) | 2.189099 / 1.468490 (0.720609) | 0.492662 / 4.584777 (-4.092115) | 3.633662 / 3.745712 (-0.112051) | 3.251338 / 5.269862 (-2.018524) | 2.061378 / 4.565676 (-2.504299) | 0.058100 / 0.424275 (-0.366175) | 0.007311 / 0.007607 (-0.000297) | 0.516227 / 0.226044 (0.290183) | 5.184228 / 2.268929 (2.915300) | 2.780343 / 55.444624 (-52.664281) | 2.423428 / 6.876477 (-4.453048) | 2.617371 / 2.142072 (0.475298) | 0.590455 / 4.805227 (-4.214772) | 0.131728 / 6.500664 (-6.368936) | 0.059994 / 0.075469 (-0.015475) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.354920 / 1.841788 (-0.486868) | 19.427822 / 8.074308 (11.353514) | 15.289037 / 10.191392 (5.097645) | 0.170437 / 0.680424 (-0.509987) | 0.020242 / 0.534201 (-0.513959) | 0.394921 / 0.579283 (-0.184362) | 0.426447 / 0.434364 (-0.007917) | 0.468321 / 0.540337 (-0.072017) | 0.671052 / 1.386936 (-0.715884) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#bade7af74437347a760830466eb74f7a8ce0d799 \"CML watermark\")\n"
] | 2023-10-16T19:10:39 | 2023-10-17T15:13:37 | 2023-10-17T15:04:52 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6304",
"html_url": "https://github.com/huggingface/datasets/pull/6304",
"diff_url": "https://github.com/huggingface/datasets/pull/6304.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6304.patch",
"merged_at": "2023-10-17T15:04:52"
} | Fixed typos in ReadMe and added punctuation marks
Tensorflow --> TensorFlow
| {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6304/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6304/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6303 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6303/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6303/comments | https://api.github.com/repos/huggingface/datasets/issues/6303/events | https://github.com/huggingface/datasets/issues/6303 | 1,943,466,532 | I_kwDODunzps5z1vIk | 6,303 | Parquet uploads off-by-one naming scheme | {
"login": "ZachNagengast",
"id": 1981179,
"node_id": "MDQ6VXNlcjE5ODExNzk=",
"avatar_url": "https://avatars.githubusercontent.com/u/1981179?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/ZachNagengast",
"html_url": "https://github.com/ZachNagengast",
"followers_url": "https://api.github.com/users/ZachNagengast/followers",
"following_url": "https://api.github.com/users/ZachNagengast/following{/other_user}",
"gists_url": "https://api.github.com/users/ZachNagengast/gists{/gist_id}",
"starred_url": "https://api.github.com/users/ZachNagengast/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/ZachNagengast/subscriptions",
"organizations_url": "https://api.github.com/users/ZachNagengast/orgs",
"repos_url": "https://api.github.com/users/ZachNagengast/repos",
"events_url": "https://api.github.com/users/ZachNagengast/events{/privacy}",
"received_events_url": "https://api.github.com/users/ZachNagengast/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | [
"You can find the reasoning behind this naming scheme [here](https://github.com/huggingface/transformers/pull/16343#discussion_r931182168).\r\n\r\nThis point has been raised several times, so I'd be okay with starting with `00001-` (also to be consistent with the `transformers` sharding), but I'm not sure @lhoestq agrees.",
"We start at 0 in `datasets` for consistency with Apache Spark, Apache Beam, Dask and others.\r\n\r\nAlso note `transformers` isn't a good reference on this topic. I talked with the maintainers when they added shards but it was already released this way. Though we found that there is a backward-compatible way in `transformers` to start at 0, but no request from `transformers` users to changes this AFAIK.",
"not sure it would be a good idea to break the consistency now, IMO",
"Makes sense to start at 0 for plenty of good reasons so I'm on board.\r\n\r\nWhat about the second part `-of-0000X`? With single commit PR #6269 just getting merged, there was a note about issues with 100+ file edits https://github.com/huggingface/datasets/pull/6269#issuecomment-1755428581.\r\n\r\nThat would be my last remaining concern in the context of the `push_to_hub(..., append=True)` work to be done, where appending a single file to the full dataset will require renaming every other existing file in the dataset. If it doesn't seem like a big issue for this work then all the better 👍"
] | 2023-10-14T18:31:03 | 2023-10-16T16:33:21 | null | CONTRIBUTOR | null | null | null | ### Describe the bug
I noticed this numbering scheme not matching up in a different project and wanted to raise it as an issue for discussion, what is the actual proper way to have these stored?
<img width="425" alt="image" src="https://github.com/huggingface/datasets/assets/1981179/3ffa2144-7c9a-446f-b521-a5e9db71e7ce">
The `-SSSSS-of-NNNNN` seems to be used widely across the codebase. The section that creates the part in my screenshot is here https://github.com/huggingface/datasets/blob/main/src/datasets/arrow_dataset.py#L5287
There are also some edits to this section in the single commit branch.
### Steps to reproduce the bug
1. Upload a dataset that requires at least two parquet files in it
2. Observe the naming scheme
### Expected behavior
The couple options here are of course **1. keeping it as is**
**2. Starting the index at 1:**
train-00001-of-00002-{hash}.parquet
train-00002-of-00002-{hash}.parquet
**3. My preferred option** (which would solve my specific issue), dropping the total entirely:
train-00000-{hash}.parquet
train-00001-{hash}.parquet
This also solves an issue that will occur with an `append` variable for `push_to_hub` (see https://github.com/huggingface/datasets/issues/6290) where as you add a new parquet file, you need to rename everything in the repo as well.
However, I know there are parts of the repo that use 0 as the starting file or may require the total, so raising the question for discussion.
### Environment info
- `datasets` version: 2.14.6.dev0
- Platform: macOS-14.0-arm64-arm-64bit
- Python version: 3.10.12
- Huggingface_hub version: 0.18.0
- PyArrow version: 12.0.1
- Pandas version: 1.5.3 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6303/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6303/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/6302 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6302/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6302/comments | https://api.github.com/repos/huggingface/datasets/issues/6302/events | https://github.com/huggingface/datasets/issues/6302 | 1,942,096,078 | I_kwDODunzps5zwgjO | 6,302 | ArrowWriter/ParquetWriter `write` method does not increase `_num_bytes` and hence datasets not sharding at `max_shard_size` | {
"login": "Rassibassi",
"id": 2855550,
"node_id": "MDQ6VXNlcjI4NTU1NTA=",
"avatar_url": "https://avatars.githubusercontent.com/u/2855550?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/Rassibassi",
"html_url": "https://github.com/Rassibassi",
"followers_url": "https://api.github.com/users/Rassibassi/followers",
"following_url": "https://api.github.com/users/Rassibassi/following{/other_user}",
"gists_url": "https://api.github.com/users/Rassibassi/gists{/gist_id}",
"starred_url": "https://api.github.com/users/Rassibassi/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Rassibassi/subscriptions",
"organizations_url": "https://api.github.com/users/Rassibassi/orgs",
"repos_url": "https://api.github.com/users/Rassibassi/repos",
"events_url": "https://api.github.com/users/Rassibassi/events{/privacy}",
"received_events_url": "https://api.github.com/users/Rassibassi/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | [
"`writer._num_bytes` is updated every `writer_batch_size`-th call to the `write` method (default `writer_batch_size` is 1000 (examples)). You should be able to see the update by passing a smaller `writer_batch_size` to the `load_dataset_builder`.\r\n\r\nWe could improve this by supporting the string `writer_batch_size` version as we do with `max_shard_size`, and capping `writer_batch_size` to `max_shard_size` in scenarios where the default `writer_batch_size` > `max_shard_size`. ",
"Thanks, reducing `writer_batch_size` solved my problem :)"
] | 2023-10-13T14:43:36 | 2023-10-17T06:52:12 | 2023-10-17T06:52:11 | NONE | null | null | null | ### Describe the bug
An example from [1], does not work when limiting shards with `max_shard_size`.
Try the following example with low `max_shard_size`, such as:
```python
builder.download_and_prepare(output_dir, storage_options=storage_options, file_format="parquet", max_shard_size="10MB")
```
The reason for this is that, in line [2] `writer._num_bytes > max_shard_size` is never true, because the `write` method of `ArrowWriter` [3] does not increase `self._num_bytes`.
Such that respective Arrow/Parquet shards are only written to file based on the `writer_batch_size` or `config.DEFAULT_MAX_BATCH_SIZE`, but not based on `max_shard_size`.
[1] https://huggingface.co./docs/datasets/filesystems#download-and-prepare-a-dataset-into-a-cloud-storage
[2] https://github.com/huggingface/datasets/blob/3e8d420808718c9a1453a2e7ee3484ca12c9c70d/src/datasets/builder.py#L1677
[3] https://github.com/huggingface/datasets/blob/3e8d420808718c9a1453a2e7ee3484ca12c9c70d/src/datasets/arrow_writer.py#L459
### Steps to reproduce the bug
Get example from: https://huggingface.co./docs/datasets/filesystems#download-and-prepare-a-dataset-into-a-cloud-storage
Call `builder.download_and_prepare` with low `max_shard_size` such as `10MB`, e.g.:
```python
builder.download_and_prepare(output_dir, storage_options=storage_options, file_format="parquet", max_shard_size="10MB")
```
### Expected behavior
Shards should be written based on `max_shard_size` instead of batch size.
### Environment info
```
>>> import datasets
>>> datasets.__version__
'2.14.6.dev0
``` | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6302/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6302/timeline | null | completed | false |
https://api.github.com/repos/huggingface/datasets/issues/6301 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6301/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6301/comments | https://api.github.com/repos/huggingface/datasets/issues/6301/events | https://github.com/huggingface/datasets/pull/6301 | 1,940,183,999 | PR_kwDODunzps5cpPVh | 6,301 | Unpin `tensorflow` maximum version | {
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | [
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006663 / 0.011353 (-0.004690) | 0.004091 / 0.011008 (-0.006918) | 0.084954 / 0.038508 (0.046445) | 0.071869 / 0.023109 (0.048760) | 0.314706 / 0.275898 (0.038808) | 0.352794 / 0.323480 (0.029314) | 0.004027 / 0.007986 (-0.003959) | 0.003371 / 0.004328 (-0.000957) | 0.065456 / 0.004250 (0.061205) | 0.055828 / 0.037052 (0.018775) | 0.316502 / 0.258489 (0.058013) | 0.377979 / 0.293841 (0.084138) | 0.030870 / 0.128546 (-0.097676) | 0.008616 / 0.075646 (-0.067030) | 0.288625 / 0.419271 (-0.130646) | 0.052314 / 0.043533 (0.008781) | 0.322725 / 0.255139 (0.067586) | 0.351810 / 0.283200 (0.068611) | 0.025726 / 0.141683 (-0.115957) | 1.439308 / 1.452155 (-0.012847) | 1.524484 / 1.492716 (0.031768) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.235212 / 0.018006 (0.217206) | 0.444926 / 0.000490 (0.444437) | 0.009887 / 0.000200 (0.009687) | 0.000402 / 0.000054 (0.000347) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028956 / 0.037411 (-0.008455) | 0.084401 / 0.014526 (0.069875) | 0.339686 / 0.176557 (0.163130) | 0.186785 / 0.737135 (-0.550350) | 0.195017 / 0.296338 (-0.101322) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.405480 / 0.215209 (0.190271) | 4.024315 / 2.077655 (1.946661) | 2.056398 / 1.504120 (0.552278) | 1.912099 / 1.541195 (0.370904) | 1.950119 / 1.468490 (0.481629) | 0.486071 / 4.584777 (-4.098706) | 3.578501 / 3.745712 (-0.167211) | 3.268980 / 5.269862 (-2.000881) | 2.018114 / 4.565676 (-2.547563) | 0.057440 / 0.424275 (-0.366835) | 0.007281 / 0.007607 (-0.000326) | 0.474760 / 0.226044 (0.248716) | 4.746908 / 2.268929 (2.477979) | 2.550111 / 55.444624 (-52.894513) | 2.171932 / 6.876477 (-4.704544) | 2.392235 / 2.142072 (0.250162) | 0.585940 / 4.805227 (-4.219287) | 0.136445 / 6.500664 (-6.364219) | 0.062125 / 0.075469 (-0.013344) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.270763 / 1.841788 (-0.571025) | 19.213516 / 8.074308 (11.139208) | 13.992620 / 10.191392 (3.801228) | 0.167356 / 0.680424 (-0.513068) | 0.018261 / 0.534201 (-0.515940) | 0.392489 / 0.579283 (-0.186794) | 0.418845 / 0.434364 (-0.015519) | 0.461824 / 0.540337 (-0.078513) | 0.649661 / 1.386936 (-0.737275) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006675 / 0.011353 (-0.004678) | 0.003913 / 0.011008 (-0.007096) | 0.064943 / 0.038508 (0.026435) | 0.072426 / 0.023109 (0.049317) | 0.400785 / 0.275898 (0.124887) | 0.434359 / 0.323480 (0.110879) | 0.005370 / 0.007986 (-0.002616) | 0.003290 / 0.004328 (-0.001038) | 0.065035 / 0.004250 (0.060785) | 0.054924 / 0.037052 (0.017872) | 0.404442 / 0.258489 (0.145953) | 0.439027 / 0.293841 (0.145186) | 0.032467 / 0.128546 (-0.096080) | 0.008565 / 0.075646 (-0.067081) | 0.070653 / 0.419271 (-0.348619) | 0.048034 / 0.043533 (0.004501) | 0.400869 / 0.255139 (0.145730) | 0.423048 / 0.283200 (0.139848) | 0.022757 / 0.141683 (-0.118926) | 1.516956 / 1.452155 (0.064801) | 1.581599 / 1.492716 (0.088883) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.214761 / 0.018006 (0.196755) | 0.440921 / 0.000490 (0.440431) | 0.007538 / 0.000200 (0.007338) | 0.000087 / 0.000054 (0.000033) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032313 / 0.037411 (-0.005099) | 0.091365 / 0.014526 (0.076839) | 0.106665 / 0.176557 (-0.069891) | 0.158637 / 0.737135 (-0.578498) | 0.104894 / 0.296338 (-0.191445) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.432995 / 0.215209 (0.217786) | 4.339911 / 2.077655 (2.262256) | 2.313139 / 1.504120 (0.809019) | 2.142552 / 1.541195 (0.601357) | 2.279275 / 1.468490 (0.810785) | 0.501133 / 4.584777 (-4.083644) | 3.696160 / 3.745712 (-0.049552) | 3.341886 / 5.269862 (-1.927976) | 2.105972 / 4.565676 (-2.459705) | 0.059268 / 0.424275 (-0.365008) | 0.007568 / 0.007607 (-0.000039) | 0.512546 / 0.226044 (0.286502) | 5.130219 / 2.268929 (2.861290) | 2.808292 / 55.444624 (-52.636332) | 2.478721 / 6.876477 (-4.397755) | 2.679341 / 2.142072 (0.537269) | 0.599022 / 4.805227 (-4.206206) | 0.143761 / 6.500664 (-6.356903) | 0.062061 / 0.075469 (-0.013409) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.430507 / 1.841788 (-0.411281) | 20.458085 / 8.074308 (12.383777) | 15.268356 / 10.191392 (5.076964) | 0.163359 / 0.680424 (-0.517065) | 0.020908 / 0.534201 (-0.513293) | 0.396870 / 0.579283 (-0.182413) | 0.432630 / 0.434364 (-0.001733) | 0.475909 / 0.540337 (-0.064429) | 0.681031 / 1.386936 (-0.705905) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#fd1dd6aa4c7fa7744c1c1f877573ff59f1529292 \"CML watermark\")\n",
"CI failures are unrelated",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005815 / 0.011353 (-0.005538) | 0.003419 / 0.011008 (-0.007589) | 0.080286 / 0.038508 (0.041778) | 0.056487 / 0.023109 (0.033377) | 0.304414 / 0.275898 (0.028516) | 0.341039 / 0.323480 (0.017559) | 0.004392 / 0.007986 (-0.003594) | 0.002852 / 0.004328 (-0.001477) | 0.062339 / 0.004250 (0.058089) | 0.044683 / 0.037052 (0.007630) | 0.311651 / 0.258489 (0.053162) | 0.357249 / 0.293841 (0.063409) | 0.027300 / 0.128546 (-0.101246) | 0.007963 / 0.075646 (-0.067683) | 0.261948 / 0.419271 (-0.157323) | 0.044952 / 0.043533 (0.001419) | 0.309990 / 0.255139 (0.054851) | 0.340735 / 0.283200 (0.057536) | 0.020786 / 0.141683 (-0.120897) | 1.471378 / 1.452155 (0.019224) | 1.517260 / 1.492716 (0.024543) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.245447 / 0.018006 (0.227441) | 0.418967 / 0.000490 (0.418477) | 0.007039 / 0.000200 (0.006840) | 0.000196 / 0.000054 (0.000142) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022880 / 0.037411 (-0.014532) | 0.071862 / 0.014526 (0.057337) | 0.083009 / 0.176557 (-0.093547) | 0.143414 / 0.737135 (-0.593722) | 0.082896 / 0.296338 (-0.213442) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.390645 / 0.215209 (0.175436) | 3.888104 / 2.077655 (1.810450) | 1.859572 / 1.504120 (0.355452) | 1.683803 / 1.541195 (0.142608) | 1.697902 / 1.468490 (0.229412) | 0.499537 / 4.584777 (-4.085239) | 3.015832 / 3.745712 (-0.729881) | 2.805696 / 5.269862 (-2.464166) | 1.830408 / 4.565676 (-2.735268) | 0.058191 / 0.424275 (-0.366085) | 0.006357 / 0.007607 (-0.001250) | 0.462486 / 0.226044 (0.236442) | 4.634951 / 2.268929 (2.366022) | 2.309364 / 55.444624 (-53.135260) | 1.979521 / 6.876477 (-4.896956) | 2.080011 / 2.142072 (-0.062062) | 0.593086 / 4.805227 (-4.212141) | 0.124856 / 6.500664 (-6.375808) | 0.060172 / 0.075469 (-0.015297) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.251439 / 1.841788 (-0.590349) | 17.068999 / 8.074308 (8.994691) | 13.527209 / 10.191392 (3.335817) | 0.146636 / 0.680424 (-0.533788) | 0.016866 / 0.534201 (-0.517335) | 0.333202 / 0.579283 (-0.246081) | 0.360444 / 0.434364 (-0.073920) | 0.388378 / 0.540337 (-0.151959) | 0.530519 / 1.386936 (-0.856417) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006043 / 0.011353 (-0.005310) | 0.003612 / 0.011008 (-0.007396) | 0.062644 / 0.038508 (0.024135) | 0.056104 / 0.023109 (0.032995) | 0.446328 / 0.275898 (0.170430) | 0.478044 / 0.323480 (0.154564) | 0.004641 / 0.007986 (-0.003345) | 0.002896 / 0.004328 (-0.001432) | 0.062344 / 0.004250 (0.058093) | 0.046339 / 0.037052 (0.009287) | 0.454866 / 0.258489 (0.196377) | 0.484242 / 0.293841 (0.190401) | 0.028602 / 0.128546 (-0.099944) | 0.008075 / 0.075646 (-0.067571) | 0.067980 / 0.419271 (-0.351291) | 0.041339 / 0.043533 (-0.002194) | 0.452911 / 0.255139 (0.197772) | 0.474180 / 0.283200 (0.190981) | 0.019395 / 0.141683 (-0.122288) | 1.432161 / 1.452155 (-0.019993) | 1.505800 / 1.492716 (0.013083) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.216983 / 0.018006 (0.198977) | 0.406232 / 0.000490 (0.405743) | 0.005101 / 0.000200 (0.004902) | 0.000077 / 0.000054 (0.000022) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026295 / 0.037411 (-0.011116) | 0.080490 / 0.014526 (0.065964) | 0.088105 / 0.176557 (-0.088451) | 0.143294 / 0.737135 (-0.593841) | 0.089125 / 0.296338 (-0.207213) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.465512 / 0.215209 (0.250302) | 4.648656 / 2.077655 (2.571002) | 2.598225 / 1.504120 (1.094105) | 2.409588 / 1.541195 (0.868393) | 2.513745 / 1.468490 (1.045255) | 0.507425 / 4.584777 (-4.077352) | 3.130164 / 3.745712 (-0.615548) | 2.836817 / 5.269862 (-2.433045) | 1.836029 / 4.565676 (-2.729647) | 0.058829 / 0.424275 (-0.365446) | 0.006551 / 0.007607 (-0.001056) | 0.537892 / 0.226044 (0.311848) | 5.401079 / 2.268929 (3.132150) | 3.019817 / 55.444624 (-52.424807) | 2.695131 / 6.876477 (-4.181346) | 2.805321 / 2.142072 (0.663248) | 0.595681 / 4.805227 (-4.209546) | 0.124368 / 6.500664 (-6.376296) | 0.060712 / 0.075469 (-0.014757) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.361508 / 1.841788 (-0.480279) | 17.811373 / 8.074308 (9.737065) | 14.482705 / 10.191392 (4.291313) | 0.153193 / 0.680424 (-0.527231) | 0.018347 / 0.534201 (-0.515854) | 0.330900 / 0.579283 (-0.248383) | 0.374948 / 0.434364 (-0.059416) | 0.385615 / 0.540337 (-0.154722) | 0.568077 / 1.386936 (-0.818859) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#18ef408c21f8efbb2142f050a691b5c916455af3 \"CML watermark\")\n"
] | 2023-10-12T14:58:07 | 2023-10-12T15:58:20 | 2023-10-12T15:49:54 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6301",
"html_url": "https://github.com/huggingface/datasets/pull/6301",
"diff_url": "https://github.com/huggingface/datasets/pull/6301.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6301.patch",
"merged_at": "2023-10-12T15:49:54"
} | Removes the temporary pin introduced in #6264 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6301/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6301/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6300 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6300/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6300/comments | https://api.github.com/repos/huggingface/datasets/issues/6300/events | https://github.com/huggingface/datasets/pull/6300 | 1,940,153,432 | PR_kwDODunzps5cpIoG | 6,300 | Unpin `jax` maximum version | {
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | [
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008410 / 0.011353 (-0.002943) | 0.004888 / 0.011008 (-0.006120) | 0.103342 / 0.038508 (0.064834) | 0.103697 / 0.023109 (0.080587) | 0.416445 / 0.275898 (0.140547) | 0.454604 / 0.323480 (0.131124) | 0.004976 / 0.007986 (-0.003010) | 0.003957 / 0.004328 (-0.000371) | 0.077398 / 0.004250 (0.073148) | 0.069026 / 0.037052 (0.031973) | 0.420484 / 0.258489 (0.161995) | 0.471828 / 0.293841 (0.177987) | 0.037133 / 0.128546 (-0.091413) | 0.010009 / 0.075646 (-0.065637) | 0.349573 / 0.419271 (-0.069698) | 0.063240 / 0.043533 (0.019708) | 0.421554 / 0.255139 (0.166415) | 0.433548 / 0.283200 (0.150348) | 0.029397 / 0.141683 (-0.112286) | 1.716860 / 1.452155 (0.264705) | 1.851264 / 1.492716 (0.358547) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.269733 / 0.018006 (0.251727) | 0.493313 / 0.000490 (0.492823) | 0.010438 / 0.000200 (0.010238) | 0.000401 / 0.000054 (0.000347) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034690 / 0.037411 (-0.002722) | 0.105304 / 0.014526 (0.090778) | 0.115831 / 0.176557 (-0.060726) | 0.185017 / 0.737135 (-0.552118) | 0.117480 / 0.296338 (-0.178859) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.479414 / 0.215209 (0.264205) | 4.785526 / 2.077655 (2.707871) | 2.388412 / 1.504120 (0.884292) | 2.178222 / 1.541195 (0.637027) | 2.248214 / 1.468490 (0.779723) | 0.571723 / 4.584777 (-4.013054) | 4.721250 / 3.745712 (0.975538) | 4.073893 / 5.269862 (-1.195969) | 2.618131 / 4.565676 (-1.947546) | 0.068406 / 0.424275 (-0.355869) | 0.008890 / 0.007607 (0.001283) | 0.564224 / 0.226044 (0.338180) | 5.631412 / 2.268929 (3.362483) | 3.072212 / 55.444624 (-52.372412) | 2.760574 / 6.876477 (-4.115903) | 2.963060 / 2.142072 (0.820987) | 0.708150 / 4.805227 (-4.097077) | 0.160324 / 6.500664 (-6.340340) | 0.075402 / 0.075469 (-0.000067) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.649965 / 1.841788 (-0.191823) | 24.297517 / 8.074308 (16.223209) | 17.658675 / 10.191392 (7.467283) | 0.171399 / 0.680424 (-0.509025) | 0.021172 / 0.534201 (-0.513029) | 0.477196 / 0.579283 (-0.102087) | 0.503900 / 0.434364 (0.069536) | 0.555858 / 0.540337 (0.015520) | 0.824302 / 1.386936 (-0.562634) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008613 / 0.011353 (-0.002740) | 0.004848 / 0.011008 (-0.006160) | 0.078344 / 0.038508 (0.039836) | 0.098976 / 0.023109 (0.075867) | 0.520713 / 0.275898 (0.244815) | 0.566350 / 0.323480 (0.242870) | 0.006658 / 0.007986 (-0.001327) | 0.004043 / 0.004328 (-0.000285) | 0.077881 / 0.004250 (0.073631) | 0.070731 / 0.037052 (0.033678) | 0.519717 / 0.258489 (0.261228) | 0.575623 / 0.293841 (0.281782) | 0.038542 / 0.128546 (-0.090004) | 0.010277 / 0.075646 (-0.065369) | 0.084269 / 0.419271 (-0.335002) | 0.058088 / 0.043533 (0.014555) | 0.541790 / 0.255139 (0.286651) | 0.534915 / 0.283200 (0.251715) | 0.027851 / 0.141683 (-0.113831) | 1.814827 / 1.452155 (0.362672) | 1.898208 / 1.492716 (0.405492) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.244162 / 0.018006 (0.226156) | 0.482895 / 0.000490 (0.482405) | 0.005734 / 0.000200 (0.005534) | 0.000127 / 0.000054 (0.000072) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.039328 / 0.037411 (0.001917) | 0.119795 / 0.014526 (0.105269) | 0.128570 / 0.176557 (-0.047986) | 0.191207 / 0.737135 (-0.545929) | 0.127147 / 0.296338 (-0.169192) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.533545 / 0.215209 (0.318336) | 5.320135 / 2.077655 (3.242480) | 2.924573 / 1.504120 (1.420453) | 2.741351 / 1.541195 (1.200156) | 2.824217 / 1.468490 (1.355727) | 0.595842 / 4.584777 (-3.988935) | 4.343499 / 3.745712 (0.597787) | 3.976546 / 5.269862 (-1.293316) | 2.532541 / 4.565676 (-2.033135) | 0.070480 / 0.424275 (-0.353795) | 0.008868 / 0.007607 (0.001260) | 0.634297 / 0.226044 (0.408253) | 6.327314 / 2.268929 (4.058386) | 3.530741 / 55.444624 (-51.913883) | 3.121435 / 6.876477 (-3.755042) | 3.344473 / 2.142072 (1.202401) | 0.719413 / 4.805227 (-4.085814) | 0.162348 / 6.500664 (-6.338316) | 0.074964 / 0.075469 (-0.000505) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.679095 / 1.841788 (-0.162693) | 25.071620 / 8.074308 (16.997312) | 18.422398 / 10.191392 (8.231006) | 0.223981 / 0.680424 (-0.456443) | 0.026537 / 0.534201 (-0.507664) | 0.513867 / 0.579283 (-0.065416) | 0.535874 / 0.434364 (0.101510) | 0.567971 / 0.540337 (0.027634) | 0.842545 / 1.386936 (-0.544391) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#d8b871016c25cb3b90ac1ff65a4e54f0454f525e \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006445 / 0.011353 (-0.004908) | 0.003978 / 0.011008 (-0.007030) | 0.084542 / 0.038508 (0.046034) | 0.069231 / 0.023109 (0.046122) | 0.308794 / 0.275898 (0.032896) | 0.339246 / 0.323480 (0.015766) | 0.005269 / 0.007986 (-0.002716) | 0.003285 / 0.004328 (-0.001043) | 0.065336 / 0.004250 (0.061086) | 0.053480 / 0.037052 (0.016428) | 0.316775 / 0.258489 (0.058286) | 0.357885 / 0.293841 (0.064044) | 0.031309 / 0.128546 (-0.097237) | 0.008450 / 0.075646 (-0.067196) | 0.287911 / 0.419271 (-0.131361) | 0.052756 / 0.043533 (0.009223) | 0.321516 / 0.255139 (0.066377) | 0.331998 / 0.283200 (0.048799) | 0.024129 / 0.141683 (-0.117553) | 1.507718 / 1.452155 (0.055563) | 1.571400 / 1.492716 (0.078683) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.237536 / 0.018006 (0.219530) | 0.499691 / 0.000490 (0.499201) | 0.007644 / 0.000200 (0.007444) | 0.000284 / 0.000054 (0.000230) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028243 / 0.037411 (-0.009168) | 0.081556 / 0.014526 (0.067030) | 0.096877 / 0.176557 (-0.079680) | 0.149985 / 0.737135 (-0.587150) | 0.095556 / 0.296338 (-0.200783) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.383215 / 0.215209 (0.168006) | 3.815800 / 2.077655 (1.738145) | 1.832227 / 1.504120 (0.328107) | 1.664001 / 1.541195 (0.122806) | 1.698786 / 1.468490 (0.230296) | 0.487594 / 4.584777 (-4.097183) | 3.569767 / 3.745712 (-0.175945) | 3.262387 / 5.269862 (-2.007475) | 2.017105 / 4.565676 (-2.548572) | 0.057555 / 0.424275 (-0.366720) | 0.007170 / 0.007607 (-0.000437) | 0.460134 / 0.226044 (0.234090) | 4.629800 / 2.268929 (2.360871) | 2.357126 / 55.444624 (-53.087499) | 1.970144 / 6.876477 (-4.906332) | 2.123520 / 2.142072 (-0.018552) | 0.613058 / 4.805227 (-4.192169) | 0.135869 / 6.500664 (-6.364795) | 0.061292 / 0.075469 (-0.014177) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.311294 / 1.841788 (-0.530494) | 18.640807 / 8.074308 (10.566499) | 13.946834 / 10.191392 (3.755442) | 0.163976 / 0.680424 (-0.516448) | 0.018527 / 0.534201 (-0.515674) | 0.390530 / 0.579283 (-0.188753) | 0.412661 / 0.434364 (-0.021703) | 0.459514 / 0.540337 (-0.080823) | 0.635026 / 1.386936 (-0.751910) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006645 / 0.011353 (-0.004708) | 0.003943 / 0.011008 (-0.007066) | 0.064470 / 0.038508 (0.025962) | 0.069895 / 0.023109 (0.046786) | 0.411091 / 0.275898 (0.135193) | 0.437628 / 0.323480 (0.114148) | 0.005214 / 0.007986 (-0.002772) | 0.003281 / 0.004328 (-0.001047) | 0.064434 / 0.004250 (0.060183) | 0.054294 / 0.037052 (0.017241) | 0.413576 / 0.258489 (0.155087) | 0.448793 / 0.293841 (0.154952) | 0.031754 / 0.128546 (-0.096793) | 0.008530 / 0.075646 (-0.067117) | 0.069950 / 0.419271 (-0.349322) | 0.047747 / 0.043533 (0.004214) | 0.411241 / 0.255139 (0.156102) | 0.430076 / 0.283200 (0.146876) | 0.023462 / 0.141683 (-0.118220) | 1.519501 / 1.452155 (0.067346) | 1.575782 / 1.492716 (0.083066) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.231816 / 0.018006 (0.213810) | 0.442802 / 0.000490 (0.442312) | 0.005738 / 0.000200 (0.005539) | 0.000087 / 0.000054 (0.000032) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031426 / 0.037411 (-0.005985) | 0.090758 / 0.014526 (0.076233) | 0.103414 / 0.176557 (-0.073142) | 0.156409 / 0.737135 (-0.580726) | 0.103900 / 0.296338 (-0.192439) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.438897 / 0.215209 (0.223688) | 4.385318 / 2.077655 (2.307663) | 2.352042 / 1.504120 (0.847923) | 2.182228 / 1.541195 (0.641033) | 2.266256 / 1.468490 (0.797766) | 0.492780 / 4.584777 (-4.091997) | 3.665787 / 3.745712 (-0.079925) | 3.315329 / 5.269862 (-1.954533) | 2.027993 / 4.565676 (-2.537684) | 0.058220 / 0.424275 (-0.366055) | 0.007429 / 0.007607 (-0.000178) | 0.508790 / 0.226044 (0.282746) | 5.107093 / 2.268929 (2.838164) | 2.799789 / 55.444624 (-52.644836) | 2.462828 / 6.876477 (-4.413649) | 2.610193 / 2.142072 (0.468120) | 0.588133 / 4.805227 (-4.217094) | 0.133418 / 6.500664 (-6.367246) | 0.059793 / 0.075469 (-0.015676) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.363358 / 1.841788 (-0.478430) | 19.258372 / 8.074308 (11.184064) | 14.730977 / 10.191392 (4.539584) | 0.169493 / 0.680424 (-0.510931) | 0.020462 / 0.534201 (-0.513739) | 0.397980 / 0.579283 (-0.181303) | 0.426638 / 0.434364 (-0.007726) | 0.474249 / 0.540337 (-0.066088) | 0.677640 / 1.386936 (-0.709296) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#90b3d2619ecb8f01dd12283c30f04dfe6e443795 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006536 / 0.011353 (-0.004817) | 0.003827 / 0.011008 (-0.007181) | 0.084394 / 0.038508 (0.045886) | 0.073166 / 0.023109 (0.050056) | 0.309380 / 0.275898 (0.033482) | 0.338501 / 0.323480 (0.015021) | 0.005346 / 0.007986 (-0.002640) | 0.003273 / 0.004328 (-0.001056) | 0.064606 / 0.004250 (0.060356) | 0.053500 / 0.037052 (0.016447) | 0.313143 / 0.258489 (0.054654) | 0.354364 / 0.293841 (0.060523) | 0.030919 / 0.128546 (-0.097627) | 0.008512 / 0.075646 (-0.067134) | 0.292774 / 0.419271 (-0.126498) | 0.052441 / 0.043533 (0.008908) | 0.310503 / 0.255139 (0.055364) | 0.341211 / 0.283200 (0.058011) | 0.023608 / 0.141683 (-0.118074) | 1.456220 / 1.452155 (0.004065) | 1.540189 / 1.492716 (0.047473) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.234321 / 0.018006 (0.216315) | 0.451809 / 0.000490 (0.451319) | 0.008560 / 0.000200 (0.008360) | 0.000085 / 0.000054 (0.000031) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028165 / 0.037411 (-0.009246) | 0.082548 / 0.014526 (0.068023) | 0.752621 / 0.176557 (0.576065) | 0.263949 / 0.737135 (-0.473187) | 0.097635 / 0.296338 (-0.198704) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.386611 / 0.215209 (0.171402) | 3.847528 / 2.077655 (1.769873) | 1.859173 / 1.504120 (0.355053) | 1.685269 / 1.541195 (0.144074) | 1.715823 / 1.468490 (0.247333) | 0.485272 / 4.584777 (-4.099505) | 3.500724 / 3.745712 (-0.244988) | 3.252149 / 5.269862 (-2.017713) | 2.052914 / 4.565676 (-2.512762) | 0.056794 / 0.424275 (-0.367481) | 0.007317 / 0.007607 (-0.000291) | 0.457924 / 0.226044 (0.231879) | 4.570092 / 2.268929 (2.301163) | 2.328829 / 55.444624 (-53.115796) | 1.986502 / 6.876477 (-4.889975) | 2.164645 / 2.142072 (0.022573) | 0.580455 / 4.805227 (-4.224772) | 0.134415 / 6.500664 (-6.366249) | 0.060506 / 0.075469 (-0.014963) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.267423 / 1.841788 (-0.574364) | 18.653450 / 8.074308 (10.579142) | 13.919682 / 10.191392 (3.728290) | 0.144001 / 0.680424 (-0.536423) | 0.018218 / 0.534201 (-0.515983) | 0.389933 / 0.579283 (-0.189350) | 0.418366 / 0.434364 (-0.015998) | 0.456341 / 0.540337 (-0.083997) | 0.631401 / 1.386936 (-0.755535) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006838 / 0.011353 (-0.004515) | 0.003973 / 0.011008 (-0.007036) | 0.065217 / 0.038508 (0.026709) | 0.068357 / 0.023109 (0.045248) | 0.407960 / 0.275898 (0.132062) | 0.437794 / 0.323480 (0.114314) | 0.005398 / 0.007986 (-0.002587) | 0.003360 / 0.004328 (-0.000969) | 0.065503 / 0.004250 (0.061253) | 0.055676 / 0.037052 (0.018623) | 0.411381 / 0.258489 (0.152892) | 0.446902 / 0.293841 (0.153061) | 0.032156 / 0.128546 (-0.096390) | 0.008702 / 0.075646 (-0.066944) | 0.072295 / 0.419271 (-0.346976) | 0.047722 / 0.043533 (0.004189) | 0.406125 / 0.255139 (0.150986) | 0.428359 / 0.283200 (0.145160) | 0.021901 / 0.141683 (-0.119782) | 1.464186 / 1.452155 (0.012032) | 1.532809 / 1.492716 (0.040093) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.218505 / 0.018006 (0.200499) | 0.447450 / 0.000490 (0.446961) | 0.006509 / 0.000200 (0.006309) | 0.000099 / 0.000054 (0.000045) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031789 / 0.037411 (-0.005622) | 0.091100 / 0.014526 (0.076574) | 0.102812 / 0.176557 (-0.073745) | 0.155988 / 0.737135 (-0.581147) | 0.103983 / 0.296338 (-0.192355) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.436431 / 0.215209 (0.221222) | 4.336072 / 2.077655 (2.258417) | 2.344613 / 1.504120 (0.840493) | 2.173513 / 1.541195 (0.632319) | 2.313134 / 1.468490 (0.844644) | 0.493651 / 4.584777 (-4.091126) | 3.657541 / 3.745712 (-0.088171) | 3.289933 / 5.269862 (-1.979928) | 2.040271 / 4.565676 (-2.525406) | 0.058092 / 0.424275 (-0.366183) | 0.007348 / 0.007607 (-0.000259) | 0.507506 / 0.226044 (0.281462) | 5.093477 / 2.268929 (2.824548) | 2.770579 / 55.444624 (-52.674046) | 2.449507 / 6.876477 (-4.426970) | 2.645470 / 2.142072 (0.503397) | 0.590799 / 4.805227 (-4.214429) | 0.133411 / 6.500664 (-6.367253) | 0.059507 / 0.075469 (-0.015962) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.381148 / 1.841788 (-0.460639) | 19.188716 / 8.074308 (11.114408) | 14.709111 / 10.191392 (4.517719) | 0.191104 / 0.680424 (-0.489320) | 0.019862 / 0.534201 (-0.514339) | 0.395380 / 0.579283 (-0.183903) | 0.424757 / 0.434364 (-0.009607) | 0.468810 / 0.540337 (-0.071527) | 0.687058 / 1.386936 (-0.699878) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#407169e1ea91ae31f79ff29c4115b04a461279ab \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008872 / 0.011353 (-0.002481) | 0.004824 / 0.011008 (-0.006184) | 0.097012 / 0.038508 (0.058504) | 0.074728 / 0.023109 (0.051619) | 0.400604 / 0.275898 (0.124706) | 0.434316 / 0.323480 (0.110836) | 0.006025 / 0.007986 (-0.001961) | 0.004153 / 0.004328 (-0.000176) | 0.074093 / 0.004250 (0.069842) | 0.057239 / 0.037052 (0.020187) | 0.420611 / 0.258489 (0.162122) | 0.457779 / 0.293841 (0.163938) | 0.047610 / 0.128546 (-0.080936) | 0.014577 / 0.075646 (-0.061069) | 0.414351 / 0.419271 (-0.004921) | 0.063072 / 0.043533 (0.019539) | 0.426141 / 0.255139 (0.171002) | 0.429844 / 0.283200 (0.146644) | 0.034754 / 0.141683 (-0.106929) | 1.620946 / 1.452155 (0.168792) | 1.725831 / 1.492716 (0.233115) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.304712 / 0.018006 (0.286706) | 0.646924 / 0.000490 (0.646434) | 0.014486 / 0.000200 (0.014286) | 0.000626 / 0.000054 (0.000572) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034935 / 0.037411 (-0.002477) | 0.085788 / 0.014526 (0.071262) | 0.107749 / 0.176557 (-0.068807) | 0.170924 / 0.737135 (-0.566211) | 0.134985 / 0.296338 (-0.161354) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.602913 / 0.215209 (0.387704) | 6.041700 / 2.077655 (3.964045) | 2.539970 / 1.504120 (1.035850) | 2.184166 / 1.541195 (0.642972) | 2.241783 / 1.468490 (0.773293) | 0.864601 / 4.584777 (-3.720176) | 5.246955 / 3.745712 (1.501243) | 4.850458 / 5.269862 (-0.419404) | 3.101497 / 4.565676 (-1.464179) | 0.098591 / 0.424275 (-0.325684) | 0.008902 / 0.007607 (0.001295) | 0.732278 / 0.226044 (0.506234) | 7.163557 / 2.268929 (4.894629) | 3.226444 / 55.444624 (-52.218180) | 2.578737 / 6.876477 (-4.297740) | 2.850212 / 2.142072 (0.708140) | 1.026390 / 4.805227 (-3.778837) | 0.217077 / 6.500664 (-6.283587) | 0.080344 / 0.075469 (0.004875) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.687488 / 1.841788 (-0.154300) | 24.686337 / 8.074308 (16.612029) | 21.315989 / 10.191392 (11.124597) | 0.226176 / 0.680424 (-0.454248) | 0.035774 / 0.534201 (-0.498427) | 0.477807 / 0.579283 (-0.101476) | 0.636305 / 0.434364 (0.201941) | 0.553341 / 0.540337 (0.013003) | 0.797267 / 1.386936 (-0.589669) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008955 / 0.011353 (-0.002398) | 0.006099 / 0.011008 (-0.004909) | 0.086306 / 0.038508 (0.047798) | 0.090783 / 0.023109 (0.067674) | 0.554802 / 0.275898 (0.278904) | 0.598778 / 0.323480 (0.275299) | 0.008656 / 0.007986 (0.000670) | 0.004487 / 0.004328 (0.000159) | 0.084194 / 0.004250 (0.079943) | 0.076048 / 0.037052 (0.038996) | 0.533212 / 0.258489 (0.274723) | 0.584029 / 0.293841 (0.290188) | 0.051913 / 0.128546 (-0.076634) | 0.014253 / 0.075646 (-0.061393) | 0.100500 / 0.419271 (-0.318772) | 0.061092 / 0.043533 (0.017560) | 0.516955 / 0.255139 (0.261816) | 0.562754 / 0.283200 (0.279554) | 0.036673 / 0.141683 (-0.105010) | 1.853655 / 1.452155 (0.401501) | 1.968358 / 1.492716 (0.475642) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.308258 / 0.018006 (0.290252) | 0.630492 / 0.000490 (0.630002) | 0.010575 / 0.000200 (0.010375) | 0.000271 / 0.000054 (0.000217) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034762 / 0.037411 (-0.002649) | 0.107314 / 0.014526 (0.092788) | 0.132160 / 0.176557 (-0.044396) | 0.178737 / 0.737135 (-0.558398) | 0.125988 / 0.296338 (-0.170351) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.730738 / 0.215209 (0.515528) | 7.240393 / 2.077655 (5.162738) | 3.557665 / 1.504120 (2.053545) | 3.541425 / 1.541195 (2.000230) | 3.103849 / 1.468490 (1.635359) | 0.926843 / 4.584777 (-3.657934) | 5.818264 / 3.745712 (2.072552) | 5.012984 / 5.269862 (-0.256878) | 3.286085 / 4.565676 (-1.279591) | 0.104879 / 0.424275 (-0.319396) | 0.009010 / 0.007607 (0.001403) | 0.806145 / 0.226044 (0.580101) | 8.263655 / 2.268929 (5.994727) | 4.108932 / 55.444624 (-51.335693) | 3.454613 / 6.876477 (-3.421864) | 3.629045 / 2.142072 (1.486973) | 1.062325 / 4.805227 (-3.742902) | 0.220482 / 6.500664 (-6.280182) | 0.081440 / 0.075469 (0.005970) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.665587 / 1.841788 (-0.176201) | 23.695299 / 8.074308 (15.620991) | 22.917493 / 10.191392 (12.726101) | 0.259033 / 0.680424 (-0.421391) | 0.040118 / 0.534201 (-0.494083) | 0.487329 / 0.579283 (-0.091954) | 0.607482 / 0.434364 (0.173118) | 0.568383 / 0.540337 (0.028045) | 0.824486 / 1.386936 (-0.562450) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#53592bb8f635a1d6ea3e77acc290efdfb28fcbd7 \"CML watermark\")\n",
"CI failures are unrelated",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007095 / 0.011353 (-0.004258) | 0.004260 / 0.011008 (-0.006748) | 0.084729 / 0.038508 (0.046221) | 0.076498 / 0.023109 (0.053389) | 0.325981 / 0.275898 (0.050083) | 0.357140 / 0.323480 (0.033661) | 0.004325 / 0.007986 (-0.003660) | 0.003632 / 0.004328 (-0.000696) | 0.065075 / 0.004250 (0.060824) | 0.059058 / 0.037052 (0.022006) | 0.331895 / 0.258489 (0.073406) | 0.370782 / 0.293841 (0.076941) | 0.031886 / 0.128546 (-0.096660) | 0.008782 / 0.075646 (-0.066864) | 0.288159 / 0.419271 (-0.131113) | 0.053012 / 0.043533 (0.009479) | 0.319992 / 0.255139 (0.064853) | 0.347061 / 0.283200 (0.063861) | 0.026365 / 0.141683 (-0.115317) | 1.486112 / 1.452155 (0.033958) | 1.570150 / 1.492716 (0.077434) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.277155 / 0.018006 (0.259149) | 0.573507 / 0.000490 (0.573017) | 0.010122 / 0.000200 (0.009922) | 0.000322 / 0.000054 (0.000268) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029076 / 0.037411 (-0.008335) | 0.082517 / 0.014526 (0.067991) | 0.100710 / 0.176557 (-0.075847) | 0.154529 / 0.737135 (-0.582606) | 0.099531 / 0.296338 (-0.196807) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.382058 / 0.215209 (0.166849) | 3.803307 / 2.077655 (1.725652) | 1.834107 / 1.504120 (0.329987) | 1.665703 / 1.541195 (0.124508) | 1.739520 / 1.468490 (0.271030) | 0.490544 / 4.584777 (-4.094233) | 3.577874 / 3.745712 (-0.167838) | 3.327631 / 5.269862 (-1.942231) | 2.056634 / 4.565676 (-2.509043) | 0.057871 / 0.424275 (-0.366404) | 0.007326 / 0.007607 (-0.000281) | 0.453993 / 0.226044 (0.227949) | 4.549179 / 2.268929 (2.280250) | 2.320304 / 55.444624 (-53.124321) | 1.966082 / 6.876477 (-4.910395) | 2.189979 / 2.142072 (0.047907) | 0.586678 / 4.805227 (-4.218549) | 0.134919 / 6.500664 (-6.365745) | 0.061649 / 0.075469 (-0.013820) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.286228 / 1.841788 (-0.555560) | 19.409674 / 8.074308 (11.335366) | 14.290463 / 10.191392 (4.099071) | 0.165766 / 0.680424 (-0.514658) | 0.018200 / 0.534201 (-0.516001) | 0.390526 / 0.579283 (-0.188757) | 0.410953 / 0.434364 (-0.023411) | 0.455921 / 0.540337 (-0.084416) | 0.642271 / 1.386936 (-0.744665) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007288 / 0.011353 (-0.004064) | 0.004348 / 0.011008 (-0.006660) | 0.065935 / 0.038508 (0.027427) | 0.087327 / 0.023109 (0.064218) | 0.413461 / 0.275898 (0.137563) | 0.458904 / 0.323480 (0.135424) | 0.005996 / 0.007986 (-0.001990) | 0.003648 / 0.004328 (-0.000680) | 0.066578 / 0.004250 (0.062328) | 0.062072 / 0.037052 (0.025020) | 0.418469 / 0.258489 (0.159980) | 0.468960 / 0.293841 (0.175119) | 0.032616 / 0.128546 (-0.095930) | 0.008961 / 0.075646 (-0.066686) | 0.072537 / 0.419271 (-0.346734) | 0.048302 / 0.043533 (0.004769) | 0.411845 / 0.255139 (0.156706) | 0.441730 / 0.283200 (0.158530) | 0.025038 / 0.141683 (-0.116645) | 1.519402 / 1.452155 (0.067248) | 1.601791 / 1.492716 (0.109074) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.322494 / 0.018006 (0.304488) | 0.570210 / 0.000490 (0.569720) | 0.025815 / 0.000200 (0.025615) | 0.000166 / 0.000054 (0.000111) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034657 / 0.037411 (-0.002754) | 0.096024 / 0.014526 (0.081498) | 0.109134 / 0.176557 (-0.067422) | 0.162170 / 0.737135 (-0.574965) | 0.110472 / 0.296338 (-0.185866) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.439032 / 0.215209 (0.223823) | 4.385768 / 2.077655 (2.308113) | 2.343261 / 1.504120 (0.839142) | 2.157926 / 1.541195 (0.616731) | 2.299193 / 1.468490 (0.830703) | 0.498961 / 4.584777 (-4.085816) | 3.651909 / 3.745712 (-0.093803) | 3.387587 / 5.269862 (-1.882275) | 2.144553 / 4.565676 (-2.421123) | 0.058242 / 0.424275 (-0.366033) | 0.007416 / 0.007607 (-0.000191) | 0.512714 / 0.226044 (0.286670) | 5.138569 / 2.268929 (2.869641) | 2.778683 / 55.444624 (-52.665941) | 2.532990 / 6.876477 (-4.343487) | 2.782211 / 2.142072 (0.640139) | 0.591881 / 4.805227 (-4.213346) | 0.135005 / 6.500664 (-6.365660) | 0.060965 / 0.075469 (-0.014504) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.356311 / 1.841788 (-0.485477) | 20.029994 / 8.074308 (11.955686) | 14.666570 / 10.191392 (4.475178) | 0.164363 / 0.680424 (-0.516061) | 0.020685 / 0.534201 (-0.513516) | 0.396020 / 0.579283 (-0.183263) | 0.429407 / 0.434364 (-0.004957) | 0.476924 / 0.540337 (-0.063413) | 0.693389 / 1.386936 (-0.693547) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#292d627e398e30a538a616395f3b5ce4e89bb1e8 \"CML watermark\")\n"
] | 2023-10-12T14:42:40 | 2023-10-12T16:37:55 | 2023-10-12T16:28:57 | CONTRIBUTOR | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6300",
"html_url": "https://github.com/huggingface/datasets/pull/6300",
"diff_url": "https://github.com/huggingface/datasets/pull/6300.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6300.patch",
"merged_at": "2023-10-12T16:28:57"
} | fix #6299
fix #6202 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6300/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6300/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/6299 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6299/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6299/comments | https://api.github.com/repos/huggingface/datasets/issues/6299/events | https://github.com/huggingface/datasets/issues/6299 | 1,939,649,238 | I_kwDODunzps5znLLW | 6,299 | Support for newer versions of JAX | {
"login": "ddrous",
"id": 25456859,
"node_id": "MDQ6VXNlcjI1NDU2ODU5",
"avatar_url": "https://avatars.githubusercontent.com/u/25456859?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/ddrous",
"html_url": "https://github.com/ddrous",
"followers_url": "https://api.github.com/users/ddrous/followers",
"following_url": "https://api.github.com/users/ddrous/following{/other_user}",
"gists_url": "https://api.github.com/users/ddrous/gists{/gist_id}",
"starred_url": "https://api.github.com/users/ddrous/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/ddrous/subscriptions",
"organizations_url": "https://api.github.com/users/ddrous/orgs",
"repos_url": "https://api.github.com/users/ddrous/repos",
"events_url": "https://api.github.com/users/ddrous/events{/privacy}",
"received_events_url": "https://api.github.com/users/ddrous/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892871,
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement",
"name": "enhancement",
"color": "a2eeef",
"default": true,
"description": "New feature or request"
}
] | closed | false | null | [] | [] | 2023-10-12T10:03:46 | 2023-10-12T16:28:59 | 2023-10-12T16:28:59 | NONE | null | null | null | ### Feature request
Hi,
I like your idea of adapting the datasets library to be usable with JAX. Thank you for that.
However, in your [setup.py](https://github.com/huggingface/datasets/blob/main/setup.py), you enforce old versions of JAX <= 0.3... It is very cumbersome !
What is the rationale for such a limitation ? Can you remove it please ?
Thanks,
### Motivation
This library is unusable with new versions of JAX ?
### Your contribution
Yes. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6299/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6299/timeline | null | completed | false |