url
stringlengths
58
61
repository_url
stringclasses
1 value
labels_url
stringlengths
72
75
comments_url
stringlengths
67
70
events_url
stringlengths
65
68
html_url
stringlengths
46
51
id
int64
599M
2.04B
node_id
stringlengths
18
32
number
int64
1
6.5k
title
stringlengths
1
290
user
dict
labels
list
state
stringclasses
2 values
locked
bool
1 class
assignee
dict
assignees
list
comments
sequence
created_at
timestamp[s]
updated_at
timestamp[s]
closed_at
timestamp[s]
author_association
stringclasses
3 values
active_lock_reason
null
draft
bool
2 classes
pull_request
dict
body
stringlengths
0
228k
reactions
dict
timeline_url
stringlengths
67
70
performed_via_github_app
null
state_reason
stringclasses
3 values
is_pull_request
bool
2 classes
https://api.github.com/repos/huggingface/datasets/issues/6400
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6400/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6400/comments
https://api.github.com/repos/huggingface/datasets/issues/6400/events
https://github.com/huggingface/datasets/issues/6400
1,988,571,317
I_kwDODunzps52hzC1
6,400
Safely load datasets by disabling execution of dataset loading script
{ "login": "irenedea", "id": 14367635, "node_id": "MDQ6VXNlcjE0MzY3NjM1", "avatar_url": "https://avatars.githubusercontent.com/u/14367635?v=4", "gravatar_id": "", "url": "https://api.github.com/users/irenedea", "html_url": "https://github.com/irenedea", "followers_url": "https://api.github.com/users/irenedea/followers", "following_url": "https://api.github.com/users/irenedea/following{/other_user}", "gists_url": "https://api.github.com/users/irenedea/gists{/gist_id}", "starred_url": "https://api.github.com/users/irenedea/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/irenedea/subscriptions", "organizations_url": "https://api.github.com/users/irenedea/orgs", "repos_url": "https://api.github.com/users/irenedea/repos", "events_url": "https://api.github.com/users/irenedea/events{/privacy}", "received_events_url": "https://api.github.com/users/irenedea/received_events", "type": "User", "site_admin": false }
[ { "id": 1935892871, "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement", "name": "enhancement", "color": "a2eeef", "default": true, "description": "New feature or request" } ]
open
false
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "site_admin": false }
[ { "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "site_admin": false } ]
[ "great idea IMO\r\n\r\nthis could be a `trust_remote_code=True` flag like in transformers. We could also default to loading the Parquet conversion rather than executing code (for dataset repos that have both)", "@julien-c that would be great!" ]
2023-11-10T23:48:29
2023-11-15T14:46:43
null
NONE
null
null
null
### Feature request Is there a way to disable execution of dataset loading script using `load_dataset`? This is a security vulnerability that could lead to arbitrary code execution. Any suggested workarounds are welcome as well. ### Motivation This is a security vulnerability that could lead to arbitrary code execution. ### Your contribution n/a
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6400/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6400/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6399
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6399/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6399/comments
https://api.github.com/repos/huggingface/datasets/issues/6399/events
https://github.com/huggingface/datasets/issues/6399
1,988,368,503
I_kwDODunzps52hBh3
6,399
TypeError: Cannot convert pyarrow.lib.ChunkedArray to pyarrow.lib.Array
{ "login": "y-hwang", "id": 76236359, "node_id": "MDQ6VXNlcjc2MjM2MzU5", "avatar_url": "https://avatars.githubusercontent.com/u/76236359?v=4", "gravatar_id": "", "url": "https://api.github.com/users/y-hwang", "html_url": "https://github.com/y-hwang", "followers_url": "https://api.github.com/users/y-hwang/followers", "following_url": "https://api.github.com/users/y-hwang/following{/other_user}", "gists_url": "https://api.github.com/users/y-hwang/gists{/gist_id}", "starred_url": "https://api.github.com/users/y-hwang/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/y-hwang/subscriptions", "organizations_url": "https://api.github.com/users/y-hwang/orgs", "repos_url": "https://api.github.com/users/y-hwang/repos", "events_url": "https://api.github.com/users/y-hwang/events{/privacy}", "received_events_url": "https://api.github.com/users/y-hwang/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
[]
2023-11-10T20:48:46
2023-11-10T20:48:46
null
NONE
null
null
null
### Describe the bug Hi, I am preprocessing a large custom dataset with numpy arrays. I am running into this TypeError during writing in a dataset.map() function. I've tried decreasing writer batch size, but this error persists. This error does not occur for smaller datasets. Thank you! ### Steps to reproduce the bug Traceback (most recent call last): File "/n/home12/yhwang/.conda/envs/lib/python3.10/site-packages/multiprocess/pool.py", line 125, in worker result = (True, func(*args, **kwds)) File "/n/home12/yhwang/.conda/envs/lib/python3.10/site-packages/datasets/utils/py_utils.py", line 1354, in _write_generator_to_queue for i, result in enumerate(func(**kwargs)): File "/n/home12/yhwang/.conda/envs/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 3493, in _map_single writer.write_batch(batch) File "/n/home12/yhwang/.conda/envs/lib/python3.10/site-packages/datasets/arrow_writer.py", line 555, in write_batch arrays.append(pa.array(typed_sequence)) File "pyarrow/array.pxi", line 243, in pyarrow.lib.array File "pyarrow/array.pxi", line 110, in pyarrow.lib._handle_arrow_array_protocol File "/n/home12/yhwang/.conda/envs/lib/python3.10/site-packages/datasets/arrow_writer.py", line 184, in __arrow_array__ out = numpy_to_pyarrow_listarray(data) File "/n/home12/yhwang/.conda/envs/lib/python3.10/site-packages/datasets/features/features.py", line 1394, in numpy_to_pyarrow_listarray values = pa.ListArray.from_arrays(offsets, values) File "pyarrow/array.pxi", line 2004, in pyarrow.lib.ListArray.from_arrays TypeError: Cannot convert pyarrow.lib.ChunkedArray to pyarrow.lib.Array ### Expected behavior Type should not be a ChunkedArray ### Environment info datasets v2.14.5 arrow v1.2.3 pyarrow v12.0.1
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6399/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6399/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6398
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6398/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6398/comments
https://api.github.com/repos/huggingface/datasets/issues/6398/events
https://github.com/huggingface/datasets/pull/6398
1,987,786,446
PR_kwDODunzps5fJlP7
6,398
Remove redundant condition in builders
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004475 / 0.011353 (-0.006878) | 0.002840 / 0.011008 (-0.008168) | 0.061544 / 0.038508 (0.023036) | 0.031237 / 0.023109 (0.008128) | 0.243270 / 0.275898 (-0.032628) | 0.271903 / 0.323480 (-0.051577) | 0.002906 / 0.007986 (-0.005080) | 0.003118 / 0.004328 (-0.001210) | 0.047362 / 0.004250 (0.043112) | 0.047840 / 0.037052 (0.010788) | 0.244044 / 0.258489 (-0.014445) | 0.279310 / 0.293841 (-0.014531) | 0.023408 / 0.128546 (-0.105138) | 0.007110 / 0.075646 (-0.068536) | 0.207328 / 0.419271 (-0.211943) | 0.058463 / 0.043533 (0.014930) | 0.245631 / 0.255139 (-0.009508) | 0.267755 / 0.283200 (-0.015445) | 0.018147 / 0.141683 (-0.123536) | 1.086877 / 1.452155 (-0.365278) | 1.155380 / 1.492716 (-0.337337) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.091925 / 0.018006 (0.073919) | 0.299858 / 0.000490 (0.299368) | 0.000232 / 0.000200 (0.000032) | 0.000047 / 0.000054 (-0.000007) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018416 / 0.037411 (-0.018995) | 0.062608 / 0.014526 (0.048082) | 0.073897 / 0.176557 (-0.102660) | 0.120216 / 0.737135 (-0.616919) | 0.075788 / 0.296338 (-0.220550) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.287823 / 0.215209 (0.072614) | 2.797546 / 2.077655 (0.719891) | 1.470878 / 1.504120 (-0.033242) | 1.347497 / 1.541195 (-0.193698) | 1.363837 / 1.468490 (-0.104653) | 0.400069 / 4.584777 (-4.184708) | 2.338870 / 3.745712 (-1.406842) | 2.564075 / 5.269862 (-2.705787) | 1.568454 / 4.565676 (-2.997222) | 0.047103 / 0.424275 (-0.377172) | 0.004783 / 0.007607 (-0.002824) | 0.345244 / 0.226044 (0.119200) | 3.407752 / 2.268929 (1.138823) | 1.826552 / 55.444624 (-53.618073) | 1.536714 / 6.876477 (-5.339763) | 1.543138 / 2.142072 (-0.598934) | 0.478996 / 4.805227 (-4.326232) | 0.099580 / 6.500664 (-6.401085) | 0.041994 / 0.075469 (-0.033475) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.947106 / 1.841788 (-0.894682) | 11.391262 / 8.074308 (3.316954) | 10.531141 / 10.191392 (0.339749) | 0.141497 / 0.680424 (-0.538927) | 0.014214 / 0.534201 (-0.519987) | 0.269346 / 0.579283 (-0.309937) | 0.268129 / 0.434364 (-0.166235) | 0.309496 / 0.540337 (-0.230841) | 0.429207 / 1.386936 (-0.957729) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004770 / 0.011353 (-0.006583) | 0.002878 / 0.011008 (-0.008130) | 0.048248 / 0.038508 (0.009740) | 0.051068 / 0.023109 (0.027959) | 0.272076 / 0.275898 (-0.003822) | 0.292423 / 0.323480 (-0.031057) | 0.004016 / 0.007986 (-0.003970) | 0.002522 / 0.004328 (-0.001807) | 0.047617 / 0.004250 (0.043367) | 0.038168 / 0.037052 (0.001115) | 0.275236 / 0.258489 (0.016746) | 0.303811 / 0.293841 (0.009970) | 0.023816 / 0.128546 (-0.104730) | 0.007177 / 0.075646 (-0.068469) | 0.053453 / 0.419271 (-0.365818) | 0.032425 / 0.043533 (-0.011108) | 0.271620 / 0.255139 (0.016481) | 0.289618 / 0.283200 (0.006418) | 0.017986 / 0.141683 (-0.123697) | 1.154225 / 1.452155 (-0.297930) | 1.224244 / 1.492716 (-0.268472) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.090477 / 0.018006 (0.072471) | 0.299461 / 0.000490 (0.298971) | 0.000224 / 0.000200 (0.000024) | 0.000053 / 0.000054 (-0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022043 / 0.037411 (-0.015369) | 0.070327 / 0.014526 (0.055801) | 0.080132 / 0.176557 (-0.096425) | 0.120007 / 0.737135 (-0.617128) | 0.083037 / 0.296338 (-0.213301) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.294538 / 0.215209 (0.079329) | 2.882791 / 2.077655 (0.805136) | 1.582923 / 1.504120 (0.078803) | 1.457091 / 1.541195 (-0.084104) | 1.536149 / 1.468490 (0.067659) | 0.401539 / 4.584777 (-4.183238) | 2.440919 / 3.745712 (-1.304793) | 2.503108 / 5.269862 (-2.766753) | 1.509216 / 4.565676 (-3.056460) | 0.046267 / 0.424275 (-0.378008) | 0.004790 / 0.007607 (-0.002817) | 0.336137 / 0.226044 (0.110093) | 3.331655 / 2.268929 (1.062726) | 1.954228 / 55.444624 (-53.490396) | 1.686637 / 6.876477 (-5.189840) | 1.650278 / 2.142072 (-0.491794) | 0.473895 / 4.805227 (-4.331333) | 0.096908 / 6.500664 (-6.403756) | 0.040387 / 0.075469 (-0.035082) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.972999 / 1.841788 (-0.868789) | 11.978367 / 8.074308 (3.904059) | 10.861092 / 10.191392 (0.669699) | 0.129054 / 0.680424 (-0.551369) | 0.015988 / 0.534201 (-0.518213) | 0.268827 / 0.579283 (-0.310456) | 0.271714 / 0.434364 (-0.162649) | 0.304045 / 0.540337 (-0.236293) | 0.413158 / 1.386936 (-0.973778) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#9e4348a233a75907c305b3159ac9cb183cf30ea5 \"CML watermark\")\n", "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005286 / 0.011353 (-0.006067) | 0.002860 / 0.011008 (-0.008149) | 0.062449 / 0.038508 (0.023941) | 0.035346 / 0.023109 (0.012237) | 0.241685 / 0.275898 (-0.034213) | 0.268116 / 0.323480 (-0.055364) | 0.003050 / 0.007986 (-0.004935) | 0.003134 / 0.004328 (-0.001194) | 0.048818 / 0.004250 (0.044567) | 0.049187 / 0.037052 (0.012135) | 0.247395 / 0.258489 (-0.011094) | 0.280301 / 0.293841 (-0.013540) | 0.023801 / 0.128546 (-0.104745) | 0.007653 / 0.075646 (-0.067994) | 0.204185 / 0.419271 (-0.215087) | 0.071251 / 0.043533 (0.027718) | 0.244409 / 0.255139 (-0.010730) | 0.262363 / 0.283200 (-0.020836) | 0.018631 / 0.141683 (-0.123052) | 1.110152 / 1.452155 (-0.342003) | 1.165093 / 1.492716 (-0.327624) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.099536 / 0.018006 (0.081530) | 0.309598 / 0.000490 (0.309109) | 0.000207 / 0.000200 (0.000007) | 0.000050 / 0.000054 (-0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019213 / 0.037411 (-0.018198) | 0.069296 / 0.014526 (0.054770) | 0.074752 / 0.176557 (-0.101804) | 0.121314 / 0.737135 (-0.615822) | 0.081274 / 0.296338 (-0.215065) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.281345 / 0.215209 (0.066136) | 2.755435 / 2.077655 (0.677780) | 1.453358 / 1.504120 (-0.050762) | 1.328222 / 1.541195 (-0.212973) | 1.392281 / 1.468490 (-0.076209) | 0.410539 / 4.584777 (-4.174238) | 2.452072 / 3.745712 (-1.293640) | 2.777757 / 5.269862 (-2.492105) | 1.656719 / 4.565676 (-2.908958) | 0.046844 / 0.424275 (-0.377431) | 0.004785 / 0.007607 (-0.002822) | 0.336567 / 0.226044 (0.110522) | 3.317564 / 2.268929 (1.048635) | 1.830737 / 55.444624 (-53.613888) | 1.528464 / 6.876477 (-5.348013) | 1.620527 / 2.142072 (-0.521545) | 0.480662 / 4.805227 (-4.324565) | 0.100819 / 6.500664 (-6.399845) | 0.042501 / 0.075469 (-0.032968) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.962593 / 1.841788 (-0.879195) | 12.508048 / 8.074308 (4.433740) | 11.117398 / 10.191392 (0.926006) | 0.131265 / 0.680424 (-0.549159) | 0.014469 / 0.534201 (-0.519732) | 0.271627 / 0.579283 (-0.307656) | 0.274966 / 0.434364 (-0.159398) | 0.313260 / 0.540337 (-0.227077) | 0.444741 / 1.386936 (-0.942195) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004974 / 0.011353 (-0.006379) | 0.003383 / 0.011008 (-0.007626) | 0.048792 / 0.038508 (0.010284) | 0.052821 / 0.023109 (0.029712) | 0.267123 / 0.275898 (-0.008775) | 0.293604 / 0.323480 (-0.029876) | 0.003968 / 0.007986 (-0.004018) | 0.002594 / 0.004328 (-0.001735) | 0.047690 / 0.004250 (0.043439) | 0.040236 / 0.037052 (0.003183) | 0.267805 / 0.258489 (0.009315) | 0.310543 / 0.293841 (0.016702) | 0.025707 / 0.128546 (-0.102839) | 0.008012 / 0.075646 (-0.067634) | 0.054460 / 0.419271 (-0.364812) | 0.033545 / 0.043533 (-0.009988) | 0.270166 / 0.255139 (0.015027) | 0.285965 / 0.283200 (0.002765) | 0.019391 / 0.141683 (-0.122292) | 1.144991 / 1.452155 (-0.307164) | 1.198491 / 1.492716 (-0.294225) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.094757 / 0.018006 (0.076751) | 0.306712 / 0.000490 (0.306222) | 0.000218 / 0.000200 (0.000018) | 0.000055 / 0.000054 (0.000000) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.020995 / 0.037411 (-0.016417) | 0.070293 / 0.014526 (0.055767) | 0.081441 / 0.176557 (-0.095116) | 0.119538 / 0.737135 (-0.617597) | 0.081454 / 0.296338 (-0.214885) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.293451 / 0.215209 (0.078242) | 2.880378 / 2.077655 (0.802723) | 1.572547 / 1.504120 (0.068427) | 1.439172 / 1.541195 (-0.102023) | 1.506343 / 1.468490 (0.037853) | 0.402764 / 4.584777 (-4.182013) | 2.501341 / 3.745712 (-1.244371) | 2.538494 / 5.269862 (-2.731367) | 1.524306 / 4.565676 (-3.041371) | 0.046401 / 0.424275 (-0.377874) | 0.004781 / 0.007607 (-0.002826) | 0.349448 / 0.226044 (0.123404) | 3.416181 / 2.268929 (1.147252) | 1.964204 / 55.444624 (-53.480420) | 1.648564 / 6.876477 (-5.227912) | 1.675977 / 2.142072 (-0.466095) | 0.475717 / 4.805227 (-4.329511) | 0.098416 / 6.500664 (-6.402248) | 0.041212 / 0.075469 (-0.034257) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.975928 / 1.841788 (-0.865860) | 12.066648 / 8.074308 (3.992340) | 10.943181 / 10.191392 (0.751789) | 0.149687 / 0.680424 (-0.530736) | 0.015107 / 0.534201 (-0.519094) | 0.268950 / 0.579283 (-0.310333) | 0.280419 / 0.434364 (-0.153945) | 0.305263 / 0.540337 (-0.235074) | 0.408486 / 1.386936 (-0.978450) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#344086a7a1707ef20b57399f813ef64ce679e956 \"CML watermark\")\n" ]
2023-11-10T14:56:43
2023-11-14T10:49:15
2023-11-14T10:43:00
MEMBER
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6398", "html_url": "https://github.com/huggingface/datasets/pull/6398", "diff_url": "https://github.com/huggingface/datasets/pull/6398.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6398.patch", "merged_at": "2023-11-14T10:43:00" }
Minor refactoring to remove redundant condition.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6398/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6398/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6397
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6397/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6397/comments
https://api.github.com/repos/huggingface/datasets/issues/6397/events
https://github.com/huggingface/datasets/issues/6397
1,987,622,152
I_kwDODunzps52eLUI
6,397
Raise a different exception for inexisting dataset vs files without known extension
{ "login": "severo", "id": 1676121, "node_id": "MDQ6VXNlcjE2NzYxMjE=", "avatar_url": "https://avatars.githubusercontent.com/u/1676121?v=4", "gravatar_id": "", "url": "https://api.github.com/users/severo", "html_url": "https://github.com/severo", "followers_url": "https://api.github.com/users/severo/followers", "following_url": "https://api.github.com/users/severo/following{/other_user}", "gists_url": "https://api.github.com/users/severo/gists{/gist_id}", "starred_url": "https://api.github.com/users/severo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/severo/subscriptions", "organizations_url": "https://api.github.com/users/severo/orgs", "repos_url": "https://api.github.com/users/severo/repos", "events_url": "https://api.github.com/users/severo/events{/privacy}", "received_events_url": "https://api.github.com/users/severo/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[]
2023-11-10T13:22:14
2023-11-22T15:12:34
2023-11-22T15:12:34
CONTRIBUTOR
null
null
null
See https://github.com/huggingface/datasets-server/issues/2082#issuecomment-1805716557 We have the same error for: - https://huggingface.co./datasets/severo/a_dataset_that_does_not_exist: a dataset that does not exist - https://huggingface.co./datasets/severo/test_files_without_extension: a dataset with files without a known extension ``` >>> import datasets >>> datasets.get_dataset_config_names('severo/a_dataset_that_does_not_exist') Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/home/slesage/hf/datasets-server/services/worker/.venv/lib/python3.9/site-packages/datasets/inspect.py", line 351, in get_dataset_config_names dataset_module = dataset_module_factory( File "/home/slesage/hf/datasets-server/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1508, in dataset_module_factory raise FileNotFoundError( FileNotFoundError: Couldn't find a dataset script at /home/slesage/hf/datasets-server/services/worker/severo/a_dataset_that_does_not_exist/a_dataset_that_does_not_exist.py or any data file in the same directory. Couldn't find 'severo/a_dataset_that_does_not_exist' on the Hugging Face Hub either: FileNotFoundError: Dataset 'severo/a_dataset_that_does_not_exist' doesn't exist on the Hub. If the repo is private or gated, make sure to log in with `huggingface-cli login`. >>> datasets.get_dataset_config_names('severo/test_files_without_extension') Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/home/slesage/hf/datasets-server/services/worker/.venv/lib/python3.9/site-packages/datasets/inspect.py", line 351, in get_dataset_config_names dataset_module = dataset_module_factory( File "/home/slesage/hf/datasets-server/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1508, in dataset_module_factory raise FileNotFoundError( FileNotFoundError: Couldn't find a dataset script at /home/slesage/hf/datasets-server/services/worker/severo/test_files_without_extension/test_files_without_extension.py or any data file in the same directory. Couldn't find 'severo/test_files_without_extension' on the Hugging Face Hub either: FileNotFoundError: No (supported) data files or dataset script found in severo/test_files_without_extension. ``` To differentiate, we must parse the error message (only the end is different). We should have a different exception for these two errors.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6397/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6397/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6396
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6396/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6396/comments
https://api.github.com/repos/huggingface/datasets/issues/6396/events
https://github.com/huggingface/datasets/issues/6396
1,987,308,077
I_kwDODunzps52c-ot
6,396
Issue with pyarrow 14.0.1
{ "login": "severo", "id": 1676121, "node_id": "MDQ6VXNlcjE2NzYxMjE=", "avatar_url": "https://avatars.githubusercontent.com/u/1676121?v=4", "gravatar_id": "", "url": "https://api.github.com/users/severo", "html_url": "https://github.com/severo", "followers_url": "https://api.github.com/users/severo/followers", "following_url": "https://api.github.com/users/severo/following{/other_user}", "gists_url": "https://api.github.com/users/severo/gists{/gist_id}", "starred_url": "https://api.github.com/users/severo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/severo/subscriptions", "organizations_url": "https://api.github.com/users/severo/orgs", "repos_url": "https://api.github.com/users/severo/repos", "events_url": "https://api.github.com/users/severo/events{/privacy}", "received_events_url": "https://api.github.com/users/severo/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "Looks like we should stop using `PyExtensionType` and use `ExtensionType` instead\r\n\r\nsee https://github.com/apache/arrow/commit/f14170976372436ec1d03a724d8d3f3925484ecf", "https://github.com/huggingface/datasets-server/pull/2089#pullrequestreview-1724449532\r\n\r\n> Yes, I understand now: they have disabled their `PyExtensionType` and we use it in `datasets` for arrays... ", "related?\r\n\r\nhttps://huggingface.co./datasets/ssbuild/tools_data/discussions/1#654e663b77c8ec680d10479c", "> related?\r\n>\r\n> https://huggingface.co./datasets/ssbuild/tools_data/discussions/1#654e663b77c8ec680d10479c\r\n\r\nNo, related to https://github.com/huggingface/datasets/issues/5706", "Running the following is a workaround:\r\n\r\n```\r\nimport pyarrow\r\npyarrow.PyExtensionType.set_auto_load(True)\r\n```" ]
2023-11-10T10:02:12
2023-11-14T10:23:30
2023-11-14T10:23:30
CONTRIBUTOR
null
null
null
See https://github.com/huggingface/datasets-server/pull/2089 for reference ``` from datasets import (Array2D, Dataset, Features) feature_type = Array2D(shape=(2, 2), dtype="float32") content = [[0.0, 0.0], [0.0, 0.0]] features = Features({"col": feature_type}) dataset = Dataset.from_dict({"col": [content]}, features=features) ``` generates ``` /home/slesage/hf/datasets-server/libs/libcommon/.venv/lib/python3.9/site-packages/datasets/features/features.py:648: FutureWarning: pyarrow.PyExtensionType is deprecated and will refuse deserialization by default. Instead, please derive from pyarrow.ExtensionType and implement your own serialization mechanism. pa.PyExtensionType.__init__(self, self.storage_dtype) /home/slesage/hf/datasets-server/libs/libcommon/.venv/lib/python3.9/site-packages/datasets/features/features.py:1661: RuntimeWarning: pickle-based deserialization of pyarrow.PyExtensionType subclasses is disabled by default; if you only ingest trusted data files, you may re-enable this using `pyarrow.PyExtensionType.set_auto_load(True)`. In the future, Python-defined extension subclasses should derive from pyarrow.ExtensionType (not pyarrow.PyExtensionType) and implement their own serialization mechanism. obj = {field.name: generate_from_arrow_type(field.type) for field in pa_schema} /home/slesage/hf/datasets-server/libs/libcommon/.venv/lib/python3.9/site-packages/datasets/features/features.py:1661: FutureWarning: pyarrow.PyExtensionType is deprecated and will refuse deserialization by default. Instead, please derive from pyarrow.ExtensionType and implement your own serialization mechanism. obj = {field.name: generate_from_arrow_type(field.type) for field in pa_schema} Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/home/slesage/hf/datasets-server/libs/libcommon/.venv/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 924, in from_dict return cls(pa_table, info=info, split=split) File "/home/slesage/hf/datasets-server/libs/libcommon/.venv/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 693, in __init__ inferred_features = Features.from_arrow_schema(arrow_table.schema) File "/home/slesage/hf/datasets-server/libs/libcommon/.venv/lib/python3.9/site-packages/datasets/features/features.py", line 1661, in from_arrow_schema obj = {field.name: generate_from_arrow_type(field.type) for field in pa_schema} File "/home/slesage/hf/datasets-server/libs/libcommon/.venv/lib/python3.9/site-packages/datasets/features/features.py", line 1661, in <dictcomp> obj = {field.name: generate_from_arrow_type(field.type) for field in pa_schema} File "/home/slesage/hf/datasets-server/libs/libcommon/.venv/lib/python3.9/site-packages/datasets/features/features.py", line 1381, in generate_from_arrow_type return Value(dtype=_arrow_to_datasets_dtype(pa_type)) File "/home/slesage/hf/datasets-server/libs/libcommon/.venv/lib/python3.9/site-packages/datasets/features/features.py", line 111, in _arrow_to_datasets_dtype raise ValueError(f"Arrow type {arrow_type} does not have a datasets dtype equivalent.") ValueError: Arrow type extension<arrow.py_extension_type<pyarrow.lib.UnknownExtensionType>> does not have a datasets dtype equivalent. ```
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6396/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6396/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6395
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6395/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6395/comments
https://api.github.com/repos/huggingface/datasets/issues/6395/events
https://github.com/huggingface/datasets/issues/6395
1,986,484,124
I_kwDODunzps52Z1ec
6,395
Add ability to set lock type
{ "login": "leoleoasd", "id": 37735580, "node_id": "MDQ6VXNlcjM3NzM1NTgw", "avatar_url": "https://avatars.githubusercontent.com/u/37735580?v=4", "gravatar_id": "", "url": "https://api.github.com/users/leoleoasd", "html_url": "https://github.com/leoleoasd", "followers_url": "https://api.github.com/users/leoleoasd/followers", "following_url": "https://api.github.com/users/leoleoasd/following{/other_user}", "gists_url": "https://api.github.com/users/leoleoasd/gists{/gist_id}", "starred_url": "https://api.github.com/users/leoleoasd/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/leoleoasd/subscriptions", "organizations_url": "https://api.github.com/users/leoleoasd/orgs", "repos_url": "https://api.github.com/users/leoleoasd/repos", "events_url": "https://api.github.com/users/leoleoasd/events{/privacy}", "received_events_url": "https://api.github.com/users/leoleoasd/received_events", "type": "User", "site_admin": false }
[ { "id": 1935892871, "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement", "name": "enhancement", "color": "a2eeef", "default": true, "description": "New feature or request" } ]
closed
false
null
[]
[ "We've replaced our filelock implementation with the `filelock` package, so their repo is the right place to request this feature.\r\n\r\nIn the meantime, the following should work: \r\n```python\r\nimport filelock\r\nfilelock.FileLock = filelock.SoftFileLock\r\n\r\nimport datasets\r\n...\r\n```" ]
2023-11-09T22:12:30
2023-11-23T18:50:00
2023-11-23T18:50:00
NONE
null
null
null
### Feature request Allow setting file lock type, maybe from an environment variable Currently, it only depends on whether fnctl is available: https://github.com/huggingface/datasets/blob/12ebe695b4748c5a26e08b44ed51955f74f5801d/src/datasets/utils/filelock.py#L463-L470C16 ### Motivation In my environment, flock isn't supported on a network attached drive ### Your contribution I'll be happy to submit a pr.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6395/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6395/timeline
null
not_planned
false
https://api.github.com/repos/huggingface/datasets/issues/6394
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6394/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6394/comments
https://api.github.com/repos/huggingface/datasets/issues/6394/events
https://github.com/huggingface/datasets/issues/6394
1,985,947,116
I_kwDODunzps52XyXs
6,394
TorchFormatter images (H, W, C) instead of (C, H, W) format
{ "login": "Modexus", "id": 37351874, "node_id": "MDQ6VXNlcjM3MzUxODc0", "avatar_url": "https://avatars.githubusercontent.com/u/37351874?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Modexus", "html_url": "https://github.com/Modexus", "followers_url": "https://api.github.com/users/Modexus/followers", "following_url": "https://api.github.com/users/Modexus/following{/other_user}", "gists_url": "https://api.github.com/users/Modexus/gists{/gist_id}", "starred_url": "https://api.github.com/users/Modexus/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Modexus/subscriptions", "organizations_url": "https://api.github.com/users/Modexus/orgs", "repos_url": "https://api.github.com/users/Modexus/repos", "events_url": "https://api.github.com/users/Modexus/events{/privacy}", "received_events_url": "https://api.github.com/users/Modexus/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
[ "Here's a PR for that. https://github.com/huggingface/datasets/pull/6402\r\n\r\nIt's not backward compatible, unfortunately. " ]
2023-11-09T16:02:15
2023-11-11T19:41:03
null
NONE
null
null
null
### Describe the bug Using .set_format("torch") leads to images having shape (H, W, C), the same as in numpy. However, pytorch normally uses (C, H, W) format. Maybe I'm missing something but this makes the format a lot less useful as I then have to permute it anyways. If not using the format it is possible to directly use torchvision transforms but any non-transformed value will not be a tensor. Is there a reason for this choice? ### Steps to reproduce the bug ```python from datasets import Dataset, Features, Audio, Image images = ["path/to/image.png"] * 10 features = Features({"image": Image()}) ds = Dataset.from_dict({"image": images}, features=features) ds = ds.with_format("torch") ds[0]["image"].shape ``` ```python torch.Size([512, 512, 4]) ``` ### Expected behavior ```python from datasets import Dataset, Features, Audio, Image images = ["path/to/image.png"] * 10 features = Features({"image": Image()}) ds = Dataset.from_dict({"image": images}, features=features) ds = ds.with_format("torch") ds[0]["image"].shape ``` ```python torch.Size([4, 512, 512]) ``` ### Environment info - `datasets` version: 2.14.6 - Platform: Linux-6.5.9-100.fc37.x86_64-x86_64-with-glibc2.31 - Python version: 3.11.6 - Huggingface_hub version: 0.18.0 - PyArrow version: 14.0.1 - Pandas version: 2.1.2
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6394/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6394/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6393
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6393/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6393/comments
https://api.github.com/repos/huggingface/datasets/issues/6393/events
https://github.com/huggingface/datasets/issues/6393
1,984,913,259
I_kwDODunzps52T19r
6,393
Filter occasionally hangs
{ "login": "dakinggg", "id": 43149077, "node_id": "MDQ6VXNlcjQzMTQ5MDc3", "avatar_url": "https://avatars.githubusercontent.com/u/43149077?v=4", "gravatar_id": "", "url": "https://api.github.com/users/dakinggg", "html_url": "https://github.com/dakinggg", "followers_url": "https://api.github.com/users/dakinggg/followers", "following_url": "https://api.github.com/users/dakinggg/following{/other_user}", "gists_url": "https://api.github.com/users/dakinggg/gists{/gist_id}", "starred_url": "https://api.github.com/users/dakinggg/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/dakinggg/subscriptions", "organizations_url": "https://api.github.com/users/dakinggg/orgs", "repos_url": "https://api.github.com/users/dakinggg/repos", "events_url": "https://api.github.com/users/dakinggg/events{/privacy}", "received_events_url": "https://api.github.com/users/dakinggg/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
[ "It looks like I may not be the first to encounter this: https://github.com/huggingface/datasets/issues/3172", "Adding some more information, it seems to occur more frequently with large (millions of samples) datasets.", "More information. My code is structured as (1) load (2) map (3) filter (4) filter. It was always the second filter that failed. Combining the two filters into one seems to reliably work.", "@lhoestq it'd be great if someone had a chance to look at this. I suspect it is impacting many users given the other issue that I linked.", "Hi ! Sorry for the late response. Was it happening after the first or the second filter ?\r\n\r\nIt looks like an issue with the garbage collector (which makes it random). Maybe datasets created with `filter` are not always handled properly ? cc @mariosasko", "It was after the second filter (and combining the two filters into one seemingly resolved it). I obviously haven't tried all settings to know that these details are causal, but it did work for me.", "Thanks, that's good to know.\r\n\r\nThe stacktrace suggests an issue when `del self._indices` is called, which happens when a filtered dataset falls out of scope. The indices are a PyArrow table memory mapped from disk, so I'm not quite sure how calling `del` on it can cause this issue. We do `del self._indices` to make sure the file on disk is not used anymore by the current process and avoid e.g. permission errors.\r\n\r\nHopefully we can find a way to reproduce this error, otherwise it will be quite hard to understand what happened", "Yeah, I have a reliable repro, but it is not even close to minimal and uses a dataset I can't share. Perhaps you could try getting close to my setting.\r\n\r\n(1) make a large (~20GB) jsonl with prompt/response pairs\r\n(2) load it on a linux machine (`dataset = load_dataset(...)`)\r\n(3) map a tokenizer to it, with multiprocessing (`tokenized_dataset = dataset.map(...)`)\r\n(4) filter it once based on something, with multiprocessing (`filtered_1 = tokenized_dataset.filter(...)`)\r\n(5) filter it again based on something, with multiprocessing (`filtered_2 = filtered_1.filter(...)`)\r\n\r\nI included the variable names just in case it is relevant that I was creating new datasets each time, not overwriting the same variable." ]
2023-11-09T06:18:30
2023-11-21T17:39:26
null
NONE
null
null
null
### Describe the bug A call to `.filter` occasionally hangs (after the filter is complete, according to tqdm) There is a trace produced ``` Exception ignored in: <function Dataset.__del__ at 0x7efb48130c10> Traceback (most recent call last): File "/usr/lib/python3/dist-packages/datasets/arrow_dataset.py", line 1366, in __del__ if hasattr(self, "_indices"): File "/usr/lib/python3/dist-packages/composer/core/engine.py", line 123, in sigterm_handler sys.exit(128 + signal) SystemExit: 143 ``` but I'm not sure if the trace is actually from `datasets`, or from surrounding code that is trying to clean up after datasets gets stuck. Unfortunately I can't reproduce this issue anywhere close to reliably. It happens infrequently when using `num_procs > 1`. Anecdotally I started seeing it when using larger datasets (~10M samples). ### Steps to reproduce the bug N/A see description ### Expected behavior map/filter calls always complete sucessfully ### Environment info - `datasets` version: 2.14.6 - Platform: Linux-5.4.0-137-generic-x86_64-with-glibc2.31 - Python version: 3.10.13 - Huggingface_hub version: 0.17.3 - PyArrow version: 13.0.0 - Pandas version: 2.1.2
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6393/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6393/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6392
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6392/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6392/comments
https://api.github.com/repos/huggingface/datasets/issues/6392/events
https://github.com/huggingface/datasets/issues/6392
1,984,369,545
I_kwDODunzps52RxOJ
6,392
`push_to_hub` is not robust to hub closing connection
{ "login": "msis", "id": 577139, "node_id": "MDQ6VXNlcjU3NzEzOQ==", "avatar_url": "https://avatars.githubusercontent.com/u/577139?v=4", "gravatar_id": "", "url": "https://api.github.com/users/msis", "html_url": "https://github.com/msis", "followers_url": "https://api.github.com/users/msis/followers", "following_url": "https://api.github.com/users/msis/following{/other_user}", "gists_url": "https://api.github.com/users/msis/gists{/gist_id}", "starred_url": "https://api.github.com/users/msis/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/msis/subscriptions", "organizations_url": "https://api.github.com/users/msis/orgs", "repos_url": "https://api.github.com/users/msis/repos", "events_url": "https://api.github.com/users/msis/events{/privacy}", "received_events_url": "https://api.github.com/users/msis/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "Hi! We made some improvements to `push_to_hub` to make it more robust a couple of weeks ago but haven't published a release in the meantime, so it would help if you could install `datasets` from `main` (`pip install https://github.com/huggingface/datasets`) and let us know if this improved version of `push_to_hub` resolves the issue (in case the `ConnectionError` happens, re-running `push_to_hub` should be faster now).\r\n\r\nAlso, note that the previous implementation retries the upload, but sometimes this is not enough, so re-running the op is the only option.", "The update helped push more data.\r\nHowever it still crashed a little later:\r\n\r\n```\r\nTraceback (most recent call last):\r\n File \"/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/utils/_errors.py\", line 270, in hf_raise_for_status\r\n response.raise_for_status()\r\n File \"/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/requests/models.py\", line 1021, in raise_for_status\r\n raise HTTPError(http_error_msg, response=self)\r\nrequests.exceptions.HTTPError: 500 Server Error: Internal Server Error for url: https://hf-hub-lfs-us-east-1.s3.us-east-1.amazonaws.com/repos/6c/33/6c33b3be1463a656e43c7a4f2d43c4a1cdae6e9d81fff87f69167ef25ccb1b88/5f53cb57cf2a52ca0d4c2166a69a6714c64fcdbb7cb8936dfa5b11ac60058e5f?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA2JU7TKAQFN2FTF47%2F20231110%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20231110T011254Z&X-Amz-Expires=86400&X-Amz-Signature=74e3e33c09ac4e7c6ac887aaee8d489f068869abbe1ee6d58a910fb18d0601d4&X-Amz-SignedHeaders=host&partNumber=13&uploadId=kQwunNkunfmT9D8GulQu_ufw1BTZtRA6wEUI4hnYOjytfdf.GKxDETgMr4wm8_0WNF2yGaNco_0h3JAGm4l9KV1N0nqr5XXyUCbs1ROmHP475fn9FIhc1umWQLEDc97V&x-id=UploadPart\r\n\r\nThe above exception was the direct cause of the following exception:\r\n\r\nTraceback (most recent call last):\r\n File \"/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/_commit_api.py\", line 391, in _wrapped_lfs_upload\r\n lfs_upload(operation=operation, lfs_batch_action=batch_action, token=token)\r\n File \"/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/lfs.py\", line 223, in lfs_upload\r\n _upload_multi_part(operation=operation, header=header, chunk_size=chunk_size, upload_url=upload_action[\"href\"])\r\n File \"/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/lfs.py\", line 319, in _upload_multi_part\r\n else _upload_parts_iteratively(operation=operation, sorted_parts_urls=sorted_parts_urls, chunk_size=chunk_size)\r\n File \"/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/lfs.py\", line 376, in _upload_parts_iteratively\r\n hf_raise_for_status(part_upload_res)\r\n File \"/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/utils/_errors.py\", line 330, in hf_raise_for_status\r\n raise HfHubHTTPError(str(e), response=response) from e\r\nhuggingface_hub.utils._errors.HfHubHTTPError: 500 Server Error: Internal Server Error for url: https://hf-hub-lfs-us-east-1.s3.us-east-1.amazonaws.com/repos/6c/33/6c33b3be1463a656e43c7a4f2d43c4a1cdae6e9d81fff87f69167ef25ccb1b88/5f53cb57cf2a52ca0d4c2166a69a6714c64fcdbb7cb8936dfa5b11ac60058e5f?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA2JU7TKAQFN2FTF47%2F20231110%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20231110T011254Z&X-Amz-Expires=86400&X-Amz-Signature=74e3e33c09ac4e7c6ac887aaee8d489f068869abbe1ee6d58a910fb18d0601d4&X-Amz-SignedHeaders=host&partNumber=13&uploadId=kQwunNkunfmT9D8GulQu_ufw1BTZtRA6wEUI4hnYOjytfdf.GKxDETgMr4wm8_0WNF2yGaNco_0h3JAGm4l9KV1N0nqr5XXyUCbs1ROmHP475fn9FIhc1umWQLEDc97V&x-id=UploadPart\r\n\r\nThe above exception was the direct cause of the following exception:\r\n\r\nTraceback (most recent call last):\r\n File \"convert_to_hf.py\", line 121, in <module>\r\n main()\r\n File \"convert_to_hf.py\", line 109, in main\r\n audio_dataset.push_to_hub(\r\n File \"/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/datasets/dataset_dict.py\", line 1699, in push_to_hub\r\n split_additions, uploaded_size, dataset_nbytes = self[split]._push_parquet_shards_to_hub(\r\n File \"/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/datasets/arrow_dataset.py\", line 5215, in _push_parquet_shards_to_hub\r\n _retry(\r\n File \"/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/datasets/utils/file_utils.py\", line 290, in _retry\r\n return func(*func_args, **func_kwargs)\r\n File \"/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/hf_api.py\", line 3665, in preupload_lfs_files\r\n _upload_lfs_files(\r\n File \"/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/utils/_validators.py\", line 118, in _inner_fn\r\n return fn(*args, **kwargs)\r\n File \"/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/_commit_api.py\", line 401, in _upload_lfs_files\r\n _wrapped_lfs_upload(filtered_actions[0])\r\n File \"/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/_commit_api.py\", line 393, in _wrapped_lfs_upload\r\n raise RuntimeError(f\"Error while uploading '{operation.path_in_repo}' to the Hub.\") from exc\r\nRuntimeError: Error while uploading 'batch_20/train-00206-of-00261.parquet' to the Hub.\r\n```", "I think the previous implementation was actually better: it pushes to the hub every shard. So if it fails, as long as the shards have the same checksum, it will skip the ones that have been pushed.\r\n\r\nThe implementation in `main` pushes commits at the end, so when it fails, there are no commits and therefore restarts from the beginning every time.\r\n\r\nBelow is the another error log from another run with `main`. I've reverting back to the current release as it does the job for me.\r\n\r\n```\r\nUploading the dataset shards: 86%|████████▌ | 224/261 [21:46<03:35, 5.83s/it]s]\r\nTraceback (most recent call last):\r\n File \"/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/utils/_errors.py\", line 270, in hf_raise_for_status\r\n response.raise_for_status()\r\n File \"/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/requests/models.py\", line 1021, in raise_for_status\r\n raise HTTPError(http_error_msg, response=self)\r\nrequests.exceptions.HTTPError: 500 Server Error: Internal Server Error for url: https://hf-hub-lfs-us-east-1.s3.us-east-1.amazonaws.com/repos/6c/33/6c33b3be1463a656e43c7a4f2d43c4a1cdae6e9d81fff87f69167ef25ccb1b88/97e68d7a5d4a747ffaa249fc09798e961d621fe4170599e6100197f7733f321d?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA2JU7TKAQFN2FTF47%2F20231110%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20231110T145155Z&X-Amz-Expires=86400&X-Amz-Signature=5341e4b34dc325737f92dc9005c4a31e4d3f9a3d3d853b267e01915260acf629&X-Amz-SignedHeaders=host&partNumber=27&uploadId=NRD0izEWv7MPtC2bYrm5VJ4XgIbHctKNguR7zS1UhGOOrXwBJvigrOywBvQBnS9sxiy0J0ma9sNog8S13nIdTdE9p60MIITTstUFeKvLHSxpU.a527QED1JVYzJ.9xA0&x-id=UploadPart\r\n\r\nThe above exception was the direct cause of the following exception:\r\n\r\nTraceback (most recent call last):\r\n File \"/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/_commit_api.py\", line 391, in _wrapped_lfs_upload\r\n lfs_upload(operation=operation, lfs_batch_action=batch_action, token=token)\r\n File \"/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/lfs.py\", line 223, in lfs_upload\r\n _upload_multi_part(operation=operation, header=header, chunk_size=chunk_size, upload_url=upload_action[\"href\"])\r\n File \"/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/lfs.py\", line 319, in _upload_multi_part\r\n else _upload_parts_iteratively(operation=operation, sorted_parts_urls=sorted_parts_urls, chunk_size=chunk_size)\r\n File \"/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/lfs.py\", line 376, in _upload_parts_iteratively\r\n hf_raise_for_status(part_upload_res)\r\n File \"/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/utils/_errors.py\", line 330, in hf_raise_for_status\r\n raise HfHubHTTPError(str(e), response=response) from e\r\nhuggingface_hub.utils._errors.HfHubHTTPError: 500 Server Error: Internal Server Error for url: https://hf-hub-lfs-us-east-1.s3.us-east-1.amazonaws.com/repos/6c/33/6c33b3be1463a656e43c7a4f2d43c4a1cdae6e9d81fff87f69167ef25ccb1b88/97e68d7a5d4a747ffaa249fc09798e961d621fe4170599e6100197f7733f321d?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA2JU7TKAQFN2FTF47%2F20231110%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20231110T145155Z&X-Amz-Expires=86400&X-Amz-Signature=5341e4b34dc325737f92dc9005c4a31e4d3f9a3d3d853b267e01915260acf629&X-Amz-SignedHeaders=host&partNumber=27&uploadId=NRD0izEWv7MPtC2bYrm5VJ4XgIbHctKNguR7zS1UhGOOrXwBJvigrOywBvQBnS9sxiy0J0ma9sNog8S13nIdTdE9p60MIITTstUFeKvLHSxpU.a527QED1JVYzJ.9xA0&x-id=UploadPart\r\n\r\nThe above exception was the direct cause of the following exception:\r\n\r\nTraceback (most recent call last):\r\n File \"convert_to_hf.py\", line 121, in <module>\r\n main()\r\n File \"convert_to_hf.py\", line 109, in main\r\n audio_dataset.push_to_hub(\r\n File \"/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/datasets/dataset_dict.py\", line 1699, in push_to_hub\r\n p, glob_pattern_to_regex(PUSH_TO_HUB_WITHOUT_METADATA_CONFIGS_SPLIT_PATTERN_SHARDED)\r\n File \"/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/datasets/arrow_dataset.py\", line 5215, in _push_parquet_shards_to_hub\r\n token = token if token is not None else HfFolder.get_token()\r\n File \"/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/datasets/utils/file_utils.py\", line 290, in _retry\r\n return func(*func_args, **func_kwargs)\r\n File \"/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/hf_api.py\", line 3665, in preupload_lfs_files\r\n _upload_lfs_files(\r\n File \"/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/utils/_validators.py\", line 118, in _inner_fn\r\n return fn(*args, **kwargs)\r\n File \"/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/_commit_api.py\", line 401, in _upload_lfs_files\r\n _wrapped_lfs_upload(filtered_actions[0])\r\n File \"/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/_commit_api.py\", line 393, in _wrapped_lfs_upload\r\n raise RuntimeError(f\"Error while uploading '{operation.path_in_repo}' to the Hub.\") from exc\r\nRuntimeError: Error while uploading 'batch_20/train-00224-of-00261.parquet' to the Hub.\r\n```", "There's a new error from the hub now:\r\n```\r\nPushing dataset shards to the dataset hub: 49%|████▉ | 128/261 [11:38<12:05, 5.45s/it]\r\nTraceback (most recent call last):\r\n File \"/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/utils/_errors.py\", line 270, in hf_raise_for_status\r\n response.raise_for_status()\r\n File \"/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/requests/models.py\", line 1021, in raise_for_status\r\n raise HTTPError(http_error_msg, response=self)\r\nrequests.exceptions.HTTPError: 429 Client Error: Too Many Requests for url: https://huggingface.co./api/datasets/tarteel-ai/tawseem/commit/main\r\n\r\nThe above exception was the direct cause of the following exception:\r\n\r\nTraceback (most recent call last):\r\n File \"convert_to_hf.py\", line 121, in <module>\r\n main()\r\n File \"convert_to_hf.py\", line 109, in main\r\n audio_dataset.push_to_hub(\r\n File \"/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/datasets/dataset_dict.py\", line 1641, in push_to_hub\r\n repo_id, split, uploaded_size, dataset_nbytes, _, _ = self[split]._push_parquet_shards_to_hub(\r\n File \"/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/datasets/arrow_dataset.py\", line 5308, in _push_parquet_shards_to_hub\r\n _retry(\r\n File \"/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/datasets/utils/file_utils.py\", line 293, in _retry\r\n raise err\r\n File \"/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/datasets/utils/file_utils.py\", line 290, in _retry\r\n return func(*func_args, **func_kwargs)\r\n File \"/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/utils/_validators.py\", line 118, in _inner_fn\r\n return fn(*args, **kwargs)\r\n File \"/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/hf_api.py\", line 1045, in _inner\r\n return fn(self, *args, **kwargs)\r\n File \"/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/hf_api.py\", line 3850, in upload_file\r\n commit_info = self.create_commit(\r\n File \"/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/utils/_validators.py\", line 118, in _inner_fn\r\n return fn(*args, **kwargs)\r\n File \"/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/hf_api.py\", line 1045, in _inner\r\n return fn(self, *args, **kwargs)\r\n File \"/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/hf_api.py\", line 3237, in create_commit\r\n hf_raise_for_status(commit_resp, endpoint_name=\"commit\")\r\n File \"/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/utils/_errors.py\", line 330, in hf_raise_for_status\r\n raise HfHubHTTPError(str(e), response=response) from e\r\nhuggingface_hub.utils._errors.HfHubHTTPError: 429 Client Error: Too Many Requests for url: https://huggingface.co./api/datasets/tarteel-ai/tawseem/commit/main (Request ID: Root=1-654e48e6-598511b14413bb293fa67084;783522b4-66f9-4f8a-8a74-2accf7cabd17)\r\n\r\nYou have exceeded our hourly quotas for action: commit. We invite you to retry later.\r\n```\r\n\r\nAt least this is more explicit from the server side.", "> think the previous implementation was actually better: it pushes to the hub every shard. So if it fails, as long as the shards have the same checksum, it will skip the ones that have been pushed.\r\n>\r\n>The implementation in main pushes commits at the end, so when it fails, there are no commits and therefore restarts from the beginning every time.\r\n>\r\n>Below is the another error log from another run with main. I've reverting back to the current release as it does the job for me.\r\n\r\nThe `preupload` step is instant for the already uploaded shards, so only the Parquet conversion is repeated without uploading the actual Parquet data (only to check the SHAs). The previous implementation manually checks the Parquet shard's fingerprint to resume uploading, so the current implementation is cleaner.\r\n\r\n> You have exceeded our hourly quotas for action: commit. We invite you to retry later.\r\n\r\nThis is the problem with the previous implementation. If the number of shards is large, it creates too many commits for the Hub in a short period.", "But I agree that the `500 Server Error` returned by the Hub is annoying. Earlier today, I also got it on a small 5GB dataset (with 500 MB shards).\r\n\r\n@Wauplin @julien-c Is there something we can do about this?", "@mariosasko can't do much if AWS raises a HTTP 500 unfortunately (we are simply pushing data to a S3 bucket).\r\nWhat we can do is to add a retry mechanism in the multi-part upload logic here: https://github.com/huggingface/huggingface_hub/blob/c972cba1fecb456a7b3325cdd1fdbcc425f21f94/src/huggingface_hub/lfs.py#L370 :confused: ", "@Wauplin That code already retries the request using `http_backoff`, no?", "> That code already retries the request using http_backoff, no?\r\n\r\nCurrently only on HTTP 503 by default. We should add 500 as well (and hope it is a transient error from AWS)", "Opened a PR to retry in case S3 raises HTTP 500. Will also retry on any `ConnectionError` (connection reset by peer, connection lost,...). Hopefully this should make the upload process more robust to transient errors." ]
2023-11-08T20:44:53
2023-12-01T17:51:34
2023-12-01T17:51:34
NONE
null
null
null
### Describe the bug Like to #6172, `push_to_hub` will crash if Hub resets the connection and raise the following error: ``` Pushing dataset shards to the dataset hub: 32%|███▏ | 54/171 [06:38<14:23, 7.38s/it] Traceback (most recent call last): File "/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/urllib3/connectionpool.py", line 715, in urlopen httplib_response = self._make_request( File "/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/urllib3/connectionpool.py", line 467, in _make_request six.raise_from(e, None) File "<string>", line 3, in raise_from File "/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/urllib3/connectionpool.py", line 462, in _make_request httplib_response = conn.getresponse() File "/usr/lib/python3.8/http/client.py", line 1348, in getresponse response.begin() File "/usr/lib/python3.8/http/client.py", line 316, in begin version, status, reason = self._read_status() File "/usr/lib/python3.8/http/client.py", line 285, in _read_status raise RemoteDisconnected("Remote end closed connection without" http.client.RemoteDisconnected: Remote end closed connection without response During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/requests/adapters.py", line 486, in send resp = conn.urlopen( File "/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/urllib3/connectionpool.py", line 799, in urlopen retries = retries.increment( File "/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/urllib3/util/retry.py", line 550, in increment raise six.reraise(type(error), error, _stacktrace) File "/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/urllib3/packages/six.py", line 769, in reraise raise value.with_traceback(tb) File "/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/urllib3/connectionpool.py", line 715, in urlopen httplib_response = self._make_request( File "/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/urllib3/connectionpool.py", line 467, in _make_request six.raise_from(e, None) File "<string>", line 3, in raise_from File "/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/urllib3/connectionpool.py", line 462, in _make_request httplib_response = conn.getresponse() File "/usr/lib/python3.8/http/client.py", line 1348, in getresponse response.begin() File "/usr/lib/python3.8/http/client.py", line 316, in begin version, status, reason = self._read_status() File "/usr/lib/python3.8/http/client.py", line 285, in _read_status raise RemoteDisconnected("Remote end closed connection without" urllib3.exceptions.ProtocolError: ('Connection aborted.', RemoteDisconnected('Remote end closed connection without response')) During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/_commit_api.py", line 383, in _wrapped_lfs_upload lfs_upload(operation=operation, lfs_batch_action=batch_action, token=token) File "/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/lfs.py", line 223, in lfs_upload _upload_multi_part(operation=operation, header=header, chunk_size=chunk_size, upload_url=upload_action["href"]) File "/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/lfs.py", line 319, in _upload_multi_part else _upload_parts_iteratively(operation=operation, sorted_parts_urls=sorted_parts_urls, chunk_size=chunk_size) File "/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/lfs.py", line 375, in _upload_parts_iteratively part_upload_res = http_backoff("PUT", part_upload_url, data=fileobj_slice) File "/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/utils/_http.py", line 258, in http_backoff response = session.request(method=method, url=url, **kwargs) File "/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/requests/sessions.py", line 589, in request resp = self.send(prep, **send_kwargs) File "/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/requests/sessions.py", line 703, in send r = adapter.send(request, **kwargs) File "/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/utils/_http.py", line 63, in send return super().send(request, *args, **kwargs) File "/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/requests/adapters.py", line 501, in send raise ConnectionError(err, request=request) requests.exceptions.ConnectionError: (ProtocolError('Connection aborted.', RemoteDisconnected('Remote end closed connection without response')), '(Request ID: 2bab8c06-b701-4266-aead-fe2e0dc0e3ed)') The above exception was the direct cause of the following exception: Traceback (most recent call last): File "convert_to_hf.py", line 116, in <module> main() File "convert_to_hf.py", line 108, in main audio_dataset.push_to_hub( File "/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/datasets/dataset_dict.py", line 1641, in push_to_hub repo_id, split, uploaded_size, dataset_nbytes, _, _ = self[split]._push_parquet_shards_to_hub( File "/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/datasets/arrow_dataset.py", line 5308, in _push_parquet_shards_to_hub _retry( File "/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/datasets/utils/file_utils.py", line 290, in _retry return func(*func_args, **func_kwargs) File "/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/utils/_validators.py", line 118, in _inner_fn return fn(*args, **kwargs) File "/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/hf_api.py", line 828, in _inner return fn(self, *args, **kwargs) File "/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/hf_api.py", line 3221, in upload_file commit_info = self.create_commit( File "/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/utils/_validators.py", line 118, in _inner_fn return fn(*args, **kwargs) File "/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/hf_api.py", line 828, in _inner return fn(self, *args, **kwargs) File "/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/hf_api.py", line 2695, in create_commit upload_lfs_files( File "/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/utils/_validators.py", line 118, in _inner_fn return fn(*args, **kwargs) File "/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/_commit_api.py", line 393, in upload_lfs_files _wrapped_lfs_upload(filtered_actions[0]) File "/admin/home-piraka9011/.virtualenvs/w2v2/lib/python3.8/site-packages/huggingface_hub/_commit_api.py", line 385, in _wrapped_lfs_upload raise RuntimeError(f"Error while uploading '{operation.path_in_repo}' to the Hub.") from exc RuntimeError: Error while uploading 'batch_19/train-00054-of-00171-932beb4082c034bf.parquet' to the Hub. ``` The function should retry if the operations fails, or at least offer a way to recover after such a failure. Right now, calling the function again will start sending all the parquets files leading to duplicates in the repository, with no guarantee that it will actually be pushed. Previously, it would crash with an error 400 #4677 . ### Steps to reproduce the bug Any large dataset pushed the hub: ```py audio_dataset.push_to_hub( repo_id="org/dataset", ) ``` ### Expected behavior `push_to_hub` should have an option for max retries or resume. ### Environment info - `datasets` version: 2.14.6 - Platform: Linux-5.15.0-1044-aws-x86_64-with-glibc2.29 - Python version: 3.8.10 - Huggingface_hub version: 0.16.4 - PyArrow version: 13.0.0 - Pandas version: 2.0.3
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6392/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6392/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6391
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6391/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6391/comments
https://api.github.com/repos/huggingface/datasets/issues/6391/events
https://github.com/huggingface/datasets/pull/6391
1,984,091,776
PR_kwDODunzps5e9BDO
6,391
Webdataset dataset builder
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "_The documentation is not available anymore as the PR was closed or merged._", "I added an error message if the first examples don't appear to be in webdataset format\r\n```\r\n\"The TAR archives of the dataset should be in Webdataset format, \"\r\n\"but the files in the archive don't share the same prefix or the same types.\"\r\n```", "@mariosasko could you review this ? I think it's fine to have webdataset as an optional dependency for now, then depending on usage and user feedbacks see if it makes sense to have our own implementation or not", "I just removed the dependency on `webdataset` @mariosasko :)", "took your comments into account, lmk if you see anything else" ]
2023-11-08T17:31:59
2023-11-28T16:33:33
2023-11-28T16:33:10
MEMBER
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6391", "html_url": "https://github.com/huggingface/datasets/pull/6391", "diff_url": "https://github.com/huggingface/datasets/pull/6391.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6391.patch", "merged_at": "2023-11-28T16:33:10" }
Allow `load_dataset` to support the Webdataset format. It allows users to download/stream data from local files or from the Hugging Face Hub. Moreover it will enable the Dataset Viewer for Webdataset datasets on HF. ## Implementation details - I added a new Webdataset builder - dataset with TAR files are now read using the Webdataset builder - Basic decoding from `webdataset` is used by default, except unsafe ones like pickle - HF authentication support is done by registering a `webdataset.gopen` reader - `webdataset` uses buffering when reading files, so I had to add buffering support in `xopen` ## TODOS - [x] tests - [x] docs
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6391/reactions", "total_count": 2, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 2, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6391/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6390
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6390/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6390/comments
https://api.github.com/repos/huggingface/datasets/issues/6390/events
https://github.com/huggingface/datasets/pull/6390
1,983,725,707
PR_kwDODunzps5e7xQ3
6,390
handle future deprecation argument
{ "login": "winglian", "id": 381258, "node_id": "MDQ6VXNlcjM4MTI1OA==", "avatar_url": "https://avatars.githubusercontent.com/u/381258?v=4", "gravatar_id": "", "url": "https://api.github.com/users/winglian", "html_url": "https://github.com/winglian", "followers_url": "https://api.github.com/users/winglian/followers", "following_url": "https://api.github.com/users/winglian/following{/other_user}", "gists_url": "https://api.github.com/users/winglian/gists{/gist_id}", "starred_url": "https://api.github.com/users/winglian/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/winglian/subscriptions", "organizations_url": "https://api.github.com/users/winglian/orgs", "repos_url": "https://api.github.com/users/winglian/repos", "events_url": "https://api.github.com/users/winglian/events{/privacy}", "received_events_url": "https://api.github.com/users/winglian/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004368 / 0.011353 (-0.006985) | 0.002613 / 0.011008 (-0.008396) | 0.061365 / 0.038508 (0.022856) | 0.029553 / 0.023109 (0.006444) | 0.240535 / 0.275898 (-0.035363) | 0.280634 / 0.323480 (-0.042845) | 0.002923 / 0.007986 (-0.005063) | 0.003696 / 0.004328 (-0.000632) | 0.049824 / 0.004250 (0.045573) | 0.044935 / 0.037052 (0.007882) | 0.246870 / 0.258489 (-0.011619) | 0.317248 / 0.293841 (0.023407) | 0.022717 / 0.128546 (-0.105829) | 0.006933 / 0.075646 (-0.068713) | 0.201118 / 0.419271 (-0.218154) | 0.053422 / 0.043533 (0.009890) | 0.266262 / 0.255139 (0.011123) | 0.269114 / 0.283200 (-0.014086) | 0.016908 / 0.141683 (-0.124775) | 1.154296 / 1.452155 (-0.297859) | 1.218825 / 1.492716 (-0.273892) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.089908 / 0.018006 (0.071902) | 0.300029 / 0.000490 (0.299539) | 0.000209 / 0.000200 (0.000009) | 0.000052 / 0.000054 (-0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018518 / 0.037411 (-0.018894) | 0.062246 / 0.014526 (0.047720) | 0.073542 / 0.176557 (-0.103014) | 0.119386 / 0.737135 (-0.617749) | 0.075256 / 0.296338 (-0.221082) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.280812 / 0.215209 (0.065603) | 2.701282 / 2.077655 (0.623628) | 1.455146 / 1.504120 (-0.048974) | 1.310198 / 1.541195 (-0.230996) | 1.335287 / 1.468490 (-0.133203) | 0.388245 / 4.584777 (-4.196532) | 2.357770 / 3.745712 (-1.387942) | 2.534640 / 5.269862 (-2.735222) | 1.541382 / 4.565676 (-3.024295) | 0.045597 / 0.424275 (-0.378678) | 0.004842 / 0.007607 (-0.002765) | 0.325416 / 0.226044 (0.099371) | 3.221873 / 2.268929 (0.952944) | 1.791061 / 55.444624 (-53.653563) | 1.485094 / 6.876477 (-5.391382) | 1.512354 / 2.142072 (-0.629718) | 0.471241 / 4.805227 (-4.333986) | 0.098672 / 6.500664 (-6.401992) | 0.041668 / 0.075469 (-0.033801) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.953553 / 1.841788 (-0.888234) | 11.378394 / 8.074308 (3.304086) | 10.355970 / 10.191392 (0.164578) | 0.126891 / 0.680424 (-0.553533) | 0.013808 / 0.534201 (-0.520393) | 0.267800 / 0.579283 (-0.311484) | 0.266436 / 0.434364 (-0.167928) | 0.306668 / 0.540337 (-0.233670) | 0.427666 / 1.386936 (-0.959270) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004908 / 0.011353 (-0.006445) | 0.002698 / 0.011008 (-0.008310) | 0.047492 / 0.038508 (0.008984) | 0.049906 / 0.023109 (0.026797) | 0.271466 / 0.275898 (-0.004432) | 0.291030 / 0.323480 (-0.032449) | 0.003938 / 0.007986 (-0.004047) | 0.002457 / 0.004328 (-0.001871) | 0.047347 / 0.004250 (0.043096) | 0.038599 / 0.037052 (0.001547) | 0.269950 / 0.258489 (0.011461) | 0.303026 / 0.293841 (0.009185) | 0.024196 / 0.128546 (-0.104351) | 0.006889 / 0.075646 (-0.068757) | 0.053357 / 0.419271 (-0.365914) | 0.032249 / 0.043533 (-0.011284) | 0.271660 / 0.255139 (0.016521) | 0.286395 / 0.283200 (0.003196) | 0.017914 / 0.141683 (-0.123769) | 1.128762 / 1.452155 (-0.323393) | 1.206495 / 1.492716 (-0.286221) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.093384 / 0.018006 (0.075378) | 0.305504 / 0.000490 (0.305014) | 0.000227 / 0.000200 (0.000027) | 0.000052 / 0.000054 (-0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.021183 / 0.037411 (-0.016229) | 0.070113 / 0.014526 (0.055587) | 0.080288 / 0.176557 (-0.096269) | 0.120798 / 0.737135 (-0.616337) | 0.082896 / 0.296338 (-0.213442) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.292758 / 0.215209 (0.077549) | 2.893975 / 2.077655 (0.816320) | 1.584909 / 1.504120 (0.080789) | 1.455509 / 1.541195 (-0.085686) | 1.501625 / 1.468490 (0.033135) | 0.400772 / 4.584777 (-4.184005) | 2.446319 / 3.745712 (-1.299393) | 2.530690 / 5.269862 (-2.739172) | 1.525957 / 4.565676 (-3.039719) | 0.046070 / 0.424275 (-0.378205) | 0.004756 / 0.007607 (-0.002851) | 0.343039 / 0.226044 (0.116995) | 3.366772 / 2.268929 (1.097844) | 1.948895 / 55.444624 (-53.495729) | 1.666419 / 6.876477 (-5.210058) | 1.658258 / 2.142072 (-0.483814) | 0.470835 / 4.805227 (-4.334392) | 0.098008 / 6.500664 (-6.402656) | 0.040743 / 0.075469 (-0.034726) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.978025 / 1.841788 (-0.863763) | 11.945229 / 8.074308 (3.870920) | 11.025810 / 10.191392 (0.834418) | 0.129706 / 0.680424 (-0.550717) | 0.015148 / 0.534201 (-0.519053) | 0.269160 / 0.579283 (-0.310123) | 0.284306 / 0.434364 (-0.150058) | 0.307154 / 0.540337 (-0.233183) | 0.409153 / 1.386936 (-0.977783) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#9c75c104fd79cbf53be25f0fbbeb001e535f7e9b \"CML watermark\")\n" ]
2023-11-08T14:21:25
2023-11-21T02:10:24
2023-11-14T15:15:59
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6390", "html_url": "https://github.com/huggingface/datasets/pull/6390", "diff_url": "https://github.com/huggingface/datasets/pull/6390.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6390.patch", "merged_at": "2023-11-14T15:15:59" }
getting this error: ``` /root/miniconda3/envs/py3.10/lib/python3.10/site-packages/datasets/table.py:1387: FutureWarning: promote has been superseded by mode='default'. return cls._concat_blocks(pa_tables_to_concat_vertically, axis=0) ``` Since datasets supports arrow greater than 8.0.0, we need to handle both cases. [Arrow v14 docs](https://arrow.apache.org/docs/python/generated/pyarrow.concat_tables.html) [Arrow v13 docs](https://arrow.apache.org/docs/13.0/python/generated/pyarrow.concat_tables.html)
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6390/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6390/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6389
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6389/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6389/comments
https://api.github.com/repos/huggingface/datasets/issues/6389/events
https://github.com/huggingface/datasets/issues/6389
1,983,545,744
I_kwDODunzps52OoGQ
6,389
Index 339 out of range for dataset of size 339 <-- save_to_file()
{ "login": "jaggzh", "id": 20318973, "node_id": "MDQ6VXNlcjIwMzE4OTcz", "avatar_url": "https://avatars.githubusercontent.com/u/20318973?v=4", "gravatar_id": "", "url": "https://api.github.com/users/jaggzh", "html_url": "https://github.com/jaggzh", "followers_url": "https://api.github.com/users/jaggzh/followers", "following_url": "https://api.github.com/users/jaggzh/following{/other_user}", "gists_url": "https://api.github.com/users/jaggzh/gists{/gist_id}", "starred_url": "https://api.github.com/users/jaggzh/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jaggzh/subscriptions", "organizations_url": "https://api.github.com/users/jaggzh/orgs", "repos_url": "https://api.github.com/users/jaggzh/repos", "events_url": "https://api.github.com/users/jaggzh/events{/privacy}", "received_events_url": "https://api.github.com/users/jaggzh/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
[ "Hi! Can you make the above reproducer self-contained by adding code that generates the data?", "I managed a workaround eventually but I don't know what it was (I made a lot of changes to seq2seq). I'll try to include generating code in the future. (If I close, I don't know if you see it. Feel free to close; I'll re-open if I encounter it again (if I can))." ]
2023-11-08T12:52:09
2023-11-24T09:14:13
null
NONE
null
null
null
### Describe the bug When saving out some Audio() data. The data is audio recordings with associated 'sentences'. (They use the audio 'bytes' approach because they're clips within audio files). Code is below the traceback (I can't upload the voice audio/text (it's not even me)). ``` Traceback (most recent call last): File "/mnt/ddrive/prj/voice/voice-training-dataset-create/./dataset.py", line 156, in <module> create_dataset(args) File "/mnt/ddrive/prj/voice/voice-training-dataset-create/./dataset.py", line 138, in create_dataset hf_dataset.save_to_disk(args.outds, max_shard_size='50MB') File "/home/j/src/py/datasets/src/datasets/arrow_dataset.py", line 1531, in save_to_disk for kwargs in kwargs_per_job: File "/home/j/src/py/datasets/src/datasets/arrow_dataset.py", line 1508, in <genexpr> "shard": self.shard(num_shards=num_shards, index=shard_idx, contiguous=True), ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/j/src/py/datasets/src/datasets/arrow_dataset.py", line 4609, in shard return self.select( ^^^^^^^^^^^^ File "/home/j/src/py/datasets/src/datasets/arrow_dataset.py", line 556, in wrapper out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/j/src/py/datasets/src/datasets/fingerprint.py", line 511, in wrapper out = func(dataset, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/j/src/py/datasets/src/datasets/arrow_dataset.py", line 3797, in select return self._select_contiguous(start, length, new_fingerprint=new_fingerprint) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/j/src/py/datasets/src/datasets/arrow_dataset.py", line 556, in wrapper out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/j/src/py/datasets/src/datasets/fingerprint.py", line 511, in wrapper out = func(dataset, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/j/src/py/datasets/src/datasets/arrow_dataset.py", line 3857, in _select_contiguous _check_valid_indices_value(start, len(self)) File "/home/j/src/py/datasets/src/datasets/arrow_dataset.py", line 648, in _check_valid_indices_value raise IndexError(f"Index {index} out of range for dataset of size {size}.") IndexError: Index 339 out of range for dataset of size 339. ``` ### Steps to reproduce the bug (I had to set the default max batch size down due to a different bug... or maybe it's related: https://github.com/huggingface/datasets/issues/5717) ```python3 #!/usr/bin/env python3 import argparse import os from pathlib import Path import soundfile as sf import datasets datasets.config.DEFAULT_MAX_BATCH_SIZE=35 from datasets import Features, Array2D, Value, Dataset, Sequence, Audio import numpy as np import librosa import sys import soundfile as sf import io import logging logging.basicConfig(level=logging.DEBUG, filename='debug.log', filemode='w', format='%(name)s - %(levelname)s - %(message)s') # Define the arguments for the command-line interface def parse_args(): parser = argparse.ArgumentParser(description="Create a Huggingface dataset from labeled audio files.") parser.add_argument("--indir_labeled", action="append", help="Directory containing labeled audio files.", required=True) parser.add_argument("--outds", help="Path to save the dataset file.", required=True) parser.add_argument("--max_clips", type=int, help="Max count of audio samples to add to the dataset.", default=None) parser.add_argument("-r", "--sr", type=int, help="Sample rate for the audio files.", default=16000) parser.add_argument("--no-resample", action="store_true", help="Disable resampling of the audio files.") parser.add_argument("--max_clip_secs", type=float, help="Max length of audio clips in seconds.", default=3.0) parser.add_argument("-v", "--verbose", action='count', default=1, help="Increase verbosity") return parser.parse_args() # Convert the NumPy arrays to audio bytes in WAV format def numpy_to_bytes(audio_array, sampling_rate=16000): with io.BytesIO() as bytes_io: sf.write(bytes_io, audio_array, samplerate=sampling_rate, format='wav', subtype='FLOAT') # float32 return bytes_io.getvalue() # Function to find audio and label files in a directory def find_audio_label_pairs(indir_labeled): audio_label_pairs = [] for root, _, files in os.walk(indir_labeled): for file in files: if file.endswith(('.mp3', '.wav', '.aac', '.flac')): audio_path = Path(root) / file if args.verbose>1: print(f'File: {audio_path}') label_path = audio_path.with_suffix('.labels.txt') if label_path.exists(): if args.verbose>0: print(f' Pair: {audio_path}') audio_label_pairs.append((audio_path, label_path)) return audio_label_pairs def process_audio_label_pair(audio_path, label_path, sampling_rate, no_resample, max_clip_secs): # Read the label file with open(label_path, 'r') as label_file: labels = label_file.readlines() # Load the full audio file full_audio, current_sr = sf.read(audio_path) if not no_resample and current_sr != sampling_rate: # You can use librosa.resample here if librosa is available full_audio = librosa.resample(full_audio, orig_sr=current_sr, target_sr=sampling_rate) audio_segments = [] sentences = [] # Process each label for label in labels: start_secs, end_secs, label_text = label.strip().split('\t') start_sample = int(float(start_secs) * sampling_rate) end_sample = int(float(end_secs) * sampling_rate) # Extract segment and truncate or pad to max_clip_secs audio_segment = full_audio[start_sample:end_sample] max_samples = int(max_clip_secs * sampling_rate) if len(audio_segment) > max_samples: # Truncate audio_segment = audio_segment[:max_samples] elif len(audio_segment) < max_samples: # Pad padding = np.zeros(max_samples - len(audio_segment), dtype=audio_segment.dtype) audio_segment = np.concatenate((audio_segment, padding)) audio_segment = numpy_to_bytes(audio_segment) audio_data = { 'path': str(audio_path), 'bytes': audio_segment, } audio_segments.append(audio_data) sentences.append(label_text) return audio_segments, sentences # Main function to create the dataset def create_dataset(args): audio_label_pairs = [] for indir in args.indir_labeled: audio_label_pairs.extend(find_audio_label_pairs(indir)) # Initialize our dataset data dataset_data = { 'path': [], # This will be a list of strings 'audio': [], # This will be a list of dictionaries 'sentence': [], # This will be a list of strings } # Process each audio-label pair and add the data to the dataset for audio_path, label_path in audio_label_pairs[:args.max_clips]: audio_segments, sentences = process_audio_label_pair(audio_path, label_path, args.sr, args.no_resample, args.max_clip_secs) if audio_segments and sentences: for audio_data, sentence in zip(audio_segments, sentences): if args.verbose>1: print(f'Appending {audio_data["path"]}') dataset_data['path'].append(audio_data['path']) dataset_data['audio'].append({ 'path': audio_data['path'], 'bytes': audio_data['bytes'], }) dataset_data['sentence'].append(sentence) features = Features({ 'path': Value('string'), # Path is redundant in common voice set also 'audio': Audio(sampling_rate=16000), 'sentence': Value('string'), }) hf_dataset = Dataset.from_dict(dataset_data, features=features) for key in dataset_data: for i, item in enumerate(dataset_data[key]): if item is None or (isinstance(item, bytes) and len(item) == 0): logging.error(f"Invalid {key} at index {i}: {item}") import ipdb; ipdb.set_trace(context=16); pass hf_dataset.save_to_disk(args.outds, max_shard_size='50MB') # try: # hf_dataset.save_to_disk(args.outds) # except TypeError as e: # # If there's a TypeError, log the exception and the dataset data that might have caused it # logging.exception("An error occurred while saving the dataset.") # import ipdb; ipdb.set_trace(context=16); pass # for key in dataset_data: # logging.debug(f"{key} length: {len(dataset_data[key])}") # if key == 'audio': # # Log the first 100 bytes of the audio data to avoid huge log files # for i, audio in enumerate(dataset_data[key]): # logging.debug(f"Audio {i}: {audio['bytes'][:100]}") # raise # Run the script if __name__ == "__main__": args = parse_args() create_dataset(args) ``` ### Expected behavior It shouldn't fail. ### Environment info - `datasets` version: 2.14.7.dev0 - Platform: Linux-6.1.0-13-amd64-x86_64-with-glibc2.36 - Python version: 3.11.2 - `huggingface_hub` version: 0.17.3 - PyArrow version: 13.0.0 - Pandas version: 2.1.2 - `fsspec` version: 2023.9.2
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6389/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6389/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6388
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6388/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6388/comments
https://api.github.com/repos/huggingface/datasets/issues/6388/events
https://github.com/huggingface/datasets/issues/6388
1,981,136,093
I_kwDODunzps52Fbzd
6,388
How to create 3d medical imgae dataset?
{ "login": "QingYunA", "id": 41177312, "node_id": "MDQ6VXNlcjQxMTc3MzEy", "avatar_url": "https://avatars.githubusercontent.com/u/41177312?v=4", "gravatar_id": "", "url": "https://api.github.com/users/QingYunA", "html_url": "https://github.com/QingYunA", "followers_url": "https://api.github.com/users/QingYunA/followers", "following_url": "https://api.github.com/users/QingYunA/following{/other_user}", "gists_url": "https://api.github.com/users/QingYunA/gists{/gist_id}", "starred_url": "https://api.github.com/users/QingYunA/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/QingYunA/subscriptions", "organizations_url": "https://api.github.com/users/QingYunA/orgs", "repos_url": "https://api.github.com/users/QingYunA/repos", "events_url": "https://api.github.com/users/QingYunA/events{/privacy}", "received_events_url": "https://api.github.com/users/QingYunA/received_events", "type": "User", "site_admin": false }
[ { "id": 1935892871, "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement", "name": "enhancement", "color": "a2eeef", "default": true, "description": "New feature or request" } ]
open
false
null
[]
[]
2023-11-07T11:27:36
2023-11-07T11:28:53
null
NONE
null
null
null
### Feature request I am newer to huggingface, after i look up `datasets` docs, I can't find how to create the dataset contains 3d medical image (ends with '.mhd', '.dcm', '.nii') ### Motivation help us to upload 3d medical dataset to huggingface! ### Your contribution I'll submit a PR if I find a way to add this feature
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6388/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6388/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6387
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6387/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6387/comments
https://api.github.com/repos/huggingface/datasets/issues/6387/events
https://github.com/huggingface/datasets/issues/6387
1,980,224,020
I_kwDODunzps52B9IU
6,387
How to load existing downloaded dataset ?
{ "login": "liming-ai", "id": 73068772, "node_id": "MDQ6VXNlcjczMDY4Nzcy", "avatar_url": "https://avatars.githubusercontent.com/u/73068772?v=4", "gravatar_id": "", "url": "https://api.github.com/users/liming-ai", "html_url": "https://github.com/liming-ai", "followers_url": "https://api.github.com/users/liming-ai/followers", "following_url": "https://api.github.com/users/liming-ai/following{/other_user}", "gists_url": "https://api.github.com/users/liming-ai/gists{/gist_id}", "starred_url": "https://api.github.com/users/liming-ai/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/liming-ai/subscriptions", "organizations_url": "https://api.github.com/users/liming-ai/orgs", "repos_url": "https://api.github.com/users/liming-ai/repos", "events_url": "https://api.github.com/users/liming-ai/events{/privacy}", "received_events_url": "https://api.github.com/users/liming-ai/received_events", "type": "User", "site_admin": false }
[ { "id": 1935892871, "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement", "name": "enhancement", "color": "a2eeef", "default": true, "description": "New feature or request" } ]
closed
false
null
[]
[ "Feel free to use `dataset.save_to_disk(...)`, then scp the directory containing the saved dataset and reload it on your other machine using `dataset = load_from_disk(...)`" ]
2023-11-06T22:51:44
2023-11-16T18:07:01
2023-11-16T18:07:01
NONE
null
null
null
Hi @mariosasko @lhoestq @katielink Thanks for your contribution and hard work. ### Feature request First, I download a dataset as normal by: ``` from datasets import load_dataset dataset = load_dataset('username/data_name', cache_dir='data') ``` The dataset format in `data` directory will be: ``` -data |-data_name |-test-00000-of-00001-bf4c733542e35fcb.parquet |-train-00000-of-00001-2a1df75c6bce91ab.parquet ``` Then I use SCP to clone this dataset into another machine, and then try: ``` from datasets import load_dataset dataset = load_dataset('data/data_name') # load from local path ``` This leads to re-generating training and validation split for each time, and the disk quota will be duplicated occupation. How can I just load the dataset without generating and saving these splits again? ### Motivation I do not want to download the same dataset in two machines, scp is much faster and better than HuggingFace API. I hope we can directly load the downloaded datasets (.parquest) ### Your contribution Please refer to the feature
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6387/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6387/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6386
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6386/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6386/comments
https://api.github.com/repos/huggingface/datasets/issues/6386/events
https://github.com/huggingface/datasets/issues/6386
1,979,878,014
I_kwDODunzps52Aop-
6,386
Formatting overhead
{ "login": "d-miketa", "id": 320321, "node_id": "MDQ6VXNlcjMyMDMyMQ==", "avatar_url": "https://avatars.githubusercontent.com/u/320321?v=4", "gravatar_id": "", "url": "https://api.github.com/users/d-miketa", "html_url": "https://github.com/d-miketa", "followers_url": "https://api.github.com/users/d-miketa/followers", "following_url": "https://api.github.com/users/d-miketa/following{/other_user}", "gists_url": "https://api.github.com/users/d-miketa/gists{/gist_id}", "starred_url": "https://api.github.com/users/d-miketa/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/d-miketa/subscriptions", "organizations_url": "https://api.github.com/users/d-miketa/orgs", "repos_url": "https://api.github.com/users/d-miketa/repos", "events_url": "https://api.github.com/users/d-miketa/events{/privacy}", "received_events_url": "https://api.github.com/users/d-miketa/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "Ah I think the `line-profiler` log is off-by-one and it is in fact the `extract_batch` method that's taking forever. Will investigate further.", "I tracked it down to a quirk of my setup. Apologies." ]
2023-11-06T19:06:38
2023-11-06T23:56:12
2023-11-06T23:56:12
NONE
null
null
null
### Describe the bug Hi! I very recently noticed that my training time is dominated by batch formatting. Using Lightning's profilers, I located the bottleneck within `datasets.formatting.formatting` and then narrowed it down with `line-profiler`. It turns out that almost all of the overhead is due to creating new instances of `self.python_arrow_extractor`. I admit I'm confused why that could be the case - as far as I can tell there's no complex `__init__` logic to execute. ![image](https://github.com/huggingface/datasets/assets/320321/5e022e0b-0d21-43d0-8e6f-9e641142e96b) ### Steps to reproduce the bug 1. Set up a dataset `ds` with potentially several (4+) columns (not sure if this is necessary, but it did at one point of the investigation make overhead worse) 2. Process it using a custom transform, `ds = ds.with_transform(transform_func)` 3. Decorate this function https://github.com/huggingface/datasets/blob/main/src/datasets/formatting/formatting.py#L512 with `@profile` from https://pypi.org/project/line-profiler/ 4. Profile with `$ kernprof -l script_to_profile.py` ### Expected behavior Batch formatting should have acceptable overhead. ### Environment info ``` datasets=2.14.6 pyarrow=14.0.0 ```
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6386/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6386/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6385
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6385/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6385/comments
https://api.github.com/repos/huggingface/datasets/issues/6385/events
https://github.com/huggingface/datasets/issues/6385
1,979,308,338
I_kwDODunzps51-dky
6,385
Get an error when i try to concatenate the squad dataset with my own dataset
{ "login": "CCDXDX", "id": 149378500, "node_id": "U_kgDOCOdVxA", "avatar_url": "https://avatars.githubusercontent.com/u/149378500?v=4", "gravatar_id": "", "url": "https://api.github.com/users/CCDXDX", "html_url": "https://github.com/CCDXDX", "followers_url": "https://api.github.com/users/CCDXDX/followers", "following_url": "https://api.github.com/users/CCDXDX/following{/other_user}", "gists_url": "https://api.github.com/users/CCDXDX/gists{/gist_id}", "starred_url": "https://api.github.com/users/CCDXDX/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/CCDXDX/subscriptions", "organizations_url": "https://api.github.com/users/CCDXDX/orgs", "repos_url": "https://api.github.com/users/CCDXDX/repos", "events_url": "https://api.github.com/users/CCDXDX/events{/privacy}", "received_events_url": "https://api.github.com/users/CCDXDX/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "The `answers.text` field in the JSON dataset needs to be a list of strings, not a string.\r\n\r\nSo, here is the fixed code:\r\n```python\r\nfrom huggingface_hub import notebook_login\r\nfrom datasets import load_dataset\r\n\r\n\r\n\r\nnotebook_login(\"mymailadresse\", \"mypassword\")\r\nsquad = load_dataset(\"squad\", split=\"train[:5000]\")\r\nsquad = squad.train_test_split(test_size=0.2)\r\ndataset1 = squad[\"train\"]\r\n\r\n\r\n\r\n\r\nimport json\r\n\r\nmybase = [\r\n {\r\n \"id\": \"1\",\r\n \"context\": \"She lives in Nantes\",\r\n \"question\": \"Where does she live?\",\r\n \"answers\": {\r\n \"text\": [\"Nantes\"],\r\n \"answer_start\": [13],\r\n }\r\n }\r\n]\r\n\r\n\r\n\r\n\r\n# Save the data to a JSON file\r\njson_file_path = r\"data\"\r\nwith open(json_file_path, \"w\", encoding= \"utf-8\") as json_file:\r\n json.dump(mybase, json_file, indent=4)\r\n\r\n\r\n\r\n\r\n# Load the JSON file as a dataset\r\ncustom_dataset = load_dataset(\"json\", data_files=json_file_path, features=dataset1.features)\r\n\r\n\r\n# Access the train split\r\ntrain_dataset = custom_dataset[\"train\"]\r\n\r\n\r\nfrom datasets import concatenate_datasets\r\n\r\n\r\n# Concatenate the datasets\r\nconcatenated_dataset = concatenate_datasets([train_dataset, dataset1])\r\n```", "Thank you @mariosasko for your help ! It works !" ]
2023-11-06T14:29:22
2023-11-06T16:50:45
2023-11-06T16:50:45
NONE
null
null
null
### Describe the bug Hello, I'm new here and I need to concatenate the squad dataset with my own dataset i created. I find the following error when i try to do it: Traceback (most recent call last): Cell In[9], line 1 concatenated_dataset = concatenate_datasets([train_dataset, dataset1]) File ~\anaconda3\Lib\site-packages\datasets\combine.py:213 in concatenate_datasets return _concatenate_map_style_datasets(dsets, info=info, split=split, axis=axis) File ~\anaconda3\Lib\site-packages\datasets\arrow_dataset.py:6002 in _concatenate_map_style_datasets _check_if_features_can_be_aligned([dset.features for dset in dsets]) File ~\anaconda3\Lib\site-packages\datasets\features\features.py:2122 in _check_if_features_can_be_aligned raise ValueError( ValueError: The features can't be aligned because the key answers of features {'id': Value(dtype='string', id=None), 'title': Value(dtype='string', id=None), 'context': Value(dtype='string', id=None), 'question': Value(dtype='string', id=None), 'answers': Sequence(feature={'text': Value(dtype='string', id=None), 'answer_start': Value(dtype='int32', id=None)}, length=-1, id=None)} has unexpected type - Sequence(feature={'text': Value(dtype='string', id=None), 'answer_start': Value(dtype='int32', id=None)}, length=-1, id=None) (expected either {'answer_start': Sequence(feature=Value(dtype='int64', id=None), length=-1, id=None), 'text': Value(dtype='string', id=None)} or Value("null"). ### Steps to reproduce the bug ```python from huggingface_hub import notebook_login from datasets import load_dataset notebook_login("mymailadresse", "mypassword") squad = load_dataset("squad", split="train[:5000]") squad = squad.train_test_split(test_size=0.2) dataset1 = squad["train"] import json mybase = [ { "id": "1", "context": "She lives in Nantes", "question": "Where does she live?", "answers": { "text": "Nantes", "answer_start": [13], } } ] # Save the data to a JSON file json_file_path = r"C:\Users\mypath\thefile.json" with open(json_file_path, "w", encoding= "utf-8") as json_file: json.dump(mybase, json_file, indent=4) # Load the JSON file as a dataset custom_dataset = load_dataset("json", data_files=json_file_path) # Access the train split train_dataset = custom_dataset["train"] from datasets import concatenate_datasets # Concatenate the datasets concatenated_dataset = concatenate_datasets([train_dataset, dataset1]) ``` ### Expected behavior I would expect the two datasets to be concatenated without error. The len(dataset1) is equal to 4000 and the len(train_dataset) is equal to 1 so I would exepect concatenated_dataset to be created and having lenght 4001. ### Environment info Python 3.11.4 and using windows Thank you for your help
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6385/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6385/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6384
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6384/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6384/comments
https://api.github.com/repos/huggingface/datasets/issues/6384/events
https://github.com/huggingface/datasets/issues/6384
1,979,117,069
I_kwDODunzps519u4N
6,384
Load the local dataset folder from other place
{ "login": "OrangeSodahub", "id": 54439582, "node_id": "MDQ6VXNlcjU0NDM5NTgy", "avatar_url": "https://avatars.githubusercontent.com/u/54439582?v=4", "gravatar_id": "", "url": "https://api.github.com/users/OrangeSodahub", "html_url": "https://github.com/OrangeSodahub", "followers_url": "https://api.github.com/users/OrangeSodahub/followers", "following_url": "https://api.github.com/users/OrangeSodahub/following{/other_user}", "gists_url": "https://api.github.com/users/OrangeSodahub/gists{/gist_id}", "starred_url": "https://api.github.com/users/OrangeSodahub/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/OrangeSodahub/subscriptions", "organizations_url": "https://api.github.com/users/OrangeSodahub/orgs", "repos_url": "https://api.github.com/users/OrangeSodahub/repos", "events_url": "https://api.github.com/users/OrangeSodahub/events{/privacy}", "received_events_url": "https://api.github.com/users/OrangeSodahub/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "Solved" ]
2023-11-06T13:07:04
2023-11-19T05:42:06
2023-11-19T05:42:05
NONE
null
null
null
This is from https://github.com/huggingface/diffusers/issues/5573
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6384/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6384/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6383
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6383/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6383/comments
https://api.github.com/repos/huggingface/datasets/issues/6383/events
https://github.com/huggingface/datasets/issues/6383
1,978,189,389
I_kwDODunzps516MZN
6,383
imagenet-1k downloads over and over
{ "login": "seann999", "id": 6847529, "node_id": "MDQ6VXNlcjY4NDc1Mjk=", "avatar_url": "https://avatars.githubusercontent.com/u/6847529?v=4", "gravatar_id": "", "url": "https://api.github.com/users/seann999", "html_url": "https://github.com/seann999", "followers_url": "https://api.github.com/users/seann999/followers", "following_url": "https://api.github.com/users/seann999/following{/other_user}", "gists_url": "https://api.github.com/users/seann999/gists{/gist_id}", "starred_url": "https://api.github.com/users/seann999/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/seann999/subscriptions", "organizations_url": "https://api.github.com/users/seann999/orgs", "repos_url": "https://api.github.com/users/seann999/repos", "events_url": "https://api.github.com/users/seann999/events{/privacy}", "received_events_url": "https://api.github.com/users/seann999/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[]
2023-11-06T02:58:58
2023-11-06T06:02:39
2023-11-06T06:02:39
NONE
null
null
null
### Describe the bug What could be causing this? ``` $ python3 Python 3.8.13 (default, Mar 28 2022, 11:38:47) [GCC 7.5.0] :: Anaconda, Inc. on linux Type "help", "copyright", "credits" or "license" for more information. >>> from datasets import load_dataset >>> load_dataset("imagenet-1k") Downloading builder script: 100%|██████████| 4.72k/4.72k [00:00<00:00, 7.51MB/s] Downloading readme: 100%|███████████████████| 85.4k/85.4k [00:00<00:00, 510kB/s] Downloading extra modules: 100%|████████████| 46.4k/46.4k [00:00<00:00, 300kB/s] Downloading data: 100%|████████████████████| 29.1G/29.1G [19:36<00:00, 24.8MB/s] Downloading data: 100%|████████████████████| 29.3G/29.3G [08:38<00:00, 56.5MB/s] Downloading data: 100%|████████████████████| 29.0G/29.0G [09:26<00:00, 51.2MB/s] Downloading data: 100%|████████████████████| 29.2G/29.2G [09:38<00:00, 50.6MB/s] Downloading data: 100%|███████████████████▉| 29.2G/29.2G [09:37<00:00, 44.1MB/s^Downloading data: 0%| | 106M/29.1G [00:05<23:49, 20.3MB/s] ``` ### Steps to reproduce the bug See above commands/code ### Expected behavior imagenet-1k is downloaded ### Environment info - `datasets` version: 2.14.6 - Platform: Linux-6.2.0-34-generic-x86_64-with-glibc2.17 - Python version: 3.8.13 - Huggingface_hub version: 0.15.1 - PyArrow version: 14.0.0 - Pandas version: 1.5.2
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6383/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6383/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6382
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6382/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6382/comments
https://api.github.com/repos/huggingface/datasets/issues/6382/events
https://github.com/huggingface/datasets/issues/6382
1,977,400,799
I_kwDODunzps513L3f
6,382
Add CheXpert dataset for vision
{ "login": "SauravMaheshkar", "id": 61241031, "node_id": "MDQ6VXNlcjYxMjQxMDMx", "avatar_url": "https://avatars.githubusercontent.com/u/61241031?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SauravMaheshkar", "html_url": "https://github.com/SauravMaheshkar", "followers_url": "https://api.github.com/users/SauravMaheshkar/followers", "following_url": "https://api.github.com/users/SauravMaheshkar/following{/other_user}", "gists_url": "https://api.github.com/users/SauravMaheshkar/gists{/gist_id}", "starred_url": "https://api.github.com/users/SauravMaheshkar/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SauravMaheshkar/subscriptions", "organizations_url": "https://api.github.com/users/SauravMaheshkar/orgs", "repos_url": "https://api.github.com/users/SauravMaheshkar/repos", "events_url": "https://api.github.com/users/SauravMaheshkar/events{/privacy}", "received_events_url": "https://api.github.com/users/SauravMaheshkar/received_events", "type": "User", "site_admin": false }
[ { "id": 1935892871, "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement", "name": "enhancement", "color": "a2eeef", "default": true, "description": "New feature or request" }, { "id": 2067376369, "node_id": "MDU6TGFiZWwyMDY3Mzc2MzY5", "url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20request", "name": "dataset request", "color": "e99695", "default": false, "description": "Requesting to add a new dataset" } ]
open
false
null
[]
[ "Hey @SauravMaheshkar ! Just responded to your email.\r\n\r\n_For transparency, copying part of my response here:_\r\nI agree, it would be really great to have this and other BenchMD datasets easily accessible on the hub.\r\n\r\nI think the main limiting factor is that the ChexPert dataset is currently hosted on the Stanford AIMI Shared Datasets website, with a license that does not permit redistribution IIRC. Thus, I believe we would need to create a [dataset loading script](https://huggingface.co./docs/datasets/image_dataset#loading-script) that would check authentication with the Stanford AIMI site before downloading and extracting the data. \r\n\r\nI've started a HF dataset repo [here](https://huggingface.co./datasets/katielink/CheXpert), in case you want to collaborate on writing up this loading script! I'm also happy to take a stab when I have some more time next week.", "Hey @katielink I would love to try this out. Please guide me." ]
2023-11-04T15:36:11
2023-12-11T17:55:52
null
NONE
null
null
null
### Feature request ### Name **CheXpert: A Large Chest Radiograph Dataset with Uncertainty Labels and Expert Comparison** ### Paper https://arxiv.org/abs/1901.07031 ### Data https://stanfordaimi.azurewebsites.net/datasets/8cbd9ed4-2eb9-4565-affc-111cf4f7ebe2 ### Motivation CheXpert is one of the fundamental models in medical image classification and can serve as a viable pre-training dataset for radiology classification or low-scale ablation / exploratory studies. This could also serve as a good pre-training dataset for Kaggle competitions. ### Your contribution Would love to make a PR and pre-process / get this into 🤗
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6382/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6382/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6381
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6381/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6381/comments
https://api.github.com/repos/huggingface/datasets/issues/6381/events
https://github.com/huggingface/datasets/pull/6381
1,975,028,470
PR_kwDODunzps5eeYty
6,381
Add my dataset
{ "login": "keyur536", "id": 103646675, "node_id": "U_kgDOBi2F0w", "avatar_url": "https://avatars.githubusercontent.com/u/103646675?v=4", "gravatar_id": "", "url": "https://api.github.com/users/keyur536", "html_url": "https://github.com/keyur536", "followers_url": "https://api.github.com/users/keyur536/followers", "following_url": "https://api.github.com/users/keyur536/following{/other_user}", "gists_url": "https://api.github.com/users/keyur536/gists{/gist_id}", "starred_url": "https://api.github.com/users/keyur536/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/keyur536/subscriptions", "organizations_url": "https://api.github.com/users/keyur536/orgs", "repos_url": "https://api.github.com/users/keyur536/repos", "events_url": "https://api.github.com/users/keyur536/events{/privacy}", "received_events_url": "https://api.github.com/users/keyur536/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "Hi! We do not host datasets in this repo. Instead, you should use `dataset.push_to_hub` to upload the dataset to the HF Hub.", "@mariosasko could you provide me proper guide to push data on HF hub ", "You can find this info here: https://huggingface.co./docs/datasets/upload_dataset. Also, check https://huggingface.co./docs/datasets/loading for how to load a local dataset (before pushing it to the Hub)." ]
2023-11-02T20:59:52
2023-11-08T14:37:46
2023-11-06T15:50:14
NONE
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6381", "html_url": "https://github.com/huggingface/datasets/pull/6381", "diff_url": "https://github.com/huggingface/datasets/pull/6381.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6381.patch", "merged_at": null }
## medical data **Description:** This dataset, named "medical data," is a collection of text data from various sources, carefully curated and cleaned for use in natural language processing (NLP) tasks. It consists of a diverse range of text, including articles, books, and online content, covering topics from science to literature. **Citation:** If applicable, please include a citation for this dataset to give credit to the original sources or contributors. **Key Features:** - Language: The text is primarily in English, but it may include content in other languages as well. - Use Cases: This dataset is suitable for text classification, language modeling, sentiment analysis, and other NLP tasks. **Usage:** To access this dataset, use the `load_your_dataset` function provided in the `your_dataset.py` script within this repository. You can specify the dataset split you need, such as "train," "test," or "validation," to get the data for your specific task. **Contributors:** - [Keyur Chaudhari] **Contact:** If you have any questions or need assistance regarding this dataset, please feel free to contact [[email protected]]. Please note that this dataset is shared under a specific license, which can be found in the [LICENSE](link to your dataset's license) file. Make sure to review and adhere to the terms of the license when using this dataset for your projects.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6381/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6381/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6380
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6380/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6380/comments
https://api.github.com/repos/huggingface/datasets/issues/6380/events
https://github.com/huggingface/datasets/pull/6380
1,974,741,221
PR_kwDODunzps5edaO6
6,380
Fix for continuation behaviour on broken dataset archives due to starving download connections via HTTP-GET
{ "login": "RuntimeRacer", "id": 49956579, "node_id": "MDQ6VXNlcjQ5OTU2NTc5", "avatar_url": "https://avatars.githubusercontent.com/u/49956579?v=4", "gravatar_id": "", "url": "https://api.github.com/users/RuntimeRacer", "html_url": "https://github.com/RuntimeRacer", "followers_url": "https://api.github.com/users/RuntimeRacer/followers", "following_url": "https://api.github.com/users/RuntimeRacer/following{/other_user}", "gists_url": "https://api.github.com/users/RuntimeRacer/gists{/gist_id}", "starred_url": "https://api.github.com/users/RuntimeRacer/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/RuntimeRacer/subscriptions", "organizations_url": "https://api.github.com/users/RuntimeRacer/orgs", "repos_url": "https://api.github.com/users/RuntimeRacer/repos", "events_url": "https://api.github.com/users/RuntimeRacer/events{/privacy}", "received_events_url": "https://api.github.com/users/RuntimeRacer/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
[]
2023-11-02T17:28:23
2023-11-02T17:31:19
null
NONE
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6380", "html_url": "https://github.com/huggingface/datasets/pull/6380", "diff_url": "https://github.com/huggingface/datasets/pull/6380.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6380.patch", "merged_at": null }
This PR proposes a (slightly hacky) fix for an Issue that can occur when downloading large dataset parts over unstable connections. The underlying issue is also being discussed in https://github.com/huggingface/datasets/issues/5594. Issue Symptoms & Behaviour: - Download of a large archive file during dataset download via HTTP-GET fails. - An silent net exception (which I was unable to identify) is thrown within the `tqdm` download progress. - Due to missing exception catch code, the above process just continues processing, assuming `http_get` completed successfully. - Pending Archive file gets renamed to remove the `.incomplete` extension, despite not all data has been downloaded. - Also, for reasons I did not investigate, there seems to be no real integrity check for the downloaded files; or it does not detect this problem. This is especially problematic, since the downloader script won't retry downloading this archive after CRC-Checking, even if it is being manually restarted / executed again after running into errors on extraction. Fix proposal: Adding a retry mechanic for HTTP-GET downloads, which adds the following behaviour: - Download Progress Thread checks for download size validity in case the HTTP connection starves mid download. If the check fails, a RuntimeError is thrown - Cache Downloader code with retry mechanic monitors for an exception thrown by the download progress thread, and retries download with updated `resume_size`. - Cache Downloader will not mark incomplete files which have thrown an exception during download, and exceeded retries, as complete.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6380/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6380/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6379
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6379/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6379/comments
https://api.github.com/repos/huggingface/datasets/issues/6379/events
https://github.com/huggingface/datasets/pull/6379
1,974,638,850
PR_kwDODunzps5edDZL
6,379
Avoid redundant warning when encoding NumPy array as `Image`
{ "login": "mariosasko", "id": 47462742, "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "gravatar_id": "", "url": "https://api.github.com/users/mariosasko", "html_url": "https://github.com/mariosasko", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "repos_url": "https://api.github.com/users/mariosasko/repos", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008649 / 0.011353 (-0.002704) | 0.005754 / 0.011008 (-0.005254) | 0.101992 / 0.038508 (0.063484) | 0.084932 / 0.023109 (0.061823) | 0.393928 / 0.275898 (0.118030) | 0.414059 / 0.323480 (0.090579) | 0.006564 / 0.007986 (-0.001422) | 0.004746 / 0.004328 (0.000418) | 0.078624 / 0.004250 (0.074373) | 0.060465 / 0.037052 (0.023412) | 0.420767 / 0.258489 (0.162278) | 0.497797 / 0.293841 (0.203956) | 0.047031 / 0.128546 (-0.081516) | 0.014316 / 0.075646 (-0.061330) | 0.340347 / 0.419271 (-0.078925) | 0.067126 / 0.043533 (0.023593) | 0.390806 / 0.255139 (0.135667) | 0.413711 / 0.283200 (0.130512) | 0.037838 / 0.141683 (-0.103845) | 1.713547 / 1.452155 (0.261393) | 1.825591 / 1.492716 (0.332874) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.316357 / 0.018006 (0.298350) | 0.594279 / 0.000490 (0.593789) | 0.013659 / 0.000200 (0.013459) | 0.000547 / 0.000054 (0.000492) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031310 / 0.037411 (-0.006101) | 0.090410 / 0.014526 (0.075884) | 0.114620 / 0.176557 (-0.061936) | 0.183036 / 0.737135 (-0.554099) | 0.112700 / 0.296338 (-0.183638) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.582424 / 0.215209 (0.367215) | 5.670424 / 2.077655 (3.592769) | 2.444326 / 1.504120 (0.940206) | 2.108555 / 1.541195 (0.567360) | 2.091594 / 1.468490 (0.623104) | 0.839067 / 4.584777 (-3.745710) | 5.280942 / 3.745712 (1.535230) | 4.611059 / 5.269862 (-0.658803) | 2.911145 / 4.565676 (-1.654531) | 0.091929 / 0.424275 (-0.332346) | 0.008774 / 0.007607 (0.001167) | 0.657948 / 0.226044 (0.431904) | 6.816300 / 2.268929 (4.547371) | 3.232260 / 55.444624 (-52.212364) | 2.479626 / 6.876477 (-4.396851) | 2.497886 / 2.142072 (0.355813) | 0.959160 / 4.805227 (-3.846068) | 0.222306 / 6.500664 (-6.278358) | 0.072962 / 0.075469 (-0.002507) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.580415 / 1.841788 (-0.261372) | 23.689597 / 8.074308 (15.615289) | 20.430709 / 10.191392 (10.239317) | 0.237891 / 0.680424 (-0.442533) | 0.028194 / 0.534201 (-0.506007) | 0.464915 / 0.579283 (-0.114368) | 0.611512 / 0.434364 (0.177148) | 0.556564 / 0.540337 (0.016227) | 0.811075 / 1.386936 (-0.575861) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008703 / 0.011353 (-0.002649) | 0.005030 / 0.011008 (-0.005978) | 0.079251 / 0.038508 (0.040743) | 0.079054 / 0.023109 (0.055945) | 0.440220 / 0.275898 (0.164322) | 0.479824 / 0.323480 (0.156344) | 0.006312 / 0.007986 (-0.001673) | 0.004506 / 0.004328 (0.000177) | 0.078454 / 0.004250 (0.074203) | 0.061041 / 0.037052 (0.023989) | 0.490104 / 0.258489 (0.231615) | 0.480925 / 0.293841 (0.187084) | 0.049601 / 0.128546 (-0.078945) | 0.013114 / 0.075646 (-0.062532) | 0.092576 / 0.419271 (-0.326696) | 0.059516 / 0.043533 (0.015983) | 0.433728 / 0.255139 (0.178589) | 0.490039 / 0.283200 (0.206839) | 0.035359 / 0.141683 (-0.106324) | 1.823618 / 1.452155 (0.371463) | 1.980894 / 1.492716 (0.488178) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.284679 / 0.018006 (0.266673) | 0.606623 / 0.000490 (0.606133) | 0.007531 / 0.000200 (0.007331) | 0.000109 / 0.000054 (0.000055) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033261 / 0.037411 (-0.004150) | 0.102908 / 0.014526 (0.088382) | 0.123912 / 0.176557 (-0.052644) | 0.169893 / 0.737135 (-0.567242) | 0.115366 / 0.296338 (-0.180973) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.598239 / 0.215209 (0.383030) | 6.003464 / 2.077655 (3.925809) | 2.828483 / 1.504120 (1.324363) | 2.485996 / 1.541195 (0.944802) | 2.434986 / 1.468490 (0.966496) | 0.832718 / 4.584777 (-3.752058) | 5.327407 / 3.745712 (1.581694) | 4.732271 / 5.269862 (-0.537590) | 3.047555 / 4.565676 (-1.518121) | 0.103576 / 0.424275 (-0.320699) | 0.009795 / 0.007607 (0.002188) | 0.755443 / 0.226044 (0.529399) | 7.465857 / 2.268929 (5.196928) | 3.564923 / 55.444624 (-51.879701) | 2.740483 / 6.876477 (-4.135994) | 3.044993 / 2.142072 (0.902920) | 1.012925 / 4.805227 (-3.792302) | 0.207498 / 6.500664 (-6.293167) | 0.073361 / 0.075469 (-0.002108) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.704988 / 1.841788 (-0.136800) | 24.669992 / 8.074308 (16.595684) | 21.103096 / 10.191392 (10.911704) | 0.253759 / 0.680424 (-0.426665) | 0.040109 / 0.534201 (-0.494092) | 0.465646 / 0.579283 (-0.113637) | 0.619696 / 0.434364 (0.185332) | 0.552228 / 0.540337 (0.011890) | 0.794907 / 1.386936 (-0.592029) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#85bba8991f6a2d9ed9fd4769d945eeaf318d3aa6 \"CML watermark\")\n", "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006347 / 0.011353 (-0.005006) | 0.003725 / 0.011008 (-0.007283) | 0.080233 / 0.038508 (0.041725) | 0.061013 / 0.023109 (0.037904) | 0.390046 / 0.275898 (0.114148) | 0.420526 / 0.323480 (0.097046) | 0.003579 / 0.007986 (-0.004407) | 0.002837 / 0.004328 (-0.001491) | 0.062929 / 0.004250 (0.058678) | 0.048781 / 0.037052 (0.011729) | 0.400722 / 0.258489 (0.142233) | 0.435022 / 0.293841 (0.141182) | 0.027560 / 0.128546 (-0.100986) | 0.007981 / 0.075646 (-0.067666) | 0.262838 / 0.419271 (-0.156433) | 0.045480 / 0.043533 (0.001947) | 0.394443 / 0.255139 (0.139304) | 0.413828 / 0.283200 (0.130628) | 0.023375 / 0.141683 (-0.118307) | 1.412865 / 1.452155 (-0.039290) | 1.495761 / 1.492716 (0.003044) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.224876 / 0.018006 (0.206870) | 0.424234 / 0.000490 (0.423745) | 0.007502 / 0.000200 (0.007302) | 0.000220 / 0.000054 (0.000166) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024246 / 0.037411 (-0.013165) | 0.073982 / 0.014526 (0.059456) | 0.082704 / 0.176557 (-0.093852) | 0.143137 / 0.737135 (-0.593998) | 0.083398 / 0.296338 (-0.212941) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.400220 / 0.215209 (0.185010) | 3.973037 / 2.077655 (1.895382) | 2.025903 / 1.504120 (0.521783) | 1.912888 / 1.541195 (0.371693) | 1.999578 / 1.468490 (0.531088) | 0.499378 / 4.584777 (-4.085399) | 3.025715 / 3.745712 (-0.719997) | 2.992338 / 5.269862 (-2.277524) | 1.851155 / 4.565676 (-2.714522) | 0.057528 / 0.424275 (-0.366747) | 0.006802 / 0.007607 (-0.000805) | 0.469516 / 0.226044 (0.243471) | 4.675630 / 2.268929 (2.406702) | 2.472166 / 55.444624 (-52.972458) | 2.238052 / 6.876477 (-4.638424) | 2.288255 / 2.142072 (0.146183) | 0.584906 / 4.805227 (-4.220321) | 0.125902 / 6.500664 (-6.374762) | 0.060681 / 0.075469 (-0.014788) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.236383 / 1.841788 (-0.605404) | 17.554238 / 8.074308 (9.479930) | 13.749298 / 10.191392 (3.557906) | 0.144715 / 0.680424 (-0.535708) | 0.017449 / 0.534201 (-0.516752) | 0.334831 / 0.579283 (-0.244452) | 0.362660 / 0.434364 (-0.071704) | 0.385295 / 0.540337 (-0.155043) | 0.541173 / 1.386936 (-0.845763) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006118 / 0.011353 (-0.005235) | 0.003660 / 0.011008 (-0.007348) | 0.062373 / 0.038508 (0.023865) | 0.063404 / 0.023109 (0.040295) | 0.354149 / 0.275898 (0.078251) | 0.410324 / 0.323480 (0.086844) | 0.004826 / 0.007986 (-0.003160) | 0.002881 / 0.004328 (-0.001448) | 0.061631 / 0.004250 (0.057381) | 0.048052 / 0.037052 (0.010999) | 0.352905 / 0.258489 (0.094416) | 0.400096 / 0.293841 (0.106255) | 0.028472 / 0.128546 (-0.100075) | 0.008076 / 0.075646 (-0.067571) | 0.067910 / 0.419271 (-0.351362) | 0.040671 / 0.043533 (-0.002862) | 0.352131 / 0.255139 (0.096992) | 0.402140 / 0.283200 (0.118940) | 0.020065 / 0.141683 (-0.121618) | 1.456938 / 1.452155 (0.004783) | 1.506484 / 1.492716 (0.013767) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.222295 / 0.018006 (0.204288) | 0.416672 / 0.000490 (0.416183) | 0.003015 / 0.000200 (0.002815) | 0.000079 / 0.000054 (0.000025) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026428 / 0.037411 (-0.010983) | 0.080072 / 0.014526 (0.065547) | 0.089992 / 0.176557 (-0.086564) | 0.141739 / 0.737135 (-0.595397) | 0.092281 / 0.296338 (-0.204058) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.417758 / 0.215209 (0.202549) | 4.175673 / 2.077655 (2.098018) | 2.262369 / 1.504120 (0.758249) | 2.100440 / 1.541195 (0.559246) | 2.075827 / 1.468490 (0.607337) | 0.505673 / 4.584777 (-4.079104) | 3.129020 / 3.745712 (-0.616692) | 2.843255 / 5.269862 (-2.426607) | 1.853288 / 4.565676 (-2.712389) | 0.058337 / 0.424275 (-0.365938) | 0.006461 / 0.007607 (-0.001147) | 0.491797 / 0.226044 (0.265753) | 4.933327 / 2.268929 (2.664399) | 2.675374 / 55.444624 (-52.769250) | 2.358103 / 6.876477 (-4.518374) | 2.540436 / 2.142072 (0.398363) | 0.591550 / 4.805227 (-4.213677) | 0.121572 / 6.500664 (-6.379092) | 0.057311 / 0.075469 (-0.018158) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.365368 / 1.841788 (-0.476419) | 17.763413 / 8.074308 (9.689105) | 14.368754 / 10.191392 (4.177362) | 0.132979 / 0.680424 (-0.547445) | 0.017957 / 0.534201 (-0.516244) | 0.334035 / 0.579283 (-0.245248) | 0.385349 / 0.434364 (-0.049015) | 0.392636 / 0.540337 (-0.147702) | 0.537957 / 1.386936 (-0.848979) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#92503c94839b31125b4d5288d0a49d81b9b9b3cc \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008053 / 0.011353 (-0.003300) | 0.004966 / 0.011008 (-0.006043) | 0.102219 / 0.038508 (0.063711) | 0.099319 / 0.023109 (0.076210) | 0.418458 / 0.275898 (0.142559) | 0.459344 / 0.323480 (0.135864) | 0.004756 / 0.007986 (-0.003229) | 0.003940 / 0.004328 (-0.000388) | 0.076824 / 0.004250 (0.072573) | 0.068090 / 0.037052 (0.031038) | 0.428689 / 0.258489 (0.170200) | 0.476153 / 0.293841 (0.182312) | 0.036927 / 0.128546 (-0.091619) | 0.010232 / 0.075646 (-0.065414) | 0.345126 / 0.419271 (-0.074145) | 0.063182 / 0.043533 (0.019649) | 0.416633 / 0.255139 (0.161494) | 0.437418 / 0.283200 (0.154218) | 0.028192 / 0.141683 (-0.113491) | 1.768869 / 1.452155 (0.316715) | 1.847022 / 1.492716 (0.354306) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.269997 / 0.018006 (0.251991) | 0.544246 / 0.000490 (0.543756) | 0.012940 / 0.000200 (0.012740) | 0.000754 / 0.000054 (0.000699) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.035570 / 0.037411 (-0.001842) | 0.104318 / 0.014526 (0.089792) | 0.115263 / 0.176557 (-0.061294) | 0.184693 / 0.737135 (-0.552442) | 0.116023 / 0.296338 (-0.180315) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.472361 / 0.215209 (0.257152) | 4.714327 / 2.077655 (2.636673) | 2.405434 / 1.504120 (0.901314) | 2.197871 / 1.541195 (0.656677) | 2.312901 / 1.468490 (0.844411) | 0.569736 / 4.584777 (-4.015041) | 4.600008 / 3.745712 (0.854296) | 4.127967 / 5.269862 (-1.141895) | 2.462232 / 4.565676 (-2.103445) | 0.067759 / 0.424275 (-0.356516) | 0.009277 / 0.007607 (0.001670) | 0.569658 / 0.226044 (0.343614) | 5.694050 / 2.268929 (3.425121) | 3.041495 / 55.444624 (-52.403129) | 2.688418 / 6.876477 (-4.188059) | 2.762175 / 2.142072 (0.620102) | 0.683250 / 4.805227 (-4.121977) | 0.158772 / 6.500664 (-6.341892) | 0.073364 / 0.075469 (-0.002105) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.627241 / 1.841788 (-0.214547) | 23.054465 / 8.074308 (14.980157) | 17.122451 / 10.191392 (6.931059) | 0.170272 / 0.680424 (-0.510152) | 0.021678 / 0.534201 (-0.512523) | 0.467301 / 0.579283 (-0.111982) | 0.509480 / 0.434364 (0.075116) | 0.555077 / 0.540337 (0.014740) | 0.816199 / 1.386936 (-0.570737) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008499 / 0.011353 (-0.002854) | 0.004724 / 0.011008 (-0.006284) | 0.077519 / 0.038508 (0.039011) | 0.103237 / 0.023109 (0.080127) | 0.447470 / 0.275898 (0.171572) | 0.484778 / 0.323480 (0.161298) | 0.006475 / 0.007986 (-0.001511) | 0.003946 / 0.004328 (-0.000383) | 0.075596 / 0.004250 (0.071346) | 0.069265 / 0.037052 (0.032213) | 0.454185 / 0.258489 (0.195696) | 0.491039 / 0.293841 (0.197198) | 0.038611 / 0.128546 (-0.089935) | 0.009889 / 0.075646 (-0.065758) | 0.084012 / 0.419271 (-0.335260) | 0.057265 / 0.043533 (0.013732) | 0.448622 / 0.255139 (0.193483) | 0.470961 / 0.283200 (0.187762) | 0.029220 / 0.141683 (-0.112463) | 1.773347 / 1.452155 (0.321192) | 1.872669 / 1.492716 (0.379953) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.272429 / 0.018006 (0.254423) | 0.569907 / 0.000490 (0.569418) | 0.013359 / 0.000200 (0.013159) | 0.000187 / 0.000054 (0.000133) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.038784 / 0.037411 (0.001373) | 0.114958 / 0.014526 (0.100432) | 0.132745 / 0.176557 (-0.043811) | 0.186283 / 0.737135 (-0.550852) | 0.126652 / 0.296338 (-0.169686) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.482753 / 0.215209 (0.267544) | 4.827287 / 2.077655 (2.749633) | 2.539959 / 1.504120 (1.035839) | 2.348483 / 1.541195 (0.807288) | 2.421739 / 1.468490 (0.953249) | 0.586064 / 4.584777 (-3.998713) | 4.579865 / 3.745712 (0.834152) | 3.950617 / 5.269862 (-1.319244) | 2.528447 / 4.565676 (-2.037229) | 0.070280 / 0.424275 (-0.353995) | 0.008801 / 0.007607 (0.001194) | 0.568857 / 0.226044 (0.342812) | 5.692739 / 2.268929 (3.423810) | 3.192045 / 55.444624 (-52.252579) | 2.768092 / 6.876477 (-4.108384) | 3.002934 / 2.142072 (0.860862) | 0.701887 / 4.805227 (-4.103340) | 0.155563 / 6.500664 (-6.345102) | 0.069397 / 0.075469 (-0.006072) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.607991 / 1.841788 (-0.233796) | 24.658060 / 8.074308 (16.583752) | 17.616229 / 10.191392 (7.424837) | 0.209730 / 0.680424 (-0.470693) | 0.024052 / 0.534201 (-0.510149) | 0.476648 / 0.579283 (-0.102635) | 0.534452 / 0.434364 (0.100089) | 0.567702 / 0.540337 (0.027365) | 0.772933 / 1.386936 (-0.614003) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#a49e78ede85c2a680adddacbb6b9638cba4062f3 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004684 / 0.011353 (-0.006669) | 0.002944 / 0.011008 (-0.008064) | 0.063065 / 0.038508 (0.024557) | 0.051627 / 0.023109 (0.028518) | 0.243485 / 0.275898 (-0.032413) | 0.275144 / 0.323480 (-0.048336) | 0.002934 / 0.007986 (-0.005052) | 0.002395 / 0.004328 (-0.001934) | 0.048579 / 0.004250 (0.044328) | 0.038940 / 0.037052 (0.001887) | 0.250244 / 0.258489 (-0.008245) | 0.287404 / 0.293841 (-0.006437) | 0.022958 / 0.128546 (-0.105588) | 0.007189 / 0.075646 (-0.068458) | 0.202483 / 0.419271 (-0.216788) | 0.035477 / 0.043533 (-0.008056) | 0.243793 / 0.255139 (-0.011346) | 0.265990 / 0.283200 (-0.017209) | 0.019675 / 0.141683 (-0.122008) | 1.119127 / 1.452155 (-0.333028) | 1.183230 / 1.492716 (-0.309486) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.097090 / 0.018006 (0.079084) | 0.305815 / 0.000490 (0.305325) | 0.000228 / 0.000200 (0.000028) | 0.000050 / 0.000054 (-0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019233 / 0.037411 (-0.018178) | 0.061743 / 0.014526 (0.047217) | 0.077033 / 0.176557 (-0.099524) | 0.119786 / 0.737135 (-0.617349) | 0.074740 / 0.296338 (-0.221598) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.284361 / 0.215209 (0.069152) | 2.761501 / 2.077655 (0.683846) | 1.464980 / 1.504120 (-0.039140) | 1.348026 / 1.541195 (-0.193169) | 1.362690 / 1.468490 (-0.105800) | 0.392022 / 4.584777 (-4.192755) | 2.401330 / 3.745712 (-1.344382) | 2.618999 / 5.269862 (-2.650863) | 1.599526 / 4.565676 (-2.966150) | 0.045621 / 0.424275 (-0.378654) | 0.005153 / 0.007607 (-0.002454) | 0.337279 / 0.226044 (0.111234) | 3.330135 / 2.268929 (1.061206) | 1.803544 / 55.444624 (-53.641081) | 1.515545 / 6.876477 (-5.360932) | 1.561745 / 2.142072 (-0.580327) | 0.468735 / 4.805227 (-4.336492) | 0.098882 / 6.500664 (-6.401782) | 0.042923 / 0.075469 (-0.032546) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.961106 / 1.841788 (-0.880682) | 12.030489 / 8.074308 (3.956181) | 10.824166 / 10.191392 (0.632774) | 0.132135 / 0.680424 (-0.548289) | 0.015320 / 0.534201 (-0.518881) | 0.269691 / 0.579283 (-0.309592) | 0.270700 / 0.434364 (-0.163664) | 0.308317 / 0.540337 (-0.232020) | 0.397871 / 1.386936 (-0.989065) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004859 / 0.011353 (-0.006494) | 0.003400 / 0.011008 (-0.007609) | 0.048095 / 0.038508 (0.009587) | 0.054885 / 0.023109 (0.031776) | 0.276976 / 0.275898 (0.001078) | 0.302298 / 0.323480 (-0.021182) | 0.004084 / 0.007986 (-0.003902) | 0.002647 / 0.004328 (-0.001681) | 0.048570 / 0.004250 (0.044319) | 0.040683 / 0.037052 (0.003631) | 0.279828 / 0.258489 (0.021339) | 0.306037 / 0.293841 (0.012196) | 0.024263 / 0.128546 (-0.104283) | 0.007336 / 0.075646 (-0.068310) | 0.053768 / 0.419271 (-0.365503) | 0.032284 / 0.043533 (-0.011248) | 0.276706 / 0.255139 (0.021567) | 0.294706 / 0.283200 (0.011506) | 0.018092 / 0.141683 (-0.123591) | 1.153430 / 1.452155 (-0.298725) | 1.208783 / 1.492716 (-0.283933) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.096946 / 0.018006 (0.078939) | 0.308118 / 0.000490 (0.307628) | 0.000234 / 0.000200 (0.000034) | 0.000053 / 0.000054 (-0.000001) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.021834 / 0.037411 (-0.015577) | 0.070934 / 0.014526 (0.056408) | 0.080310 / 0.176557 (-0.096247) | 0.123299 / 0.737135 (-0.613836) | 0.081591 / 0.296338 (-0.214748) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.302242 / 0.215209 (0.087033) | 2.934477 / 2.077655 (0.856822) | 1.623768 / 1.504120 (0.119648) | 1.493868 / 1.541195 (-0.047326) | 1.516553 / 1.468490 (0.048063) | 0.410319 / 4.584777 (-4.174458) | 2.471346 / 3.745712 (-1.274366) | 2.667371 / 5.269862 (-2.602491) | 1.625390 / 4.565676 (-2.940286) | 0.046465 / 0.424275 (-0.377810) | 0.004867 / 0.007607 (-0.002740) | 0.355516 / 0.226044 (0.129471) | 3.442294 / 2.268929 (1.173365) | 1.973859 / 55.444624 (-53.470765) | 1.682089 / 6.876477 (-5.194388) | 1.865253 / 2.142072 (-0.276819) | 0.475750 / 4.805227 (-4.329477) | 0.098298 / 6.500664 (-6.402366) | 0.041025 / 0.075469 (-0.034445) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.969864 / 1.841788 (-0.871924) | 12.437806 / 8.074308 (4.363498) | 10.461262 / 10.191392 (0.269870) | 0.131051 / 0.680424 (-0.549373) | 0.016232 / 0.534201 (-0.517969) | 0.273968 / 0.579283 (-0.305315) | 0.285369 / 0.434364 (-0.148995) | 0.309046 / 0.540337 (-0.231291) | 0.398776 / 1.386936 (-0.988160) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#a49e78ede85c2a680adddacbb6b9638cba4062f3 \"CML watermark\")\n" ]
2023-11-02T16:37:58
2023-11-06T17:53:27
2023-11-02T17:08:07
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6379", "html_url": "https://github.com/huggingface/datasets/pull/6379", "diff_url": "https://github.com/huggingface/datasets/pull/6379.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6379.patch", "merged_at": "2023-11-02T17:08:07" }
Avoid a redundant warning in `encode_np_array` by removing the identity check as NumPy `dtype`s can be equal without having identical `id`s. Additionally, fix "unreachable" checks in `encode_np_array`.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6379/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6379/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6378
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6378/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6378/comments
https://api.github.com/repos/huggingface/datasets/issues/6378/events
https://github.com/huggingface/datasets/pull/6378
1,973,942,770
PR_kwDODunzps5eaqhv
6,378
Support pyarrow 14.0.0
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007561 / 0.011353 (-0.003792) | 0.004824 / 0.011008 (-0.006184) | 0.110372 / 0.038508 (0.071864) | 0.076767 / 0.023109 (0.053657) | 0.357094 / 0.275898 (0.081196) | 0.420566 / 0.323480 (0.097086) | 0.004753 / 0.007986 (-0.003232) | 0.004734 / 0.004328 (0.000405) | 0.072926 / 0.004250 (0.068675) | 0.058045 / 0.037052 (0.020992) | 0.401109 / 0.258489 (0.142620) | 0.444585 / 0.293841 (0.150744) | 0.046492 / 0.128546 (-0.082055) | 0.013948 / 0.075646 (-0.061698) | 0.305188 / 0.419271 (-0.114083) | 0.063112 / 0.043533 (0.019579) | 0.384711 / 0.255139 (0.129572) | 0.411375 / 0.283200 (0.128175) | 0.048147 / 0.141683 (-0.093536) | 1.632357 / 1.452155 (0.180202) | 1.661021 / 1.492716 (0.168304) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.281104 / 0.018006 (0.263098) | 0.567152 / 0.000490 (0.566662) | 0.007178 / 0.000200 (0.006978) | 0.000121 / 0.000054 (0.000066) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029337 / 0.037411 (-0.008075) | 0.081644 / 0.014526 (0.067118) | 0.103326 / 0.176557 (-0.073230) | 0.155299 / 0.737135 (-0.581836) | 0.093518 / 0.296338 (-0.202821) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.517979 / 0.215209 (0.302769) | 5.250052 / 2.077655 (3.172397) | 2.220543 / 1.504120 (0.716424) | 1.901087 / 1.541195 (0.359892) | 1.920564 / 1.468490 (0.452073) | 0.766289 / 4.584777 (-3.818488) | 5.130968 / 3.745712 (1.385256) | 4.561874 / 5.269862 (-0.707988) | 2.702808 / 4.565676 (-1.862868) | 0.078929 / 0.424275 (-0.345346) | 0.007834 / 0.007607 (0.000226) | 0.636628 / 0.226044 (0.410583) | 6.309391 / 2.268929 (4.040463) | 2.942180 / 55.444624 (-52.502445) | 2.369557 / 6.876477 (-4.506920) | 2.347528 / 2.142072 (0.205456) | 0.911110 / 4.805227 (-3.894117) | 0.189102 / 6.500664 (-6.311562) | 0.068012 / 0.075469 (-0.007457) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.494431 / 1.841788 (-0.347356) | 22.161476 / 8.074308 (14.087168) | 19.426403 / 10.191392 (9.235011) | 0.211154 / 0.680424 (-0.469270) | 0.030655 / 0.534201 (-0.503546) | 0.440449 / 0.579283 (-0.138834) | 0.526522 / 0.434364 (0.092158) | 0.517494 / 0.540337 (-0.022844) | 0.727387 / 1.386936 (-0.659549) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008354 / 0.011353 (-0.002999) | 0.006108 / 0.011008 (-0.004900) | 0.069079 / 0.038508 (0.030571) | 0.080402 / 0.023109 (0.057292) | 0.452166 / 0.275898 (0.176268) | 0.440264 / 0.323480 (0.116784) | 0.005942 / 0.007986 (-0.002043) | 0.003397 / 0.004328 (-0.000932) | 0.079856 / 0.004250 (0.075606) | 0.056329 / 0.037052 (0.019276) | 0.424261 / 0.258489 (0.165772) | 0.464362 / 0.293841 (0.170521) | 0.051968 / 0.128546 (-0.076578) | 0.015204 / 0.075646 (-0.060442) | 0.085940 / 0.419271 (-0.333332) | 0.066673 / 0.043533 (0.023140) | 0.436481 / 0.255139 (0.181342) | 0.445285 / 0.283200 (0.162085) | 0.035188 / 0.141683 (-0.106495) | 1.579442 / 1.452155 (0.127288) | 1.686120 / 1.492716 (0.193404) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.319039 / 0.018006 (0.301032) | 0.655080 / 0.000490 (0.654591) | 0.005445 / 0.000200 (0.005245) | 0.000112 / 0.000054 (0.000057) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028566 / 0.037411 (-0.008845) | 0.092131 / 0.014526 (0.077605) | 0.103654 / 0.176557 (-0.072902) | 0.158082 / 0.737135 (-0.579054) | 0.107520 / 0.296338 (-0.188819) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.573479 / 0.215209 (0.358270) | 5.629751 / 2.077655 (3.552096) | 2.501722 / 1.504120 (0.997602) | 2.156255 / 1.541195 (0.615061) | 2.251296 / 1.468490 (0.782805) | 0.767686 / 4.584777 (-3.817091) | 5.080866 / 3.745712 (1.335154) | 4.353351 / 5.269862 (-0.916510) | 2.818707 / 4.565676 (-1.746970) | 0.082617 / 0.424275 (-0.341658) | 0.008045 / 0.007607 (0.000438) | 0.665462 / 0.226044 (0.439417) | 6.961380 / 2.268929 (4.692452) | 3.308717 / 55.444624 (-52.135907) | 2.664239 / 6.876477 (-4.212238) | 2.782790 / 2.142072 (0.640718) | 0.919567 / 4.805227 (-3.885660) | 0.186731 / 6.500664 (-6.313933) | 0.063437 / 0.075469 (-0.012032) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.668076 / 1.841788 (-0.173712) | 22.720187 / 8.074308 (14.645879) | 19.803359 / 10.191392 (9.611967) | 0.237201 / 0.680424 (-0.443223) | 0.041156 / 0.534201 (-0.493045) | 0.458974 / 0.579283 (-0.120309) | 0.620276 / 0.434364 (0.185912) | 0.544079 / 0.540337 (0.003741) | 0.722715 / 1.386936 (-0.664221) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#1ed9306b6c512befb721b681fba3222221c8468e \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006882 / 0.011353 (-0.004471) | 0.004238 / 0.011008 (-0.006770) | 0.084042 / 0.038508 (0.045534) | 0.074175 / 0.023109 (0.051065) | 0.308771 / 0.275898 (0.032873) | 0.346300 / 0.323480 (0.022820) | 0.005455 / 0.007986 (-0.002530) | 0.003638 / 0.004328 (-0.000690) | 0.065326 / 0.004250 (0.061076) | 0.056080 / 0.037052 (0.019028) | 0.326324 / 0.258489 (0.067834) | 0.360133 / 0.293841 (0.066292) | 0.031577 / 0.128546 (-0.096969) | 0.008675 / 0.075646 (-0.066971) | 0.288051 / 0.419271 (-0.131221) | 0.052769 / 0.043533 (0.009236) | 0.308689 / 0.255139 (0.053550) | 0.328270 / 0.283200 (0.045070) | 0.025028 / 0.141683 (-0.116655) | 1.520670 / 1.452155 (0.068515) | 1.585229 / 1.492716 (0.092513) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.284078 / 0.018006 (0.266072) | 0.558134 / 0.000490 (0.557644) | 0.015042 / 0.000200 (0.014842) | 0.000429 / 0.000054 (0.000375) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028747 / 0.037411 (-0.008664) | 0.083816 / 0.014526 (0.069290) | 0.207467 / 0.176557 (0.030911) | 0.163527 / 0.737135 (-0.573608) | 0.100148 / 0.296338 (-0.196190) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.376109 / 0.215209 (0.160900) | 3.749639 / 2.077655 (1.671984) | 1.827081 / 1.504120 (0.322961) | 1.662021 / 1.541195 (0.120827) | 1.734655 / 1.468490 (0.266165) | 0.483701 / 4.584777 (-4.101075) | 3.454772 / 3.745712 (-0.290941) | 3.465079 / 5.269862 (-1.804783) | 2.070874 / 4.565676 (-2.494802) | 0.056714 / 0.424275 (-0.367561) | 0.007786 / 0.007607 (0.000179) | 0.455980 / 0.226044 (0.229936) | 4.530612 / 2.268929 (2.261683) | 2.345757 / 55.444624 (-53.098867) | 2.030289 / 6.876477 (-4.846188) | 2.068440 / 2.142072 (-0.073632) | 0.576502 / 4.805227 (-4.228725) | 0.131787 / 6.500664 (-6.368878) | 0.060038 / 0.075469 (-0.015431) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.272225 / 1.841788 (-0.569563) | 19.373635 / 8.074308 (11.299327) | 14.167831 / 10.191392 (3.976439) | 0.166336 / 0.680424 (-0.514088) | 0.018420 / 0.534201 (-0.515781) | 0.387878 / 0.579283 (-0.191405) | 0.413105 / 0.434364 (-0.021259) | 0.458618 / 0.540337 (-0.081720) | 0.639031 / 1.386936 (-0.747905) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007122 / 0.011353 (-0.004230) | 0.004193 / 0.011008 (-0.006815) | 0.066194 / 0.038508 (0.027686) | 0.077775 / 0.023109 (0.054666) | 0.349780 / 0.275898 (0.073882) | 0.383417 / 0.323480 (0.059937) | 0.006416 / 0.007986 (-0.001570) | 0.003651 / 0.004328 (-0.000677) | 0.064837 / 0.004250 (0.060587) | 0.058012 / 0.037052 (0.020959) | 0.351085 / 0.258489 (0.092596) | 0.387302 / 0.293841 (0.093462) | 0.032447 / 0.128546 (-0.096099) | 0.008636 / 0.075646 (-0.067011) | 0.071962 / 0.419271 (-0.347309) | 0.047839 / 0.043533 (0.004306) | 0.349508 / 0.255139 (0.094369) | 0.361892 / 0.283200 (0.078693) | 0.024129 / 0.141683 (-0.117554) | 1.523828 / 1.452155 (0.071673) | 1.607371 / 1.492716 (0.114655) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.245928 / 0.018006 (0.227922) | 0.567708 / 0.000490 (0.567218) | 0.003789 / 0.000200 (0.003589) | 0.000092 / 0.000054 (0.000037) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034107 / 0.037411 (-0.003304) | 0.092539 / 0.014526 (0.078014) | 0.110735 / 0.176557 (-0.065821) | 0.163251 / 0.737135 (-0.573884) | 0.110353 / 0.296338 (-0.185985) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.399992 / 0.215209 (0.184783) | 3.976526 / 2.077655 (1.898872) | 2.056182 / 1.504120 (0.552062) | 1.856624 / 1.541195 (0.315429) | 1.941540 / 1.468490 (0.473050) | 0.484662 / 4.584777 (-4.100115) | 3.548228 / 3.745712 (-0.197484) | 3.352900 / 5.269862 (-1.916962) | 2.056310 / 4.565676 (-2.509366) | 0.056952 / 0.424275 (-0.367323) | 0.007284 / 0.007607 (-0.000323) | 0.473749 / 0.226044 (0.247704) | 4.736510 / 2.268929 (2.467581) | 2.570711 / 55.444624 (-52.873913) | 2.204237 / 6.876477 (-4.672239) | 2.438512 / 2.142072 (0.296439) | 0.575542 / 4.805227 (-4.229685) | 0.129260 / 6.500664 (-6.371404) | 0.057704 / 0.075469 (-0.017765) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.316659 / 1.841788 (-0.525128) | 20.103340 / 8.074308 (12.029032) | 14.488385 / 10.191392 (4.296993) | 0.171841 / 0.680424 (-0.508583) | 0.020148 / 0.534201 (-0.514053) | 0.398456 / 0.579283 (-0.180828) | 0.443516 / 0.434364 (0.009152) | 0.479597 / 0.540337 (-0.060741) | 0.643665 / 1.386936 (-0.743271) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#370be814b0c18769ea8e699e3647fadcf431e6df \"CML watermark\")\n" ]
2023-11-02T10:25:10
2023-11-02T15:24:28
2023-11-02T15:15:44
MEMBER
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6378", "html_url": "https://github.com/huggingface/datasets/pull/6378", "diff_url": "https://github.com/huggingface/datasets/pull/6378.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6378.patch", "merged_at": "2023-11-02T15:15:44" }
Support `pyarrow` 14.0.0. Fix #6377 and fix #6374 (root cause). This fix is analog to a previous one: - #6175
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6378/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6378/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6377
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6377/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6377/comments
https://api.github.com/repos/huggingface/datasets/issues/6377/events
https://github.com/huggingface/datasets/issues/6377
1,973,937,612
I_kwDODunzps51p-XM
6,377
Support pyarrow 14.0.0
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[]
closed
false
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[ { "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false } ]
[]
2023-11-02T10:22:08
2023-11-02T15:15:45
2023-11-02T15:15:45
MEMBER
null
null
null
Support pyarrow 14.0.0 by fixing the root cause of: - #6374 and revert: - #6375
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6377/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6377/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6376
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6376/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6376/comments
https://api.github.com/repos/huggingface/datasets/issues/6376/events
https://github.com/huggingface/datasets/issues/6376
1,973,927,468
I_kwDODunzps51p74s
6,376
Caching problem when deleting a dataset
{ "login": "clefourrier", "id": 22726840, "node_id": "MDQ6VXNlcjIyNzI2ODQw", "avatar_url": "https://avatars.githubusercontent.com/u/22726840?v=4", "gravatar_id": "", "url": "https://api.github.com/users/clefourrier", "html_url": "https://github.com/clefourrier", "followers_url": "https://api.github.com/users/clefourrier/followers", "following_url": "https://api.github.com/users/clefourrier/following{/other_user}", "gists_url": "https://api.github.com/users/clefourrier/gists{/gist_id}", "starred_url": "https://api.github.com/users/clefourrier/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/clefourrier/subscriptions", "organizations_url": "https://api.github.com/users/clefourrier/orgs", "repos_url": "https://api.github.com/users/clefourrier/repos", "events_url": "https://api.github.com/users/clefourrier/events{/privacy}", "received_events_url": "https://api.github.com/users/clefourrier/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "Thanks for reporting! Can you also share the error message printed in step 5?", "I did not store it at the time but I'll try to re-do a mwe next week to get it again", "I haven't managed to reproduce this issue using a [notebook](https://colab.research.google.com/drive/1m6eduYun7pFTkigrCJAFgw0BghlbvXIL?usp=sharing) that follows the steps to reproduce the bug. So, I'm closing it.\r\n\r\nBut feel free to re-open it if you have a better reproducer." ]
2023-11-02T10:15:58
2023-12-04T16:53:34
2023-12-04T16:53:33
MEMBER
null
null
null
### Describe the bug Pushing a dataset with n + m features to a repo which was deleted, but contained n features, will fail. ### Steps to reproduce the bug 1. Create a dataset with n features per row 2. `dataset.push_to_hub(YOUR_PATH, SPLIT, token=TOKEN)` 3. Go on the hub, delete the repo at `YOUR_PATH` 4. Update your local dataset to have n + m features per row 5. `dataset.push_to_hub(YOUR_PATH, SPLIT, token=TOKEN)` will fail because of a mismatch in features number ### Expected behavior Step 5 should work or display a message to indicate the cache has not been cleared ### Environment info - `datasets` version: 2.12.0 - Platform: Linux-5.15.0-88-generic-x86_64-with-glibc2.31 - Python version: 3.10.10 - Huggingface_hub version: 0.16.4 - PyArrow version: 11.0.0 - Pandas version: 2.0.0
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6376/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6376/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6375
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6375/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6375/comments
https://api.github.com/repos/huggingface/datasets/issues/6375/events
https://github.com/huggingface/datasets/pull/6375
1,973,877,879
PR_kwDODunzps5eacao
6,375
Temporarily pin pyarrow < 14.0.0
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008947 / 0.011353 (-0.002406) | 0.005602 / 0.011008 (-0.005406) | 0.111208 / 0.038508 (0.072700) | 0.082750 / 0.023109 (0.059641) | 0.453277 / 0.275898 (0.177379) | 0.480072 / 0.323480 (0.156592) | 0.005254 / 0.007986 (-0.002731) | 0.005421 / 0.004328 (0.001092) | 0.082899 / 0.004250 (0.078648) | 0.062859 / 0.037052 (0.025807) | 0.466703 / 0.258489 (0.208214) | 0.478241 / 0.293841 (0.184400) | 0.050754 / 0.128546 (-0.077792) | 0.017726 / 0.075646 (-0.057920) | 0.374830 / 0.419271 (-0.044442) | 0.068577 / 0.043533 (0.025044) | 0.453643 / 0.255139 (0.198504) | 0.453736 / 0.283200 (0.170537) | 0.037313 / 0.141683 (-0.104369) | 1.741215 / 1.452155 (0.289060) | 1.862247 / 1.492716 (0.369531) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.314174 / 0.018006 (0.296168) | 0.644439 / 0.000490 (0.643949) | 0.013914 / 0.000200 (0.013715) | 0.000478 / 0.000054 (0.000424) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030462 / 0.037411 (-0.006949) | 0.096789 / 0.014526 (0.082263) | 0.109999 / 0.176557 (-0.066557) | 0.184610 / 0.737135 (-0.552525) | 0.113846 / 0.296338 (-0.182493) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.586508 / 0.215209 (0.371299) | 5.785138 / 2.077655 (3.707484) | 2.578512 / 1.504120 (1.074392) | 2.266981 / 1.541195 (0.725786) | 2.442463 / 1.468490 (0.973973) | 0.880973 / 4.584777 (-3.703804) | 5.410327 / 3.745712 (1.664615) | 4.976842 / 5.269862 (-0.293020) | 3.020535 / 4.565676 (-1.545142) | 0.089640 / 0.424275 (-0.334635) | 0.009126 / 0.007607 (0.001519) | 0.682364 / 0.226044 (0.456319) | 6.840507 / 2.268929 (4.571579) | 3.313314 / 55.444624 (-52.131310) | 2.815313 / 6.876477 (-4.061164) | 2.851787 / 2.142072 (0.709715) | 1.044916 / 4.805227 (-3.760312) | 0.218346 / 6.500664 (-6.282318) | 0.075655 / 0.075469 (0.000186) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.641767 / 1.841788 (-0.200020) | 24.618096 / 8.074308 (16.543788) | 21.557652 / 10.191392 (11.366260) | 0.211622 / 0.680424 (-0.468801) | 0.028775 / 0.534201 (-0.505426) | 0.480469 / 0.579283 (-0.098814) | 0.593311 / 0.434364 (0.158948) | 0.560620 / 0.540337 (0.020283) | 0.827026 / 1.386936 (-0.559910) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009347 / 0.011353 (-0.002006) | 0.005184 / 0.011008 (-0.005824) | 0.078878 / 0.038508 (0.040370) | 0.083067 / 0.023109 (0.059957) | 0.446591 / 0.275898 (0.170693) | 0.512934 / 0.323480 (0.189454) | 0.006614 / 0.007986 (-0.001372) | 0.004477 / 0.004328 (0.000148) | 0.087403 / 0.004250 (0.083153) | 0.060710 / 0.037052 (0.023658) | 0.451811 / 0.258489 (0.193322) | 0.482031 / 0.293841 (0.188190) | 0.051685 / 0.128546 (-0.076862) | 0.013436 / 0.075646 (-0.062210) | 0.109012 / 0.419271 (-0.310259) | 0.059654 / 0.043533 (0.016121) | 0.439041 / 0.255139 (0.183902) | 0.481708 / 0.283200 (0.198508) | 0.037393 / 0.141683 (-0.104290) | 1.761704 / 1.452155 (0.309549) | 1.946711 / 1.492716 (0.453995) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.287981 / 0.018006 (0.269975) | 0.610219 / 0.000490 (0.609729) | 0.006733 / 0.000200 (0.006533) | 0.000128 / 0.000054 (0.000074) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.038999 / 0.037411 (0.001588) | 0.100613 / 0.014526 (0.086087) | 0.126445 / 0.176557 (-0.050111) | 0.187596 / 0.737135 (-0.549540) | 0.122130 / 0.296338 (-0.174208) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.647686 / 0.215209 (0.432477) | 6.176079 / 2.077655 (4.098424) | 2.800232 / 1.504120 (1.296112) | 2.434625 / 1.541195 (0.893430) | 2.460646 / 1.468490 (0.992155) | 0.923736 / 4.584777 (-3.661041) | 5.480197 / 3.745712 (1.734485) | 4.849250 / 5.269862 (-0.420612) | 3.031576 / 4.565676 (-1.534101) | 0.102525 / 0.424275 (-0.321750) | 0.008688 / 0.007607 (0.001081) | 0.766097 / 0.226044 (0.540052) | 7.626822 / 2.268929 (5.357893) | 3.719155 / 55.444624 (-51.725469) | 2.967121 / 6.876477 (-3.909356) | 3.182464 / 2.142072 (1.040392) | 1.018315 / 4.805227 (-3.786912) | 0.211300 / 6.500664 (-6.289364) | 0.083055 / 0.075469 (0.007586) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.731619 / 1.841788 (-0.110168) | 25.315978 / 8.074308 (17.241669) | 22.736306 / 10.191392 (12.544914) | 0.270330 / 0.680424 (-0.410094) | 0.034790 / 0.534201 (-0.499411) | 0.488675 / 0.579283 (-0.090608) | 0.603426 / 0.434364 (0.169062) | 0.572547 / 0.540337 (0.032210) | 0.825719 / 1.386936 (-0.561217) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#1eaa85a4ad79aa0e411218d61a8894cc14a75fa0 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008992 / 0.011353 (-0.002360) | 0.005086 / 0.011008 (-0.005923) | 0.107400 / 0.038508 (0.068892) | 0.091894 / 0.023109 (0.068785) | 0.382347 / 0.275898 (0.106449) | 0.446581 / 0.323480 (0.123101) | 0.005179 / 0.007986 (-0.002807) | 0.006356 / 0.004328 (0.002028) | 0.084979 / 0.004250 (0.080729) | 0.060647 / 0.037052 (0.023594) | 0.385940 / 0.258489 (0.127451) | 0.444817 / 0.293841 (0.150976) | 0.049484 / 0.128546 (-0.079062) | 0.014173 / 0.075646 (-0.061473) | 0.345704 / 0.419271 (-0.073567) | 0.068082 / 0.043533 (0.024550) | 0.377170 / 0.255139 (0.122031) | 0.411816 / 0.283200 (0.128616) | 0.043049 / 0.141683 (-0.098633) | 1.681499 / 1.452155 (0.229344) | 1.805428 / 1.492716 (0.312712) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.323170 / 0.018006 (0.305164) | 0.693845 / 0.000490 (0.693355) | 0.015499 / 0.000200 (0.015299) | 0.000603 / 0.000054 (0.000548) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031629 / 0.037411 (-0.005783) | 0.093511 / 0.014526 (0.078985) | 0.112400 / 0.176557 (-0.064157) | 0.173731 / 0.737135 (-0.563405) | 0.116013 / 0.296338 (-0.180325) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.576724 / 0.215209 (0.361515) | 5.775055 / 2.077655 (3.697400) | 2.755869 / 1.504120 (1.251749) | 2.430253 / 1.541195 (0.889058) | 2.479629 / 1.468490 (1.011139) | 0.841472 / 4.584777 (-3.743305) | 5.120536 / 3.745712 (1.374824) | 4.813281 / 5.269862 (-0.456581) | 3.054617 / 4.565676 (-1.511059) | 0.091459 / 0.424275 (-0.332816) | 0.009072 / 0.007607 (0.001465) | 0.742674 / 0.226044 (0.516629) | 7.137861 / 2.268929 (4.868933) | 3.497568 / 55.444624 (-51.947056) | 2.814658 / 6.876477 (-4.061819) | 2.934415 / 2.142072 (0.792343) | 0.970855 / 4.805227 (-3.834372) | 0.213366 / 6.500664 (-6.287299) | 0.078763 / 0.075469 (0.003293) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.584716 / 1.841788 (-0.257072) | 24.098173 / 8.074308 (16.023865) | 20.746352 / 10.191392 (10.554960) | 0.215313 / 0.680424 (-0.465111) | 0.029538 / 0.534201 (-0.504663) | 0.448672 / 0.579283 (-0.130611) | 0.580023 / 0.434364 (0.145659) | 0.537867 / 0.540337 (-0.002471) | 0.804622 / 1.386936 (-0.582314) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008965 / 0.011353 (-0.002388) | 0.005544 / 0.011008 (-0.005464) | 0.076806 / 0.038508 (0.038298) | 0.085333 / 0.023109 (0.062224) | 0.509974 / 0.275898 (0.234076) | 0.511548 / 0.323480 (0.188068) | 0.007136 / 0.007986 (-0.000849) | 0.004491 / 0.004328 (0.000163) | 0.086687 / 0.004250 (0.082437) | 0.066539 / 0.037052 (0.029486) | 0.483663 / 0.258489 (0.225174) | 0.529480 / 0.293841 (0.235639) | 0.046296 / 0.128546 (-0.082250) | 0.014736 / 0.075646 (-0.060910) | 0.088261 / 0.419271 (-0.331010) | 0.056753 / 0.043533 (0.013220) | 0.511698 / 0.255139 (0.256559) | 0.497956 / 0.283200 (0.214756) | 0.034753 / 0.141683 (-0.106930) | 1.828354 / 1.452155 (0.376199) | 1.799211 / 1.492716 (0.306494) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.389652 / 0.018006 (0.371645) | 0.602522 / 0.000490 (0.602033) | 0.068363 / 0.000200 (0.068163) | 0.000493 / 0.000054 (0.000439) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.036431 / 0.037411 (-0.000980) | 0.102162 / 0.014526 (0.087636) | 0.122466 / 0.176557 (-0.054091) | 0.181001 / 0.737135 (-0.556134) | 0.125743 / 0.296338 (-0.170596) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.583847 / 0.215209 (0.368638) | 5.913008 / 2.077655 (3.835354) | 2.716088 / 1.504120 (1.211968) | 2.328631 / 1.541195 (0.787437) | 2.459953 / 1.468490 (0.991463) | 0.792829 / 4.584777 (-3.791948) | 5.183965 / 3.745712 (1.438253) | 4.508264 / 5.269862 (-0.761598) | 2.855444 / 4.565676 (-1.710232) | 0.090704 / 0.424275 (-0.333571) | 0.009303 / 0.007607 (0.001696) | 0.694303 / 0.226044 (0.468258) | 6.951876 / 2.268929 (4.682947) | 3.418244 / 55.444624 (-52.026381) | 2.799743 / 6.876477 (-4.076734) | 3.043657 / 2.142072 (0.901584) | 0.921537 / 4.805227 (-3.883691) | 0.191774 / 6.500664 (-6.308890) | 0.068602 / 0.075469 (-0.006867) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.624842 / 1.841788 (-0.216946) | 24.570622 / 8.074308 (16.496314) | 21.207566 / 10.191392 (11.016174) | 0.217734 / 0.680424 (-0.462689) | 0.033109 / 0.534201 (-0.501091) | 0.451651 / 0.579283 (-0.127632) | 0.590890 / 0.434364 (0.156526) | 0.546195 / 0.540337 (0.005858) | 0.730298 / 1.386936 (-0.656638) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#f6bdecff73303cf97f279a4e36622faf53133f9c \"CML watermark\")\n" ]
2023-11-02T09:48:58
2023-11-02T10:22:33
2023-11-02T10:11:19
MEMBER
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6375", "html_url": "https://github.com/huggingface/datasets/pull/6375", "diff_url": "https://github.com/huggingface/datasets/pull/6375.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6375.patch", "merged_at": "2023-11-02T10:11:19" }
Temporarily pin `pyarrow` < 14.0.0 until permanent solution is found. Hot fix #6374.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6375/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6375/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6374
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6374/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6374/comments
https://api.github.com/repos/huggingface/datasets/issues/6374/events
https://github.com/huggingface/datasets/issues/6374
1,973,857,428
I_kwDODunzps51pqyU
6,374
CI is broken: TypeError: Couldn't cast array
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[]
closed
false
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[ { "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false } ]
[]
2023-11-02T09:37:06
2023-11-02T10:11:20
2023-11-02T10:11:20
MEMBER
null
null
null
See: https://github.com/huggingface/datasets/actions/runs/6730567226/job/18293518039 ``` FAILED tests/test_table.py::test_cast_sliced_fixed_size_array_to_features - TypeError: Couldn't cast array of type fixed_size_list<item: int32>[3] to Sequence(feature=Value(dtype='int64', id=None), length=3, id=None) ```
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6374/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6374/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6373
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6373/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6373/comments
https://api.github.com/repos/huggingface/datasets/issues/6373/events
https://github.com/huggingface/datasets/pull/6373
1,973,349,695
PR_kwDODunzps5eYsZc
6,373
Fix typo in `Dataset.map` docstring
{ "login": "bryant1410", "id": 3905501, "node_id": "MDQ6VXNlcjM5MDU1MDE=", "avatar_url": "https://avatars.githubusercontent.com/u/3905501?v=4", "gravatar_id": "", "url": "https://api.github.com/users/bryant1410", "html_url": "https://github.com/bryant1410", "followers_url": "https://api.github.com/users/bryant1410/followers", "following_url": "https://api.github.com/users/bryant1410/following{/other_user}", "gists_url": "https://api.github.com/users/bryant1410/gists{/gist_id}", "starred_url": "https://api.github.com/users/bryant1410/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/bryant1410/subscriptions", "organizations_url": "https://api.github.com/users/bryant1410/orgs", "repos_url": "https://api.github.com/users/bryant1410/repos", "events_url": "https://api.github.com/users/bryant1410/events{/privacy}", "received_events_url": "https://api.github.com/users/bryant1410/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006709 / 0.011353 (-0.004643) | 0.004102 / 0.011008 (-0.006906) | 0.084449 / 0.038508 (0.045941) | 0.076078 / 0.023109 (0.052969) | 0.319831 / 0.275898 (0.043933) | 0.359918 / 0.323480 (0.036438) | 0.006092 / 0.007986 (-0.001894) | 0.003402 / 0.004328 (-0.000926) | 0.064715 / 0.004250 (0.060465) | 0.054541 / 0.037052 (0.017488) | 0.330394 / 0.258489 (0.071905) | 0.366048 / 0.293841 (0.072207) | 0.031594 / 0.128546 (-0.096952) | 0.008591 / 0.075646 (-0.067056) | 0.292983 / 0.419271 (-0.126288) | 0.052986 / 0.043533 (0.009453) | 0.322253 / 0.255139 (0.067114) | 0.340082 / 0.283200 (0.056882) | 0.023390 / 0.141683 (-0.118293) | 1.459038 / 1.452155 (0.006883) | 1.536256 / 1.492716 (0.043540) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.233527 / 0.018006 (0.215521) | 0.459145 / 0.000490 (0.458655) | 0.007471 / 0.000200 (0.007271) | 0.000281 / 0.000054 (0.000227) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028158 / 0.037411 (-0.009253) | 0.083079 / 0.014526 (0.068553) | 0.097159 / 0.176557 (-0.079397) | 0.151927 / 0.737135 (-0.585208) | 0.098024 / 0.296338 (-0.198314) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.386882 / 0.215209 (0.171673) | 3.849635 / 2.077655 (1.771981) | 1.832885 / 1.504120 (0.328765) | 1.668356 / 1.541195 (0.127162) | 1.745066 / 1.468490 (0.276576) | 0.484476 / 4.584777 (-4.100301) | 3.547604 / 3.745712 (-0.198108) | 3.480338 / 5.269862 (-1.789523) | 2.066837 / 4.565676 (-2.498840) | 0.056755 / 0.424275 (-0.367520) | 0.007747 / 0.007607 (0.000140) | 0.467999 / 0.226044 (0.241955) | 4.678875 / 2.268929 (2.409946) | 2.341930 / 55.444624 (-53.102695) | 1.985632 / 6.876477 (-4.890844) | 2.046998 / 2.142072 (-0.095074) | 0.579860 / 4.805227 (-4.225367) | 0.131488 / 6.500664 (-6.369176) | 0.060193 / 0.075469 (-0.015276) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.249656 / 1.841788 (-0.592132) | 19.079517 / 8.074308 (11.005209) | 14.328827 / 10.191392 (4.137435) | 0.173707 / 0.680424 (-0.506717) | 0.018250 / 0.534201 (-0.515951) | 0.392225 / 0.579283 (-0.187058) | 0.413920 / 0.434364 (-0.020444) | 0.464124 / 0.540337 (-0.076214) | 0.640283 / 1.386936 (-0.746653) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006859 / 0.011353 (-0.004494) | 0.004068 / 0.011008 (-0.006940) | 0.063936 / 0.038508 (0.025428) | 0.077187 / 0.023109 (0.054078) | 0.365098 / 0.275898 (0.089200) | 0.391003 / 0.323480 (0.067523) | 0.005571 / 0.007986 (-0.002415) | 0.003425 / 0.004328 (-0.000904) | 0.063220 / 0.004250 (0.058970) | 0.056964 / 0.037052 (0.019912) | 0.367793 / 0.258489 (0.109304) | 0.398776 / 0.293841 (0.104935) | 0.033182 / 0.128546 (-0.095364) | 0.008601 / 0.075646 (-0.067045) | 0.070276 / 0.419271 (-0.348996) | 0.048383 / 0.043533 (0.004850) | 0.360414 / 0.255139 (0.105275) | 0.368171 / 0.283200 (0.084971) | 0.023114 / 0.141683 (-0.118569) | 1.503503 / 1.452155 (0.051349) | 1.567279 / 1.492716 (0.074562) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.224296 / 0.018006 (0.206290) | 0.455138 / 0.000490 (0.454648) | 0.004014 / 0.000200 (0.003814) | 0.000104 / 0.000054 (0.000050) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032337 / 0.037411 (-0.005074) | 0.094385 / 0.014526 (0.079859) | 0.109870 / 0.176557 (-0.066687) | 0.156978 / 0.737135 (-0.580157) | 0.107559 / 0.296338 (-0.188780) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.427409 / 0.215209 (0.212200) | 4.261772 / 2.077655 (2.184117) | 2.276106 / 1.504120 (0.771986) | 2.115232 / 1.541195 (0.574038) | 2.192048 / 1.468490 (0.723558) | 0.488459 / 4.584777 (-4.096318) | 3.675463 / 3.745712 (-0.070249) | 3.322475 / 5.269862 (-1.947387) | 2.072253 / 4.565676 (-2.493424) | 0.058259 / 0.424275 (-0.366017) | 0.007319 / 0.007607 (-0.000288) | 0.499513 / 0.226044 (0.273469) | 4.994774 / 2.268929 (2.725845) | 2.760927 / 55.444624 (-52.683697) | 2.391947 / 6.876477 (-4.484530) | 2.600557 / 2.142072 (0.458484) | 0.587597 / 4.805227 (-4.217630) | 0.131444 / 6.500664 (-6.369220) | 0.057334 / 0.075469 (-0.018135) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.354636 / 1.841788 (-0.487152) | 19.685735 / 8.074308 (11.611427) | 14.295920 / 10.191392 (4.104528) | 0.171921 / 0.680424 (-0.508503) | 0.019926 / 0.534201 (-0.514274) | 0.395216 / 0.579283 (-0.184068) | 0.432791 / 0.434364 (-0.001573) | 0.473055 / 0.540337 (-0.067282) | 0.638633 / 1.386936 (-0.748303) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#fad7c899ec9218a717311223aa6ef5c09a6c7885 \"CML watermark\")\n" ]
2023-11-02T01:36:49
2023-11-02T15:18:22
2023-11-02T10:11:38
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6373", "html_url": "https://github.com/huggingface/datasets/pull/6373", "diff_url": "https://github.com/huggingface/datasets/pull/6373.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6373.patch", "merged_at": "2023-11-02T10:11:38" }
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6373/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6373/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6372
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6372/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6372/comments
https://api.github.com/repos/huggingface/datasets/issues/6372/events
https://github.com/huggingface/datasets/pull/6372
1,972,837,794
PR_kwDODunzps5eW9kO
6,372
do not try to download from HF GCS for generator
{ "login": "yundai424", "id": 43726198, "node_id": "MDQ6VXNlcjQzNzI2MTk4", "avatar_url": "https://avatars.githubusercontent.com/u/43726198?v=4", "gravatar_id": "", "url": "https://api.github.com/users/yundai424", "html_url": "https://github.com/yundai424", "followers_url": "https://api.github.com/users/yundai424/followers", "following_url": "https://api.github.com/users/yundai424/following{/other_user}", "gists_url": "https://api.github.com/users/yundai424/gists{/gist_id}", "starred_url": "https://api.github.com/users/yundai424/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/yundai424/subscriptions", "organizations_url": "https://api.github.com/users/yundai424/orgs", "repos_url": "https://api.github.com/users/yundai424/repos", "events_url": "https://api.github.com/users/yundai424/events{/privacy}", "received_events_url": "https://api.github.com/users/yundai424/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007617 / 0.011353 (-0.003735) | 0.005371 / 0.011008 (-0.005638) | 0.092110 / 0.038508 (0.053602) | 0.070654 / 0.023109 (0.047544) | 0.362501 / 0.275898 (0.086603) | 0.412835 / 0.323480 (0.089355) | 0.006752 / 0.007986 (-0.001234) | 0.003752 / 0.004328 (-0.000576) | 0.075644 / 0.004250 (0.071394) | 0.055666 / 0.037052 (0.018614) | 0.355906 / 0.258489 (0.097417) | 0.405078 / 0.293841 (0.111237) | 0.045767 / 0.128546 (-0.082779) | 0.013778 / 0.075646 (-0.061868) | 0.324696 / 0.419271 (-0.094575) | 0.062200 / 0.043533 (0.018667) | 0.359571 / 0.255139 (0.104432) | 0.387274 / 0.283200 (0.104075) | 0.035323 / 0.141683 (-0.106360) | 1.586294 / 1.452155 (0.134139) | 1.707564 / 1.492716 (0.214847) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.303940 / 0.018006 (0.285934) | 0.583349 / 0.000490 (0.582859) | 0.014845 / 0.000200 (0.014645) | 0.000698 / 0.000054 (0.000643) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028994 / 0.037411 (-0.008417) | 0.085555 / 0.014526 (0.071029) | 0.097856 / 0.176557 (-0.078701) | 0.161480 / 0.737135 (-0.575655) | 0.098573 / 0.296338 (-0.197766) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.591294 / 0.215209 (0.376085) | 5.751350 / 2.077655 (3.673695) | 2.241620 / 1.504120 (0.737500) | 1.991083 / 1.541195 (0.449888) | 2.006711 / 1.468490 (0.538221) | 0.832339 / 4.584777 (-3.752438) | 5.213808 / 3.745712 (1.468095) | 4.650355 / 5.269862 (-0.619506) | 2.860494 / 4.565676 (-1.705182) | 0.093090 / 0.424275 (-0.331185) | 0.009740 / 0.007607 (0.002133) | 0.693509 / 0.226044 (0.467464) | 6.828735 / 2.268929 (4.559807) | 2.967763 / 55.444624 (-52.476862) | 2.311461 / 6.876477 (-4.565016) | 2.400051 / 2.142072 (0.257979) | 0.914753 / 4.805227 (-3.890474) | 0.202804 / 6.500664 (-6.297860) | 0.076905 / 0.075469 (0.001436) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.576424 / 1.841788 (-0.265363) | 22.963472 / 8.074308 (14.889164) | 19.948105 / 10.191392 (9.756713) | 0.228982 / 0.680424 (-0.451442) | 0.029038 / 0.534201 (-0.505163) | 0.477715 / 0.579283 (-0.101568) | 0.554924 / 0.434364 (0.120560) | 0.532118 / 0.540337 (-0.008219) | 0.775096 / 1.386936 (-0.611840) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009127 / 0.011353 (-0.002226) | 0.004978 / 0.011008 (-0.006030) | 0.084166 / 0.038508 (0.045658) | 0.083391 / 0.023109 (0.060282) | 0.420760 / 0.275898 (0.144862) | 0.459072 / 0.323480 (0.135592) | 0.007102 / 0.007986 (-0.000883) | 0.004175 / 0.004328 (-0.000154) | 0.082922 / 0.004250 (0.078672) | 0.059010 / 0.037052 (0.021957) | 0.416959 / 0.258489 (0.158470) | 0.472220 / 0.293841 (0.178379) | 0.049999 / 0.128546 (-0.078547) | 0.014126 / 0.075646 (-0.061520) | 0.096894 / 0.419271 (-0.322378) | 0.057920 / 0.043533 (0.014387) | 0.405779 / 0.255139 (0.150640) | 0.464286 / 0.283200 (0.181087) | 0.034957 / 0.141683 (-0.106726) | 1.637921 / 1.452155 (0.185767) | 1.768231 / 1.492716 (0.275515) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.354875 / 0.018006 (0.336868) | 0.554667 / 0.000490 (0.554177) | 0.074127 / 0.000200 (0.073927) | 0.000411 / 0.000054 (0.000357) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027681 / 0.037411 (-0.009730) | 0.087746 / 0.014526 (0.073220) | 0.093714 / 0.176557 (-0.082843) | 0.145380 / 0.737135 (-0.591755) | 0.095686 / 0.296338 (-0.200652) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.522079 / 0.215209 (0.306870) | 5.197366 / 2.077655 (3.119711) | 2.300744 / 1.504120 (0.796624) | 2.056846 / 1.541195 (0.515652) | 2.009897 / 1.468490 (0.541407) | 0.813025 / 4.584777 (-3.771751) | 5.177732 / 3.745712 (1.432020) | 4.076749 / 5.269862 (-1.193112) | 2.545588 / 4.565676 (-2.020088) | 0.083507 / 0.424275 (-0.340769) | 0.007011 / 0.007607 (-0.000596) | 0.598820 / 0.226044 (0.372776) | 6.203730 / 2.268929 (3.934801) | 2.945385 / 55.444624 (-52.499239) | 2.304849 / 6.876477 (-4.571628) | 2.599035 / 2.142072 (0.456962) | 1.002721 / 4.805227 (-3.802506) | 0.191781 / 6.500664 (-6.308883) | 0.064178 / 0.075469 (-0.011292) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.549560 / 1.841788 (-0.292228) | 22.395727 / 8.074308 (14.321418) | 20.537895 / 10.191392 (10.346503) | 0.246542 / 0.680424 (-0.433882) | 0.031673 / 0.534201 (-0.502528) | 0.442490 / 0.579283 (-0.136793) | 0.589838 / 0.434364 (0.155474) | 0.535201 / 0.540337 (-0.005136) | 0.733660 / 1.386936 (-0.653276) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#e742718e504a372cce0b1f87c2cac65eb8c35792 \"CML watermark\")\n" ]
2023-11-01T17:57:11
2023-11-02T16:02:52
2023-11-02T15:52:09
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6372", "html_url": "https://github.com/huggingface/datasets/pull/6372", "diff_url": "https://github.com/huggingface/datasets/pull/6372.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6372.patch", "merged_at": "2023-11-02T15:52:09" }
attempt to fix https://github.com/huggingface/datasets/issues/6371
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6372/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6372/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6371
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6371/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6371/comments
https://api.github.com/repos/huggingface/datasets/issues/6371/events
https://github.com/huggingface/datasets/issues/6371
1,972,807,579
I_kwDODunzps51lqeb
6,371
`Dataset.from_generator` should not try to download from HF GCS
{ "login": "yundai424", "id": 43726198, "node_id": "MDQ6VXNlcjQzNzI2MTk4", "avatar_url": "https://avatars.githubusercontent.com/u/43726198?v=4", "gravatar_id": "", "url": "https://api.github.com/users/yundai424", "html_url": "https://github.com/yundai424", "followers_url": "https://api.github.com/users/yundai424/followers", "following_url": "https://api.github.com/users/yundai424/following{/other_user}", "gists_url": "https://api.github.com/users/yundai424/gists{/gist_id}", "starred_url": "https://api.github.com/users/yundai424/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/yundai424/subscriptions", "organizations_url": "https://api.github.com/users/yundai424/orgs", "repos_url": "https://api.github.com/users/yundai424/repos", "events_url": "https://api.github.com/users/yundai424/events{/privacy}", "received_events_url": "https://api.github.com/users/yundai424/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "Indeed, setting `try_from_gcs` to `False` makes sense for `from_generator`.\r\n\r\nWe plan to deprecate and remove `try_from_hf_gcs` soon, as we can use Hub for file hosting now, but this is a good temporary fix.\r\n" ]
2023-11-01T17:36:17
2023-11-02T15:52:10
2023-11-02T15:52:10
CONTRIBUTOR
null
null
null
### Describe the bug When using [`Dataset.from_generator`](https://github.com/huggingface/datasets/blob/c9c1166e1cf81d38534020f9c167b326585339e5/src/datasets/arrow_dataset.py#L1072) with `streaming=False`, the internal logic will call [`download_and_prepare`](https://github.com/huggingface/datasets/blob/main/src/datasets/io/generator.py#L47) which will attempt to download from HF GCS which is redundant, because user has already provided the generator from which the data should be drawn. If someone attempts to call `Dataset.from_generator` from an environment that doesn't have external internet access (for example internal production machine) and doesn't set `HF_DATASETS_OFFLINE=1`, this will result in process being stuck at building connection. ### Steps to reproduce the bug ```python import datasets def gen(): for _ in range(100): yield {"text": "dummy text"} dataset = datasets.Dataset.from_generator(gen) ``` A minimum example executed on any environment that doesn't have access to HF GCS can result in the error ### Expected behavior `try_from_hf_gcs` should be set to False here https://github.com/huggingface/datasets/blob/c9c1166e1cf81d38534020f9c167b326585339e5/src/datasets/io/generator.py#L51 ### Environment info - `datasets` version: 2.14.4 - Platform: Linux-3.10.0-1160.90.1.el7.x86_64-x86_64-with-glibc2.17 - Python version: 3.10.12 - Huggingface_hub version: 0.17.1 - PyArrow version: 12.0.1 - Pandas version: 2.0.3
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6371/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6371/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6370
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6370/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6370/comments
https://api.github.com/repos/huggingface/datasets/issues/6370/events
https://github.com/huggingface/datasets/issues/6370
1,972,073,909
I_kwDODunzps51i3W1
6,370
TensorDataset format does not work with Trainer from transformers
{ "login": "jinzzasol", "id": 49014051, "node_id": "MDQ6VXNlcjQ5MDE0MDUx", "avatar_url": "https://avatars.githubusercontent.com/u/49014051?v=4", "gravatar_id": "", "url": "https://api.github.com/users/jinzzasol", "html_url": "https://github.com/jinzzasol", "followers_url": "https://api.github.com/users/jinzzasol/followers", "following_url": "https://api.github.com/users/jinzzasol/following{/other_user}", "gists_url": "https://api.github.com/users/jinzzasol/gists{/gist_id}", "starred_url": "https://api.github.com/users/jinzzasol/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jinzzasol/subscriptions", "organizations_url": "https://api.github.com/users/jinzzasol/orgs", "repos_url": "https://api.github.com/users/jinzzasol/repos", "events_url": "https://api.github.com/users/jinzzasol/events{/privacy}", "received_events_url": "https://api.github.com/users/jinzzasol/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "I figured it out. I found that `Trainer` does not work with TensorDataset even though the document says it uses it. Instead, I ended up creating a dictionary and converting it to a dataset using `dataset.Dataset.from_dict()`.\r\n\r\nI will leave this post open for a while. If someone knows a better approach, please leave a comment.", "Only issues directly related to the HF datasets library should be reported here. ~So, I'm transferring this issue to the `transformers` repo.~ I'm not a `transformers` maintainer, so GitHub doesn't let me transfer it there :(. This means you need to do it manually." ]
2023-11-01T10:09:54
2023-11-29T16:31:08
2023-11-29T16:31:08
NONE
null
null
null
### Describe the bug The model was built to do fine tunning on BERT model for relation extraction. trainer.train() returns an error message ```TypeError: vars() argument must have __dict__ attribute``` when it has `train_dataset` generated from `torch.utils.data.TensorDataset` However, in the document, the required data format is `torch.utils.data.TensorDataset`. ![image](https://github.com/huggingface/datasets/assets/49014051/36fa34ac-3127-4c64-9580-9ab736136d83) Transformers trainer is supposed to accept the train_dataset in the format of torch.utils.data.TensorDataset, but it returns error message *"TypeError: vars() argument must have __dict__ attribute"* ``` --------------------------------------------------------------------------- TypeError Traceback (most recent call last) <ipython-input-30-5df728c929a2> in <cell line: 1>() ----> 1 trainer.train() 2 trainer.evaluate(test_dataset) 9 frames /usr/local/lib/python3.10/dist-packages/transformers/data/data_collator.py in <listcomp>(.0) 107 108 if not isinstance(features[0], Mapping): --> 109 features = [vars(f) for f in features] 110 first = features[0] 111 batch = {} TypeError: vars() argument must have __dict__ attribute ``` ### Steps to reproduce the bug Create train_dataset using `torch.utils.data.TensorDataset`, for instance, ```train_dataset = torch.utils.data.TensorDataset(train_input_ids, train_attention_masks, train_labels)``` Feed this `train_dataset` to your trainer and run trainer.train ``` trainer = Trainer(model, training_args, train_dataset=train_dataset, eval_dataset=dev_dataset, compute_metrics=compute_metrics, ) ``` ### Expected behavior Trainer should start training ### Environment info It is running on Google Colab - `datasets` version: 2.14.6 - Platform: Linux-5.15.120+-x86_64-with-glibc2.35 - Python version: 3.10.12 - Huggingface_hub version: 0.17.3 - PyArrow version: 9.0.0 - Pandas version: 1.5.3
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6370/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6370/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6369
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6369/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6369/comments
https://api.github.com/repos/huggingface/datasets/issues/6369/events
https://github.com/huggingface/datasets/issues/6369
1,971,794,108
I_kwDODunzps51hzC8
6,369
Multi process map did not load cache file correctly
{ "login": "enze5088", "id": 14285786, "node_id": "MDQ6VXNlcjE0Mjg1Nzg2", "avatar_url": "https://avatars.githubusercontent.com/u/14285786?v=4", "gravatar_id": "", "url": "https://api.github.com/users/enze5088", "html_url": "https://github.com/enze5088", "followers_url": "https://api.github.com/users/enze5088/followers", "following_url": "https://api.github.com/users/enze5088/following{/other_user}", "gists_url": "https://api.github.com/users/enze5088/gists{/gist_id}", "starred_url": "https://api.github.com/users/enze5088/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/enze5088/subscriptions", "organizations_url": "https://api.github.com/users/enze5088/orgs", "repos_url": "https://api.github.com/users/enze5088/repos", "events_url": "https://api.github.com/users/enze5088/events{/privacy}", "received_events_url": "https://api.github.com/users/enze5088/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "The inconsistency may be caused by the usage of \"update_fingerprint\" and setting \"trust_remote_code\" to \"True.\"\r\nWhen the tokenizer employs \"trust_remote_code,\" the behavior of the map function varies with each code execution. Even if the remote code of the tokenizer remains the same, the result of \"asher.hexdigest()\" is found to be inconsistent each time.\r\nThis may result in different processes executing multiple maps\r\n![1698841094290](https://github.com/huggingface/datasets/assets/14285786/21fc3c65-e9fd-4a79-b12e-a1d4b9c6cf32)\r\n![1698841117416](https://github.com/huggingface/datasets/assets/14285786/c3e5a530-54d2-4ae6-b902-ce9f85de373b)\r\n\r\n", "The issue may be related to problems previously discussed in GitHub issues [#3847](https://github.com/huggingface/datasets/issues/3847) and [#6318](https://github.com/huggingface/datasets/pull/6318). \r\nThis arises from the fact that tokenizer.tokens_trie._tokens is an unordered set, leading to varying hash results:\r\n`value = hash_bytes(dumps(tokenizer.tokens_trie._tokens))`\r\nConsequently, this results in different outcomes each time for:\r\n`new_fingerprint = update_fingerprint(datasets._fingerprint, transform, kwargs_for_fingerprint)`\r\n\r\nTo address this issue, it's essential to make `Trie._tokens` a deterministic set while ensuring a consistent order after the final update of `_tokens`.\r\n", "We now sort `set` and `dict` items to make their hashes deterministic (install from `main` with `pip install git+https://github.com/huggingface/datasets` to test this). Consequently, this should also make the `tokenizer.tokens_trie`'s hash deterministic. Feel free to re-open the issue if this is not the case." ]
2023-11-01T06:36:54
2023-11-30T16:04:46
2023-11-30T16:04:45
NONE
null
null
null
### Describe the bug When I was training model on Multiple GPUs by DDP, the dataset is tokenized multiple times after main process. ![1698820541284](https://github.com/huggingface/datasets/assets/14285786/0b2fe054-54d8-4e00-96e6-6ca5b69e662b) ![1698820501568](https://github.com/huggingface/datasets/assets/14285786/dd62bf6f-a58f-41bf-9848-ea4fb3b62b9b) Code is modified from [run_clm.py](https://github.com/huggingface/transformers/blob/7d8ff3629b2725ec43ace99c1a6e87ac1978d433/examples/pytorch/language-modeling/run_clm.py#L484) ### Steps to reproduce the bug ``` block_size = data_args.block_size IGNORE_INDEX = -100 Ignore_Input = False def tokenize_function(examples): sources = [] targets = [] for instruction, inputs, output in zip(examples['instruction'], examples['input'], examples['output']): source = instruction + inputs target = f"{output}{tokenizer.eos_token}" sources.append(source) targets.append(target) tokenized_sources = tokenizer(sources, return_attention_mask=False) tokenized_targets = tokenizer(targets, return_attention_mask=False, add_special_tokens=False ) all_input_ids = [] all_labels = [] for s, t in zip(tokenized_sources['input_ids'], tokenized_targets['input_ids']): if len(s) > block_size and Ignore_Input == False: # print(s) continue input_ids = torch.LongTensor(s + t)[:block_size] if Ignore_Input: labels = torch.LongTensor([IGNORE_INDEX] * len(s) + t)[:block_size] else: labels = input_ids assert len(input_ids) == len(labels) all_input_ids.append(input_ids) all_labels.append(labels) results = { 'input_ids': all_input_ids, 'labels': all_labels, } return results with training_args.main_process_first(desc="dataset map tokenization ", local=False): # print('local_rank',training_args.local_rank) if not data_args.streaming: tokenized_datasets = raw_datasets.map( tokenize_function, batched=True, num_proc=data_args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not data_args.overwrite_cache, desc="Running tokenizer on dataset ", ) else: tokenized_datasets = raw_datasets.map( tokenize_function, batched=True, remove_columns=column_names, desc="Running tokenizer on dataset " ) ``` ### Expected behavior This code should only tokenize the dataset in the main process, and the other processes load the dataset after waiting ### Environment info transformers == 4.34.1 datasets == 2.14.5
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6369/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6369/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6368
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6368/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6368/comments
https://api.github.com/repos/huggingface/datasets/issues/6368/events
https://github.com/huggingface/datasets/pull/6368
1,971,193,692
PR_kwDODunzps5eRZwQ
6,368
Fix python formatting for complex types in `format_table`
{ "login": "mariosasko", "id": 47462742, "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "gravatar_id": "", "url": "https://api.github.com/users/mariosasko", "html_url": "https://github.com/mariosasko", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "repos_url": "https://api.github.com/users/mariosasko/repos", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008047 / 0.011353 (-0.003305) | 0.004649 / 0.011008 (-0.006359) | 0.100275 / 0.038508 (0.061767) | 0.089551 / 0.023109 (0.066442) | 0.369831 / 0.275898 (0.093933) | 0.431023 / 0.323480 (0.107544) | 0.004721 / 0.007986 (-0.003265) | 0.004904 / 0.004328 (0.000575) | 0.076345 / 0.004250 (0.072095) | 0.066902 / 0.037052 (0.029849) | 0.377208 / 0.258489 (0.118718) | 0.430989 / 0.293841 (0.137148) | 0.036260 / 0.128546 (-0.092287) | 0.010158 / 0.075646 (-0.065488) | 0.344923 / 0.419271 (-0.074349) | 0.062504 / 0.043533 (0.018971) | 0.373038 / 0.255139 (0.117899) | 0.399918 / 0.283200 (0.116718) | 0.028257 / 0.141683 (-0.113425) | 1.782546 / 1.452155 (0.330391) | 1.920010 / 1.492716 (0.427293) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.277670 / 0.018006 (0.259664) | 0.500543 / 0.000490 (0.500053) | 0.018256 / 0.000200 (0.018056) | 0.000343 / 0.000054 (0.000289) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033337 / 0.037411 (-0.004074) | 0.100542 / 0.014526 (0.086017) | 0.114903 / 0.176557 (-0.061654) | 0.181267 / 0.737135 (-0.555868) | 0.115019 / 0.296338 (-0.181320) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.457333 / 0.215209 (0.242124) | 4.542082 / 2.077655 (2.464427) | 2.231817 / 1.504120 (0.727697) | 2.028523 / 1.541195 (0.487328) | 2.110715 / 1.468490 (0.642225) | 0.583162 / 4.584777 (-4.001615) | 4.179413 / 3.745712 (0.433701) | 4.145620 / 5.269862 (-1.124241) | 2.452458 / 4.565676 (-2.113218) | 0.068229 / 0.424275 (-0.356046) | 0.009027 / 0.007607 (0.001420) | 0.549002 / 0.226044 (0.322957) | 5.485707 / 2.268929 (3.216779) | 2.789467 / 55.444624 (-52.655157) | 2.397499 / 6.876477 (-4.478977) | 2.492083 / 2.142072 (0.350010) | 0.692445 / 4.805227 (-4.112782) | 0.160527 / 6.500664 (-6.340137) | 0.071597 / 0.075469 (-0.003872) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.486043 / 1.841788 (-0.355744) | 22.377207 / 8.074308 (14.302899) | 16.443719 / 10.191392 (6.252327) | 0.170740 / 0.680424 (-0.509684) | 0.021511 / 0.534201 (-0.512690) | 0.470798 / 0.579283 (-0.108485) | 0.511851 / 0.434364 (0.077487) | 0.551154 / 0.540337 (0.010817) | 0.768420 / 1.386936 (-0.618516) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008049 / 0.011353 (-0.003303) | 0.004676 / 0.011008 (-0.006332) | 0.076360 / 0.038508 (0.037852) | 0.093648 / 0.023109 (0.070539) | 0.480597 / 0.275898 (0.204699) | 0.524674 / 0.323480 (0.201194) | 0.006242 / 0.007986 (-0.001744) | 0.003827 / 0.004328 (-0.000501) | 0.077039 / 0.004250 (0.072788) | 0.067992 / 0.037052 (0.030940) | 0.480287 / 0.258489 (0.221798) | 0.528546 / 0.293841 (0.234706) | 0.038347 / 0.128546 (-0.090199) | 0.010036 / 0.075646 (-0.065611) | 0.084386 / 0.419271 (-0.334885) | 0.057211 / 0.043533 (0.013678) | 0.475993 / 0.255139 (0.220854) | 0.504881 / 0.283200 (0.221682) | 0.026658 / 0.141683 (-0.115025) | 1.777095 / 1.452155 (0.324940) | 1.896446 / 1.492716 (0.403730) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.242450 / 0.018006 (0.224443) | 0.488864 / 0.000490 (0.488374) | 0.007329 / 0.000200 (0.007129) | 0.000108 / 0.000054 (0.000053) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.039093 / 0.037411 (0.001682) | 0.114724 / 0.014526 (0.100198) | 0.124965 / 0.176557 (-0.051591) | 0.188165 / 0.737135 (-0.548971) | 0.125336 / 0.296338 (-0.171002) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.515718 / 0.215209 (0.300509) | 5.150865 / 2.077655 (3.073210) | 2.767866 / 1.504120 (1.263746) | 2.571003 / 1.541195 (1.029808) | 2.656224 / 1.468490 (1.187734) | 0.583771 / 4.584777 (-4.001006) | 4.268713 / 3.745712 (0.523001) | 3.938699 / 5.269862 (-1.331163) | 2.413569 / 4.565676 (-2.152108) | 0.068848 / 0.424275 (-0.355427) | 0.008758 / 0.007607 (0.001151) | 0.610831 / 0.226044 (0.384786) | 6.099965 / 2.268929 (3.831037) | 3.337530 / 55.444624 (-52.107095) | 2.910962 / 6.876477 (-3.965514) | 3.149813 / 2.142072 (1.007740) | 0.700576 / 4.805227 (-4.104651) | 0.157569 / 6.500664 (-6.343095) | 0.072237 / 0.075469 (-0.003232) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.655840 / 1.841788 (-0.185947) | 23.639061 / 8.074308 (15.564753) | 17.301593 / 10.191392 (7.110201) | 0.201717 / 0.680424 (-0.478707) | 0.023836 / 0.534201 (-0.510365) | 0.470941 / 0.579283 (-0.108342) | 0.498157 / 0.434364 (0.063794) | 0.581195 / 0.540337 (0.040857) | 0.788304 / 1.386936 (-0.598632) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#f657900acfd8ea1afaf47267e552a7ad2c6ef28b \"CML watermark\")\n", "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004823 / 0.011353 (-0.006530) | 0.002976 / 0.011008 (-0.008032) | 0.062070 / 0.038508 (0.023562) | 0.051623 / 0.023109 (0.028513) | 0.242249 / 0.275898 (-0.033649) | 0.271223 / 0.323480 (-0.052257) | 0.003906 / 0.007986 (-0.004079) | 0.002709 / 0.004328 (-0.001620) | 0.047874 / 0.004250 (0.043624) | 0.038123 / 0.037052 (0.001071) | 0.253737 / 0.258489 (-0.004752) | 0.281942 / 0.293841 (-0.011899) | 0.023750 / 0.128546 (-0.104797) | 0.007227 / 0.075646 (-0.068420) | 0.203137 / 0.419271 (-0.216134) | 0.036254 / 0.043533 (-0.007278) | 0.243923 / 0.255139 (-0.011216) | 0.263908 / 0.283200 (-0.019291) | 0.017795 / 0.141683 (-0.123888) | 1.105680 / 1.452155 (-0.346475) | 1.166804 / 1.492716 (-0.325912) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.097388 / 0.018006 (0.079381) | 0.305481 / 0.000490 (0.304991) | 0.000210 / 0.000200 (0.000010) | 0.000043 / 0.000054 (-0.000012) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.020096 / 0.037411 (-0.017315) | 0.063990 / 0.014526 (0.049464) | 0.073694 / 0.176557 (-0.102863) | 0.122909 / 0.737135 (-0.614227) | 0.076199 / 0.296338 (-0.220140) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.285612 / 0.215209 (0.070403) | 2.770524 / 2.077655 (0.692869) | 1.451624 / 1.504120 (-0.052496) | 1.329223 / 1.541195 (-0.211972) | 1.369980 / 1.468490 (-0.098510) | 0.398269 / 4.584777 (-4.186507) | 2.418740 / 3.745712 (-1.326972) | 2.796384 / 5.269862 (-2.473478) | 1.686490 / 4.565676 (-2.879186) | 0.046417 / 0.424275 (-0.377858) | 0.005414 / 0.007607 (-0.002193) | 0.345505 / 0.226044 (0.119460) | 3.391857 / 2.268929 (1.122929) | 1.856696 / 55.444624 (-53.587929) | 1.538061 / 6.876477 (-5.338416) | 1.631489 / 2.142072 (-0.510584) | 0.479188 / 4.805227 (-4.326039) | 0.101549 / 6.500664 (-6.399116) | 0.042150 / 0.075469 (-0.033319) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.957961 / 1.841788 (-0.883827) | 12.349371 / 8.074308 (4.275063) | 10.778214 / 10.191392 (0.586822) | 0.141265 / 0.680424 (-0.539158) | 0.014559 / 0.534201 (-0.519642) | 0.272071 / 0.579283 (-0.307212) | 0.262493 / 0.434364 (-0.171871) | 0.310351 / 0.540337 (-0.229986) | 0.399220 / 1.386936 (-0.987716) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005127 / 0.011353 (-0.006226) | 0.002926 / 0.011008 (-0.008082) | 0.048320 / 0.038508 (0.009812) | 0.063082 / 0.023109 (0.039973) | 0.269846 / 0.275898 (-0.006052) | 0.294470 / 0.323480 (-0.029010) | 0.004201 / 0.007986 (-0.003784) | 0.002434 / 0.004328 (-0.001894) | 0.048020 / 0.004250 (0.043770) | 0.043909 / 0.037052 (0.006856) | 0.271328 / 0.258489 (0.012839) | 0.298820 / 0.293841 (0.004979) | 0.024565 / 0.128546 (-0.103981) | 0.007752 / 0.075646 (-0.067894) | 0.054171 / 0.419271 (-0.365101) | 0.033147 / 0.043533 (-0.010386) | 0.266628 / 0.255139 (0.011489) | 0.288651 / 0.283200 (0.005452) | 0.018910 / 0.141683 (-0.122773) | 1.153679 / 1.452155 (-0.298476) | 1.214979 / 1.492716 (-0.277737) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.097064 / 0.018006 (0.079057) | 0.307504 / 0.000490 (0.307014) | 0.000230 / 0.000200 (0.000030) | 0.000051 / 0.000054 (-0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.021848 / 0.037411 (-0.015563) | 0.071159 / 0.014526 (0.056633) | 0.081310 / 0.176557 (-0.095247) | 0.120175 / 0.737135 (-0.616961) | 0.082619 / 0.296338 (-0.213720) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.296606 / 0.215209 (0.081397) | 2.908495 / 2.077655 (0.830840) | 1.606522 / 1.504120 (0.102402) | 1.528599 / 1.541195 (-0.012596) | 1.508332 / 1.468490 (0.039842) | 0.396336 / 4.584777 (-4.188441) | 2.449163 / 3.745712 (-1.296549) | 2.533372 / 5.269862 (-2.736490) | 1.623061 / 4.565676 (-2.942615) | 0.046723 / 0.424275 (-0.377552) | 0.005120 / 0.007607 (-0.002487) | 0.345763 / 0.226044 (0.119718) | 3.427382 / 2.268929 (1.158454) | 1.962806 / 55.444624 (-53.481819) | 1.678548 / 6.876477 (-5.197929) | 1.865773 / 2.142072 (-0.276300) | 0.477932 / 4.805227 (-4.327295) | 0.100994 / 6.500664 (-6.399670) | 0.042212 / 0.075469 (-0.033258) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.992766 / 1.841788 (-0.849022) | 12.764885 / 8.074308 (4.690577) | 10.892094 / 10.191392 (0.700702) | 0.143211 / 0.680424 (-0.537213) | 0.016347 / 0.534201 (-0.517853) | 0.270181 / 0.579283 (-0.309102) | 0.278658 / 0.434364 (-0.155706) | 0.307134 / 0.540337 (-0.233203) | 0.396792 / 1.386936 (-0.990144) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#6d2f2a5e0fea3827eccfd1717d8021c15fc4292a \"CML watermark\")\n", "Thanks for the fix ! It was probably my mistake (forgot to re-apply the features)" ]
2023-10-31T19:48:08
2023-11-02T14:42:28
2023-11-02T14:21:16
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6368", "html_url": "https://github.com/huggingface/datasets/pull/6368", "diff_url": "https://github.com/huggingface/datasets/pull/6368.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6368.patch", "merged_at": "2023-11-02T14:21:16" }
Fix #6366
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6368/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6368/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6367
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6367/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6367/comments
https://api.github.com/repos/huggingface/datasets/issues/6367/events
https://github.com/huggingface/datasets/pull/6367
1,971,015,861
PR_kwDODunzps5eQy1D
6,367
Fix time measuring snippet in docs
{ "login": "mariosasko", "id": 47462742, "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "gravatar_id": "", "url": "https://api.github.com/users/mariosasko", "html_url": "https://github.com/mariosasko", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "repos_url": "https://api.github.com/users/mariosasko/repos", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007683 / 0.011353 (-0.003670) | 0.004159 / 0.011008 (-0.006849) | 0.097017 / 0.038508 (0.058509) | 0.074216 / 0.023109 (0.051107) | 0.323115 / 0.275898 (0.047217) | 0.412836 / 0.323480 (0.089356) | 0.005151 / 0.007986 (-0.002834) | 0.004037 / 0.004328 (-0.000292) | 0.067881 / 0.004250 (0.063631) | 0.051395 / 0.037052 (0.014342) | 0.356391 / 0.258489 (0.097901) | 0.386744 / 0.293841 (0.092903) | 0.043571 / 0.128546 (-0.084975) | 0.012844 / 0.075646 (-0.062803) | 0.369440 / 0.419271 (-0.049832) | 0.056944 / 0.043533 (0.013411) | 0.316159 / 0.255139 (0.061020) | 0.435530 / 0.283200 (0.152330) | 0.033622 / 0.141683 (-0.108061) | 1.379602 / 1.452155 (-0.072553) | 1.766400 / 1.492716 (0.273683) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.304151 / 0.018006 (0.286145) | 0.616365 / 0.000490 (0.615875) | 0.013588 / 0.000200 (0.013389) | 0.000441 / 0.000054 (0.000387) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032812 / 0.037411 (-0.004600) | 0.100914 / 0.014526 (0.086388) | 0.124004 / 0.176557 (-0.052552) | 0.195087 / 0.737135 (-0.542048) | 0.124388 / 0.296338 (-0.171951) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.575649 / 0.215209 (0.360440) | 5.665461 / 2.077655 (3.587806) | 2.474892 / 1.504120 (0.970773) | 2.142687 / 1.541195 (0.601492) | 2.254962 / 1.468490 (0.786472) | 0.816635 / 4.584777 (-3.768141) | 5.044279 / 3.745712 (1.298567) | 4.566728 / 5.269862 (-0.703134) | 2.867146 / 4.565676 (-1.698531) | 0.092994 / 0.424275 (-0.331281) | 0.008395 / 0.007607 (0.000788) | 0.680346 / 0.226044 (0.454302) | 6.909875 / 2.268929 (4.640946) | 3.275602 / 55.444624 (-52.169022) | 2.556000 / 6.876477 (-4.320477) | 2.581337 / 2.142072 (0.439264) | 0.997883 / 4.805227 (-3.807344) | 0.204109 / 6.500664 (-6.296555) | 0.069705 / 0.075469 (-0.005764) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.504573 / 1.841788 (-0.337215) | 22.219363 / 8.074308 (14.145055) | 19.078040 / 10.191392 (8.886648) | 0.234970 / 0.680424 (-0.445454) | 0.027324 / 0.534201 (-0.506877) | 0.427960 / 0.579283 (-0.151323) | 0.570258 / 0.434364 (0.135894) | 0.502335 / 0.540337 (-0.038003) | 0.788078 / 1.386936 (-0.598858) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008370 / 0.011353 (-0.002982) | 0.004573 / 0.011008 (-0.006435) | 0.073080 / 0.038508 (0.034572) | 0.068752 / 0.023109 (0.045643) | 0.439648 / 0.275898 (0.163750) | 0.499700 / 0.323480 (0.176220) | 0.006119 / 0.007986 (-0.001866) | 0.004300 / 0.004328 (-0.000028) | 0.073173 / 0.004250 (0.068923) | 0.055676 / 0.037052 (0.018624) | 0.464152 / 0.258489 (0.205663) | 0.476954 / 0.293841 (0.183113) | 0.046335 / 0.128546 (-0.082211) | 0.013373 / 0.075646 (-0.062274) | 0.092006 / 0.419271 (-0.327265) | 0.054802 / 0.043533 (0.011269) | 0.456594 / 0.255139 (0.201455) | 0.491931 / 0.283200 (0.208732) | 0.034021 / 0.141683 (-0.107662) | 1.575200 / 1.452155 (0.123045) | 1.689742 / 1.492716 (0.197026) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.299432 / 0.018006 (0.281426) | 0.605643 / 0.000490 (0.605153) | 0.006280 / 0.000200 (0.006080) | 0.000120 / 0.000054 (0.000066) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028414 / 0.037411 (-0.008997) | 0.085812 / 0.014526 (0.071286) | 0.109142 / 0.176557 (-0.067414) | 0.163458 / 0.737135 (-0.573677) | 0.100837 / 0.296338 (-0.195501) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.615557 / 0.215209 (0.400348) | 6.051599 / 2.077655 (3.973944) | 2.872353 / 1.504120 (1.368234) | 2.508322 / 1.541195 (0.967128) | 2.550073 / 1.468490 (1.081583) | 0.835793 / 4.584777 (-3.748983) | 5.208484 / 3.745712 (1.462772) | 4.361846 / 5.269862 (-0.908016) | 2.776164 / 4.565676 (-1.789513) | 0.090831 / 0.424275 (-0.333444) | 0.007320 / 0.007607 (-0.000287) | 0.725533 / 0.226044 (0.499488) | 7.051321 / 2.268929 (4.782393) | 3.515464 / 55.444624 (-51.929160) | 2.798193 / 6.876477 (-4.078284) | 3.022512 / 2.142072 (0.880440) | 0.986744 / 4.805227 (-3.818484) | 0.198050 / 6.500664 (-6.302615) | 0.069200 / 0.075469 (-0.006269) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.623759 / 1.841788 (-0.218029) | 22.269700 / 8.074308 (14.195392) | 19.577429 / 10.191392 (9.386037) | 0.215990 / 0.680424 (-0.464434) | 0.033005 / 0.534201 (-0.501196) | 0.436848 / 0.579283 (-0.142435) | 0.591442 / 0.434364 (0.157078) | 0.547701 / 0.540337 (0.007364) | 0.741695 / 1.386936 (-0.645241) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#7e17e139b1323aca3321a5d2c2da40d82c458bae \"CML watermark\")\n", "CI failures are unrelated", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009027 / 0.011353 (-0.002326) | 0.006118 / 0.011008 (-0.004890) | 0.118939 / 0.038508 (0.080431) | 0.089979 / 0.023109 (0.066869) | 0.412425 / 0.275898 (0.136527) | 0.455706 / 0.323480 (0.132227) | 0.006762 / 0.007986 (-0.001224) | 0.004409 / 0.004328 (0.000080) | 0.088002 / 0.004250 (0.083751) | 0.063708 / 0.037052 (0.026656) | 0.417373 / 0.258489 (0.158884) | 0.489582 / 0.293841 (0.195741) | 0.050222 / 0.128546 (-0.078324) | 0.014386 / 0.075646 (-0.061260) | 0.435363 / 0.419271 (0.016092) | 0.069375 / 0.043533 (0.025842) | 0.410242 / 0.255139 (0.155103) | 0.436439 / 0.283200 (0.153239) | 0.039318 / 0.141683 (-0.102365) | 1.857574 / 1.452155 (0.405419) | 1.919402 / 1.492716 (0.426686) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.343916 / 0.018006 (0.325910) | 0.633639 / 0.000490 (0.633150) | 0.014756 / 0.000200 (0.014557) | 0.000707 / 0.000054 (0.000652) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031983 / 0.037411 (-0.005429) | 0.097222 / 0.014526 (0.082697) | 0.114644 / 0.176557 (-0.061912) | 0.187787 / 0.737135 (-0.549348) | 0.120595 / 0.296338 (-0.175743) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.605861 / 0.215209 (0.390652) | 6.039318 / 2.077655 (3.961664) | 2.699251 / 1.504120 (1.195132) | 2.436398 / 1.541195 (0.895203) | 2.493653 / 1.468490 (1.025163) | 0.889423 / 4.584777 (-3.695354) | 5.384769 / 3.745712 (1.639056) | 5.033033 / 5.269862 (-0.236829) | 3.056894 / 4.565676 (-1.508783) | 0.100683 / 0.424275 (-0.323592) | 0.009103 / 0.007607 (0.001495) | 0.737066 / 0.226044 (0.511021) | 7.370485 / 2.268929 (5.101556) | 3.422670 / 55.444624 (-52.021954) | 2.830392 / 6.876477 (-4.046084) | 2.985789 / 2.142072 (0.843717) | 0.999239 / 4.805227 (-3.805989) | 0.203506 / 6.500664 (-6.297158) | 0.076135 / 0.075469 (0.000666) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.697001 / 1.841788 (-0.144787) | 24.653975 / 8.074308 (16.579667) | 22.241622 / 10.191392 (12.050230) | 0.257075 / 0.680424 (-0.423349) | 0.029159 / 0.534201 (-0.505041) | 0.493329 / 0.579283 (-0.085954) | 0.596661 / 0.434364 (0.162297) | 0.569431 / 0.540337 (0.029094) | 0.812231 / 1.386936 (-0.574705) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009815 / 0.011353 (-0.001538) | 0.005136 / 0.011008 (-0.005872) | 0.078224 / 0.038508 (0.039716) | 0.103276 / 0.023109 (0.080166) | 0.512742 / 0.275898 (0.236844) | 0.544010 / 0.323480 (0.220530) | 0.007957 / 0.007986 (-0.000029) | 0.004629 / 0.004328 (0.000300) | 0.074983 / 0.004250 (0.070733) | 0.071831 / 0.037052 (0.034778) | 0.542752 / 0.258489 (0.284262) | 0.573176 / 0.293841 (0.279335) | 0.053939 / 0.128546 (-0.074607) | 0.015007 / 0.075646 (-0.060640) | 0.085389 / 0.419271 (-0.333882) | 0.063587 / 0.043533 (0.020055) | 0.509580 / 0.255139 (0.254441) | 0.563374 / 0.283200 (0.280174) | 0.037575 / 0.141683 (-0.104108) | 1.840740 / 1.452155 (0.388585) | 1.836414 / 1.492716 (0.343698) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.310188 / 0.018006 (0.292182) | 0.641478 / 0.000490 (0.640988) | 0.011057 / 0.000200 (0.010857) | 0.000173 / 0.000054 (0.000119) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.043280 / 0.037411 (0.005869) | 0.109256 / 0.014526 (0.094730) | 0.126701 / 0.176557 (-0.049856) | 0.199172 / 0.737135 (-0.537963) | 0.123584 / 0.296338 (-0.172755) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.649272 / 0.215209 (0.434063) | 6.487501 / 2.077655 (4.409846) | 3.170330 / 1.504120 (1.666210) | 2.960912 / 1.541195 (1.419718) | 3.024531 / 1.468490 (1.556041) | 0.905112 / 4.584777 (-3.679665) | 5.560961 / 3.745712 (1.815249) | 4.920463 / 5.269862 (-0.349399) | 3.158989 / 4.565676 (-1.406687) | 0.095444 / 0.424275 (-0.328831) | 0.008264 / 0.007607 (0.000657) | 0.819292 / 0.226044 (0.593247) | 7.982695 / 2.268929 (5.713767) | 4.098704 / 55.444624 (-51.345921) | 3.442330 / 6.876477 (-3.434147) | 3.763426 / 2.142072 (1.621354) | 1.065464 / 4.805227 (-3.739763) | 0.215089 / 6.500664 (-6.285575) | 0.085280 / 0.075469 (0.009811) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.881770 / 1.841788 (0.039983) | 25.671479 / 8.074308 (17.597171) | 22.367019 / 10.191392 (12.175627) | 0.241377 / 0.680424 (-0.439047) | 0.033555 / 0.534201 (-0.500646) | 0.501786 / 0.579283 (-0.077497) | 0.596376 / 0.434364 (0.162012) | 0.579674 / 0.540337 (0.039337) | 0.855534 / 1.386936 (-0.531402) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#c9c1166e1cf81d38534020f9c167b326585339e5 \"CML watermark\")\n" ]
2023-10-31T17:57:17
2023-10-31T18:35:53
2023-10-31T18:24:02
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6367", "html_url": "https://github.com/huggingface/datasets/pull/6367", "diff_url": "https://github.com/huggingface/datasets/pull/6367.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6367.patch", "merged_at": "2023-10-31T18:24:02" }
Fix https://discuss.huggingface.co/t/attributeerror-enter/60509
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6367/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6367/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6366
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6366/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6366/comments
https://api.github.com/repos/huggingface/datasets/issues/6366/events
https://github.com/huggingface/datasets/issues/6366
1,970,213,490
I_kwDODunzps51bxJy
6,366
with_format() function returns bytes instead of PIL images even when image column is not part of "columns"
{ "login": "leot13", "id": 17809020, "node_id": "MDQ6VXNlcjE3ODA5MDIw", "avatar_url": "https://avatars.githubusercontent.com/u/17809020?v=4", "gravatar_id": "", "url": "https://api.github.com/users/leot13", "html_url": "https://github.com/leot13", "followers_url": "https://api.github.com/users/leot13/followers", "following_url": "https://api.github.com/users/leot13/following{/other_user}", "gists_url": "https://api.github.com/users/leot13/gists{/gist_id}", "starred_url": "https://api.github.com/users/leot13/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/leot13/subscriptions", "organizations_url": "https://api.github.com/users/leot13/orgs", "repos_url": "https://api.github.com/users/leot13/repos", "events_url": "https://api.github.com/users/leot13/events{/privacy}", "received_events_url": "https://api.github.com/users/leot13/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "Thanks for reporting! I've opened a PR with a fix." ]
2023-10-31T11:10:48
2023-11-02T14:21:17
2023-11-02T14:21:17
NONE
null
null
null
### Describe the bug When using the with_format() function on a dataset containing images, even if the image column is not part of the columns provided in the function, its type will be changed to bytes. Here is a minimal reproduction of the bug: https://colab.research.google.com/drive/1hyaOspgyhB41oiR1-tXE3k_gJCdJUQCf?usp=sharing ### Steps to reproduce the bug 1. Load the image dataset 2. apply with_format(columns=["text"]) 3. Check the type of images in the "image" column before and after applying with_format ### Expected behavior The type should stay the same, but it does not ### Environment info datasets==2.14.6
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6366/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6366/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6365
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6365/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6365/comments
https://api.github.com/repos/huggingface/datasets/issues/6365/events
https://github.com/huggingface/datasets/issues/6365
1,970,140,392
I_kwDODunzps51bfTo
6,365
Parquet size grows exponential for categorical data
{ "login": "aseganti", "id": 82567957, "node_id": "MDQ6VXNlcjgyNTY3OTU3", "avatar_url": "https://avatars.githubusercontent.com/u/82567957?v=4", "gravatar_id": "", "url": "https://api.github.com/users/aseganti", "html_url": "https://github.com/aseganti", "followers_url": "https://api.github.com/users/aseganti/followers", "following_url": "https://api.github.com/users/aseganti/following{/other_user}", "gists_url": "https://api.github.com/users/aseganti/gists{/gist_id}", "starred_url": "https://api.github.com/users/aseganti/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/aseganti/subscriptions", "organizations_url": "https://api.github.com/users/aseganti/orgs", "repos_url": "https://api.github.com/users/aseganti/repos", "events_url": "https://api.github.com/users/aseganti/events{/privacy}", "received_events_url": "https://api.github.com/users/aseganti/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "Wrong repo." ]
2023-10-31T10:29:02
2023-10-31T10:49:17
2023-10-31T10:49:17
NONE
null
null
null
### Describe the bug It seems that when saving a data frame with a categorical column inside the size can grow exponentially. This seems to happen because when we save the categorical data to parquet, we are saving the data + all the categories existing in the original data. This happens even when the categories are not present in the original data. ### Steps to reproduce the bug To reproduce the bug, it is enough to run this script: ``` import pandas as pd import os if __name__ == "__main__": for n in [10, 1e2, 1e3, 1e4, 1e5]: for n_col in [1, 10, 100, 1000, 10000]: input = pd.DataFrame([{"{i}": f"{i}_cat" for col in range(n_col)} for i in range(int(n))]) input.iloc[0:100].to_parquet("a.parquet") for col in input.columns: input[col] = input[col].astype("category") input.iloc[0:100].to_parquet("b.parquet") a_size_mb = os.stat("a.parquet").st_size / (1024 * 1024) b_size_mb = os.stat("b.parquet").st_size / (1024 * 1024) print(f"{n} {n_col} {a_size_mb} {b_size_mb} {100*b_size_mb/a_size_mb:.2f}") ``` That produces this output: <img width="464" alt="Screenshot 2023-10-31 at 11 25 25" src="https://github.com/huggingface/datasets/assets/82567957/2b8a9284-7f9e-4c10-a006-0a27236ebd15"> ### Expected behavior In my opinion either: 1. The two file should have (almost) the same size 2. There should be warning telling the user that such difference in size is possible ### Environment info Python 3.8.18 pandas==2.0.3 numpy==1.24.4
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6365/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6365/timeline
null
not_planned
false
https://api.github.com/repos/huggingface/datasets/issues/6364
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6364/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6364/comments
https://api.github.com/repos/huggingface/datasets/issues/6364/events
https://github.com/huggingface/datasets/issues/6364
1,969,136,106
I_kwDODunzps51XqHq
6,364
ArrowNotImplementedError: Unsupported cast from string to list using function cast_list
{ "login": "divyakrishna-devisetty", "id": 32887094, "node_id": "MDQ6VXNlcjMyODg3MDk0", "avatar_url": "https://avatars.githubusercontent.com/u/32887094?v=4", "gravatar_id": "", "url": "https://api.github.com/users/divyakrishna-devisetty", "html_url": "https://github.com/divyakrishna-devisetty", "followers_url": "https://api.github.com/users/divyakrishna-devisetty/followers", "following_url": "https://api.github.com/users/divyakrishna-devisetty/following{/other_user}", "gists_url": "https://api.github.com/users/divyakrishna-devisetty/gists{/gist_id}", "starred_url": "https://api.github.com/users/divyakrishna-devisetty/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/divyakrishna-devisetty/subscriptions", "organizations_url": "https://api.github.com/users/divyakrishna-devisetty/orgs", "repos_url": "https://api.github.com/users/divyakrishna-devisetty/repos", "events_url": "https://api.github.com/users/divyakrishna-devisetty/events{/privacy}", "received_events_url": "https://api.github.com/users/divyakrishna-devisetty/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "You can use the following code to load this CSV with the list values preserved:\r\n```python\r\nfrom datasets import load_dataset\r\nimport ast\r\n\r\nconverters = {\r\n \"contexts\" : ast.literal_eval,\r\n \"ground_truths\" : ast.literal_eval,\r\n}\r\n\r\nds = load_dataset(\"csv\", data_files=\"golden_dataset.csv\", converters=converters)\r\n```", "Thank you! it worked :)" ]
2023-10-30T20:14:01
2023-10-31T19:21:23
2023-10-31T19:21:23
NONE
null
null
null
Hi, I am trying to load a local csv dataset(similar to explodinggradients_fiqa) using load_dataset. When I try to pass features, I am facing the mentioned issue. CSV Data sample(golden_dataset.csv): Question | Context | answer | groundtruth "what is abc?" | "abc is this and that" | "abc is this " | "abc is this and that" ``` import csv # built it based on https://huggingface.co./datasets/explodinggradients/fiqa/viewer/ragas_eval?row=0 mydict = [ {'question' : "what is abc?", 'contexts': ["abc is this and that"], 'answer': "abc is this " , 'groundtruth': ["abc is this and that"]}, {'question' : "what is abc?", 'contexts': ["abc is this and that"], 'answer': "abc is this " , 'groundtruth': ["abc is this and that"]}, {'question' : "what is abc?", 'contexts': ["abc is this and that"], 'answer': "abc is this " , 'groundtruth': ["abc is this and that"]} ] fields = ['question', 'contexts', 'answer', 'ground_truths'] with open('golden_dataset.csv', 'w', newline='\n') as file: writer = csv.DictWriter(file, fieldnames = fields) writer.writeheader() for row in mydict: writer.writerow(row) ``` Retrieved dataset: DatasetDict({ train: Dataset({ features: ['question', 'contexts', 'answer', 'ground_truths'], num_rows: 1 }) }) Code to reproduce issue: ``` from datasets import load_dataset, Features, Sequence, Value encode_features = Features( { "question": Value(dtype='string', id=0), "contexts": Sequence(feature=Value(dtype='string', id=1)), "answer": Value(dtype='string', id=2), "ground_truths": Sequence(feature=Value(dtype='string',id=3)), } ) eval_dataset = load_dataset('csv', data_files='/golden_dataset.csv', features = encode_features ) ``` Error trace: ``` --------------------------------------------------------------------------- ArrowNotImplementedError Traceback (most recent call last) File ~/anaconda3/envs/python3/lib/python3.10/site-packages/datasets/builder.py:1925, in ArrowBasedBuilder._prepare_split_single(self, gen_kwargs, fpath, file_format, max_shard_size, job_id) 1924 _time = time.time() -> 1925 for _, table in generator: 1926 if max_shard_size is not None and writer._num_bytes > max_shard_size: File ~/anaconda3/envs/python3/lib/python3.10/site-packages/datasets/packaged_modules/csv/csv.py:192, in Csv._generate_tables(self, files) 189 # Uncomment for debugging (will print the Arrow table size and elements) 190 # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") 191 # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) --> 192 yield (file_idx, batch_idx), self._cast_table(pa_table) 193 except ValueError as e: File ~/anaconda3/envs/python3/lib/python3.10/site-packages/datasets/packaged_modules/csv/csv.py:167, in Csv._cast_table(self, pa_table) 165 if all(not require_storage_cast(feature) for feature in self.config.features.values()): 166 # cheaper cast --> 167 pa_table = pa.Table.from_arrays([pa_table[field.name] for field in schema], schema=schema) 168 else: 169 # more expensive cast; allows str <-> int/float or str to Audio for example File ~/anaconda3/envs/python3/lib/python3.10/site-packages/pyarrow/table.pxi:3781, in pyarrow.lib.Table.from_arrays() File ~/anaconda3/envs/python3/lib/python3.10/site-packages/pyarrow/table.pxi:1449, in pyarrow.lib._sanitize_arrays() File ~/anaconda3/envs/python3/lib/python3.10/site-packages/pyarrow/array.pxi:354, in pyarrow.lib.asarray() File ~/anaconda3/envs/python3/lib/python3.10/site-packages/pyarrow/table.pxi:551, in pyarrow.lib.ChunkedArray.cast() File ~/anaconda3/envs/python3/lib/python3.10/site-packages/pyarrow/compute.py:400, in cast(arr, target_type, safe, options, memory_pool) 399 options = CastOptions.safe(target_type) --> 400 return call_function("cast", [arr], options, memory_pool) File ~/anaconda3/envs/python3/lib/python3.10/site-packages/pyarrow/_compute.pyx:572, in pyarrow._compute.call_function() File ~/anaconda3/envs/python3/lib/python3.10/site-packages/pyarrow/_compute.pyx:367, in pyarrow._compute.Function.call() File ~/anaconda3/envs/python3/lib/python3.10/site-packages/pyarrow/error.pxi:144, in pyarrow.lib.pyarrow_internal_check_status() File ~/anaconda3/envs/python3/lib/python3.10/site-packages/pyarrow/error.pxi:121, in pyarrow.lib.check_status() ArrowNotImplementedError: Unsupported cast from string to list using function cast_list The above exception was the direct cause of the following exception: DatasetGenerationError Traceback (most recent call last) Cell In[57], line 1 ----> 1 eval_dataset = load_dataset('csv', data_files='/golden_dataset.csv', features = encode_features ) File ~/anaconda3/envs/python3/lib/python3.10/site-packages/datasets/load.py:2153, in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, ignore_verifications, keep_in_memory, save_infos, revision, token, use_auth_token, task, streaming, num_proc, storage_options, **config_kwargs) 2150 try_from_hf_gcs = path not in _PACKAGED_DATASETS_MODULES 2152 # Download and prepare data -> 2153 builder_instance.download_and_prepare( 2154 download_config=download_config, 2155 download_mode=download_mode, 2156 verification_mode=verification_mode, 2157 try_from_hf_gcs=try_from_hf_gcs, 2158 num_proc=num_proc, 2159 storage_options=storage_options, 2160 ) 2162 # Build dataset for splits 2163 keep_in_memory = ( 2164 keep_in_memory if keep_in_memory is not None else is_small_dataset(builder_instance.info.dataset_size) 2165 ) File ~/anaconda3/envs/python3/lib/python3.10/site-packages/datasets/builder.py:954, in DatasetBuilder.download_and_prepare(self, output_dir, download_config, download_mode, verification_mode, ignore_verifications, try_from_hf_gcs, dl_manager, base_path, use_auth_token, file_format, max_shard_size, num_proc, storage_options, **download_and_prepare_kwargs) 952 if num_proc is not None: 953 prepare_split_kwargs["num_proc"] = num_proc --> 954 self._download_and_prepare( 955 dl_manager=dl_manager, 956 verification_mode=verification_mode, 957 **prepare_split_kwargs, 958 **download_and_prepare_kwargs, 959 ) 960 # Sync info 961 self.info.dataset_size = sum(split.num_bytes for split in self.info.splits.values()) File ~/anaconda3/envs/python3/lib/python3.10/site-packages/datasets/builder.py:1049, in DatasetBuilder._download_and_prepare(self, dl_manager, verification_mode, **prepare_split_kwargs) 1045 split_dict.add(split_generator.split_info) 1047 try: 1048 # Prepare split will record examples associated to the split -> 1049 self._prepare_split(split_generator, **prepare_split_kwargs) 1050 except OSError as e: 1051 raise OSError( 1052 "Cannot find data file. " 1053 + (self.manual_download_instructions or "") 1054 + "\nOriginal error:\n" 1055 + str(e) 1056 ) from None File ~/anaconda3/envs/python3/lib/python3.10/site-packages/datasets/builder.py:1813, in ArrowBasedBuilder._prepare_split(self, split_generator, file_format, num_proc, max_shard_size) 1811 job_id = 0 1812 with pbar: -> 1813 for job_id, done, content in self._prepare_split_single( 1814 gen_kwargs=gen_kwargs, job_id=job_id, **_prepare_split_args 1815 ): 1816 if done: 1817 result = content File ~/anaconda3/envs/python3/lib/python3.10/site-packages/datasets/builder.py:1958, in ArrowBasedBuilder._prepare_split_single(self, gen_kwargs, fpath, file_format, max_shard_size, job_id) 1956 if isinstance(e, SchemaInferenceError) and e.__context__ is not None: 1957 e = e.__context__ -> 1958 raise DatasetGenerationError("An error occurred while generating the dataset") from e 1960 yield job_id, True, (total_num_examples, total_num_bytes, writer._features, num_shards, shard_lengths) DatasetGenerationError: An error occurred while generating the dataset ``` Environment Info: datasets version: 2.14.5 Python version: 3.10.8 PyArrow version: 12.0.1 Pandas version: 2.0.3 I have also tried to load dataset first and then use cast_column, or save_to_disk and load_from_disk.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6364/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6364/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6363
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6363/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6363/comments
https://api.github.com/repos/huggingface/datasets/issues/6363/events
https://github.com/huggingface/datasets/issues/6363
1,968,891,277
I_kwDODunzps51WuWN
6,363
dataset.transform() hangs indefinitely while finetuning the stable diffusion XL
{ "login": "bhosalems", "id": 10846405, "node_id": "MDQ6VXNlcjEwODQ2NDA1", "avatar_url": "https://avatars.githubusercontent.com/u/10846405?v=4", "gravatar_id": "", "url": "https://api.github.com/users/bhosalems", "html_url": "https://github.com/bhosalems", "followers_url": "https://api.github.com/users/bhosalems/followers", "following_url": "https://api.github.com/users/bhosalems/following{/other_user}", "gists_url": "https://api.github.com/users/bhosalems/gists{/gist_id}", "starred_url": "https://api.github.com/users/bhosalems/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/bhosalems/subscriptions", "organizations_url": "https://api.github.com/users/bhosalems/orgs", "repos_url": "https://api.github.com/users/bhosalems/repos", "events_url": "https://api.github.com/users/bhosalems/events{/privacy}", "received_events_url": "https://api.github.com/users/bhosalems/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "I think the code hangs on the `accelerator.main_process_first()` context manager exit. To verify this, you can append a print statement to the end of the `accelerator.main_process_first()` block. \r\n\r\n\r\nIf the problem is in `with_transform`, it would help if you could share the error stack trace printed when you interrupt the process (while it hangs)", "@bhosalems Were you able to fix that ? I face this issue as well", "@matankley No I am not able to resolve this issue yet.", "@mariosasko yes the problem seems to be to exit from accelerator.main_process_first(). Is there any known problem?", "NCCL debug info I get below output, if it helps.\r\n```\r\n11/09/2023 13:36:44 - INFO - __main__ - Distributed environment: MULTI_GPU Backend: nccl\r\nNum processes: 2\r\nProcess index: 1\r\nLocal process index: 1\r\nDevice: cuda:1\r\n\r\nMixed precision type: fp16\r\n\r\nDetected kernel version 5.4.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.\r\n11/09/2023 13:36:44 - INFO - __main__ - Distributed environment: MULTI_GPU Backend: nccl\r\nNum processes: 2\r\nProcess index: 0\r\nLocal process index: 0\r\nDevice: cuda:0\r\n\r\nMixed precision type: fp16\r\n\r\n{'timestep_spacing', 'thresholding', 'variance_type', 'clip_sample_range', 'prediction_type', 'dynamic_thresholding_ratio', 'sample_max_value'} was not found in config. Values will be initialized to default values.\r\n{'norm_num_groups', 'force_upcast'} was not found in config. Values will be initialized to default values.\r\n{'num_attention_heads', 'projection_class_embeddings_input_dim', 'addition_embed_type_num_heads', 'mid_block_only_cross_attention', 'addition_embed_type', 'num_class_embeds', 'upcast_attention', 'cross_attention_norm', 'addition_time_embed_dim', 'time_embedding_dim', 'class_embeddings_concat', 'encoder_hid_dim', 'encoder_hid_dim_type', 'resnet_out_scale_factor', 'attention_type', 'conv_out_kernel', 'only_cross_attention', 'resnet_time_scale_shift', 'resnet_skip_time_act', 'reverse_transformer_layers_per_block', 'conv_in_kernel', 'time_cond_proj_dim', 'use_linear_projection', 'mid_block_type', 'time_embedding_act_fn', 'dropout', 'timestep_post_act', 'dual_cross_attention', 'class_embed_type', 'transformer_layers_per_block', 'time_embedding_type'} was not found in config. Values will be initialized to default values.\r\n{'num_attention_heads', 'projection_class_embeddings_input_dim', 'addition_embed_type_num_heads', 'mid_block_only_cross_attention', 'addition_embed_type', 'num_class_embeds', 'upcast_attention', 'cross_attention_norm', 'addition_time_embed_dim', 'time_embedding_dim', 'class_embeddings_concat', 'encoder_hid_dim', 'encoder_hid_dim_type', 'resnet_out_scale_factor', 'attention_type', 'conv_out_kernel', 'only_cross_attention', 'resnet_time_scale_shift', 'resnet_skip_time_act', 'reverse_transformer_layers_per_block', 'conv_in_kernel', 'time_cond_proj_dim', 'use_linear_projection', 'mid_block_type', 'time_embedding_act_fn', 'dropout', 'timestep_post_act', 'dual_cross_attention', 'class_embed_type', 'transformer_layers_per_block', 'time_embedding_type'} was not found in config. Values will be initialized to default values.\r\ndeepbull5:1311249:1311249 [0] NCCL INFO Bootstrap : Using enp194s0f0:128.205.43.171<0>\r\ndeepbull5:1311249:1311249 [0] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation\r\ndeepbull5:1311249:1311249 [0] NCCL INFO cudaDriverVersion 11070\r\nNCCL version 2.14.3+cuda11.7\r\ndeepbull5:1311250:1311250 [1] NCCL INFO cudaDriverVersion 11070\r\ndeepbull5:1311249:1311365 [0] NCCL INFO NET/IB : No device found.\r\ndeepbull5:1311249:1311365 [0] NCCL INFO NET/Socket : Using [0]enp194s0f0:128.205.43.171<0>\r\ndeepbull5:1311249:1311365 [0] NCCL INFO Using network Socket\r\ndeepbull5:1311250:1311250 [1] NCCL INFO Bootstrap : Using enp194s0f0:128.205.43.171<0>\r\ndeepbull5:1311250:1311250 [1] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation\r\ndeepbull5:1311250:1311366 [1] NCCL INFO NET/IB : No device found.\r\ndeepbull5:1311250:1311366 [1] NCCL INFO NET/Socket : Using [0]enp194s0f0:128.205.43.171<0>\r\ndeepbull5:1311250:1311366 [1] NCCL INFO Using network Socket\r\ndeepbull5:1311250:1311366 [1] NCCL INFO Setting affinity for GPU 1 to ff,ffff0000,00ffffff\r\ndeepbull5:1311249:1311365 [0] NCCL INFO Setting affinity for GPU 0 to ff,ffff0000,00ffffff\r\ndeepbull5:1311249:1311365 [0] NCCL INFO Channel 00/04 : 0 1\r\ndeepbull5:1311250:1311366 [1] NCCL INFO Trees [0] -1/-1/-1->1->0 [1] 0/-1/-1->1->-1 [2] -1/-1/-1->1->0 [3] 0/-1/-1->1->-1\r\ndeepbull5:1311249:1311365 [0] NCCL INFO Channel 01/04 : 0 1\r\ndeepbull5:1311249:1311365 [0] NCCL INFO Channel 02/04 : 0 1\r\ndeepbull5:1311249:1311365 [0] NCCL INFO Channel 03/04 : 0 1\r\ndeepbull5:1311249:1311365 [0] NCCL INFO Trees [0] 1/-1/-1->0->-1 [1] -1/-1/-1->0->1 [2] 1/-1/-1->0->-1 [3] -1/-1/-1->0->1\r\ndeepbull5:1311249:1311365 [0] NCCL INFO Channel 00/0 : 0[1000] -> 1[24000] via P2P/IPC\r\ndeepbull5:1311250:1311366 [1] NCCL INFO Channel 00/0 : 1[24000] -> 0[1000] via P2P/IPC\r\ndeepbull5:1311249:1311365 [0] NCCL INFO Channel 01/0 : 0[1000] -> 1[24000] via P2P/IPC\r\ndeepbull5:1311250:1311366 [1] NCCL INFO Channel 01/0 : 1[24000] -> 0[1000] via P2P/IPC\r\ndeepbull5:1311250:1311366 [1] NCCL INFO Channel 02/0 : 1[24000] -> 0[1000] via P2P/IPC\r\ndeepbull5:1311249:1311365 [0] NCCL INFO Channel 02/0 : 0[1000] -> 1[24000] via P2P/IPC\r\ndeepbull5:1311250:1311366 [1] NCCL INFO Channel 03/0 : 1[24000] -> 0[1000] via P2P/IPC\r\ndeepbull5:1311249:1311365 [0] NCCL INFO Channel 03/0 : 0[1000] -> 1[24000] via P2P/IPC\r\ndeepbull5:1311249:1311365 [0] NCCL INFO Connected all rings\r\ndeepbull5:1311249:1311365 [0] NCCL INFO Connected all trees\r\ndeepbull5:1311249:1311365 [0] NCCL INFO threadThresholds 8/8/64 | 16/8/64 | 512 | 512\r\ndeepbull5:1311249:1311365 [0] NCCL INFO 4 coll channels, 4 p2p channels, 2 p2p channels per peer\r\ndeepbull5:1311250:1311366 [1] NCCL INFO Connected all rings\r\ndeepbull5:1311250:1311366 [1] NCCL INFO Connected all trees\r\ndeepbull5:1311250:1311366 [1] NCCL INFO threadThresholds 8/8/64 | 16/8/64 | 512 | 512\r\ndeepbull5:1311250:1311366 [1] NCCL INFO 4 coll channels, 4 p2p channels, 2 p2p channels per peer\r\ndeepbull5:1311249:1311365 [0] NCCL INFO comm 0x88a84ee0 rank 0 nranks 2 cudaDev 0 busId 1000 - Init COMPLETE\r\ndeepbull5:1311250:1311366 [1] NCCL INFO comm 0x89a42f60 rank 1 nranks 2 cudaDev 1 busId 24000 - Init COMPLETE\r\n\r\n```", "Maybe @muellerzr can help as an `accelerate` maintainer.", "I don't know what the issue was, but after going through the thread here I loved the issue with https://github.com/huggingface/accelerate/issues/314#issuecomment-1565259831" ]
2023-10-30T17:34:05
2023-11-22T00:29:21
2023-11-22T00:29:21
NONE
null
null
null
### Describe the bug Multi-GPU fine-tuning the stable diffusion X by following https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/README_sdxl.md hangs indefinitely. ### Steps to reproduce the bug accelerate launch train_text_to_image_sdxl.py --pretrained_model_name_or_path=$MODEL_NAME --pretrained_vae_model_name_or_path=$VAE_NAME --dataset_name=$DATASET_NAME --enable_xformers_memory_efficient_attention --resolution=512 --center_crop --random_flip --proportion_empty_prompts=0.2 --train_batch_size=1 --gradient_accumulation_steps=4 --gradient_checkpointing --max_train_steps=10000 --use_8bit_adam --learning_rate=1e-06 --lr_scheduler="constant" --lr_warmup_steps=0 --mixed_precision="fp16" --report_to="wandb" --validation_prompt="a cute Sundar Pichai creature" --validation_epochs 5 --checkpointing_steps=5000 --output_dir="sdxl-pokemon-model" ### Expected behavior It should start the training as it does for the single GPU training. I opened the issue in diffusers **https://github.com/huggingface/diffusers/issues/5534 but it does seem to be an issue with the Pokemon dataset. I added some debug prints ``` print("==========HERE3=============") with accelerator.main_process_first(): print(accelerator.is_main_process) print("===========Here3.1===========") if args.max_train_samples is not None: dataset["train"] = dataset["train"].shuffle(seed=args.seed).select(range(args.max_train_samples)) print("===========Here3.2===========") # Set the training transforms train_dataset = dataset["train"].with_transform(preprocess_train) print("==========HERE4=============") Corresponding Output Detected kernel version 5.4.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher. 10/25/2023 21:18:04 - INFO - main - Distributed environment: MULTI_GPU Backend: nccl Num processes: 3 Process index: 1 Local process index: 1 Device: cuda:1 Mixed precision type: fp16 10/25/2023 21:18:04 - INFO - main - Distributed environment: MULTI_GPU Backend: nccl Num processes: 3 Process index: 2 Local process index: 2 Device: cuda:2 Mixed precision type: fp16 10/25/2023 21:18:04 - INFO - main - Distributed environment: MULTI_GPU Backend: nccl Num processes: 3 Process index: 0 Local process index: 0 Device: cuda:0 Mixed precision type: fp16 You are using a model of type clip_text_model to instantiate a model of type . This is not supported for all configurations of models and can yield errors. You are using a model of type clip_text_model to instantiate a model of type . This is not supported for all configurations of models and can yield errors. {‘variance_type’, ‘clip_sample_range’, ‘thresholding’, ‘dynamic_thresholding_ratio’} was not found in config. Values will be initialized to default values. {‘attention_type’, ‘reverse_transformer_layers_per_block’, ‘dropout’} was not found in config. Values will be initialized to default values. ==========HERE1============= ==========HERE1============= ==========HERE1============= ==========HERE2============= ==========HERE2============= ==========HERE2============= ==========HERE3============= True ===========Here3.1=========== ===========Here3.2=========== ==========HERE3============= ==========HERE3========= ``` ### Environment info _libgcc_mutex 0.1 conda_forge conda-forge _openmp_mutex 4.5 2_kmp_llvm conda-forge absl-py 2.0.0 pypi_0 pypi accelerate 0.24.0 pypi_0 pypi aiohttp 3.8.6 pypi_0 pypi aiosignal 1.3.1 pypi_0 pypi appdirs 1.4.4 pyh9f0ad1d_0 conda-forge async-timeout 4.0.3 pypi_0 pypi attrs 23.1.0 pypi_0 pypi bitsandbytes 0.41.1 pypi_0 pypi blas 1.0 mkl blessings 1.7 py39h06a4308_1002 brotli-python 1.0.9 py39h6a678d5_7 bzip2 1.0.8 h7b6447c_0 ca-certificates 2023.08.22 h06a4308_0 cachetools 5.3.2 pypi_0 pypi certifi 2023.7.22 py39h06a4308_0 cffi 1.15.1 py39h5eee18b_3 charset-normalizer 2.0.4 pyhd3eb1b0_0 click 8.1.7 unix_pyh707e725_0 conda-forge cryptography 41.0.3 py39hdda0065_0 cuda-cudart 11.7.99 0 nvidia cuda-cupti 11.7.101 0 nvidia cuda-libraries 11.7.1 0 nvidia cuda-nvrtc 11.7.99 0 nvidia cuda-nvtx 11.7.91 0 nvidia cuda-runtime 11.7.1 0 nvidia datasets 2.14.6 pypi_0 pypi diffusers 0.22.0.dev0 pypi_0 pypi dill 0.3.7 pypi_0 pypi docker-pycreds 0.4.0 py_0 conda-forge ffmpeg 4.3 hf484d3e_0 pytorch filelock 3.12.4 pypi_0 pypi freetype 2.12.1 h4a9f257_0 frozenlist 1.4.0 pypi_0 pypi fsspec 2023.10.0 pypi_0 pypi ftfy 6.1.1 pypi_0 pypi giflib 5.2.1 h5eee18b_3 gitdb 4.0.11 pyhd8ed1ab_0 conda-forge gitpython 3.1.40 pyhd8ed1ab_0 conda-forge gmp 6.2.1 h295c915_3 gnutls 3.6.15 he1e5248_0 google-auth 2.23.3 pypi_0 pypi google-auth-oauthlib 1.1.0 pypi_0 pypi gpustat 0.6.0 pyhd3eb1b0_1 grpcio 1.59.0 pypi_0 pypi huggingface-hub 0.17.3 pypi_0 pypi idna 3.4 py39h06a4308_0 importlib-metadata 6.8.0 pypi_0 pypi intel-openmp 2023.1.0 hdb19cb5_46305 jinja2 3.1.2 pypi_0 pypi jpeg 9e h5eee18b_1 lame 3.100 h7b6447c_0 lcms2 2.12 h3be6417_0 ld_impl_linux-64 2.38 h1181459_1 lerc 3.0 h295c915_0 libcublas 11.10.3.66 0 nvidia libcufft 10.7.2.124 h4fbf590_0 nvidia libcufile 1.8.0.34 0 nvidia libcurand 10.3.4.52 0 nvidia libcusolver 11.4.0.1 0 nvidia libcusparse 11.7.4.91 0 nvidia libdeflate 1.17 h5eee18b_1 libffi 3.4.4 h6a678d5_0 libgcc-ng 13.2.0 h807b86a_2 conda-forge libgfortran-ng 13.2.0 h69a702a_2 conda-forge libgfortran5 13.2.0 ha4646dd_2 conda-forge libiconv 1.16 h7f8727e_2 libidn2 2.3.4 h5eee18b_0 libnpp 11.7.4.75 0 nvidia libnvjpeg 11.8.0.2 0 nvidia libpng 1.6.39 h5eee18b_0 libprotobuf 3.20.3 he621ea3_0 libstdcxx-ng 13.2.0 h7e041cc_2 conda-forge libtasn1 4.19.0 h5eee18b_0 libtiff 4.5.1 h6a678d5_0 libunistring 0.9.10 h27cfd23_0 libwebp 1.3.2 h11a3e52_0 libwebp-base 1.3.2 h5eee18b_0 llvm-openmp 14.0.6 h9e868ea_0 lz4-c 1.9.4 h6a678d5_0 markdown 3.5 pypi_0 pypi markupsafe 2.1.3 pypi_0 pypi mkl 2023.1.0 h213fc3f_46343 mkl-service 2.4.0 py39h5eee18b_1 mkl_fft 1.3.8 py39h5eee18b_0 mkl_random 1.2.4 py39hdb19cb5_0 multidict 6.0.4 pypi_0 pypi multiprocess 0.70.15 pypi_0 pypi ncurses 6.4 h6a678d5_0 nettle 3.7.3 hbbd107a_1 numpy 1.26.0 py39h5f9d8c6_0 numpy-base 1.26.0 py39hb5e798b_0 nvidia-ml 7.352.0 pyhd3eb1b0_0 oauthlib 3.2.2 pypi_0 pypi openh264 2.1.1 h4ff587b_0 openjpeg 2.4.0 h3ad879b_0 openssl 3.0.11 h7f8727e_2 packaging 23.2 pypi_0 pypi pandas 2.1.1 pypi_0 pypi pathtools 0.1.2 py_1 conda-forge pillow 10.0.1 py39ha6cbd5a_0 pip 23.3 py39h06a4308_0 protobuf 4.23.4 pypi_0 pypi psutil 5.9.6 pypi_0 pypi pyarrow 13.0.0 pypi_0 pypi pyasn1 0.5.0 pypi_0 pypi pyasn1-modules 0.3.0 pypi_0 pypi pycparser 2.21 pyhd3eb1b0_0 pyopenssl 23.2.0 py39h06a4308_0 pysocks 1.7.1 py39h06a4308_0 python 3.9.18 h955ad1f_0 python-dateutil 2.8.2 pypi_0 pypi python_abi 3.9 2_cp39 conda-forge pytorch 1.13.1 py3.9_cuda11.7_cudnn8.5.0_0 pytorch pytorch-cuda 11.7 h778d358_5 pytorch pytorch-mutex 1.0 cuda pytorch pytz 2023.3.post1 pypi_0 pypi pyyaml 6.0.1 pypi_0 pypi readline 8.2 h5eee18b_0 regex 2023.10.3 pypi_0 pypi requests 2.31.0 py39h06a4308_0 requests-oauthlib 1.3.1 pypi_0 pypi rsa 4.9 pypi_0 pypi safetensors 0.4.0 pypi_0 pypi scipy 1.11.3 py39h5f9d8c6_0 sentry-sdk 1.32.0 pyhd8ed1ab_0 conda-forge setproctitle 1.1.10 py39h3811e60_1004 conda-forge setuptools 68.0.0 py39h06a4308_0 six 1.16.0 pyh6c4a22f_0 conda-forge smmap 5.0.0 pyhd8ed1ab_0 conda-forge sqlite 3.41.2 h5eee18b_0 tbb 2021.8.0 hdb19cb5_0 tensorboard 2.15.0 pypi_0 pypi tensorboard-data-server 0.7.2 pypi_0 pypi tk 8.6.12 h1ccaba5_0 tokenizers 0.14.1 pypi_0 pypi torchaudio 0.13.1 py39_cu117 pytorch torchtriton 2.1.0 py39 pytorch torchvision 0.14.1 py39_cu117 pytorch tqdm 4.66.1 pypi_0 pypi transformers 4.34.1 pypi_0 pypi typing_extensions 4.7.1 py39h06a4308_0 tzdata 2023.3 pypi_0 pypi urllib3 1.26.18 py39h06a4308_0 wandb 0.15.12 pyhd8ed1ab_0 conda-forge wcwidth 0.2.8 pypi_0 pypi werkzeug 3.0.1 pypi_0 pypi wheel 0.41.2 py39h06a4308_0 xformers 0.0.22.post7 py39_cu11.7.1_pyt1.13.1 xformers xxhash 3.4.1 pypi_0 pypi xz 5.4.2 h5eee18b_0 yaml 0.2.5 h7f98852_2 conda-forge yarl 1.9.2 pypi_0 pypi zipp 3.17.0 pypi_0 pypi zlib 1.2.13 h5eee18b_0 zstd 1.5.5 hc292b87_0
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6363/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6363/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6362
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6362/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6362/comments
https://api.github.com/repos/huggingface/datasets/issues/6362/events
https://github.com/huggingface/datasets/pull/6362
1,965,794,569
PR_kwDODunzps5d_MxD
6,362
Simplify filesystem logic
{ "login": "mariosasko", "id": 47462742, "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "gravatar_id": "", "url": "https://api.github.com/users/mariosasko", "html_url": "https://github.com/mariosasko", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "repos_url": "https://api.github.com/users/mariosasko/repos", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008852 / 0.011353 (-0.002501) | 0.004613 / 0.011008 (-0.006396) | 0.096153 / 0.038508 (0.057645) | 0.074945 / 0.023109 (0.051836) | 0.365960 / 0.275898 (0.090062) | 0.385450 / 0.323480 (0.061970) | 0.004757 / 0.007986 (-0.003229) | 0.003453 / 0.004328 (-0.000876) | 0.069944 / 0.004250 (0.065693) | 0.057781 / 0.037052 (0.020729) | 0.361056 / 0.258489 (0.102567) | 0.409218 / 0.293841 (0.115377) | 0.045714 / 0.128546 (-0.082833) | 0.013776 / 0.075646 (-0.061871) | 0.328797 / 0.419271 (-0.090474) | 0.063431 / 0.043533 (0.019899) | 0.370799 / 0.255139 (0.115660) | 0.370701 / 0.283200 (0.087502) | 0.034894 / 0.141683 (-0.106789) | 1.730290 / 1.452155 (0.278136) | 1.863600 / 1.492716 (0.370883) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.245571 / 0.018006 (0.227565) | 0.509666 / 0.000490 (0.509176) | 0.008051 / 0.000200 (0.007851) | 0.000104 / 0.000054 (0.000050) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027854 / 0.037411 (-0.009557) | 0.090735 / 0.014526 (0.076209) | 0.100100 / 0.176557 (-0.076457) | 0.158267 / 0.737135 (-0.578868) | 0.107537 / 0.296338 (-0.188801) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.565455 / 0.215209 (0.350246) | 5.671436 / 2.077655 (3.593781) | 2.438078 / 1.504120 (0.933958) | 2.072403 / 1.541195 (0.531208) | 2.127830 / 1.468490 (0.659340) | 0.840101 / 4.584777 (-3.744675) | 4.945952 / 3.745712 (1.200240) | 4.840904 / 5.269862 (-0.428957) | 3.037936 / 4.565676 (-1.527740) | 0.099027 / 0.424275 (-0.325248) | 0.008448 / 0.007607 (0.000841) | 0.703315 / 0.226044 (0.477271) | 6.837550 / 2.268929 (4.568621) | 3.204232 / 55.444624 (-52.240393) | 2.492985 / 6.876477 (-4.383492) | 2.426792 / 2.142072 (0.284720) | 0.998430 / 4.805227 (-3.806797) | 0.203854 / 6.500664 (-6.296811) | 0.072386 / 0.075469 (-0.003083) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.606627 / 1.841788 (-0.235161) | 22.287391 / 8.074308 (14.213082) | 20.245654 / 10.191392 (10.054262) | 0.229377 / 0.680424 (-0.451046) | 0.028399 / 0.534201 (-0.505802) | 0.446567 / 0.579283 (-0.132716) | 0.565277 / 0.434364 (0.130913) | 0.502957 / 0.540337 (-0.037381) | 0.749268 / 1.386936 (-0.637668) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008253 / 0.011353 (-0.003100) | 0.004432 / 0.011008 (-0.006576) | 0.081995 / 0.038508 (0.043487) | 0.075443 / 0.023109 (0.052334) | 0.442139 / 0.275898 (0.166241) | 0.507308 / 0.323480 (0.183829) | 0.007343 / 0.007986 (-0.000643) | 0.003850 / 0.004328 (-0.000478) | 0.072656 / 0.004250 (0.068406) | 0.054585 / 0.037052 (0.017533) | 0.430057 / 0.258489 (0.171568) | 0.466953 / 0.293841 (0.173112) | 0.050350 / 0.128546 (-0.078196) | 0.013682 / 0.075646 (-0.061965) | 0.088164 / 0.419271 (-0.331107) | 0.061726 / 0.043533 (0.018193) | 0.444420 / 0.255139 (0.189281) | 0.470406 / 0.283200 (0.187206) | 0.033258 / 0.141683 (-0.108425) | 1.635977 / 1.452155 (0.183823) | 1.732767 / 1.492716 (0.240051) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.227350 / 0.018006 (0.209344) | 0.500805 / 0.000490 (0.500316) | 0.006473 / 0.000200 (0.006273) | 0.000110 / 0.000054 (0.000055) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034456 / 0.037411 (-0.002955) | 0.094832 / 0.014526 (0.080306) | 0.118549 / 0.176557 (-0.058008) | 0.177971 / 0.737135 (-0.559164) | 0.114165 / 0.296338 (-0.182174) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.664805 / 0.215209 (0.449596) | 6.509756 / 2.077655 (4.432101) | 2.936840 / 1.504120 (1.432720) | 2.662645 / 1.541195 (1.121450) | 2.659957 / 1.468490 (1.191467) | 0.903019 / 4.584777 (-3.681758) | 5.237191 / 3.745712 (1.491479) | 4.791917 / 5.269862 (-0.477945) | 3.130905 / 4.565676 (-1.434772) | 0.100953 / 0.424275 (-0.323322) | 0.008388 / 0.007607 (0.000781) | 0.776393 / 0.226044 (0.550348) | 7.726230 / 2.268929 (5.457301) | 3.669223 / 55.444624 (-51.775401) | 2.904556 / 6.876477 (-3.971921) | 3.205546 / 2.142072 (1.063473) | 1.058899 / 4.805227 (-3.746329) | 0.213733 / 6.500664 (-6.286931) | 0.071374 / 0.075469 (-0.004096) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.713384 / 1.841788 (-0.128403) | 23.325498 / 8.074308 (15.251190) | 20.140510 / 10.191392 (9.949118) | 0.211565 / 0.680424 (-0.468859) | 0.032916 / 0.534201 (-0.501285) | 0.460504 / 0.579283 (-0.118779) | 0.594352 / 0.434364 (0.159988) | 0.556384 / 0.540337 (0.016047) | 0.788586 / 1.386936 (-0.598350) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#3c7249c11d8330ce49b1fe119c34fc6100f10774 \"CML watermark\")\n", "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008840 / 0.011353 (-0.002513) | 0.005045 / 0.011008 (-0.005963) | 0.110777 / 0.038508 (0.072269) | 0.100495 / 0.023109 (0.077386) | 0.420302 / 0.275898 (0.144404) | 0.456423 / 0.323480 (0.132943) | 0.006873 / 0.007986 (-0.001113) | 0.005230 / 0.004328 (0.000902) | 0.081316 / 0.004250 (0.077066) | 0.063047 / 0.037052 (0.025995) | 0.439469 / 0.258489 (0.180979) | 0.488477 / 0.293841 (0.194636) | 0.048553 / 0.128546 (-0.079994) | 0.014984 / 0.075646 (-0.060662) | 0.401317 / 0.419271 (-0.017955) | 0.074578 / 0.043533 (0.031045) | 0.435298 / 0.255139 (0.180159) | 0.464406 / 0.283200 (0.181206) | 0.048788 / 0.141683 (-0.092895) | 1.836166 / 1.452155 (0.384011) | 1.959808 / 1.492716 (0.467091) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.321419 / 0.018006 (0.303412) | 0.595736 / 0.000490 (0.595246) | 0.021144 / 0.000200 (0.020944) | 0.000626 / 0.000054 (0.000571) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033033 / 0.037411 (-0.004379) | 0.112621 / 0.014526 (0.098095) | 0.118736 / 0.176557 (-0.057821) | 0.195533 / 0.737135 (-0.541602) | 0.120807 / 0.296338 (-0.175531) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.616692 / 0.215209 (0.401483) | 6.033674 / 2.077655 (3.956019) | 2.630106 / 1.504120 (1.125986) | 2.316739 / 1.541195 (0.775544) | 2.387525 / 1.468490 (0.919035) | 0.863385 / 4.584777 (-3.721392) | 5.288193 / 3.745712 (1.542481) | 5.115766 / 5.269862 (-0.154096) | 3.083055 / 4.565676 (-1.482621) | 0.104885 / 0.424275 (-0.319391) | 0.012233 / 0.007607 (0.004626) | 0.739924 / 0.226044 (0.513880) | 7.422996 / 2.268929 (5.154067) | 3.403316 / 55.444624 (-52.041309) | 2.778740 / 6.876477 (-4.097736) | 2.836937 / 2.142072 (0.694864) | 1.059683 / 4.805227 (-3.745544) | 0.235838 / 6.500664 (-6.264826) | 0.083725 / 0.075469 (0.008256) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.755843 / 1.841788 (-0.085944) | 25.186642 / 8.074308 (17.112334) | 24.133582 / 10.191392 (13.942190) | 0.240511 / 0.680424 (-0.439913) | 0.029563 / 0.534201 (-0.504638) | 0.486049 / 0.579283 (-0.093234) | 0.610064 / 0.434364 (0.175700) | 0.559521 / 0.540337 (0.019184) | 0.828289 / 1.386936 (-0.558647) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.012134 / 0.011353 (0.000781) | 0.005133 / 0.011008 (-0.005875) | 0.084521 / 0.038508 (0.046013) | 0.095172 / 0.023109 (0.072063) | 0.527298 / 0.275898 (0.251400) | 0.558915 / 0.323480 (0.235435) | 0.006996 / 0.007986 (-0.000989) | 0.004283 / 0.004328 (-0.000045) | 0.082975 / 0.004250 (0.078725) | 0.067976 / 0.037052 (0.030924) | 0.534020 / 0.258489 (0.275531) | 0.560810 / 0.293841 (0.266969) | 0.051603 / 0.128546 (-0.076943) | 0.013330 / 0.075646 (-0.062316) | 0.094093 / 0.419271 (-0.325178) | 0.068967 / 0.043533 (0.025434) | 0.512527 / 0.255139 (0.257388) | 0.542182 / 0.283200 (0.258982) | 0.039159 / 0.141683 (-0.102524) | 1.858841 / 1.452155 (0.406686) | 1.915450 / 1.492716 (0.422734) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.269013 / 0.018006 (0.251007) | 0.601711 / 0.000490 (0.601222) | 0.013950 / 0.000200 (0.013750) | 0.000166 / 0.000054 (0.000112) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.038817 / 0.037411 (0.001405) | 0.138528 / 0.014526 (0.124002) | 0.130691 / 0.176557 (-0.045865) | 0.192825 / 0.737135 (-0.544310) | 0.128337 / 0.296338 (-0.168002) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.678725 / 0.215209 (0.463516) | 6.869763 / 2.077655 (4.792108) | 3.416224 / 1.504120 (1.912104) | 3.106971 / 1.541195 (1.565776) | 3.117248 / 1.468490 (1.648757) | 0.895004 / 4.584777 (-3.689773) | 5.551618 / 3.745712 (1.805906) | 4.964811 / 5.269862 (-0.305051) | 3.239555 / 4.565676 (-1.326121) | 0.099776 / 0.424275 (-0.324500) | 0.008723 / 0.007607 (0.001116) | 0.818554 / 0.226044 (0.592510) | 8.015976 / 2.268929 (5.747047) | 4.200392 / 55.444624 (-51.244232) | 3.566942 / 6.876477 (-3.309535) | 3.766249 / 2.142072 (1.624177) | 1.083428 / 4.805227 (-3.721799) | 0.214614 / 6.500664 (-6.286050) | 0.081951 / 0.075469 (0.006482) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.854400 / 1.841788 (0.012612) | 26.002556 / 8.074308 (17.928248) | 24.315194 / 10.191392 (14.123802) | 0.249012 / 0.680424 (-0.431412) | 0.032681 / 0.534201 (-0.501520) | 0.502360 / 0.579283 (-0.076923) | 0.606014 / 0.434364 (0.171650) | 0.616852 / 0.540337 (0.076514) | 0.861785 / 1.386936 (-0.525151) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#53c5c01583153cc112a507082aff4679433a1cce \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006723 / 0.011353 (-0.004630) | 0.004135 / 0.011008 (-0.006873) | 0.079241 / 0.038508 (0.040733) | 0.065484 / 0.023109 (0.042374) | 0.302831 / 0.275898 (0.026933) | 0.343747 / 0.323480 (0.020268) | 0.005910 / 0.007986 (-0.002076) | 0.006028 / 0.004328 (0.001699) | 0.064000 / 0.004250 (0.059750) | 0.047872 / 0.037052 (0.010820) | 0.336928 / 0.258489 (0.078439) | 0.357726 / 0.293841 (0.063885) | 0.039375 / 0.128546 (-0.089171) | 0.010439 / 0.075646 (-0.065207) | 0.310453 / 0.419271 (-0.108819) | 0.055320 / 0.043533 (0.011787) | 0.294722 / 0.255139 (0.039583) | 0.314649 / 0.283200 (0.031450) | 0.033223 / 0.141683 (-0.108460) | 1.386705 / 1.452155 (-0.065450) | 1.420546 / 1.492716 (-0.072170) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.262649 / 0.018006 (0.244643) | 0.536764 / 0.000490 (0.536274) | 0.011090 / 0.000200 (0.010891) | 0.000118 / 0.000054 (0.000063) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023822 / 0.037411 (-0.013590) | 0.074279 / 0.014526 (0.059753) | 0.081295 / 0.176557 (-0.095262) | 0.135853 / 0.737135 (-0.601282) | 0.080193 / 0.296338 (-0.216146) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.468577 / 0.215209 (0.253368) | 4.615975 / 2.077655 (2.538321) | 2.059232 / 1.504120 (0.555112) | 1.798578 / 1.541195 (0.257383) | 1.801436 / 1.468490 (0.332946) | 0.660489 / 4.584777 (-3.924288) | 4.394652 / 3.745712 (0.648940) | 3.956277 / 5.269862 (-1.313585) | 2.406700 / 4.565676 (-2.158976) | 0.077174 / 0.424275 (-0.347101) | 0.007121 / 0.007607 (-0.000486) | 0.568213 / 0.226044 (0.342168) | 5.721217 / 2.268929 (3.452289) | 2.662741 / 55.444624 (-52.781883) | 2.207333 / 6.876477 (-4.669144) | 2.165279 / 2.142072 (0.023206) | 0.772566 / 4.805227 (-4.032661) | 0.162845 / 6.500664 (-6.337819) | 0.057515 / 0.075469 (-0.017954) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.313565 / 1.841788 (-0.528223) | 19.298926 / 8.074308 (11.224618) | 17.194320 / 10.191392 (7.002928) | 0.223404 / 0.680424 (-0.457020) | 0.024735 / 0.534201 (-0.509466) | 0.388452 / 0.579283 (-0.190831) | 0.489354 / 0.434364 (0.054990) | 0.427962 / 0.540337 (-0.112375) | 0.629483 / 1.386936 (-0.757453) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007404 / 0.011353 (-0.003949) | 0.004434 / 0.011008 (-0.006574) | 0.061633 / 0.038508 (0.023125) | 0.058446 / 0.023109 (0.035336) | 0.386107 / 0.275898 (0.110209) | 0.397676 / 0.323480 (0.074197) | 0.005463 / 0.007986 (-0.002523) | 0.003797 / 0.004328 (-0.000531) | 0.067323 / 0.004250 (0.063072) | 0.053826 / 0.037052 (0.016774) | 0.387910 / 0.258489 (0.129421) | 0.409364 / 0.293841 (0.115523) | 0.039836 / 0.128546 (-0.088710) | 0.011940 / 0.075646 (-0.063706) | 0.071812 / 0.419271 (-0.347459) | 0.047952 / 0.043533 (0.004419) | 0.386826 / 0.255139 (0.131687) | 0.392845 / 0.283200 (0.109645) | 0.029430 / 0.141683 (-0.112253) | 1.390961 / 1.452155 (-0.061194) | 1.482744 / 1.492716 (-0.009972) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.258814 / 0.018006 (0.240807) | 0.535505 / 0.000490 (0.535015) | 0.006097 / 0.000200 (0.005897) | 0.000130 / 0.000054 (0.000075) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028046 / 0.037411 (-0.009365) | 0.078077 / 0.014526 (0.063552) | 0.087713 / 0.176557 (-0.088843) | 0.140856 / 0.737135 (-0.596279) | 0.090565 / 0.296338 (-0.205773) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.504375 / 0.215209 (0.289165) | 5.133472 / 2.077655 (3.055817) | 2.368968 / 1.504120 (0.864848) | 2.176939 / 1.541195 (0.635744) | 2.151976 / 1.468490 (0.683486) | 0.720566 / 4.584777 (-3.864211) | 5.050505 / 3.745712 (1.304793) | 3.993614 / 5.269862 (-1.276248) | 2.492234 / 4.565676 (-2.073443) | 0.089629 / 0.424275 (-0.334646) | 0.008074 / 0.007607 (0.000467) | 0.677706 / 0.226044 (0.451661) | 6.208332 / 2.268929 (3.939403) | 3.058299 / 55.444624 (-52.386325) | 2.461078 / 6.876477 (-4.415399) | 2.622681 / 2.142072 (0.480609) | 0.873573 / 4.805227 (-3.931654) | 0.176321 / 6.500664 (-6.324343) | 0.062410 / 0.075469 (-0.013059) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.454767 / 1.841788 (-0.387021) | 19.544225 / 8.074308 (11.469917) | 17.365997 / 10.191392 (7.174605) | 0.225461 / 0.680424 (-0.454963) | 0.027679 / 0.534201 (-0.506522) | 0.396419 / 0.579283 (-0.182864) | 0.513244 / 0.434364 (0.078880) | 0.469054 / 0.540337 (-0.071283) | 0.676458 / 1.386936 (-0.710478) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#d44d8a649b541cd0b10ea99fbfe7a02c3ba50a63 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007606 / 0.011353 (-0.003747) | 0.004692 / 0.011008 (-0.006317) | 0.100525 / 0.038508 (0.062017) | 0.085426 / 0.023109 (0.062317) | 0.378568 / 0.275898 (0.102670) | 0.412268 / 0.323480 (0.088788) | 0.004756 / 0.007986 (-0.003230) | 0.003871 / 0.004328 (-0.000457) | 0.075244 / 0.004250 (0.070994) | 0.064969 / 0.037052 (0.027916) | 0.385569 / 0.258489 (0.127079) | 0.429117 / 0.293841 (0.135276) | 0.035798 / 0.128546 (-0.092749) | 0.009999 / 0.075646 (-0.065647) | 0.351380 / 0.419271 (-0.067891) | 0.060850 / 0.043533 (0.017317) | 0.381327 / 0.255139 (0.126188) | 0.403663 / 0.283200 (0.120464) | 0.028103 / 0.141683 (-0.113580) | 1.814143 / 1.452155 (0.361988) | 1.895062 / 1.492716 (0.402346) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.263581 / 0.018006 (0.245575) | 0.506988 / 0.000490 (0.506499) | 0.012775 / 0.000200 (0.012575) | 0.000456 / 0.000054 (0.000402) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033452 / 0.037411 (-0.003959) | 0.104950 / 0.014526 (0.090425) | 0.114803 / 0.176557 (-0.061754) | 0.182465 / 0.737135 (-0.554671) | 0.116156 / 0.296338 (-0.180183) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.441574 / 0.215209 (0.226365) | 4.394601 / 2.077655 (2.316946) | 2.170797 / 1.504120 (0.666677) | 1.926675 / 1.541195 (0.385480) | 1.974867 / 1.468490 (0.506377) | 0.546777 / 4.584777 (-4.038000) | 4.053612 / 3.745712 (0.307900) | 3.934278 / 5.269862 (-1.335583) | 2.354660 / 4.565676 (-2.211017) | 0.067706 / 0.424275 (-0.356569) | 0.009217 / 0.007607 (0.001610) | 0.539261 / 0.226044 (0.313217) | 5.409552 / 2.268929 (3.140623) | 2.835739 / 55.444624 (-52.608886) | 2.282246 / 6.876477 (-4.594230) | 2.359930 / 2.142072 (0.217858) | 0.696363 / 4.805227 (-4.108864) | 0.155947 / 6.500664 (-6.344717) | 0.071293 / 0.075469 (-0.004176) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.495512 / 1.841788 (-0.346275) | 22.027128 / 8.074308 (13.952820) | 16.226068 / 10.191392 (6.034676) | 0.180281 / 0.680424 (-0.500142) | 0.021839 / 0.534201 (-0.512362) | 0.446151 / 0.579283 (-0.133132) | 0.476872 / 0.434364 (0.042508) | 0.515171 / 0.540337 (-0.025166) | 0.731372 / 1.386936 (-0.655564) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006843 / 0.011353 (-0.004510) | 0.004286 / 0.011008 (-0.006722) | 0.074104 / 0.038508 (0.035596) | 0.076789 / 0.023109 (0.053680) | 0.441506 / 0.275898 (0.165608) | 0.500999 / 0.323480 (0.177519) | 0.006041 / 0.007986 (-0.001945) | 0.003718 / 0.004328 (-0.000610) | 0.074189 / 0.004250 (0.069938) | 0.060513 / 0.037052 (0.023461) | 0.460812 / 0.258489 (0.202323) | 0.503631 / 0.293841 (0.209790) | 0.037026 / 0.128546 (-0.091520) | 0.009611 / 0.075646 (-0.066035) | 0.077037 / 0.419271 (-0.342234) | 0.052191 / 0.043533 (0.008658) | 0.444567 / 0.255139 (0.189428) | 0.486730 / 0.283200 (0.203530) | 0.023846 / 0.141683 (-0.117837) | 1.692422 / 1.452155 (0.240267) | 1.809648 / 1.492716 (0.316932) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.240007 / 0.018006 (0.222001) | 0.481980 / 0.000490 (0.481490) | 0.006945 / 0.000200 (0.006746) | 0.000120 / 0.000054 (0.000065) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.037198 / 0.037411 (-0.000213) | 0.119413 / 0.014526 (0.104887) | 0.137409 / 0.176557 (-0.039148) | 0.199130 / 0.737135 (-0.538005) | 0.133137 / 0.296338 (-0.163202) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.521747 / 0.215209 (0.306538) | 4.955653 / 2.077655 (2.877999) | 2.694323 / 1.504120 (1.190203) | 2.496629 / 1.541195 (0.955434) | 2.661151 / 1.468490 (1.192660) | 0.576687 / 4.584777 (-4.008089) | 4.251437 / 3.745712 (0.505725) | 3.683020 / 5.269862 (-1.586842) | 2.363951 / 4.565676 (-2.201726) | 0.064631 / 0.424275 (-0.359644) | 0.007958 / 0.007607 (0.000351) | 0.616498 / 0.226044 (0.390454) | 5.919424 / 2.268929 (3.650496) | 3.255936 / 55.444624 (-52.188689) | 2.866167 / 6.876477 (-4.010309) | 3.007272 / 2.142072 (0.865199) | 0.660259 / 4.805227 (-4.144968) | 0.152469 / 6.500664 (-6.348195) | 0.065254 / 0.075469 (-0.010215) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.547912 / 1.841788 (-0.293876) | 22.494611 / 8.074308 (14.420303) | 16.400746 / 10.191392 (6.209354) | 0.184137 / 0.680424 (-0.496287) | 0.023615 / 0.534201 (-0.510586) | 0.473923 / 0.579283 (-0.105360) | 0.473030 / 0.434364 (0.038666) | 0.534264 / 0.540337 (-0.006073) | 0.770178 / 1.386936 (-0.616758) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#565efb7f43839072ef01247681645ca404ba0b94 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006812 / 0.011353 (-0.004541) | 0.004254 / 0.011008 (-0.006754) | 0.084271 / 0.038508 (0.045763) | 0.084299 / 0.023109 (0.061189) | 0.317437 / 0.275898 (0.041539) | 0.350855 / 0.323480 (0.027375) | 0.004296 / 0.007986 (-0.003690) | 0.003610 / 0.004328 (-0.000718) | 0.065205 / 0.004250 (0.060955) | 0.057734 / 0.037052 (0.020682) | 0.324049 / 0.258489 (0.065560) | 0.365042 / 0.293841 (0.071201) | 0.031454 / 0.128546 (-0.097092) | 0.008703 / 0.075646 (-0.066943) | 0.286603 / 0.419271 (-0.132668) | 0.052251 / 0.043533 (0.008719) | 0.312404 / 0.255139 (0.057265) | 0.335902 / 0.283200 (0.052703) | 0.025087 / 0.141683 (-0.116595) | 1.478573 / 1.452155 (0.026418) | 1.559548 / 1.492716 (0.066831) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.307637 / 0.018006 (0.289631) | 0.567169 / 0.000490 (0.566679) | 0.006782 / 0.000200 (0.006582) | 0.000235 / 0.000054 (0.000180) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030979 / 0.037411 (-0.006433) | 0.089972 / 0.014526 (0.075446) | 0.101689 / 0.176557 (-0.074868) | 0.162038 / 0.737135 (-0.575097) | 0.103107 / 0.296338 (-0.193232) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.382458 / 0.215209 (0.167248) | 3.813105 / 2.077655 (1.735450) | 1.855198 / 1.504120 (0.351078) | 1.699850 / 1.541195 (0.158656) | 1.902818 / 1.468490 (0.434328) | 0.478654 / 4.584777 (-4.106123) | 3.536926 / 3.745712 (-0.208786) | 3.558557 / 5.269862 (-1.711304) | 2.121098 / 4.565676 (-2.444579) | 0.056584 / 0.424275 (-0.367691) | 0.007693 / 0.007607 (0.000086) | 0.471157 / 0.226044 (0.245112) | 4.717742 / 2.268929 (2.448813) | 2.389033 / 55.444624 (-53.055591) | 2.102898 / 6.876477 (-4.773579) | 2.233404 / 2.142072 (0.091332) | 0.585829 / 4.805227 (-4.219398) | 0.133784 / 6.500664 (-6.366880) | 0.063963 / 0.075469 (-0.011506) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.272234 / 1.841788 (-0.569554) | 19.897647 / 8.074308 (11.823339) | 14.808090 / 10.191392 (4.616698) | 0.167199 / 0.680424 (-0.513224) | 0.018357 / 0.534201 (-0.515844) | 0.391635 / 0.579283 (-0.187648) | 0.409603 / 0.434364 (-0.024761) | 0.467670 / 0.540337 (-0.072668) | 0.639763 / 1.386936 (-0.747173) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006794 / 0.011353 (-0.004559) | 0.004317 / 0.011008 (-0.006692) | 0.065434 / 0.038508 (0.026926) | 0.079066 / 0.023109 (0.055957) | 0.415486 / 0.275898 (0.139588) | 0.448072 / 0.323480 (0.124593) | 0.005705 / 0.007986 (-0.002281) | 0.003589 / 0.004328 (-0.000739) | 0.065195 / 0.004250 (0.060945) | 0.058951 / 0.037052 (0.021899) | 0.414466 / 0.258489 (0.155977) | 0.453844 / 0.293841 (0.160003) | 0.032437 / 0.128546 (-0.096110) | 0.008805 / 0.075646 (-0.066841) | 0.071741 / 0.419271 (-0.347530) | 0.048051 / 0.043533 (0.004518) | 0.413197 / 0.255139 (0.158058) | 0.430071 / 0.283200 (0.146872) | 0.023144 / 0.141683 (-0.118539) | 1.507756 / 1.452155 (0.055601) | 1.572180 / 1.492716 (0.079464) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.326556 / 0.018006 (0.308550) | 0.533664 / 0.000490 (0.533174) | 0.007400 / 0.000200 (0.007200) | 0.000119 / 0.000054 (0.000065) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033397 / 0.037411 (-0.004014) | 0.092486 / 0.014526 (0.077960) | 0.108454 / 0.176557 (-0.068103) | 0.163885 / 0.737135 (-0.573250) | 0.109682 / 0.296338 (-0.186657) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.429283 / 0.215209 (0.214074) | 4.285774 / 2.077655 (2.208119) | 2.245646 / 1.504120 (0.741526) | 2.088460 / 1.541195 (0.547265) | 2.217908 / 1.468490 (0.749418) | 0.500126 / 4.584777 (-4.084651) | 3.640253 / 3.745712 (-0.105459) | 3.435069 / 5.269862 (-1.834793) | 2.158015 / 4.565676 (-2.407662) | 0.059087 / 0.424275 (-0.365188) | 0.007479 / 0.007607 (-0.000128) | 0.518067 / 0.226044 (0.292023) | 5.181891 / 2.268929 (2.912963) | 2.759156 / 55.444624 (-52.685468) | 2.452164 / 6.876477 (-4.424313) | 2.712764 / 2.142072 (0.570692) | 0.604871 / 4.805227 (-4.200356) | 0.137810 / 6.500664 (-6.362854) | 0.061999 / 0.075469 (-0.013470) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.338081 / 1.841788 (-0.503706) | 19.934668 / 8.074308 (11.860360) | 14.482526 / 10.191392 (4.291134) | 0.167615 / 0.680424 (-0.512809) | 0.020257 / 0.534201 (-0.513944) | 0.399103 / 0.579283 (-0.180180) | 0.431785 / 0.434364 (-0.002579) | 0.475470 / 0.540337 (-0.064868) | 0.648003 / 1.386936 (-0.738933) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#153a6c0b0897fc30203ded5a6d6c358c53aa3a0e \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.011916 / 0.011353 (0.000563) | 0.004696 / 0.011008 (-0.006313) | 0.101061 / 0.038508 (0.062553) | 0.093383 / 0.023109 (0.070274) | 0.391517 / 0.275898 (0.115619) | 0.434374 / 0.323480 (0.110894) | 0.006193 / 0.007986 (-0.001792) | 0.003840 / 0.004328 (-0.000489) | 0.077946 / 0.004250 (0.073696) | 0.066332 / 0.037052 (0.029280) | 0.413103 / 0.258489 (0.154614) | 0.452988 / 0.293841 (0.159148) | 0.044899 / 0.128546 (-0.083647) | 0.009969 / 0.075646 (-0.065677) | 0.344569 / 0.419271 (-0.074703) | 0.064688 / 0.043533 (0.021155) | 0.388042 / 0.255139 (0.132903) | 0.417615 / 0.283200 (0.134416) | 0.032899 / 0.141683 (-0.108784) | 1.738834 / 1.452155 (0.286679) | 1.837562 / 1.492716 (0.344845) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.255265 / 0.018006 (0.237259) | 0.547550 / 0.000490 (0.547061) | 0.009018 / 0.000200 (0.008818) | 0.001232 / 0.000054 (0.001178) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033171 / 0.037411 (-0.004241) | 0.102569 / 0.014526 (0.088043) | 0.113611 / 0.176557 (-0.062946) | 0.181805 / 0.737135 (-0.555330) | 0.115015 / 0.296338 (-0.181323) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.456430 / 0.215209 (0.241221) | 4.536000 / 2.077655 (2.458346) | 2.220554 / 1.504120 (0.716434) | 2.037965 / 1.541195 (0.496770) | 2.223780 / 1.468490 (0.755290) | 0.565732 / 4.584777 (-4.019045) | 4.574917 / 3.745712 (0.829205) | 4.085683 / 5.269862 (-1.184178) | 2.529052 / 4.565676 (-2.036624) | 0.067061 / 0.424275 (-0.357214) | 0.009161 / 0.007607 (0.001554) | 0.551377 / 0.226044 (0.325332) | 5.510422 / 2.268929 (3.241493) | 2.788264 / 55.444624 (-52.656360) | 2.432821 / 6.876477 (-4.443656) | 2.500835 / 2.142072 (0.358762) | 0.683645 / 4.805227 (-4.121582) | 0.155595 / 6.500664 (-6.345069) | 0.072265 / 0.075469 (-0.003204) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.512571 / 1.841788 (-0.329217) | 23.752582 / 8.074308 (15.678273) | 16.798834 / 10.191392 (6.607442) | 0.210325 / 0.680424 (-0.470099) | 0.023446 / 0.534201 (-0.510755) | 0.472964 / 0.579283 (-0.106319) | 0.518003 / 0.434364 (0.083639) | 0.588422 / 0.540337 (0.048085) | 0.830762 / 1.386936 (-0.556174) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008075 / 0.011353 (-0.003278) | 0.004569 / 0.011008 (-0.006439) | 0.079786 / 0.038508 (0.041278) | 0.092741 / 0.023109 (0.069632) | 0.500732 / 0.275898 (0.224834) | 0.544108 / 0.323480 (0.220628) | 0.006305 / 0.007986 (-0.001680) | 0.003843 / 0.004328 (-0.000486) | 0.078347 / 0.004250 (0.074096) | 0.066969 / 0.037052 (0.029916) | 0.504116 / 0.258489 (0.245627) | 0.548109 / 0.293841 (0.254268) | 0.038263 / 0.128546 (-0.090283) | 0.010006 / 0.075646 (-0.065640) | 0.085582 / 0.419271 (-0.333690) | 0.056937 / 0.043533 (0.013404) | 0.502861 / 0.255139 (0.247722) | 0.532002 / 0.283200 (0.248802) | 0.027003 / 0.141683 (-0.114679) | 1.811658 / 1.452155 (0.359503) | 1.878863 / 1.492716 (0.386147) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.242297 / 0.018006 (0.224291) | 0.489060 / 0.000490 (0.488570) | 0.005770 / 0.000200 (0.005570) | 0.000129 / 0.000054 (0.000075) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.040368 / 0.037411 (0.002956) | 0.116221 / 0.014526 (0.101695) | 0.125195 / 0.176557 (-0.051361) | 0.188616 / 0.737135 (-0.548519) | 0.126473 / 0.296338 (-0.169866) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.513975 / 0.215209 (0.298766) | 5.122407 / 2.077655 (3.044752) | 2.854024 / 1.504120 (1.349904) | 2.611101 / 1.541195 (1.069906) | 2.704880 / 1.468490 (1.236390) | 0.581568 / 4.584777 (-4.003209) | 4.628965 / 3.745712 (0.883253) | 4.069359 / 5.269862 (-1.200503) | 2.433793 / 4.565676 (-2.131883) | 0.068624 / 0.424275 (-0.355651) | 0.008843 / 0.007607 (0.001235) | 0.609147 / 0.226044 (0.383102) | 6.096923 / 2.268929 (3.827995) | 3.411687 / 55.444624 (-52.032937) | 2.972037 / 6.876477 (-3.904440) | 3.210266 / 2.142072 (1.068194) | 0.697935 / 4.805227 (-4.107292) | 0.156855 / 6.500664 (-6.343809) | 0.072600 / 0.075469 (-0.002869) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.673126 / 1.841788 (-0.168661) | 24.782231 / 8.074308 (16.707923) | 17.945937 / 10.191392 (7.754545) | 0.229063 / 0.680424 (-0.451361) | 0.024264 / 0.534201 (-0.509937) | 0.474904 / 0.579283 (-0.104379) | 0.616602 / 0.434364 (0.182238) | 0.587687 / 0.540337 (0.047350) | 0.875600 / 1.386936 (-0.511336) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#a46ae63ad72c0733c947fa0f2996fa739d80e1ef \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004866 / 0.011353 (-0.006487) | 0.002877 / 0.011008 (-0.008132) | 0.061786 / 0.038508 (0.023277) | 0.051555 / 0.023109 (0.028446) | 0.262182 / 0.275898 (-0.013716) | 0.288908 / 0.323480 (-0.034572) | 0.002929 / 0.007986 (-0.005057) | 0.002358 / 0.004328 (-0.001971) | 0.048246 / 0.004250 (0.043995) | 0.040391 / 0.037052 (0.003339) | 0.268165 / 0.258489 (0.009675) | 0.304844 / 0.293841 (0.011003) | 0.023280 / 0.128546 (-0.105266) | 0.007274 / 0.075646 (-0.068372) | 0.200698 / 0.419271 (-0.218574) | 0.036181 / 0.043533 (-0.007352) | 0.267292 / 0.255139 (0.012153) | 0.286981 / 0.283200 (0.003781) | 0.018686 / 0.141683 (-0.122996) | 1.131903 / 1.452155 (-0.320251) | 1.196631 / 1.492716 (-0.296086) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.092158 / 0.018006 (0.074152) | 0.300621 / 0.000490 (0.300132) | 0.000205 / 0.000200 (0.000006) | 0.000041 / 0.000054 (-0.000013) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018101 / 0.037411 (-0.019310) | 0.062478 / 0.014526 (0.047952) | 0.073092 / 0.176557 (-0.103464) | 0.119397 / 0.737135 (-0.617738) | 0.073768 / 0.296338 (-0.222570) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.286711 / 0.215209 (0.071502) | 2.766663 / 2.077655 (0.689008) | 1.431238 / 1.504120 (-0.072882) | 1.308312 / 1.541195 (-0.232883) | 1.344886 / 1.468490 (-0.123605) | 0.396719 / 4.584777 (-4.188058) | 2.371154 / 3.745712 (-1.374558) | 2.626471 / 5.269862 (-2.643391) | 1.574837 / 4.565676 (-2.990840) | 0.046344 / 0.424275 (-0.377931) | 0.005108 / 0.007607 (-0.002499) | 0.334200 / 0.226044 (0.108156) | 3.277034 / 2.268929 (1.008106) | 1.789338 / 55.444624 (-53.655286) | 1.527584 / 6.876477 (-5.348892) | 1.570417 / 2.142072 (-0.571656) | 0.472663 / 4.805227 (-4.332564) | 0.100825 / 6.500664 (-6.399839) | 0.042270 / 0.075469 (-0.033199) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.965416 / 1.841788 (-0.876372) | 11.827406 / 8.074308 (3.753098) | 10.820703 / 10.191392 (0.629311) | 0.128636 / 0.680424 (-0.551788) | 0.014696 / 0.534201 (-0.519505) | 0.271019 / 0.579283 (-0.308264) | 0.270077 / 0.434364 (-0.164287) | 0.313054 / 0.540337 (-0.227284) | 0.402941 / 1.386936 (-0.983995) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005204 / 0.011353 (-0.006149) | 0.002976 / 0.011008 (-0.008032) | 0.047723 / 0.038508 (0.009215) | 0.056180 / 0.023109 (0.033071) | 0.277751 / 0.275898 (0.001853) | 0.304109 / 0.323480 (-0.019371) | 0.004254 / 0.007986 (-0.003732) | 0.002386 / 0.004328 (-0.001943) | 0.047815 / 0.004250 (0.043564) | 0.041553 / 0.037052 (0.004501) | 0.280958 / 0.258489 (0.022469) | 0.308639 / 0.293841 (0.014799) | 0.023549 / 0.128546 (-0.104997) | 0.007846 / 0.075646 (-0.067800) | 0.053762 / 0.419271 (-0.365509) | 0.031763 / 0.043533 (-0.011770) | 0.278208 / 0.255139 (0.023069) | 0.294024 / 0.283200 (0.010825) | 0.018648 / 0.141683 (-0.123035) | 1.140664 / 1.452155 (-0.311490) | 1.206706 / 1.492716 (-0.286010) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.093211 / 0.018006 (0.075205) | 0.303067 / 0.000490 (0.302577) | 0.000222 / 0.000200 (0.000022) | 0.000055 / 0.000054 (0.000001) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.021745 / 0.037411 (-0.015666) | 0.070400 / 0.014526 (0.055874) | 0.083250 / 0.176557 (-0.093307) | 0.119745 / 0.737135 (-0.617391) | 0.083004 / 0.296338 (-0.213335) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.305841 / 0.215209 (0.090632) | 2.958171 / 2.077655 (0.880516) | 1.596990 / 1.504120 (0.092870) | 1.466522 / 1.541195 (-0.074673) | 1.487050 / 1.468490 (0.018560) | 0.402866 / 4.584777 (-4.181911) | 2.425415 / 3.745712 (-1.320297) | 2.545245 / 5.269862 (-2.724617) | 1.569719 / 4.565676 (-2.995958) | 0.046344 / 0.424275 (-0.377931) | 0.005275 / 0.007607 (-0.002332) | 0.362024 / 0.226044 (0.135980) | 3.556721 / 2.268929 (1.287792) | 1.961359 / 55.444624 (-53.483266) | 1.672835 / 6.876477 (-5.203641) | 1.814036 / 2.142072 (-0.328036) | 0.482012 / 4.805227 (-4.323215) | 0.099275 / 6.500664 (-6.401389) | 0.040988 / 0.075469 (-0.034481) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.984368 / 1.841788 (-0.857420) | 12.251555 / 8.074308 (4.177247) | 10.645975 / 10.191392 (0.454583) | 0.128955 / 0.680424 (-0.551468) | 0.015355 / 0.534201 (-0.518846) | 0.272498 / 0.579283 (-0.306785) | 0.279342 / 0.434364 (-0.155022) | 0.303055 / 0.540337 (-0.237282) | 0.392437 / 1.386936 (-0.994499) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#56458fa98d2670ff6bf47a782b6f418785c017fd \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009502 / 0.011353 (-0.001851) | 0.004957 / 0.011008 (-0.006052) | 0.111062 / 0.038508 (0.072553) | 0.100012 / 0.023109 (0.076903) | 0.415747 / 0.275898 (0.139849) | 0.453910 / 0.323480 (0.130430) | 0.006030 / 0.007986 (-0.001956) | 0.004271 / 0.004328 (-0.000057) | 0.088694 / 0.004250 (0.084444) | 0.064529 / 0.037052 (0.027477) | 0.414999 / 0.258489 (0.156510) | 0.477115 / 0.293841 (0.183274) | 0.047565 / 0.128546 (-0.080982) | 0.013352 / 0.075646 (-0.062294) | 0.367948 / 0.419271 (-0.051324) | 0.067577 / 0.043533 (0.024044) | 0.405107 / 0.255139 (0.149968) | 0.430281 / 0.283200 (0.147081) | 0.041629 / 0.141683 (-0.100054) | 1.784746 / 1.452155 (0.332591) | 1.901539 / 1.492716 (0.408822) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.308456 / 0.018006 (0.290450) | 0.623253 / 0.000490 (0.622763) | 0.014966 / 0.000200 (0.014766) | 0.000393 / 0.000054 (0.000338) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031538 / 0.037411 (-0.005873) | 0.100321 / 0.014526 (0.085796) | 0.112788 / 0.176557 (-0.063769) | 0.180998 / 0.737135 (-0.556138) | 0.111589 / 0.296338 (-0.184750) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.603121 / 0.215209 (0.387912) | 5.769795 / 2.077655 (3.692140) | 2.501168 / 1.504120 (0.997048) | 2.240982 / 1.541195 (0.699787) | 2.333123 / 1.468490 (0.864633) | 0.799246 / 4.584777 (-3.785531) | 5.148529 / 3.745712 (1.402817) | 4.737782 / 5.269862 (-0.532080) | 3.003032 / 4.565676 (-1.562644) | 0.087457 / 0.424275 (-0.336818) | 0.008777 / 0.007607 (0.001170) | 0.692961 / 0.226044 (0.466916) | 7.235537 / 2.268929 (4.966608) | 3.464074 / 55.444624 (-51.980551) | 2.817360 / 6.876477 (-4.059116) | 2.903121 / 2.142072 (0.761049) | 1.026150 / 4.805227 (-3.779077) | 0.231814 / 6.500664 (-6.268850) | 0.088358 / 0.075469 (0.012888) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.527889 / 1.841788 (-0.313898) | 24.374770 / 8.074308 (16.300462) | 21.720415 / 10.191392 (11.529023) | 0.209357 / 0.680424 (-0.471067) | 0.027587 / 0.534201 (-0.506614) | 0.479136 / 0.579283 (-0.100147) | 0.573005 / 0.434364 (0.138641) | 0.537713 / 0.540337 (-0.002625) | 0.753628 / 1.386936 (-0.633308) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009724 / 0.011353 (-0.001629) | 0.004798 / 0.011008 (-0.006210) | 0.076423 / 0.038508 (0.037915) | 0.085693 / 0.023109 (0.062584) | 0.446864 / 0.275898 (0.170966) | 0.482700 / 0.323480 (0.159220) | 0.006448 / 0.007986 (-0.001537) | 0.004451 / 0.004328 (0.000122) | 0.078295 / 0.004250 (0.074045) | 0.061940 / 0.037052 (0.024888) | 0.446091 / 0.258489 (0.187601) | 0.478567 / 0.293841 (0.184726) | 0.047206 / 0.128546 (-0.081340) | 0.012608 / 0.075646 (-0.063038) | 0.089719 / 0.419271 (-0.329552) | 0.057791 / 0.043533 (0.014258) | 0.438357 / 0.255139 (0.183218) | 0.475060 / 0.283200 (0.191860) | 0.035466 / 0.141683 (-0.106216) | 1.691982 / 1.452155 (0.239827) | 1.773834 / 1.492716 (0.281118) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.290053 / 0.018006 (0.272047) | 0.595465 / 0.000490 (0.594976) | 0.007531 / 0.000200 (0.007331) | 0.000179 / 0.000054 (0.000124) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034625 / 0.037411 (-0.002786) | 0.098725 / 0.014526 (0.084200) | 0.111248 / 0.176557 (-0.065308) | 0.172113 / 0.737135 (-0.565022) | 0.111299 / 0.296338 (-0.185040) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.581773 / 0.215209 (0.366564) | 6.150993 / 2.077655 (4.073338) | 2.761099 / 1.504120 (1.256980) | 2.431459 / 1.541195 (0.890264) | 2.501471 / 1.468490 (1.032981) | 0.805751 / 4.584777 (-3.779026) | 5.375406 / 3.745712 (1.629693) | 4.829323 / 5.269862 (-0.440538) | 3.095235 / 4.565676 (-1.470442) | 0.103336 / 0.424275 (-0.320939) | 0.012678 / 0.007607 (0.005071) | 0.730121 / 0.226044 (0.504077) | 7.272025 / 2.268929 (5.003097) | 3.607889 / 55.444624 (-51.836735) | 2.904797 / 6.876477 (-3.971680) | 3.179139 / 2.142072 (1.037067) | 0.997510 / 4.805227 (-3.807717) | 0.219023 / 6.500664 (-6.281641) | 0.076680 / 0.075469 (0.001211) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.712838 / 1.841788 (-0.128950) | 24.242240 / 8.074308 (16.167932) | 19.746825 / 10.191392 (9.555433) | 0.234590 / 0.680424 (-0.445833) | 0.032015 / 0.534201 (-0.502186) | 0.462554 / 0.579283 (-0.116729) | 0.604529 / 0.434364 (0.170165) | 0.537779 / 0.540337 (-0.002558) | 0.777386 / 1.386936 (-0.609550) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#89c1b13d85b8971925440deb84f558e23c224a47 \"CML watermark\")\n", "Cool ! Nice to simplify this", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004659 / 0.011353 (-0.006693) | 0.002672 / 0.011008 (-0.008337) | 0.062385 / 0.038508 (0.023877) | 0.030581 / 0.023109 (0.007471) | 0.243210 / 0.275898 (-0.032688) | 0.271441 / 0.323480 (-0.052039) | 0.002909 / 0.007986 (-0.005076) | 0.002371 / 0.004328 (-0.001957) | 0.049213 / 0.004250 (0.044962) | 0.043952 / 0.037052 (0.006900) | 0.250257 / 0.258489 (-0.008232) | 0.280470 / 0.293841 (-0.013371) | 0.023048 / 0.128546 (-0.105499) | 0.006893 / 0.075646 (-0.068754) | 0.204026 / 0.419271 (-0.215245) | 0.054067 / 0.043533 (0.010534) | 0.248730 / 0.255139 (-0.006409) | 0.272325 / 0.283200 (-0.010874) | 0.019028 / 0.141683 (-0.122655) | 1.103477 / 1.452155 (-0.348678) | 1.185775 / 1.492716 (-0.306942) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.097295 / 0.018006 (0.079289) | 0.302997 / 0.000490 (0.302507) | 0.000216 / 0.000200 (0.000016) | 0.000044 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018653 / 0.037411 (-0.018759) | 0.062604 / 0.014526 (0.048079) | 0.075652 / 0.176557 (-0.100904) | 0.121298 / 0.737135 (-0.615838) | 0.074129 / 0.296338 (-0.222209) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.283315 / 0.215209 (0.068106) | 2.833975 / 2.077655 (0.756320) | 1.463877 / 1.504120 (-0.040243) | 1.352197 / 1.541195 (-0.188998) | 1.337623 / 1.468490 (-0.130867) | 0.405282 / 4.584777 (-4.179495) | 2.371381 / 3.745712 (-1.374331) | 2.584853 / 5.269862 (-2.685009) | 1.565902 / 4.565676 (-2.999775) | 0.046398 / 0.424275 (-0.377877) | 0.004795 / 0.007607 (-0.002812) | 0.345949 / 0.226044 (0.119905) | 3.326662 / 2.268929 (1.057733) | 1.778394 / 55.444624 (-53.666230) | 1.520788 / 6.876477 (-5.355688) | 1.526517 / 2.142072 (-0.615556) | 0.471788 / 4.805227 (-4.333439) | 0.099236 / 6.500664 (-6.401428) | 0.041886 / 0.075469 (-0.033583) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.958183 / 1.841788 (-0.883605) | 11.474476 / 8.074308 (3.400168) | 10.547550 / 10.191392 (0.356158) | 0.129316 / 0.680424 (-0.551108) | 0.013969 / 0.534201 (-0.520232) | 0.272028 / 0.579283 (-0.307255) | 0.271027 / 0.434364 (-0.163337) | 0.312124 / 0.540337 (-0.228214) | 0.423879 / 1.386936 (-0.963057) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004743 / 0.011353 (-0.006610) | 0.002724 / 0.011008 (-0.008284) | 0.049526 / 0.038508 (0.011018) | 0.051429 / 0.023109 (0.028319) | 0.265202 / 0.275898 (-0.010696) | 0.287498 / 0.323480 (-0.035981) | 0.004034 / 0.007986 (-0.003951) | 0.002460 / 0.004328 (-0.001868) | 0.049367 / 0.004250 (0.045116) | 0.038526 / 0.037052 (0.001474) | 0.271496 / 0.258489 (0.013007) | 0.300969 / 0.293841 (0.007128) | 0.024159 / 0.128546 (-0.104387) | 0.006959 / 0.075646 (-0.068687) | 0.055316 / 0.419271 (-0.363955) | 0.032409 / 0.043533 (-0.011124) | 0.267524 / 0.255139 (0.012385) | 0.284667 / 0.283200 (0.001467) | 0.017305 / 0.141683 (-0.124378) | 1.127560 / 1.452155 (-0.324595) | 1.188271 / 1.492716 (-0.304445) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.093587 / 0.018006 (0.075581) | 0.301834 / 0.000490 (0.301344) | 0.000211 / 0.000200 (0.000011) | 0.000043 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.020899 / 0.037411 (-0.016512) | 0.069999 / 0.014526 (0.055473) | 0.081434 / 0.176557 (-0.095123) | 0.120538 / 0.737135 (-0.616598) | 0.082708 / 0.296338 (-0.213630) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.291845 / 0.215209 (0.076636) | 2.872476 / 2.077655 (0.794822) | 1.579330 / 1.504120 (0.075210) | 1.453083 / 1.541195 (-0.088112) | 1.496675 / 1.468490 (0.028185) | 0.406178 / 4.584777 (-4.178599) | 2.434121 / 3.745712 (-1.311592) | 2.519760 / 5.269862 (-2.750101) | 1.535781 / 4.565676 (-3.029895) | 0.046331 / 0.424275 (-0.377944) | 0.004749 / 0.007607 (-0.002858) | 0.340862 / 0.226044 (0.114817) | 3.362750 / 2.268929 (1.093822) | 1.924707 / 55.444624 (-53.519917) | 1.646820 / 6.876477 (-5.229657) | 1.630885 / 2.142072 (-0.511188) | 0.478623 / 4.805227 (-4.326605) | 0.098235 / 6.500664 (-6.402429) | 0.040741 / 0.075469 (-0.034728) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.989858 / 1.841788 (-0.851929) | 12.111035 / 8.074308 (4.036727) | 11.065284 / 10.191392 (0.873892) | 0.143443 / 0.680424 (-0.536981) | 0.015873 / 0.534201 (-0.518328) | 0.271932 / 0.579283 (-0.307351) | 0.281440 / 0.434364 (-0.152924) | 0.309518 / 0.540337 (-0.230819) | 0.414701 / 1.386936 (-0.972235) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#322ee4bd7d460a5789f9991a45453b9fb5f5aed1 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005840 / 0.011353 (-0.005513) | 0.003580 / 0.011008 (-0.007428) | 0.079921 / 0.038508 (0.041413) | 0.036316 / 0.023109 (0.013206) | 0.321065 / 0.275898 (0.045167) | 0.348594 / 0.323480 (0.025115) | 0.004662 / 0.007986 (-0.003324) | 0.002884 / 0.004328 (-0.001444) | 0.062964 / 0.004250 (0.058714) | 0.052856 / 0.037052 (0.015804) | 0.322087 / 0.258489 (0.063598) | 0.355546 / 0.293841 (0.061705) | 0.027025 / 0.128546 (-0.101521) | 0.007969 / 0.075646 (-0.067678) | 0.261416 / 0.419271 (-0.157855) | 0.066612 / 0.043533 (0.023079) | 0.314631 / 0.255139 (0.059492) | 0.340939 / 0.283200 (0.057739) | 0.019710 / 0.141683 (-0.121972) | 1.446068 / 1.452155 (-0.006086) | 1.510342 / 1.492716 (0.017625) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.219742 / 0.018006 (0.201736) | 0.431794 / 0.000490 (0.431304) | 0.005717 / 0.000200 (0.005517) | 0.000195 / 0.000054 (0.000141) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024486 / 0.037411 (-0.012926) | 0.073231 / 0.014526 (0.058706) | 0.084053 / 0.176557 (-0.092503) | 0.145857 / 0.737135 (-0.591279) | 0.083050 / 0.296338 (-0.213289) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.400532 / 0.215209 (0.185323) | 3.989293 / 2.077655 (1.911638) | 1.935520 / 1.504120 (0.431400) | 1.754146 / 1.541195 (0.212951) | 1.821060 / 1.468490 (0.352570) | 0.512603 / 4.584777 (-4.072173) | 3.070974 / 3.745712 (-0.674738) | 2.984617 / 5.269862 (-2.285245) | 1.875790 / 4.565676 (-2.689886) | 0.057881 / 0.424275 (-0.366394) | 0.006403 / 0.007607 (-0.001204) | 0.465542 / 0.226044 (0.239498) | 4.659589 / 2.268929 (2.390661) | 2.349637 / 55.444624 (-53.094987) | 2.011511 / 6.876477 (-4.864965) | 2.071893 / 2.142072 (-0.070179) | 0.591113 / 4.805227 (-4.214114) | 0.125000 / 6.500664 (-6.375664) | 0.061372 / 0.075469 (-0.014097) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.237068 / 1.841788 (-0.604720) | 17.493192 / 8.074308 (9.418884) | 13.600688 / 10.191392 (3.409296) | 0.142508 / 0.680424 (-0.537916) | 0.017305 / 0.534201 (-0.516896) | 0.333352 / 0.579283 (-0.245931) | 0.366699 / 0.434364 (-0.067665) | 0.381104 / 0.540337 (-0.159233) | 0.562645 / 1.386936 (-0.824291) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006337 / 0.011353 (-0.005016) | 0.003584 / 0.011008 (-0.007424) | 0.063351 / 0.038508 (0.024843) | 0.061351 / 0.023109 (0.038242) | 0.430690 / 0.275898 (0.154792) | 0.462158 / 0.323480 (0.138678) | 0.004922 / 0.007986 (-0.003064) | 0.002898 / 0.004328 (-0.001430) | 0.063722 / 0.004250 (0.059472) | 0.046970 / 0.037052 (0.009918) | 0.436340 / 0.258489 (0.177851) | 0.472842 / 0.293841 (0.179001) | 0.029238 / 0.128546 (-0.099309) | 0.008079 / 0.075646 (-0.067568) | 0.068425 / 0.419271 (-0.350846) | 0.041272 / 0.043533 (-0.002261) | 0.429150 / 0.255139 (0.174011) | 0.451859 / 0.283200 (0.168659) | 0.020135 / 0.141683 (-0.121547) | 1.440388 / 1.452155 (-0.011767) | 1.506784 / 1.492716 (0.014068) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.225810 / 0.018006 (0.207804) | 0.408447 / 0.000490 (0.407957) | 0.002484 / 0.000200 (0.002284) | 0.000079 / 0.000054 (0.000024) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026162 / 0.037411 (-0.011250) | 0.079292 / 0.014526 (0.064766) | 0.091126 / 0.176557 (-0.085431) | 0.141607 / 0.737135 (-0.595528) | 0.090073 / 0.296338 (-0.206266) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.420689 / 0.215209 (0.205479) | 4.207631 / 2.077655 (2.129976) | 2.163469 / 1.504120 (0.659350) | 2.098208 / 1.541195 (0.557013) | 2.217340 / 1.468490 (0.748850) | 0.502599 / 4.584777 (-4.082178) | 3.128151 / 3.745712 (-0.617561) | 2.921041 / 5.269862 (-2.348820) | 1.808352 / 4.565676 (-2.757325) | 0.057724 / 0.424275 (-0.366551) | 0.006423 / 0.007607 (-0.001184) | 0.490631 / 0.226044 (0.264587) | 4.878761 / 2.268929 (2.609833) | 2.614831 / 55.444624 (-52.829793) | 2.214611 / 6.876477 (-4.661866) | 2.253313 / 2.142072 (0.111241) | 0.585643 / 4.805227 (-4.219584) | 0.122436 / 6.500664 (-6.378228) | 0.057974 / 0.075469 (-0.017495) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.334290 / 1.841788 (-0.507498) | 17.778981 / 8.074308 (9.704672) | 14.982837 / 10.191392 (4.791445) | 0.135731 / 0.680424 (-0.544693) | 0.018314 / 0.534201 (-0.515887) | 0.332318 / 0.579283 (-0.246966) | 0.380185 / 0.434364 (-0.054179) | 0.391430 / 0.540337 (-0.148907) | 0.554577 / 1.386936 (-0.832359) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#1715b61a096cafb20caeb136111522432aba04f5 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005248 / 0.011353 (-0.006105) | 0.003188 / 0.011008 (-0.007820) | 0.063045 / 0.038508 (0.024537) | 0.033620 / 0.023109 (0.010511) | 0.244725 / 0.275898 (-0.031173) | 0.283259 / 0.323480 (-0.040220) | 0.003013 / 0.007986 (-0.004973) | 0.002486 / 0.004328 (-0.001842) | 0.048873 / 0.004250 (0.044623) | 0.049431 / 0.037052 (0.012379) | 0.245297 / 0.258489 (-0.013192) | 0.283127 / 0.293841 (-0.010714) | 0.024204 / 0.128546 (-0.104342) | 0.007542 / 0.075646 (-0.068104) | 0.204831 / 0.419271 (-0.214440) | 0.067487 / 0.043533 (0.023954) | 0.251477 / 0.255139 (-0.003662) | 0.273108 / 0.283200 (-0.010091) | 0.021035 / 0.141683 (-0.120648) | 1.108361 / 1.452155 (-0.343793) | 1.172923 / 1.492716 (-0.319793) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.094729 / 0.018006 (0.076722) | 0.301877 / 0.000490 (0.301388) | 0.000223 / 0.000200 (0.000023) | 0.000050 / 0.000054 (-0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019901 / 0.037411 (-0.017511) | 0.068059 / 0.014526 (0.053534) | 0.075333 / 0.176557 (-0.101224) | 0.123276 / 0.737135 (-0.613859) | 0.076810 / 0.296338 (-0.219528) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.283421 / 0.215209 (0.068211) | 2.775511 / 2.077655 (0.697857) | 1.430927 / 1.504120 (-0.073193) | 1.317334 / 1.541195 (-0.223860) | 1.359483 / 1.468490 (-0.109007) | 0.403186 / 4.584777 (-4.181591) | 2.405789 / 3.745712 (-1.339923) | 2.773039 / 5.269862 (-2.496823) | 1.666722 / 4.565676 (-2.898954) | 0.047937 / 0.424275 (-0.376338) | 0.004879 / 0.007607 (-0.002728) | 0.347225 / 0.226044 (0.121180) | 3.380860 / 2.268929 (1.111931) | 1.838532 / 55.444624 (-53.606092) | 1.597681 / 6.876477 (-5.278796) | 1.600123 / 2.142072 (-0.541949) | 0.478836 / 4.805227 (-4.326391) | 0.100332 / 6.500664 (-6.400332) | 0.043334 / 0.075469 (-0.032135) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.942591 / 1.841788 (-0.899196) | 12.588886 / 8.074308 (4.514578) | 11.375666 / 10.191392 (1.184274) | 0.143460 / 0.680424 (-0.536964) | 0.014990 / 0.534201 (-0.519211) | 0.271068 / 0.579283 (-0.308216) | 0.265478 / 0.434364 (-0.168885) | 0.310914 / 0.540337 (-0.229423) | 0.428310 / 1.386936 (-0.958626) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004986 / 0.011353 (-0.006367) | 0.003263 / 0.011008 (-0.007745) | 0.049076 / 0.038508 (0.010567) | 0.063665 / 0.023109 (0.040556) | 0.270352 / 0.275898 (-0.005546) | 0.298849 / 0.323480 (-0.024631) | 0.004083 / 0.007986 (-0.003903) | 0.002503 / 0.004328 (-0.001826) | 0.048586 / 0.004250 (0.044335) | 0.040701 / 0.037052 (0.003648) | 0.274082 / 0.258489 (0.015593) | 0.308279 / 0.293841 (0.014438) | 0.024734 / 0.128546 (-0.103812) | 0.007535 / 0.075646 (-0.068111) | 0.054670 / 0.419271 (-0.364602) | 0.032828 / 0.043533 (-0.010705) | 0.276226 / 0.255139 (0.021087) | 0.289322 / 0.283200 (0.006122) | 0.018789 / 0.141683 (-0.122893) | 1.279837 / 1.452155 (-0.172318) | 1.203010 / 1.492716 (-0.289706) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.095674 / 0.018006 (0.077667) | 0.309754 / 0.000490 (0.309265) | 0.000229 / 0.000200 (0.000029) | 0.000052 / 0.000054 (-0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.021733 / 0.037411 (-0.015678) | 0.074858 / 0.014526 (0.060332) | 0.081845 / 0.176557 (-0.094711) | 0.121991 / 0.737135 (-0.615145) | 0.084057 / 0.296338 (-0.212281) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.298456 / 0.215209 (0.083246) | 2.884930 / 2.077655 (0.807276) | 1.574875 / 1.504120 (0.070755) | 1.451598 / 1.541195 (-0.089597) | 1.548106 / 1.468490 (0.079616) | 0.408662 / 4.584777 (-4.176115) | 2.444306 / 3.745712 (-1.301406) | 2.737027 / 5.269862 (-2.532835) | 1.633085 / 4.565676 (-2.932592) | 0.047349 / 0.424275 (-0.376926) | 0.004864 / 0.007607 (-0.002744) | 0.355434 / 0.226044 (0.129389) | 3.495531 / 2.268929 (1.226603) | 1.972737 / 55.444624 (-53.471888) | 1.706973 / 6.876477 (-5.169504) | 1.798985 / 2.142072 (-0.343087) | 0.490353 / 4.805227 (-4.314874) | 0.099533 / 6.500664 (-6.401131) | 0.042397 / 0.075469 (-0.033073) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.978092 / 1.841788 (-0.863696) | 13.166220 / 8.074308 (5.091912) | 11.673518 / 10.191392 (1.482126) | 0.134253 / 0.680424 (-0.546171) | 0.016478 / 0.534201 (-0.517723) | 0.271629 / 0.579283 (-0.307654) | 0.284082 / 0.434364 (-0.150282) | 0.313352 / 0.540337 (-0.226986) | 0.416913 / 1.386936 (-0.970023) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#01e7144a02825fea3418872c51a8ca93950f3080 \"CML watermark\")\n" ]
2023-10-27T15:54:18
2023-11-15T14:08:29
2023-11-15T14:02:02
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6362", "html_url": "https://github.com/huggingface/datasets/pull/6362", "diff_url": "https://github.com/huggingface/datasets/pull/6362.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6362.patch", "merged_at": "2023-11-15T14:02:02" }
Simplifies the existing filesystem logic (e.g., to avoid unnecessary if-else as mentioned in https://github.com/huggingface/datasets/pull/6098#issue-1827655071)
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6362/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6362/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6360
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6360/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6360/comments
https://api.github.com/repos/huggingface/datasets/issues/6360/events
https://github.com/huggingface/datasets/issues/6360
1,965,672,950
I_kwDODunzps51Kcn2
6,360
Add support for `Sequence(Audio/Image)` feature in `push_to_hub`
{ "login": "Laurent2916", "id": 21087104, "node_id": "MDQ6VXNlcjIxMDg3MTA0", "avatar_url": "https://avatars.githubusercontent.com/u/21087104?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Laurent2916", "html_url": "https://github.com/Laurent2916", "followers_url": "https://api.github.com/users/Laurent2916/followers", "following_url": "https://api.github.com/users/Laurent2916/following{/other_user}", "gists_url": "https://api.github.com/users/Laurent2916/gists{/gist_id}", "starred_url": "https://api.github.com/users/Laurent2916/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Laurent2916/subscriptions", "organizations_url": "https://api.github.com/users/Laurent2916/orgs", "repos_url": "https://api.github.com/users/Laurent2916/repos", "events_url": "https://api.github.com/users/Laurent2916/events{/privacy}", "received_events_url": "https://api.github.com/users/Laurent2916/received_events", "type": "User", "site_admin": false }
[ { "id": 1935892871, "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement", "name": "enhancement", "color": "a2eeef", "default": true, "description": "New feature or request" } ]
open
false
{ "login": "mariosasko", "id": 47462742, "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "gravatar_id": "", "url": "https://api.github.com/users/mariosasko", "html_url": "https://github.com/mariosasko", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "repos_url": "https://api.github.com/users/mariosasko/repos", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "type": "User", "site_admin": false }
[ { "login": "mariosasko", "id": 47462742, "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "gravatar_id": "", "url": "https://api.github.com/users/mariosasko", "html_url": "https://github.com/mariosasko", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "repos_url": "https://api.github.com/users/mariosasko/repos", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "type": "User", "site_admin": false } ]
[ "This issue stems from https://github.com/huggingface/datasets/blob/6d2f2a5e0fea3827eccfd1717d8021c15fc4292a/src/datasets/table.py#L2203-L2205\r\n\r\nI'll address it as part of https://github.com/huggingface/datasets/pull/6283.\r\n\r\nIn the meantime, this should work\r\n\r\n```python\r\nimport pyarrow as pa\r\nfrom datasets import Image\r\n\r\ndataset = dataset.with_format(\"arrow\")\r\n\r\ndef embed_images(pa_table):\r\n images_arr = pa.chunked_array(\r\n [\r\n pa.ListArray.from_arrays(chunk.offsets, Image().embed_storage(chunk.values), mask=chunk.is_null())\r\n for chunk in pa_table[\"images\"].chunks\r\n ]\r\n )\r\n return pa_table.set_column(pa_table.schema.get_field_index(\"images\"), \"images\", images_arr)\r\n\r\ndataset = dataset.map(embed_images, batched=True)\r\n\r\ndataset = dataset.with_format(\"python\")\r\n\r\ndataset.push_to_hub(...)\r\n```" ]
2023-10-27T14:39:57
2023-11-02T17:49:28
null
CONTRIBUTOR
null
null
null
### Feature request Allow for `Sequence` of `Image` (or `Audio`) to be embedded inside the shards. ### Motivation Currently, thanks to #3685, when `embed_external_files` is set to True (which is the default) in `push_to_hub`, features of type `Image` and `Audio` are embedded inside the arrow/parquet shards, instead of only storing paths to the files. I've noticed that this behavior does not extend to `Sequence` of `Image`, when working with a [dataset of timelapse images](https://huggingface.co./datasets/1aurent/Human-Embryo-Timelapse). ### Your contribution I'll submit a PR if I find a way to add this feature
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6360/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6360/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6359
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6359/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6359/comments
https://api.github.com/repos/huggingface/datasets/issues/6359/events
https://github.com/huggingface/datasets/issues/6359
1,965,378,583
I_kwDODunzps51JUwX
6,359
Stuck in "Resolving data files..."
{ "login": "Luciennnnnnn", "id": 20135317, "node_id": "MDQ6VXNlcjIwMTM1MzE3", "avatar_url": "https://avatars.githubusercontent.com/u/20135317?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Luciennnnnnn", "html_url": "https://github.com/Luciennnnnnn", "followers_url": "https://api.github.com/users/Luciennnnnnn/followers", "following_url": "https://api.github.com/users/Luciennnnnnn/following{/other_user}", "gists_url": "https://api.github.com/users/Luciennnnnnn/gists{/gist_id}", "starred_url": "https://api.github.com/users/Luciennnnnnn/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Luciennnnnnn/subscriptions", "organizations_url": "https://api.github.com/users/Luciennnnnnn/orgs", "repos_url": "https://api.github.com/users/Luciennnnnnn/repos", "events_url": "https://api.github.com/users/Luciennnnnnn/events{/privacy}", "received_events_url": "https://api.github.com/users/Luciennnnnnn/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
[ "Most likely, the data file inference logic is the problem here.\r\n\r\nYou can run the following code to verify this:\r\n```python\r\nimport time\r\nfrom datasets.data_files import get_data_patterns\r\nstart_time = time.time()\r\nget_data_patterns(\"/path/to/img_dir\")\r\nend_time = time.time()\r\nprint(f\"Elapsed time: {end_time - start_time:.2f}s\")\r\n```\r\n \r\nWe plan to optimize this for the next version (or version after that). In the meantime, specifying the split patterns manually should give better performance:\r\n```python\r\nds = load_dataset(\"imagefolder\", data_files={\"train\": \"path/to/img_dir/train/**\", ...}, split=\"train\")\r\n```", "Hi, @mariosasko, you are right; data file inference logic is extremely slow.\r\n\r\nI have done a similar test, that is I modify the source code of datasets/load.py to measure the cost of two suspicious operations:\r\n```python\r\ndef get_module(self) -> DatasetModule:\r\n base_path = Path(self.data_dir or \"\").expanduser().resolve().as_posix()\r\n start = time.time()\r\n patterns = sanitize_patterns(self.data_files) if self.data_files is not None else get_data_patterns(base_path)\r\n print(f\"patterns: {time.time() - start}\")\r\n start = time.time()\r\n data_files = DataFilesDict.from_patterns(\r\n patterns,\r\n download_config=self.download_config,\r\n base_path=base_path,\r\n )\r\n print(f\"data_files: {time.time() - start}\")\r\n```\r\nIt gaves:\r\npatterns: 3062.2050700187683\r\ndata_files: 413.9576675891876\r\n\r\nThus, these two operations contribute to almost all of load time. What's going on in them?", "Furthermore, what's my current workaround about this problem? Should I save it by `save_to_disk()` and load dataset through `load_from_disk`?" ]
2023-10-27T12:01:51
2023-10-28T01:38:21
null
NONE
null
null
null
### Describe the bug I have an image dataset with 300k images, the size of image is 768 * 768. When I run `dataset = load_dataset("imagefolder", data_dir="/path/to/img_dir", split='train')` in second time, it takes 50 minutes to finish "Resolving data files" part, what's going on in this part? From my understand, after Arrow files been created in the first run, the second run should not take time longer than one or two minutes. ### Steps to reproduce the bug # Run following code two times dataset = load_dataset("imagefolder", data_dir="/path/to/img_dir", split='train') ### Expected behavior Fast dataset building ### Environment info - `datasets` version: 2.14.5 - Platform: Linux-5.15.0-60-generic-x86_64-with-glibc2.35 - Python version: 3.10.11 - Huggingface_hub version: 0.17.3 - PyArrow version: 10.0.1 - Pandas version: 1.5.3
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6359/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6359/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6358
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6358/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6358/comments
https://api.github.com/repos/huggingface/datasets/issues/6358/events
https://github.com/huggingface/datasets/issues/6358
1,965,014,595
I_kwDODunzps51H75D
6,358
Mounting datasets cache fails due to absolute paths.
{ "login": "charliebudd", "id": 72921588, "node_id": "MDQ6VXNlcjcyOTIxNTg4", "avatar_url": "https://avatars.githubusercontent.com/u/72921588?v=4", "gravatar_id": "", "url": "https://api.github.com/users/charliebudd", "html_url": "https://github.com/charliebudd", "followers_url": "https://api.github.com/users/charliebudd/followers", "following_url": "https://api.github.com/users/charliebudd/following{/other_user}", "gists_url": "https://api.github.com/users/charliebudd/gists{/gist_id}", "starred_url": "https://api.github.com/users/charliebudd/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/charliebudd/subscriptions", "organizations_url": "https://api.github.com/users/charliebudd/orgs", "repos_url": "https://api.github.com/users/charliebudd/repos", "events_url": "https://api.github.com/users/charliebudd/events{/privacy}", "received_events_url": "https://api.github.com/users/charliebudd/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "You may be able to make it work by tweaking some environment variables, such as [`HF_HOME`](https://huggingface.co./docs/huggingface_hub/main/en/package_reference/environment_variables#hfhome) or [`HF_DATASETS_CACHE`](https://huggingface.co./docs/datasets/cache#cache-directory).", "> You may be able to make it work by tweaking some environment variables, such as [`HF_HOME`](https://huggingface.co./docs/huggingface_hub/main/en/package_reference/environment_variables#hfhome) or [`HF_DATASETS_CACHE`](https://huggingface.co./docs/datasets/cache#cache-directory).\r\n\r\nI am already doing this. The problem is that, while this seemingly allows flexibility, the absolute paths written into the cache still have the old cache directory. The paths written into the cache should be relative to the cache location to allow this sort of flexibility. Sorry, I omitted this in the reproduction steps, I have now added it.", "I'm unable to reproduce this with the cache\r\n```bash\r\nexport HF_CACHE=$PWD/hf_cache\r\npython -c \"import datasets; datasets.load_dataset('imdb')\"\r\n```\r\nimported inside a dummy container that is built from\r\n```bash\r\nFROM python:3.9\r\n\r\nWORKDIR /usr/src/app\r\n\r\nRUN pip install datasets\r\n\r\nCOPY ./hf_cache ./hf_cache\r\n\r\nENV HF_HOME=./hf_cache\r\nENV HF_DATASETS_OFFLINE=1\r\n\r\nCMD [\"python\"]\r\n```\r\nWhat do you mean by \"absolute paths written into the cache\"? Paths inside the HF cache paths are based on hash (hashed URL of the downloaded files, etc.)" ]
2023-10-27T08:20:27
2023-11-28T14:47:12
2023-11-28T14:47:12
NONE
null
null
null
### Describe the bug Creating a datasets cache and mounting this into, for example, a docker container, renders the data unreadable due to absolute paths written into the cache. ### Steps to reproduce the bug 1. Create a datasets cache by downloading some data 2. Mount the dataset folder into a docker container or remote system. 3. (Edit) Set `HF_HOME` or `HF_DATASET_CACHE` to point to the mounted cache. 4. Attempt to access the data from within the docker container. 5. An error is thrown saying no file exists at \<absolute path to original cache location\> ### Expected behavior The data is loaded without error ### Environment info - `datasets` version: 2.14.4 - Platform: Linux-5.4.0-162-generic-x86_64-with-glibc2.29 - Python version: 3.8.10 - Huggingface_hub version: 0.16.4 - PyArrow version: 13.0.0 - Pandas version: 2.0.3
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6358/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6358/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6357
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6357/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6357/comments
https://api.github.com/repos/huggingface/datasets/issues/6357/events
https://github.com/huggingface/datasets/issues/6357
1,964,653,995
I_kwDODunzps51Gj2r
6,357
Allow passing a multiprocessing context to functions that support `num_proc`
{ "login": "bryant1410", "id": 3905501, "node_id": "MDQ6VXNlcjM5MDU1MDE=", "avatar_url": "https://avatars.githubusercontent.com/u/3905501?v=4", "gravatar_id": "", "url": "https://api.github.com/users/bryant1410", "html_url": "https://github.com/bryant1410", "followers_url": "https://api.github.com/users/bryant1410/followers", "following_url": "https://api.github.com/users/bryant1410/following{/other_user}", "gists_url": "https://api.github.com/users/bryant1410/gists{/gist_id}", "starred_url": "https://api.github.com/users/bryant1410/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/bryant1410/subscriptions", "organizations_url": "https://api.github.com/users/bryant1410/orgs", "repos_url": "https://api.github.com/users/bryant1410/repos", "events_url": "https://api.github.com/users/bryant1410/events{/privacy}", "received_events_url": "https://api.github.com/users/bryant1410/received_events", "type": "User", "site_admin": false }
[ { "id": 1935892871, "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement", "name": "enhancement", "color": "a2eeef", "default": true, "description": "New feature or request" } ]
open
false
null
[]
[]
2023-10-27T02:31:16
2023-10-27T02:31:16
null
CONTRIBUTOR
null
null
null
### Feature request Allow specifying [a multiprocessing context](https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods) to functions that support `num_proc` or use multiprocessing pools. For example, the following could be done: ```python dataset = dataset.map(_func, num_proc=2, mp_context=multiprocess.get_context("spawn")) ``` Or at least the multiprocessing start method ("fork", "spawn", "fork_server" or `None`): ```python dataset = dataset.map(_func, num_proc=2, mp_start_method="spawn") ``` Another option could be passing the `pool` as an argument. ### Motivation By default, `multiprocess` (the `multiprocessing`-fork library that this repo uses) uses the "fork" start method for multiprocessing pools (for the default context). It could be changed by using `set_start_method`. However, this conditions the multiprocessing start method from all processing in a Python program that uses the default context, because [you can't call that function more than once](https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods:~:text=set_start_method()%20should%20not%20be%20used%20more%20than%20once%20in%20the%20program.). My proposal is to allow using a different multiprocessing context, not to condition the whole Python program. One reason to change the start method is that "fork" (the default) makes child processes likely deadlock if thread pools were created before (and also this is not supported by POSIX). For example, this happens when using PyTorch because OpenMP threads are used for CPU intra-op parallelism, which is enabled by default (e.g., for context see [`torch.set_num_threads`](https://pytorch.org/docs/stable/generated/torch.set_num_threads.html)). This can also be fixed by setting `torch.set_num_threads(1)` (or similarly by other methods) but this conditions the whole Python program as it can only be set once to guarantee its behavior (similarly to). There are noticeable performance differences when setting this number to 1 even when using GPU(s). Using, e.g., a "spawn" start method would solve this issue. For more context, see: * https://discuss.huggingface.co/t/dataset-map-stuck-with-torch-set-num-threads-set-to-2-or-larger/37984 * https://discuss.huggingface.co/t/using-num-proc-1-in-dataset-map-hangs/44310 ### Your contribution I'd be happy to review a PR that makes such a change. And if you really don't have the bandwidth for it, I'd consider creating one.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6357/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6357/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6356
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6356/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6356/comments
https://api.github.com/repos/huggingface/datasets/issues/6356/events
https://github.com/huggingface/datasets/pull/6356
1,964,015,802
PR_kwDODunzps5d5Jri
6,356
Add `fsspec` version to the `datasets-cli env` command output
{ "login": "mariosasko", "id": 47462742, "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "gravatar_id": "", "url": "https://api.github.com/users/mariosasko", "html_url": "https://github.com/mariosasko", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "repos_url": "https://api.github.com/users/mariosasko/repos", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008775 / 0.011353 (-0.002578) | 0.005304 / 0.011008 (-0.005704) | 0.108912 / 0.038508 (0.070404) | 0.075589 / 0.023109 (0.052479) | 0.456612 / 0.275898 (0.180713) | 0.502303 / 0.323480 (0.178823) | 0.006695 / 0.007986 (-0.001291) | 0.004404 / 0.004328 (0.000076) | 0.084802 / 0.004250 (0.080552) | 0.062711 / 0.037052 (0.025659) | 0.465062 / 0.258489 (0.206573) | 0.505321 / 0.293841 (0.211480) | 0.049401 / 0.128546 (-0.079146) | 0.014784 / 0.075646 (-0.060862) | 0.378202 / 0.419271 (-0.041069) | 0.069826 / 0.043533 (0.026293) | 0.461161 / 0.255139 (0.206022) | 0.484616 / 0.283200 (0.201416) | 0.035998 / 0.141683 (-0.105685) | 1.846343 / 1.452155 (0.394189) | 1.999439 / 1.492716 (0.506723) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.317779 / 0.018006 (0.299773) | 0.605967 / 0.000490 (0.605477) | 0.011412 / 0.000200 (0.011212) | 0.000410 / 0.000054 (0.000356) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031118 / 0.037411 (-0.006293) | 0.095425 / 0.014526 (0.080900) | 0.108002 / 0.176557 (-0.068554) | 0.184625 / 0.737135 (-0.552511) | 0.108180 / 0.296338 (-0.188159) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.587497 / 0.215209 (0.372288) | 5.818632 / 2.077655 (3.740977) | 2.629776 / 1.504120 (1.125656) | 2.266129 / 1.541195 (0.724934) | 2.324618 / 1.468490 (0.856128) | 0.830049 / 4.584777 (-3.754728) | 5.380062 / 3.745712 (1.634350) | 4.808525 / 5.269862 (-0.461336) | 2.960368 / 4.565676 (-1.605309) | 0.093637 / 0.424275 (-0.330638) | 0.009187 / 0.007607 (0.001580) | 0.703468 / 0.226044 (0.477424) | 6.924509 / 2.268929 (4.655580) | 3.380582 / 55.444624 (-52.064043) | 2.689118 / 6.876477 (-4.187358) | 2.712418 / 2.142072 (0.570345) | 1.017144 / 4.805227 (-3.788084) | 0.212874 / 6.500664 (-6.287791) | 0.080053 / 0.075469 (0.004584) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.623663 / 1.841788 (-0.218125) | 23.668872 / 8.074308 (15.594564) | 20.245972 / 10.191392 (10.054580) | 0.236448 / 0.680424 (-0.443976) | 0.029730 / 0.534201 (-0.504470) | 0.491525 / 0.579283 (-0.087758) | 0.593780 / 0.434364 (0.159416) | 0.548776 / 0.540337 (0.008438) | 0.799370 / 1.386936 (-0.587566) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009714 / 0.011353 (-0.001639) | 0.005328 / 0.011008 (-0.005681) | 0.078460 / 0.038508 (0.039952) | 0.077791 / 0.023109 (0.054682) | 0.510124 / 0.275898 (0.234226) | 0.547769 / 0.323480 (0.224289) | 0.006868 / 0.007986 (-0.001118) | 0.004145 / 0.004328 (-0.000183) | 0.088696 / 0.004250 (0.084445) | 0.072387 / 0.037052 (0.035334) | 0.527373 / 0.258489 (0.268884) | 0.561948 / 0.293841 (0.268107) | 0.049769 / 0.128546 (-0.078777) | 0.014401 / 0.075646 (-0.061246) | 0.097541 / 0.419271 (-0.321731) | 0.062237 / 0.043533 (0.018705) | 0.531001 / 0.255139 (0.275862) | 0.561797 / 0.283200 (0.278597) | 0.038482 / 0.141683 (-0.103201) | 1.783558 / 1.452155 (0.331404) | 1.864339 / 1.492716 (0.371622) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.289389 / 0.018006 (0.271383) | 0.595326 / 0.000490 (0.594836) | 0.004583 / 0.000200 (0.004383) | 0.000114 / 0.000054 (0.000060) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034492 / 0.037411 (-0.002919) | 0.102934 / 0.014526 (0.088409) | 0.121689 / 0.176557 (-0.054868) | 0.182121 / 0.737135 (-0.555015) | 0.127087 / 0.296338 (-0.169252) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.645726 / 0.215209 (0.430517) | 6.462235 / 2.077655 (4.384580) | 3.044176 / 1.504120 (1.540056) | 2.731181 / 1.541195 (1.189986) | 2.805508 / 1.468490 (1.337018) | 0.846324 / 4.584777 (-3.738453) | 5.341074 / 3.745712 (1.595362) | 4.687111 / 5.269862 (-0.582751) | 3.035472 / 4.565676 (-1.530205) | 0.099193 / 0.424275 (-0.325082) | 0.008825 / 0.007607 (0.001218) | 0.795102 / 0.226044 (0.569058) | 7.895770 / 2.268929 (5.626842) | 3.826752 / 55.444624 (-51.617873) | 3.112217 / 6.876477 (-3.764259) | 3.526878 / 2.142072 (1.384806) | 1.011352 / 4.805227 (-3.793875) | 0.213424 / 6.500664 (-6.287240) | 0.076228 / 0.075469 (0.000759) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.805232 / 1.841788 (-0.036556) | 24.049100 / 8.074308 (15.974792) | 23.056011 / 10.191392 (12.864619) | 0.261656 / 0.680424 (-0.418767) | 0.032021 / 0.534201 (-0.502179) | 0.483829 / 0.579283 (-0.095454) | 0.602208 / 0.434364 (0.167844) | 0.565848 / 0.540337 (0.025511) | 0.818678 / 1.386936 (-0.568258) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#71fc5e2ca41f5f725b9117f4cf99f348534902f3 \"CML watermark\")\n", "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008043 / 0.011353 (-0.003310) | 0.004642 / 0.011008 (-0.006366) | 0.102592 / 0.038508 (0.064084) | 0.099508 / 0.023109 (0.076399) | 0.377692 / 0.275898 (0.101794) | 0.409929 / 0.323480 (0.086450) | 0.006363 / 0.007986 (-0.001622) | 0.003881 / 0.004328 (-0.000447) | 0.076636 / 0.004250 (0.072386) | 0.067021 / 0.037052 (0.029969) | 0.371454 / 0.258489 (0.112964) | 0.423637 / 0.293841 (0.129796) | 0.038632 / 0.128546 (-0.089914) | 0.010055 / 0.075646 (-0.065591) | 0.352021 / 0.419271 (-0.067251) | 0.064988 / 0.043533 (0.021456) | 0.369614 / 0.255139 (0.114475) | 0.396972 / 0.283200 (0.113773) | 0.028866 / 0.141683 (-0.112817) | 1.757620 / 1.452155 (0.305465) | 1.886283 / 1.492716 (0.393567) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.257579 / 0.018006 (0.239572) | 0.529859 / 0.000490 (0.529369) | 0.011720 / 0.000200 (0.011520) | 0.000455 / 0.000054 (0.000401) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034163 / 0.037411 (-0.003248) | 0.101422 / 0.014526 (0.086896) | 0.114858 / 0.176557 (-0.061698) | 0.180265 / 0.737135 (-0.556870) | 0.116034 / 0.296338 (-0.180305) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.477609 / 0.215209 (0.262400) | 4.830116 / 2.077655 (2.752461) | 2.323844 / 1.504120 (0.819724) | 2.174496 / 1.541195 (0.633301) | 2.268594 / 1.468490 (0.800104) | 0.612429 / 4.584777 (-3.972348) | 4.265277 / 3.745712 (0.519565) | 4.095741 / 5.269862 (-1.174121) | 2.561532 / 4.565676 (-2.004144) | 0.068043 / 0.424275 (-0.356233) | 0.009139 / 0.007607 (0.001532) | 0.545512 / 0.226044 (0.319467) | 5.456403 / 2.268929 (3.187475) | 2.778937 / 55.444624 (-52.665688) | 2.428560 / 6.876477 (-4.447917) | 2.557483 / 2.142072 (0.415411) | 0.696721 / 4.805227 (-4.108506) | 0.157217 / 6.500664 (-6.343447) | 0.071334 / 0.075469 (-0.004135) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.617755 / 1.841788 (-0.224032) | 23.368508 / 8.074308 (15.294200) | 17.028591 / 10.191392 (6.837199) | 0.195881 / 0.680424 (-0.484542) | 0.021788 / 0.534201 (-0.512413) | 0.468484 / 0.579283 (-0.110799) | 0.474604 / 0.434364 (0.040240) | 0.544738 / 0.540337 (0.004400) | 0.771722 / 1.386936 (-0.615214) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007939 / 0.011353 (-0.003414) | 0.004684 / 0.011008 (-0.006324) | 0.077273 / 0.038508 (0.038765) | 0.088763 / 0.023109 (0.065654) | 0.489178 / 0.275898 (0.213280) | 0.531547 / 0.323480 (0.208067) | 0.006214 / 0.007986 (-0.001772) | 0.003988 / 0.004328 (-0.000340) | 0.076685 / 0.004250 (0.072434) | 0.066628 / 0.037052 (0.029576) | 0.497153 / 0.258489 (0.238664) | 0.538301 / 0.293841 (0.244460) | 0.037939 / 0.128546 (-0.090607) | 0.010054 / 0.075646 (-0.065592) | 0.084642 / 0.419271 (-0.334629) | 0.057140 / 0.043533 (0.013608) | 0.487701 / 0.255139 (0.232562) | 0.519676 / 0.283200 (0.236477) | 0.026560 / 0.141683 (-0.115123) | 1.809676 / 1.452155 (0.357521) | 1.864884 / 1.492716 (0.372168) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.259005 / 0.018006 (0.240998) | 0.522900 / 0.000490 (0.522410) | 0.006885 / 0.000200 (0.006685) | 0.000156 / 0.000054 (0.000102) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.039838 / 0.037411 (0.002426) | 0.117777 / 0.014526 (0.103251) | 0.129189 / 0.176557 (-0.047368) | 0.198584 / 0.737135 (-0.538552) | 0.129753 / 0.296338 (-0.166586) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.543366 / 0.215209 (0.328157) | 5.241502 / 2.077655 (3.163847) | 2.719079 / 1.504120 (1.214959) | 2.525337 / 1.541195 (0.984142) | 2.648908 / 1.468490 (1.180418) | 0.589239 / 4.584777 (-3.995538) | 4.379856 / 3.745712 (0.634144) | 4.139919 / 5.269862 (-1.129943) | 2.633412 / 4.565676 (-1.932264) | 0.074582 / 0.424275 (-0.349693) | 0.009106 / 0.007607 (0.001499) | 0.635540 / 0.226044 (0.409495) | 6.072965 / 2.268929 (3.804037) | 3.327233 / 55.444624 (-52.117391) | 3.012637 / 6.876477 (-3.863840) | 3.113226 / 2.142072 (0.971154) | 0.712705 / 4.805227 (-4.092523) | 0.159550 / 6.500664 (-6.341114) | 0.073446 / 0.075469 (-0.002023) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.718732 / 1.841788 (-0.123055) | 23.249445 / 8.074308 (15.175137) | 17.630643 / 10.191392 (7.439251) | 0.201017 / 0.680424 (-0.479407) | 0.024162 / 0.534201 (-0.510039) | 0.475054 / 0.579283 (-0.104229) | 0.492348 / 0.434364 (0.057985) | 0.587118 / 0.540337 (0.046781) | 0.777462 / 1.386936 (-0.609474) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#feb036956a592b9a9ecdf048cc801549f233dbef \"CML watermark\")\n" ]
2023-10-26T17:19:25
2023-10-26T18:42:56
2023-10-26T18:32:21
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6356", "html_url": "https://github.com/huggingface/datasets/pull/6356", "diff_url": "https://github.com/huggingface/datasets/pull/6356.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6356.patch", "merged_at": "2023-10-26T18:32:21" }
... to make debugging issues easier, as `fsspec`'s releases often introduce breaking changes.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6356/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6356/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6355
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6355/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6355/comments
https://api.github.com/repos/huggingface/datasets/issues/6355/events
https://github.com/huggingface/datasets/pull/6355
1,963,979,896
PR_kwDODunzps5d5B2B
6,355
More hub centric docs
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006941 / 0.011353 (-0.004412) | 0.004255 / 0.011008 (-0.006753) | 0.085237 / 0.038508 (0.046729) | 0.080962 / 0.023109 (0.057853) | 0.312016 / 0.275898 (0.036118) | 0.353161 / 0.323480 (0.029681) | 0.005756 / 0.007986 (-0.002230) | 0.003591 / 0.004328 (-0.000738) | 0.065416 / 0.004250 (0.061166) | 0.057837 / 0.037052 (0.020785) | 0.316169 / 0.258489 (0.057680) | 0.372345 / 0.293841 (0.078504) | 0.031958 / 0.128546 (-0.096588) | 0.008798 / 0.075646 (-0.066848) | 0.294764 / 0.419271 (-0.124507) | 0.053954 / 0.043533 (0.010421) | 0.310961 / 0.255139 (0.055822) | 0.330063 / 0.283200 (0.046864) | 0.025298 / 0.141683 (-0.116385) | 1.454715 / 1.452155 (0.002560) | 1.557915 / 1.492716 (0.065198) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.274830 / 0.018006 (0.256824) | 0.565890 / 0.000490 (0.565400) | 0.009242 / 0.000200 (0.009042) | 0.000321 / 0.000054 (0.000266) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031092 / 0.037411 (-0.006320) | 0.087558 / 0.014526 (0.073033) | 0.103395 / 0.176557 (-0.073162) | 0.160078 / 0.737135 (-0.577057) | 0.102356 / 0.296338 (-0.193983) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.402912 / 0.215209 (0.187703) | 4.029374 / 2.077655 (1.951719) | 2.048237 / 1.504120 (0.544117) | 1.887470 / 1.541195 (0.346276) | 1.994807 / 1.468490 (0.526316) | 0.491109 / 4.584777 (-4.093668) | 3.645059 / 3.745712 (-0.100653) | 3.516376 / 5.269862 (-1.753486) | 2.103267 / 4.565676 (-2.462409) | 0.058072 / 0.424275 (-0.366203) | 0.007796 / 0.007607 (0.000189) | 0.480544 / 0.226044 (0.254499) | 4.795422 / 2.268929 (2.526494) | 2.507770 / 55.444624 (-52.936854) | 2.187106 / 6.876477 (-4.689371) | 2.271005 / 2.142072 (0.128933) | 0.585376 / 4.805227 (-4.219851) | 0.134741 / 6.500664 (-6.365923) | 0.060684 / 0.075469 (-0.014785) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.264349 / 1.841788 (-0.577439) | 19.448735 / 8.074308 (11.374427) | 14.521197 / 10.191392 (4.329805) | 0.167295 / 0.680424 (-0.513129) | 0.018352 / 0.534201 (-0.515849) | 0.396345 / 0.579283 (-0.182938) | 0.418690 / 0.434364 (-0.015674) | 0.469703 / 0.540337 (-0.070635) | 0.637852 / 1.386936 (-0.749084) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006939 / 0.011353 (-0.004414) | 0.004196 / 0.011008 (-0.006812) | 0.064719 / 0.038508 (0.026211) | 0.077517 / 0.023109 (0.054407) | 0.401977 / 0.275898 (0.126079) | 0.431089 / 0.323480 (0.107609) | 0.005624 / 0.007986 (-0.002362) | 0.003680 / 0.004328 (-0.000649) | 0.065817 / 0.004250 (0.061567) | 0.058297 / 0.037052 (0.021245) | 0.399614 / 0.258489 (0.141125) | 0.440089 / 0.293841 (0.146248) | 0.032492 / 0.128546 (-0.096054) | 0.008974 / 0.075646 (-0.066672) | 0.071311 / 0.419271 (-0.347961) | 0.048001 / 0.043533 (0.004468) | 0.394763 / 0.255139 (0.139624) | 0.416754 / 0.283200 (0.133554) | 0.023730 / 0.141683 (-0.117953) | 1.509677 / 1.452155 (0.057522) | 1.605711 / 1.492716 (0.112994) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.265490 / 0.018006 (0.247483) | 0.561745 / 0.000490 (0.561255) | 0.004616 / 0.000200 (0.004417) | 0.000105 / 0.000054 (0.000051) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033371 / 0.037411 (-0.004040) | 0.092763 / 0.014526 (0.078238) | 0.108905 / 0.176557 (-0.067652) | 0.160380 / 0.737135 (-0.576756) | 0.106968 / 0.296338 (-0.189370) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.430268 / 0.215209 (0.215059) | 4.299313 / 2.077655 (2.221658) | 2.308971 / 1.504120 (0.804851) | 2.155855 / 1.541195 (0.614661) | 2.392698 / 1.468490 (0.924208) | 0.498464 / 4.584777 (-4.086313) | 3.694473 / 3.745712 (-0.051239) | 3.409625 / 5.269862 (-1.860236) | 2.106144 / 4.565676 (-2.459532) | 0.058992 / 0.424275 (-0.365283) | 0.007395 / 0.007607 (-0.000212) | 0.511291 / 0.226044 (0.285247) | 5.101806 / 2.268929 (2.832877) | 2.853100 / 55.444624 (-52.591524) | 2.527216 / 6.876477 (-4.349260) | 2.819380 / 2.142072 (0.677308) | 0.635155 / 4.805227 (-4.170072) | 0.135816 / 6.500664 (-6.364848) | 0.062056 / 0.075469 (-0.013413) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.353479 / 1.841788 (-0.488308) | 20.318513 / 8.074308 (12.244205) | 15.105336 / 10.191392 (4.913944) | 0.166186 / 0.680424 (-0.514238) | 0.020742 / 0.534201 (-0.513459) | 0.399286 / 0.579283 (-0.179997) | 0.431785 / 0.434364 (-0.002579) | 0.478667 / 0.540337 (-0.061671) | 0.654683 / 1.386936 (-0.732253) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#b39d1ce0b8f231649752f28cb724971f4df1c7ae \"CML watermark\")\n", "Yea I think some of it should be in the Hub docs indeed, let me open a new PR there.\r\n\r\nThen I'll update the `datasets` docs anyway to avoid redundant stuff and add redirects instead" ]
2023-10-26T16:54:46
2023-10-30T17:33:32
2023-10-30T17:32:57
MEMBER
null
true
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6355", "html_url": "https://github.com/huggingface/datasets/pull/6355", "diff_url": "https://github.com/huggingface/datasets/pull/6355.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6355.patch", "merged_at": null }
Let's have more hub-centric documentation in the datasets docs Tutorials - Add “Configure the dataset viewer” page - Change order: - Overview - and more focused on the Hub rather than the library - Then all the hub related things - and mention how to read/write with other tools like pandas - Then all the datasets lib related things in a subsection Also: - Rename “know your dataset” page to “Explore your dataset” - Remove “Evaluate Predictions” page since it's 'evaluate' stuff (or move to legacy section ?) TODO: - [ ] write the “Configure the dataset viewer” page
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6355/reactions", "total_count": 1, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 1, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6355/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6354
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6354/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6354/comments
https://api.github.com/repos/huggingface/datasets/issues/6354/events
https://github.com/huggingface/datasets/issues/6354
1,963,483,324
I_kwDODunzps51CGC8
6,354
`IterableDataset.from_spark` does not support multiple workers in pytorch `Dataloader`
{ "login": "NazyS", "id": 50199774, "node_id": "MDQ6VXNlcjUwMTk5Nzc0", "avatar_url": "https://avatars.githubusercontent.com/u/50199774?v=4", "gravatar_id": "", "url": "https://api.github.com/users/NazyS", "html_url": "https://github.com/NazyS", "followers_url": "https://api.github.com/users/NazyS/followers", "following_url": "https://api.github.com/users/NazyS/following{/other_user}", "gists_url": "https://api.github.com/users/NazyS/gists{/gist_id}", "starred_url": "https://api.github.com/users/NazyS/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/NazyS/subscriptions", "organizations_url": "https://api.github.com/users/NazyS/orgs", "repos_url": "https://api.github.com/users/NazyS/repos", "events_url": "https://api.github.com/users/NazyS/events{/privacy}", "received_events_url": "https://api.github.com/users/NazyS/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
[ "I am having issues as well with this. \r\n\r\nHowever, the error I am getting is :\r\n`RuntimeError: It appears that you are attempting to reference SparkContext from a broadcast variable, action, or transformation. SparkContext can only be used on the driver, not in code that it run on workers. For more information, see SPARK-5063.`\r\n\r\nAlso did not work with pyspark==3.3.0 and py4j==0.10.9.5" ]
2023-10-26T12:43:36
2023-11-14T18:46:03
null
NONE
null
null
null
### Describe the bug Looks like `IterableDataset.from_spark` does not support multiple workers in pytorch `Dataloader` if I'm not missing anything. Also, returns not consistent error messages, which probably depend on the nondeterministic order of worker executions Some exampes I've encountered: ``` File "/local_disk0/.ephemeral_nfs/envs/pythonEnv-68c05436-3512-41c4-88ca-5630012b70d1/lib/python3.10/site-packages/datasets/packaged_modules/spark/spark.py", line 79, in __iter__ yield from self.generate_examples_fn() File "/local_disk0/.ephemeral_nfs/envs/pythonEnv-68c05436-3512-41c4-88ca-5630012b70d1/lib/python3.10/site-packages/datasets/packaged_modules/spark/spark.py", line 49, in generate_fn df_with_partition_id = df.select("*", pyspark.sql.functions.spark_partition_id().alias("part_id")) File "/databricks/spark/python/pyspark/instrumentation_utils.py", line 54, in wrapper logger.log_failure( File "/databricks/spark/python/pyspark/databricks/usage_logger.py", line 70, in log_failure self.logger.recordFunctionCallFailureEvent( File "/databricks/spark/python/lib/py4j-0.10.9.7-src.zip/py4j/java_gateway.py", line 1322, in __call__ return_value = get_return_value( File "/databricks/spark/python/pyspark/errors/exceptions/captured.py", line 188, in deco return f(*a, **kw) File "/databricks/spark/python/lib/py4j-0.10.9.7-src.zip/py4j/protocol.py", line 342, in get_return_value return OUTPUT_CONVERTER[type](answer[2:], gateway_client) KeyError: 'c' ``` ``` File "/local_disk0/.ephemeral_nfs/envs/pythonEnv-68c05436-3512-41c4-88ca-5630012b70d1/lib/python3.10/site-packages/datasets/packaged_modules/spark/spark.py", line 79, in __iter__ yield from self.generate_examples_fn() File "/local_disk0/.ephemeral_nfs/envs/pythonEnv-68c05436-3512-41c4-88ca-5630012b70d1/lib/python3.10/site-packages/datasets/packaged_modules/spark/spark.py", line 49, in generate_fn df_with_partition_id = df.select("*", pyspark.sql.functions.spark_partition_id().alias("part_id")) File "/databricks/spark/python/pyspark/sql/utils.py", line 162, in wrapped return f(*args, **kwargs) File "/databricks/spark/python/pyspark/sql/functions.py", line 4893, in spark_partition_id return _invoke_function("spark_partition_id") File "/databricks/spark/python/pyspark/sql/functions.py", line 98, in _invoke_function return Column(jf(*args)) File "/databricks/spark/python/lib/py4j-0.10.9.7-src.zip/py4j/java_gateway.py", line 1322, in __call__ return_value = get_return_value( File "/databricks/spark/python/pyspark/errors/exceptions/captured.py", line 188, in deco return f(*a, **kw) File "/databricks/spark/python/lib/py4j-0.10.9.7-src.zip/py4j/protocol.py", line 342, in get_return_value return OUTPUT_CONVERTER[type](answer[2:], gateway_client) KeyError: 'm' ``` ``` File "/local_disk0/.ephemeral_nfs/envs/pythonEnv-68c05436-3512-41c4-88ca-5630012b70d1/lib/python3.10/site-packages/datasets/packaged_modules/spark/spark.py", line 79, in __iter__ yield from self.generate_examples_fn() File "/local_disk0/.ephemeral_nfs/envs/pythonEnv-68c05436-3512-41c4-88ca-5630012b70d1/lib/python3.10/site-packages/datasets/packaged_modules/spark/spark.py", line 49, in generate_fn df_with_partition_id = df.select("*", pyspark.sql.functions.spark_partition_id().alias("part_id")) File "/databricks/spark/python/pyspark/sql/utils.py", line 162, in wrapped return f(*args, **kwargs) File "/databricks/spark/python/pyspark/sql/functions.py", line 4893, in spark_partition_id return _invoke_function("spark_partition_id") File "/databricks/spark/python/pyspark/sql/functions.py", line 97, in _invoke_function jf = _get_jvm_function(name, SparkContext._active_spark_context) File "/databricks/spark/python/pyspark/sql/functions.py", line 88, in _get_jvm_function return getattr(sc._jvm.functions, name) File "/databricks/spark/python/lib/py4j-0.10.9.7-src.zip/py4j/java_gateway.py", line 1725, in __getattr__ raise Py4JError(message) py4j.protocol.Py4JError: functions does not exist in the JVM ``` ### Steps to reproduce the bug ```python import pandas as pd import numpy as np batch_size = 16 pdf = pd.DataFrame({ key: np.random.rand(16*100) for key in ['feature', 'target'] }) test_df = spark.createDataFrame(pdf) from datasets import IterableDataset from torch.utils.data import DataLoader ids = IterableDataset.from_spark(test_df) for batch in DataLoader(ids, batch_size=16, num_workers=4): for k, b in batch.items(): print(k, b.shape, sep='\t') print('\n') ``` ### Expected behavior For `num_workers` equal to 0 or 1 works fine as expected: ``` feature torch.Size([16]) target torch.Size([16]) feature torch.Size([16]) target torch.Size([16]) .... ``` Expected to support workers >1. ### Environment info Databricks 13.3 LTS ML runtime - Spark 3.4.1 pyspark==3.4.1 py4j==0.10.9.7 datasets==2.13.1 and also tested with datasets==2.14.6
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6354/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6354/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6353
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6353/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6353/comments
https://api.github.com/repos/huggingface/datasets/issues/6353/events
https://github.com/huggingface/datasets/issues/6353
1,962,646,450
I_kwDODunzps50-5uy
6,353
load_dataset save_to_disk load_from_disk error
{ "login": "brisker", "id": 13804492, "node_id": "MDQ6VXNlcjEzODA0NDky", "avatar_url": "https://avatars.githubusercontent.com/u/13804492?v=4", "gravatar_id": "", "url": "https://api.github.com/users/brisker", "html_url": "https://github.com/brisker", "followers_url": "https://api.github.com/users/brisker/followers", "following_url": "https://api.github.com/users/brisker/following{/other_user}", "gists_url": "https://api.github.com/users/brisker/gists{/gist_id}", "starred_url": "https://api.github.com/users/brisker/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/brisker/subscriptions", "organizations_url": "https://api.github.com/users/brisker/orgs", "repos_url": "https://api.github.com/users/brisker/repos", "events_url": "https://api.github.com/users/brisker/events{/privacy}", "received_events_url": "https://api.github.com/users/brisker/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "solved.\r\nfsspec version problem", "I'm using the latest datasets and fsspec , but still got this error!\r\n\r\ndatasets : Version: 2.13.0\r\n\r\nfsspec Version: 2023.10.0\r\n\r\n```\r\nFile \"/home/guoby/app/Anaconda3-2021.05/envs/news/lib/python3.8/site-packages/datasets/load.py\", line 1892, in load_from_disk\r\n return DatasetDict.load_from_disk(dataset_path, keep_in_memory=keep_in_memory, storage_options=storage_options)\r\n File \"/home/guoby/app/Anaconda3-2021.05/envs/news/lib/python3.8/site-packages/datasets/dataset_dict.py\", line 1371, in load_from_disk\r\n dataset_dict[k] = Dataset.load_from_disk(\r\n File \"/home/guoby/app/Anaconda3-2021.05/envs/news/lib/python3.8/site-packages/datasets/arrow_dataset.py\", line 1639, in load_from_disk\r\n fs_token_paths = fsspec.get_fs_token_paths(dataset_path, storage_options=storage_options)\r\n File \"/home/guoby/app/Anaconda3-2021.05/envs/news/lib/python3.8/site-packages/fsspec/core.py\", line 610, in get_fs_token_paths\r\n chain = _un_chain(urlpath0, storage_options or {})\r\n File \"/home/guoby/app/Anaconda3-2021.05/envs/news/lib/python3.8/site-packages/fsspec/core.py\", line 325, in _un_chain\r\n cls = get_filesystem_class(protocol)\r\n File \"/home/guoby/app/Anaconda3-2021.05/envs/news/lib/python3.8/site-packages/fsspec/registry.py\", line 232, in get_filesystem_class\r\n raise ValueError(f\"Protocol not known: {protocol}\")\r\n```", "These two versions work.\r\n<img width=\"807\" alt=\"截圖 2023-11-22 下午5 55 28\" src=\"https://github.com/huggingface/datasets/assets/77866896/faa8333f-0519-4d69-b243-a8880cd7fc1f\">\r\n" ]
2023-10-26T03:47:06
2023-11-22T09:57:17
2023-10-26T10:18:04
NONE
null
null
null
### Describe the bug datasets version: 2.10.1 I `load_dataset `and `save_to_disk` sucessfully on windows10( **and I `load_from_disk(/LLM/data/wiki)` succcesfully on windows10**), and I copy the dataset `/LLM/data/wiki` into a ubuntu system, but when I `load_from_disk(/LLM/data/wiki)` on ubuntu, something weird happens: ``` load_from_disk('/LLM/data/wiki') File "/usr/local/miniconda3/lib/python3.8/site-packages/datasets/load.py", line 1874, in load_from_disk return DatasetDict.load_from_disk(dataset_path, keep_in_memory=keep_in_memory, storage_options=storage_options) File "/usr/local/miniconda3/lib/python3.8/site-packages/datasets/dataset_dict.py", line 1309, in load_from_disk dataset_dict[k] = Dataset.load_from_disk( File "/usr/local/miniconda3/lib/python3.8/site-packages/datasets/arrow_dataset.py", line 1543, in load_from_disk fs_token_paths = fsspec.get_fs_token_paths(dataset_path, storage_options=storage_options) File "/usr/local/miniconda3/lib/python3.8/site-packages/fsspec/core.py", line 610, in get_fs_token_paths chain = _un_chain(urlpath0, storage_options or {}) File "/usr/local/miniconda3/lib/python3.8/site-packages/fsspec/core.py", line 325, in _un_chain cls = get_filesystem_class(protocol) File "/usr/local/miniconda3/lib/python3.8/site-packages/fsspec/registry.py", line 232, in get_filesystem_class raise ValueError(f"Protocol not known: {protocol}") ValueError: Protocol not known: /LLM/data/wiki ``` It seems that something went wrong on the arrow file? How can I solve this , since currently I can not save_to_disk on ubuntu system ### Steps to reproduce the bug datasets version: 2.10.1 ### Expected behavior datasets version: 2.10.1 ### Environment info datasets version: 2.10.1
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6353/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6353/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6352
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6352/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6352/comments
https://api.github.com/repos/huggingface/datasets/issues/6352/events
https://github.com/huggingface/datasets/issues/6352
1,962,296,057
I_kwDODunzps509kL5
6,352
Error loading wikitext data raise NotImplementedError(f"Loading a dataset cached in a {type(self._fs).__name__} is not supported.")
{ "login": "Ahmed-Roushdy", "id": 68569076, "node_id": "MDQ6VXNlcjY4NTY5MDc2", "avatar_url": "https://avatars.githubusercontent.com/u/68569076?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Ahmed-Roushdy", "html_url": "https://github.com/Ahmed-Roushdy", "followers_url": "https://api.github.com/users/Ahmed-Roushdy/followers", "following_url": "https://api.github.com/users/Ahmed-Roushdy/following{/other_user}", "gists_url": "https://api.github.com/users/Ahmed-Roushdy/gists{/gist_id}", "starred_url": "https://api.github.com/users/Ahmed-Roushdy/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Ahmed-Roushdy/subscriptions", "organizations_url": "https://api.github.com/users/Ahmed-Roushdy/orgs", "repos_url": "https://api.github.com/users/Ahmed-Roushdy/repos", "events_url": "https://api.github.com/users/Ahmed-Roushdy/events{/privacy}", "received_events_url": "https://api.github.com/users/Ahmed-Roushdy/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "+1 \r\n```\r\nFound cached dataset csv (file:///home/ubuntu/.cache/huggingface/datasets/theSquarePond___csv/theSquarePond--XXXXX-bbf0a8365d693d2c/0.0.0/eea64c71ca8b46dd3f537ed218fc9bf495d5707789152eb2764f5c78fa66d59d)\r\n---------------------------------------------------------------------------\r\nNotImplementedError Traceback (most recent call last)\r\nCell In[14], line 4\r\n 1 get_ipython().system('pip install -U datasets')\r\n 3 # Load dataset from the hub\r\n----> 4 dataset = load_dataset(dataset_name)\r\n\r\nFile ~/anaconda3/envs/python38-env/lib/python3.8/site-packages/datasets/load.py:1810, in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, ignore_verifications, keep_in_memory, save_infos, revision, use_auth_token, task, streaming, num_proc, storage_options, **config_kwargs)\r\n 1806 # Build dataset for splits\r\n 1807 keep_in_memory = (\r\n 1808 keep_in_memory if keep_in_memory is not None else is_small_dataset(builder_instance.info.dataset_size)\r\n 1809 )\r\n-> 1810 ds = builder_instance.as_dataset(split=split, verification_mode=verification_mode, in_memory=keep_in_memory)\r\n 1811 # Rename and cast features to match task schema\r\n 1812 if task is not None:\r\n\r\nFile ~/anaconda3/envs/python38-env/lib/python3.8/site-packages/datasets/builder.py:1128, in DatasetBuilder.as_dataset(self, split, run_post_process, verification_mode, ignore_verifications, in_memory)\r\n 1126 is_local = not is_remote_filesystem(self._fs)\r\n 1127 if not is_local:\r\n-> 1128 raise NotImplementedError(f\"Loading a dataset cached in a {type(self._fs).__name__} is not supported.\")\r\n 1129 if not os.path.exists(self._output_dir):\r\n 1130 raise FileNotFoundError(\r\n 1131 f\"Dataset {self.name}: could not find data in {self._output_dir}. Please make sure to call \"\r\n 1132 \"builder.download_and_prepare(), or use \"\r\n 1133 \"datasets.load_dataset() before trying to access the Dataset object.\"\r\n 1134 )\r\n\r\nNotImplementedError: Loading a dataset cached in a LocalFileSystem is not supported.\r\n```", "+1\r\n\r\n```\r\nFound cached dataset csv ([file://C:/Users/Shady/.cache/huggingface/datasets/knkarthick___csv/knkarthick--dialogsum-cd36827d3490488d/0.0.0/6954658bab30a358235fa864b05cf819af0e179325c740e4bc853bcc7ec513e1](file:///C:/Users/Shady/.cache/huggingface/datasets/knkarthick___csv/knkarthick--dialogsum-cd36827d3490488d/0.0.0/6954658bab30a358235fa864b05cf819af0e179325c740e4bc853bcc7ec513e1))\r\n---------------------------------------------------------------------------\r\nNotImplementedError Traceback (most recent call last)\r\nCell In[38], line 3\r\n 1 huggingface_dataset_name = \"knkarthick/dialogsum\"\r\n----> 3 dataset = load_dataset(huggingface_dataset_name)\r\n\r\nFile D:\\Desktop\\Workspace\\GenAI\\genai\\lib\\site-packages\\datasets\\load.py:1804, in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, ignore_verifications, keep_in_memory, save_infos, revision, use_auth_token, task, streaming, num_proc, storage_options, **config_kwargs)\r\n 1800 # Build dataset for splits\r\n 1801 keep_in_memory = (\r\n 1802 keep_in_memory if keep_in_memory is not None else is_small_dataset(builder_instance.info.dataset_size)\r\n 1803 )\r\n-> 1804 ds = builder_instance.as_dataset(split=split, verification_mode=verification_mode, in_memory=keep_in_memory)\r\n 1805 # Rename and cast features to match task schema\r\n 1806 if task is not None:\r\n\r\nFile D:\\Desktop\\Workspace\\GenAI\\genai\\lib\\site-packages\\datasets\\builder.py:1108, in DatasetBuilder.as_dataset(self, split, run_post_process, verification_mode, ignore_verifications, in_memory)\r\n 1106 is_local = not is_remote_filesystem(self._fs)\r\n 1107 if not is_local:\r\n-> 1108 raise NotImplementedError(f\"Loading a dataset cached in a {type(self._fs).__name__} is not supported.\")\r\n 1109 if not os.path.exists(self._output_dir):\r\n 1110 raise FileNotFoundError(\r\n 1111 f\"Dataset {self.name}: could not find data in {self._output_dir}. Please make sure to call \"\r\n 1112 \"builder.download_and_prepare(), or use \"\r\n 1113 \"datasets.load_dataset() before trying to access the Dataset object.\"\r\n 1114 )\r\n\r\nNotImplementedError: Loading a dataset cached in a LocalFileSystem is not supported.\r\n```", "This error stems from a breaking change in `fsspec`. It has been fixed in the latest `datasets` release (`2.14.6`). Updating the installation with `pip install -U datasets` should fix the issue.\r\n", "> 此错误源于 中的重大更改。此问题已在最新版本 () 中修复。更新安装应该可以解决此问题。`fsspec``datasets``2.14.6``pip install -U datasets`\r\n\r\nthanks , 太好啦,刚好解决了我的问题,GPT都没解决了,终于被你搞定了", "https://stackoverflow.com/questions/77433096/notimplementederror-loading-a-dataset-cached-in-a-localfilesystem-is-not-suppor/77433141#77433141", "Fixed by:\r\n- https://github.com/huggingface/datasets/pull/6334\r\n\r\nThe fix was released in `datasets-2.14.6`." ]
2023-10-25T21:55:31
2023-11-07T07:26:54
2023-11-07T07:26:54
NONE
null
null
null
I was trying to load the wiki dataset, but i got this error traindata = load_dataset('wikitext', 'wikitext-2-raw-v1', split='train') File "/home/aelkordy/.conda/envs/prune_llm/lib/python3.9/site-packages/datasets/load.py", line 1804, in load_dataset ds = builder_instance.as_dataset(split=split, verification_mode=verification_mode, in_memory=keep_in_memory) File "/home/aelkordy/.conda/envs/prune_llm/lib/python3.9/site-packages/datasets/builder.py", line 1108, in as_dataset raise NotImplementedError(f"Loading a dataset cached in a {type(self._fs).__name__} is not supported.") NotImplementedError: Loading a dataset cached in a LocalFileSystem is not supported.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6352/reactions", "total_count": 4, "+1": 4, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6352/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6351
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6351/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6351/comments
https://api.github.com/repos/huggingface/datasets/issues/6351/events
https://github.com/huggingface/datasets/pull/6351
1,961,982,988
PR_kwDODunzps5dyMvh
6,351
Fix use_dataset.mdx
{ "login": "angel-luis", "id": 17672548, "node_id": "MDQ6VXNlcjE3NjcyNTQ4", "avatar_url": "https://avatars.githubusercontent.com/u/17672548?v=4", "gravatar_id": "", "url": "https://api.github.com/users/angel-luis", "html_url": "https://github.com/angel-luis", "followers_url": "https://api.github.com/users/angel-luis/followers", "following_url": "https://api.github.com/users/angel-luis/following{/other_user}", "gists_url": "https://api.github.com/users/angel-luis/gists{/gist_id}", "starred_url": "https://api.github.com/users/angel-luis/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/angel-luis/subscriptions", "organizations_url": "https://api.github.com/users/angel-luis/orgs", "repos_url": "https://api.github.com/users/angel-luis/repos", "events_url": "https://api.github.com/users/angel-luis/events{/privacy}", "received_events_url": "https://api.github.com/users/angel-luis/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007718 / 0.011353 (-0.003635) | 0.004730 / 0.011008 (-0.006278) | 0.097262 / 0.038508 (0.058754) | 0.077880 / 0.023109 (0.054771) | 0.363855 / 0.275898 (0.087957) | 0.394470 / 0.323480 (0.070990) | 0.006416 / 0.007986 (-0.001570) | 0.003596 / 0.004328 (-0.000732) | 0.076494 / 0.004250 (0.072243) | 0.062656 / 0.037052 (0.025603) | 0.366160 / 0.258489 (0.107671) | 0.421383 / 0.293841 (0.127542) | 0.035756 / 0.128546 (-0.092791) | 0.009430 / 0.075646 (-0.066217) | 0.327722 / 0.419271 (-0.091550) | 0.061252 / 0.043533 (0.017719) | 0.352167 / 0.255139 (0.097028) | 0.385166 / 0.283200 (0.101966) | 0.026656 / 0.141683 (-0.115027) | 1.718533 / 1.452155 (0.266378) | 1.886646 / 1.492716 (0.393930) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.254564 / 0.018006 (0.236558) | 0.490942 / 0.000490 (0.490452) | 0.011656 / 0.000200 (0.011456) | 0.000313 / 0.000054 (0.000259) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028753 / 0.037411 (-0.008659) | 0.093076 / 0.014526 (0.078550) | 0.096441 / 0.176557 (-0.080116) | 0.154848 / 0.737135 (-0.582287) | 0.092903 / 0.296338 (-0.203435) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.395611 / 0.215209 (0.180402) | 3.860736 / 2.077655 (1.783082) | 1.908808 / 1.504120 (0.404688) | 1.708975 / 1.541195 (0.167781) | 1.848173 / 1.468490 (0.379683) | 0.527022 / 4.584777 (-4.057755) | 3.815171 / 3.745712 (0.069459) | 3.621132 / 5.269862 (-1.648730) | 2.220238 / 4.565676 (-2.345439) | 0.063169 / 0.424275 (-0.361106) | 0.008906 / 0.007607 (0.001299) | 0.510478 / 0.226044 (0.284433) | 4.828116 / 2.268929 (2.559187) | 2.340801 / 55.444624 (-53.103824) | 2.040834 / 6.876477 (-4.835642) | 2.092316 / 2.142072 (-0.049757) | 0.579194 / 4.805227 (-4.226033) | 0.135525 / 6.500664 (-6.365139) | 0.062720 / 0.075469 (-0.012749) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.393091 / 1.841788 (-0.448697) | 19.751526 / 8.074308 (11.677218) | 14.161795 / 10.191392 (3.970403) | 0.163340 / 0.680424 (-0.517084) | 0.021504 / 0.534201 (-0.512697) | 0.393183 / 0.579283 (-0.186100) | 0.448407 / 0.434364 (0.014043) | 0.504169 / 0.540337 (-0.036169) | 0.663698 / 1.386936 (-0.723238) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007390 / 0.011353 (-0.003962) | 0.004381 / 0.011008 (-0.006628) | 0.074501 / 0.038508 (0.035993) | 0.078242 / 0.023109 (0.055133) | 0.481108 / 0.275898 (0.205210) | 0.512111 / 0.323480 (0.188631) | 0.006280 / 0.007986 (-0.001705) | 0.003820 / 0.004328 (-0.000509) | 0.071602 / 0.004250 (0.067351) | 0.068359 / 0.037052 (0.031307) | 0.478484 / 0.258489 (0.219995) | 0.519543 / 0.293841 (0.225702) | 0.036211 / 0.128546 (-0.092335) | 0.009433 / 0.075646 (-0.066213) | 0.086140 / 0.419271 (-0.333132) | 0.054177 / 0.043533 (0.010644) | 0.466726 / 0.255139 (0.211587) | 0.514085 / 0.283200 (0.230885) | 0.026729 / 0.141683 (-0.114954) | 1.743770 / 1.452155 (0.291615) | 1.833469 / 1.492716 (0.340753) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.251339 / 0.018006 (0.233333) | 0.472294 / 0.000490 (0.471804) | 0.013381 / 0.000200 (0.013181) | 0.000117 / 0.000054 (0.000062) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.037845 / 0.037411 (0.000433) | 0.105977 / 0.014526 (0.091451) | 0.124446 / 0.176557 (-0.052111) | 0.180432 / 0.737135 (-0.556703) | 0.120844 / 0.296338 (-0.175495) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.470928 / 0.215209 (0.255719) | 4.738154 / 2.077655 (2.660499) | 2.558618 / 1.504120 (1.054498) | 2.359745 / 1.541195 (0.818550) | 2.458438 / 1.468490 (0.989948) | 0.548580 / 4.584777 (-4.036197) | 3.912145 / 3.745712 (0.166433) | 3.764174 / 5.269862 (-1.505687) | 2.325265 / 4.565676 (-2.240411) | 0.078022 / 0.424275 (-0.346254) | 0.008279 / 0.007607 (0.000672) | 0.571635 / 0.226044 (0.345590) | 5.672445 / 2.268929 (3.403517) | 2.760577 / 55.444624 (-52.684047) | 2.544229 / 6.876477 (-4.332248) | 2.537509 / 2.142072 (0.395436) | 0.609858 / 4.805227 (-4.195369) | 0.131053 / 6.500664 (-6.369611) | 0.056433 / 0.075469 (-0.019036) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.567231 / 1.841788 (-0.274556) | 21.415586 / 8.074308 (13.341278) | 15.982328 / 10.191392 (5.790936) | 0.167648 / 0.680424 (-0.512776) | 0.023562 / 0.534201 (-0.510639) | 0.477307 / 0.579283 (-0.101976) | 0.471929 / 0.434364 (0.037566) | 0.549996 / 0.540337 (0.009659) | 0.753927 / 1.386936 (-0.633009) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#1fb2785be9198997e8b9006225b0e231f4d8ed31 \"CML watermark\")\n" ]
2023-10-25T18:21:08
2023-10-26T17:19:49
2023-10-26T17:10:27
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6351", "html_url": "https://github.com/huggingface/datasets/pull/6351", "diff_url": "https://github.com/huggingface/datasets/pull/6351.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6351.patch", "merged_at": "2023-10-26T17:10:27" }
The current example isn't working because it can't find `labels` inside the Dataset object. So I've added an extra step to the process. Tested and working in Colab.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6351/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6351/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6350
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6350/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6350/comments
https://api.github.com/repos/huggingface/datasets/issues/6350/events
https://github.com/huggingface/datasets/issues/6350
1,961,869,203
I_kwDODunzps5077-T
6,350
Different objects are returned from calls that should be returning the same kind of object.
{ "login": "phalexo", "id": 4603365, "node_id": "MDQ6VXNlcjQ2MDMzNjU=", "avatar_url": "https://avatars.githubusercontent.com/u/4603365?v=4", "gravatar_id": "", "url": "https://api.github.com/users/phalexo", "html_url": "https://github.com/phalexo", "followers_url": "https://api.github.com/users/phalexo/followers", "following_url": "https://api.github.com/users/phalexo/following{/other_user}", "gists_url": "https://api.github.com/users/phalexo/gists{/gist_id}", "starred_url": "https://api.github.com/users/phalexo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/phalexo/subscriptions", "organizations_url": "https://api.github.com/users/phalexo/orgs", "repos_url": "https://api.github.com/users/phalexo/repos", "events_url": "https://api.github.com/users/phalexo/events{/privacy}", "received_events_url": "https://api.github.com/users/phalexo/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
[ "`load_dataset` returns a `DatasetDict` object unless `split` is defined, in which case it returns a `Dataset` (or a list of datasets if `split` is a list). We've discussed dropping `DatasetDict` from the API in https://github.com/huggingface/datasets/issues/5189 to always return the same type in `load_dataset` and support datasets without (explicit) splits. IIRC the main discussion point is deciding what to return when loading a dataset with multiple splits, but `split` is not specified. What would you expect as a return value in that scenario?", "> `load_dataset` returns a `DatasetDict` object unless `split` is defined, in which case it returns a `Dataset` (or a list of datasets if `split` is a list). We've discussed dropping `DatasetDict` from the API in #5189 to always return the same type in `load_dataset` and support datasets without (explicit) splits. IIRC the main discussion point is deciding what to return when loading a dataset with multiple splits, but `split` is not specified. What would you expect as a return value in that scenario?\r\n\r\nWouldn't a dataset with multiple splits already have keys and their related data arrays?\r\n\r\nLets say the dataset has \"train\" : trainset, \"valid\": validset and \"test\": testset\r\n\r\nSo a dictionary can be returned,, i.e.\r\n\r\n{ \r\n\"train\": trainset,\r\n\"valid\": validset,\r\n\"test\": testset\r\n}\r\n\r\nif a split is provided split=['train[:80%]', 'valid[80%:90%]', 'test[90%:100%]']\r\n\r\nwould also return the same dictionary as above.\r\n\r\nsplit='train[:10%]' should return the same value as split=['train[:10%]']\r\n\r\n{\r\n\"train\": trainset\r\n}\r\n " ]
2023-10-25T17:08:39
2023-10-26T21:03:06
null
NONE
null
null
null
### Describe the bug 1. dataset = load_dataset("togethercomputer/RedPajama-Data-1T-Sample", cache_dir=training_args.cache_dir, split='train[:1%]') 2. dataset = load_dataset("togethercomputer/RedPajama-Data-1T-Sample", cache_dir=training_args.cache_dir) The only difference I would expect these calls to have is the size of the dataset. But, while 2. returns a dictionary with "train" key in it, 1. returns a dataset WITHOUT any initial "train" keyword. Both calls are to be used within exactly the same context. They should return identically structured datasets of different size. ### Steps to reproduce the bug See above. ### Expected behavior Expect both calls to return the same structured Dataset structure but with different number of elements, i.e. call 1. should have 1% of the data of the call 2.0 ### Environment info Ubuntu 20.04 gcc 9.x.x. It is really irrelevant.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6350/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6350/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6349
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6349/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6349/comments
https://api.github.com/repos/huggingface/datasets/issues/6349/events
https://github.com/huggingface/datasets/issues/6349
1,961,435,673
I_kwDODunzps506SIZ
6,349
Can't load ds = load_dataset("imdb")
{ "login": "vivianc2", "id": 86415736, "node_id": "MDQ6VXNlcjg2NDE1NzM2", "avatar_url": "https://avatars.githubusercontent.com/u/86415736?v=4", "gravatar_id": "", "url": "https://api.github.com/users/vivianc2", "html_url": "https://github.com/vivianc2", "followers_url": "https://api.github.com/users/vivianc2/followers", "following_url": "https://api.github.com/users/vivianc2/following{/other_user}", "gists_url": "https://api.github.com/users/vivianc2/gists{/gist_id}", "starred_url": "https://api.github.com/users/vivianc2/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/vivianc2/subscriptions", "organizations_url": "https://api.github.com/users/vivianc2/orgs", "repos_url": "https://api.github.com/users/vivianc2/repos", "events_url": "https://api.github.com/users/vivianc2/events{/privacy}", "received_events_url": "https://api.github.com/users/vivianc2/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "I'm unable to reproduce this error. The server hosting the files may have been down temporarily, so try again." ]
2023-10-25T13:29:51
2023-10-31T19:59:35
2023-10-31T19:59:35
NONE
null
null
null
### Describe the bug I did `from datasets import load_dataset, load_metric` and then `ds = load_dataset("imdb")` and it gave me the error: ExpectedMoreDownloadedFiles: {'http://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz'} I tried doing `ds = load_dataset("imdb",download_mode="force_redownload")` as well as reinstalling dataset. I still face this problem. ### Steps to reproduce the bug 1. from datasets import load_dataset, load_metric 2. ds = load_dataset("imdb") ### Expected behavior It should load and give me this when I run `ds` DatasetDict({ train: Dataset({ features: ['text', 'label'], num_rows: 25000 }) test: Dataset({ features: ['text', 'label'], num_rows: 25000 }) unsupervised: Dataset({ features: ['text', 'label'], num_rows: 50000 }) }) ### Environment info - `datasets` version: 2.14.6 - Platform: Linux-5.4.0-164-generic-x86_64-with-glibc2.17 - Python version: 3.8.18 - Huggingface_hub version: 0.16.2 - PyArrow version: 13.0.0 - Pandas version: 2.0.2
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6349/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6349/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6348
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6348/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6348/comments
https://api.github.com/repos/huggingface/datasets/issues/6348/events
https://github.com/huggingface/datasets/issues/6348
1,961,268,504
I_kwDODunzps505pUY
6,348
Parquet stream-conversion fails to embed images/audio files from gated repos
{ "login": "severo", "id": 1676121, "node_id": "MDQ6VXNlcjE2NzYxMjE=", "avatar_url": "https://avatars.githubusercontent.com/u/1676121?v=4", "gravatar_id": "", "url": "https://api.github.com/users/severo", "html_url": "https://github.com/severo", "followers_url": "https://api.github.com/users/severo/followers", "following_url": "https://api.github.com/users/severo/following{/other_user}", "gists_url": "https://api.github.com/users/severo/gists{/gist_id}", "starred_url": "https://api.github.com/users/severo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/severo/subscriptions", "organizations_url": "https://api.github.com/users/severo/orgs", "repos_url": "https://api.github.com/users/severo/repos", "events_url": "https://api.github.com/users/severo/events{/privacy}", "received_events_url": "https://api.github.com/users/severo/received_events", "type": "User", "site_admin": false }
[ { "id": 1935892857, "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug", "name": "bug", "color": "d73a4a", "default": true, "description": "Something isn't working" } ]
open
false
null
[]
[]
2023-10-25T12:12:44
2023-10-25T12:13:07
null
CONTRIBUTOR
null
null
null
it seems to be an issue with datasets not passing the token to embed_table_storage when generating a dataset See https://github.com/huggingface/datasets-server/issues/2010
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6348/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6348/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6347
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6347/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6347/comments
https://api.github.com/repos/huggingface/datasets/issues/6347/events
https://github.com/huggingface/datasets/issues/6347
1,959,004,835
I_kwDODunzps50xAqj
6,347
Incorrect example code in 'Create a dataset' docs
{ "login": "rwood-97", "id": 72076688, "node_id": "MDQ6VXNlcjcyMDc2Njg4", "avatar_url": "https://avatars.githubusercontent.com/u/72076688?v=4", "gravatar_id": "", "url": "https://api.github.com/users/rwood-97", "html_url": "https://github.com/rwood-97", "followers_url": "https://api.github.com/users/rwood-97/followers", "following_url": "https://api.github.com/users/rwood-97/following{/other_user}", "gists_url": "https://api.github.com/users/rwood-97/gists{/gist_id}", "starred_url": "https://api.github.com/users/rwood-97/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/rwood-97/subscriptions", "organizations_url": "https://api.github.com/users/rwood-97/orgs", "repos_url": "https://api.github.com/users/rwood-97/repos", "events_url": "https://api.github.com/users/rwood-97/events{/privacy}", "received_events_url": "https://api.github.com/users/rwood-97/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "This was fixed in https://github.com/huggingface/datasets/pull/6247. You can find the fix in the `main` version of the docs", "Ah great, thanks :)" ]
2023-10-24T11:01:21
2023-10-25T13:05:21
2023-10-25T13:05:21
NONE
null
null
null
### Describe the bug On [this](https://huggingface.co./docs/datasets/create_dataset) page, the example code for loading in images and audio is incorrect. Currently, examples are: ``` python from datasets import ImageFolder dataset = load_dataset("imagefolder", data_dir="/path/to/pokemon") ``` and ``` python from datasets import AudioFolder dataset = load_dataset("audiofolder", data_dir="/path/to/folder") ``` I'm pretty sure the imports are wrong and should be: ``` python from datasets import load_dataset dataset = load_dataset("audiofolder", data_dir="/path/to/folder") ``` I am happy to update this if this is right but just wanted to check before making any changes. ### Steps to reproduce the bug Go to https://huggingface.co./docs/datasets/create_dataset ### Expected behavior N/A ### Environment info N/A
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6347/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6347/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6346
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6346/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6346/comments
https://api.github.com/repos/huggingface/datasets/issues/6346/events
https://github.com/huggingface/datasets/pull/6346
1,958,777,076
PR_kwDODunzps5dnZM_
6,346
Fix UnboundLocalError if preprocessing returns an empty list
{ "login": "cwallenwein", "id": 40916592, "node_id": "MDQ6VXNlcjQwOTE2NTky", "avatar_url": "https://avatars.githubusercontent.com/u/40916592?v=4", "gravatar_id": "", "url": "https://api.github.com/users/cwallenwein", "html_url": "https://github.com/cwallenwein", "followers_url": "https://api.github.com/users/cwallenwein/followers", "following_url": "https://api.github.com/users/cwallenwein/following{/other_user}", "gists_url": "https://api.github.com/users/cwallenwein/gists{/gist_id}", "starred_url": "https://api.github.com/users/cwallenwein/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/cwallenwein/subscriptions", "organizations_url": "https://api.github.com/users/cwallenwein/orgs", "repos_url": "https://api.github.com/users/cwallenwein/repos", "events_url": "https://api.github.com/users/cwallenwein/events{/privacy}", "received_events_url": "https://api.github.com/users/cwallenwein/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009286 / 0.011353 (-0.002067) | 0.005478 / 0.011008 (-0.005530) | 0.109768 / 0.038508 (0.071260) | 0.088460 / 0.023109 (0.065351) | 0.387664 / 0.275898 (0.111766) | 0.457379 / 0.323480 (0.133899) | 0.006517 / 0.007986 (-0.001469) | 0.004037 / 0.004328 (-0.000292) | 0.083911 / 0.004250 (0.079661) | 0.071658 / 0.037052 (0.034605) | 0.385065 / 0.258489 (0.126576) | 0.460928 / 0.293841 (0.167087) | 0.048062 / 0.128546 (-0.080484) | 0.016343 / 0.075646 (-0.059303) | 0.373675 / 0.419271 (-0.045597) | 0.067640 / 0.043533 (0.024108) | 0.391730 / 0.255139 (0.136591) | 0.432908 / 0.283200 (0.149708) | 0.035748 / 0.141683 (-0.105935) | 1.767625 / 1.452155 (0.315471) | 1.965606 / 1.492716 (0.472889) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.277405 / 0.018006 (0.259399) | 0.538448 / 0.000490 (0.537958) | 0.013795 / 0.000200 (0.013595) | 0.000518 / 0.000054 (0.000464) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.043962 / 0.037411 (0.006550) | 0.115305 / 0.014526 (0.100780) | 0.117572 / 0.176557 (-0.058985) | 0.182168 / 0.737135 (-0.554968) | 0.114833 / 0.296338 (-0.181505) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.604209 / 0.215209 (0.389000) | 6.186113 / 2.077655 (4.108458) | 2.771067 / 1.504120 (1.266947) | 2.425420 / 1.541195 (0.884226) | 2.475200 / 1.468490 (1.006710) | 0.887096 / 4.584777 (-3.697681) | 5.214349 / 3.745712 (1.468637) | 4.989606 / 5.269862 (-0.280256) | 3.092135 / 4.565676 (-1.473541) | 0.104464 / 0.424275 (-0.319811) | 0.008994 / 0.007607 (0.001387) | 0.732819 / 0.226044 (0.506775) | 7.396007 / 2.268929 (5.127078) | 3.371167 / 55.444624 (-52.073457) | 2.645475 / 6.876477 (-4.231001) | 2.704215 / 2.142072 (0.562143) | 1.034724 / 4.805227 (-3.770504) | 0.219063 / 6.500664 (-6.281601) | 0.073863 / 0.075469 (-0.001606) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.625020 / 1.841788 (-0.216768) | 23.369980 / 8.074308 (15.295671) | 22.480951 / 10.191392 (12.289559) | 0.228219 / 0.680424 (-0.452204) | 0.026981 / 0.534201 (-0.507220) | 0.487670 / 0.579283 (-0.091613) | 0.582310 / 0.434364 (0.147946) | 0.539182 / 0.540337 (-0.001156) | 0.791962 / 1.386936 (-0.594974) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008657 / 0.011353 (-0.002696) | 0.004971 / 0.011008 (-0.006037) | 0.089499 / 0.038508 (0.050991) | 0.075963 / 0.023109 (0.052854) | 0.497719 / 0.275898 (0.221821) | 0.507912 / 0.323480 (0.184432) | 0.006067 / 0.007986 (-0.001919) | 0.004118 / 0.004328 (-0.000210) | 0.079397 / 0.004250 (0.075146) | 0.059181 / 0.037052 (0.022129) | 0.501108 / 0.258489 (0.242619) | 0.565792 / 0.293841 (0.271951) | 0.048818 / 0.128546 (-0.079729) | 0.014813 / 0.075646 (-0.060833) | 0.093863 / 0.419271 (-0.325409) | 0.060824 / 0.043533 (0.017292) | 0.489289 / 0.255139 (0.234150) | 0.533624 / 0.283200 (0.250425) | 0.034997 / 0.141683 (-0.106685) | 1.770574 / 1.452155 (0.318419) | 1.837213 / 1.492716 (0.344496) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.237319 / 0.018006 (0.219313) | 0.594976 / 0.000490 (0.594486) | 0.008888 / 0.000200 (0.008688) | 0.000124 / 0.000054 (0.000070) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.036955 / 0.037411 (-0.000456) | 0.097825 / 0.014526 (0.083299) | 0.111139 / 0.176557 (-0.065418) | 0.174776 / 0.737135 (-0.562359) | 0.117755 / 0.296338 (-0.178584) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.606498 / 0.215209 (0.391289) | 6.089874 / 2.077655 (4.012219) | 2.811135 / 1.504120 (1.307015) | 2.428486 / 1.541195 (0.887292) | 2.399512 / 1.468490 (0.931022) | 0.823492 / 4.584777 (-3.761285) | 4.897107 / 3.745712 (1.151395) | 4.407589 / 5.269862 (-0.862272) | 2.868442 / 4.565676 (-1.697235) | 0.098774 / 0.424275 (-0.325502) | 0.007998 / 0.007607 (0.000391) | 0.699489 / 0.226044 (0.473445) | 7.139214 / 2.268929 (4.870285) | 3.511158 / 55.444624 (-51.933466) | 2.775459 / 6.876477 (-4.101018) | 2.951549 / 2.142072 (0.809477) | 1.006921 / 4.805227 (-3.798306) | 0.200105 / 6.500664 (-6.300559) | 0.071064 / 0.075469 (-0.004405) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.680599 / 1.841788 (-0.161189) | 23.399777 / 8.074308 (15.325469) | 21.776357 / 10.191392 (11.584965) | 0.264697 / 0.680424 (-0.415726) | 0.034272 / 0.534201 (-0.499929) | 0.506984 / 0.579283 (-0.072299) | 0.609556 / 0.434364 (0.175192) | 0.599014 / 0.540337 (0.058677) | 0.824068 / 1.386936 (-0.562868) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#3ab9de69420de8bd5d057579d71d07187b3a2c60 \"CML watermark\")\n" ]
2023-10-24T08:38:43
2023-10-25T17:39:17
2023-10-25T16:36:38
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6346", "html_url": "https://github.com/huggingface/datasets/pull/6346", "diff_url": "https://github.com/huggingface/datasets/pull/6346.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6346.patch", "merged_at": "2023-10-25T16:36:38" }
If this tokenization function is used with IterableDatasets and no sample is as big as the context length, `input_batch` will be an empty list. ``` def tokenize(batch, tokenizer, context_length): outputs = tokenizer( batch["text"], truncation=True, max_length=context_length, return_overflowing_tokens=True, return_length=True ) input_batch = [] for length, input_ids in zip(outputs["length"], outputs["input_ids"]): if length == context_length: input_batch.append(input_ids) return {"input_ids": input_batch} dataset.map(tokenize, batched=True, batch_size=batch_size, fn_kwargs={"context_length": context_length, "tokenizer": tokenizer}, remove_columns=dataset.column_names) ``` This will throw the following error: UnboundLocalError: local variable 'batch_idx' referenced before assignment, because the for loop was not executed a single time ``` for batch_idx, example in enumerate(_batch_to_examples(transformed_batch)): yield new_key, example current_idx += batch_idx + 1 ``` Some of the possible solutions ``` for batch_idx, example in enumerate(_batch_to_examples(transformed_batch)): yield new_key, example try: current_idx += batch_idx + 1 except: current_idx += 1 ``` or ``` batch_idx = 0 for batch_idx, example in enumerate(_batch_to_examples(transformed_batch)): yield new_key, example current_idx += batch_idx + 1 ```
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6346/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6346/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6345
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6345/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6345/comments
https://api.github.com/repos/huggingface/datasets/issues/6345/events
https://github.com/huggingface/datasets/issues/6345
1,957,707,870
I_kwDODunzps50sEBe
6,345
support squad structure datasets using a YAML parameter
{ "login": "MajdTannous1", "id": 138524319, "node_id": "U_kgDOCEG2nw", "avatar_url": "https://avatars.githubusercontent.com/u/138524319?v=4", "gravatar_id": "", "url": "https://api.github.com/users/MajdTannous1", "html_url": "https://github.com/MajdTannous1", "followers_url": "https://api.github.com/users/MajdTannous1/followers", "following_url": "https://api.github.com/users/MajdTannous1/following{/other_user}", "gists_url": "https://api.github.com/users/MajdTannous1/gists{/gist_id}", "starred_url": "https://api.github.com/users/MajdTannous1/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/MajdTannous1/subscriptions", "organizations_url": "https://api.github.com/users/MajdTannous1/orgs", "repos_url": "https://api.github.com/users/MajdTannous1/repos", "events_url": "https://api.github.com/users/MajdTannous1/events{/privacy}", "received_events_url": "https://api.github.com/users/MajdTannous1/received_events", "type": "User", "site_admin": false }
[ { "id": 1935892871, "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement", "name": "enhancement", "color": "a2eeef", "default": true, "description": "New feature or request" } ]
open
false
null
[]
[]
2023-10-23T17:55:37
2023-10-23T17:55:37
null
NONE
null
null
null
### Feature request Since the squad structure is widely used, I think it could be beneficial to support it using a YAML parameter. could you implement automatic data loading of squad-like data using squad JSON format, to read it from JSON files and view it in the correct squad structure. The dataset structure should be like this: https://huggingface.co./datasets/squad Columns:id,title,context,question,answers ### Motivation Dataset repo requires arbitrary Python code execution ### Your contribution The dataset structure should be like this: https://huggingface.co./datasets/squad Columns:id,title,context,question,answers train and dev sets in squad structure JSON files
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6345/reactions", "total_count": 1, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 1 }
https://api.github.com/repos/huggingface/datasets/issues/6345/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6344
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6344/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6344/comments
https://api.github.com/repos/huggingface/datasets/issues/6344/events
https://github.com/huggingface/datasets/pull/6344
1,957,412,169
PR_kwDODunzps5diyd5
6,344
set dev version
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6344). All of your documentation changes will be reflected on that endpoint.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008237 / 0.011353 (-0.003116) | 0.004658 / 0.011008 (-0.006351) | 0.105902 / 0.038508 (0.067394) | 0.082690 / 0.023109 (0.059581) | 0.471745 / 0.275898 (0.195847) | 0.464772 / 0.323480 (0.141292) | 0.006373 / 0.007986 (-0.001613) | 0.003823 / 0.004328 (-0.000505) | 0.077721 / 0.004250 (0.073471) | 0.068371 / 0.037052 (0.031318) | 0.457004 / 0.258489 (0.198515) | 0.500989 / 0.293841 (0.207148) | 0.036688 / 0.128546 (-0.091858) | 0.010004 / 0.075646 (-0.065643) | 0.363398 / 0.419271 (-0.055874) | 0.065354 / 0.043533 (0.021821) | 0.440326 / 0.255139 (0.185187) | 0.475314 / 0.283200 (0.192115) | 0.029024 / 0.141683 (-0.112659) | 1.851005 / 1.452155 (0.398851) | 1.939997 / 1.492716 (0.447281) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.269739 / 0.018006 (0.251732) | 0.510411 / 0.000490 (0.509922) | 0.013423 / 0.000200 (0.013223) | 0.000513 / 0.000054 (0.000458) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032912 / 0.037411 (-0.004499) | 0.097497 / 0.014526 (0.082971) | 0.111945 / 0.176557 (-0.064612) | 0.179264 / 0.737135 (-0.557871) | 0.111901 / 0.296338 (-0.184437) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.480994 / 0.215209 (0.265785) | 4.800969 / 2.077655 (2.723314) | 2.467390 / 1.504120 (0.963270) | 2.283219 / 1.541195 (0.742024) | 2.407735 / 1.468490 (0.939245) | 0.573862 / 4.584777 (-4.010915) | 4.213394 / 3.745712 (0.467682) | 4.120092 / 5.269862 (-1.149770) | 2.479549 / 4.565676 (-2.086128) | 0.077204 / 0.424275 (-0.347071) | 0.009165 / 0.007607 (0.001558) | 0.583887 / 0.226044 (0.357842) | 5.760759 / 2.268929 (3.491830) | 3.089220 / 55.444624 (-52.355404) | 2.652330 / 6.876477 (-4.224146) | 2.746255 / 2.142072 (0.604182) | 0.689010 / 4.805227 (-4.116217) | 0.158042 / 6.500664 (-6.342622) | 0.072789 / 0.075469 (-0.002680) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.658877 / 1.841788 (-0.182911) | 22.928756 / 8.074308 (14.854448) | 17.231823 / 10.191392 (7.040431) | 0.201475 / 0.680424 (-0.478949) | 0.025533 / 0.534201 (-0.508668) | 0.467023 / 0.579283 (-0.112260) | 0.470779 / 0.434364 (0.036415) | 0.643192 / 0.540337 (0.102855) | 0.822006 / 1.386936 (-0.564930) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008096 / 0.011353 (-0.003257) | 0.004708 / 0.011008 (-0.006300) | 0.076607 / 0.038508 (0.038099) | 0.086278 / 0.023109 (0.063168) | 0.478027 / 0.275898 (0.202129) | 0.533121 / 0.323480 (0.209641) | 0.006331 / 0.007986 (-0.001654) | 0.004005 / 0.004328 (-0.000324) | 0.076018 / 0.004250 (0.071767) | 0.067240 / 0.037052 (0.030188) | 0.484882 / 0.258489 (0.226393) | 0.536924 / 0.293841 (0.243083) | 0.045064 / 0.128546 (-0.083482) | 0.010071 / 0.075646 (-0.065575) | 0.084319 / 0.419271 (-0.334953) | 0.066267 / 0.043533 (0.022734) | 0.479283 / 0.255139 (0.224144) | 0.507832 / 0.283200 (0.224633) | 0.026436 / 0.141683 (-0.115247) | 1.820043 / 1.452155 (0.367889) | 1.954663 / 1.492716 (0.461947) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.292672 / 0.018006 (0.274666) | 0.495523 / 0.000490 (0.495033) | 0.020836 / 0.000200 (0.020636) | 0.000143 / 0.000054 (0.000088) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.038326 / 0.037411 (0.000915) | 0.114629 / 0.014526 (0.100103) | 0.126036 / 0.176557 (-0.050521) | 0.191498 / 0.737135 (-0.545638) | 0.128763 / 0.296338 (-0.167575) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.507657 / 0.215209 (0.292448) | 5.062056 / 2.077655 (2.984401) | 2.765895 / 1.504120 (1.261775) | 2.590335 / 1.541195 (1.049141) | 2.790912 / 1.468490 (1.322422) | 0.582819 / 4.584777 (-4.001958) | 4.350034 / 3.745712 (0.604322) | 3.899466 / 5.269862 (-1.370396) | 2.499655 / 4.565676 (-2.066021) | 0.068909 / 0.424275 (-0.355366) | 0.008633 / 0.007607 (0.001026) | 0.593597 / 0.226044 (0.367553) | 5.934398 / 2.268929 (3.665470) | 3.358549 / 55.444624 (-52.086075) | 3.145686 / 6.876477 (-3.730791) | 3.232153 / 2.142072 (1.090080) | 0.753039 / 4.805227 (-4.052188) | 0.164043 / 6.500664 (-6.336621) | 0.072084 / 0.075469 (-0.003385) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.632702 / 1.841788 (-0.209086) | 23.411084 / 8.074308 (15.336776) | 17.035726 / 10.191392 (6.844334) | 0.223460 / 0.680424 (-0.456964) | 0.023723 / 0.534201 (-0.510478) | 0.474160 / 0.579283 (-0.105124) | 0.538638 / 0.434364 (0.104274) | 0.595591 / 0.540337 (0.055254) | 0.803324 / 1.386936 (-0.583612) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#84855c8ddc8d3e33b516f04b687e01d498d0906e \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008300 / 0.011353 (-0.003053) | 0.004667 / 0.011008 (-0.006341) | 0.101028 / 0.038508 (0.062520) | 0.100269 / 0.023109 (0.077160) | 0.418651 / 0.275898 (0.142752) | 0.459061 / 0.323480 (0.135581) | 0.006786 / 0.007986 (-0.001199) | 0.003926 / 0.004328 (-0.000403) | 0.076682 / 0.004250 (0.072432) | 0.066173 / 0.037052 (0.029120) | 0.430644 / 0.258489 (0.172155) | 0.466244 / 0.293841 (0.172403) | 0.040601 / 0.128546 (-0.087946) | 0.009856 / 0.075646 (-0.065790) | 0.351467 / 0.419271 (-0.067805) | 0.068727 / 0.043533 (0.025194) | 0.419527 / 0.255139 (0.164388) | 0.431245 / 0.283200 (0.148045) | 0.028933 / 0.141683 (-0.112750) | 1.749540 / 1.452155 (0.297386) | 1.829076 / 1.492716 (0.336360) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.282248 / 0.018006 (0.264242) | 0.587293 / 0.000490 (0.586803) | 0.014497 / 0.000200 (0.014297) | 0.000383 / 0.000054 (0.000329) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031861 / 0.037411 (-0.005550) | 0.097395 / 0.014526 (0.082869) | 0.113610 / 0.176557 (-0.062946) | 0.181208 / 0.737135 (-0.555927) | 0.115340 / 0.296338 (-0.180999) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.459746 / 0.215209 (0.244537) | 4.582387 / 2.077655 (2.504733) | 2.247968 / 1.504120 (0.743848) | 2.032340 / 1.541195 (0.491145) | 2.151766 / 1.468490 (0.683276) | 0.567664 / 4.584777 (-4.017113) | 4.491732 / 3.745712 (0.746020) | 4.000651 / 5.269862 (-1.269211) | 2.429113 / 4.565676 (-2.136564) | 0.067052 / 0.424275 (-0.357223) | 0.009095 / 0.007607 (0.001488) | 0.546461 / 0.226044 (0.320417) | 5.473524 / 2.268929 (3.204595) | 2.902091 / 55.444624 (-52.542533) | 2.517510 / 6.876477 (-4.358966) | 2.572537 / 2.142072 (0.430464) | 0.683499 / 4.805227 (-4.121728) | 0.154863 / 6.500664 (-6.345801) | 0.071298 / 0.075469 (-0.004171) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.625236 / 1.841788 (-0.216552) | 23.531541 / 8.074308 (15.457233) | 16.762514 / 10.191392 (6.571122) | 0.215922 / 0.680424 (-0.464502) | 0.021928 / 0.534201 (-0.512273) | 0.466055 / 0.579283 (-0.113228) | 0.553036 / 0.434364 (0.118672) | 0.590063 / 0.540337 (0.049725) | 0.789959 / 1.386936 (-0.596977) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008240 / 0.011353 (-0.003113) | 0.004151 / 0.011008 (-0.006858) | 0.077988 / 0.038508 (0.039479) | 0.092865 / 0.023109 (0.069756) | 0.468238 / 0.275898 (0.192340) | 0.512882 / 0.323480 (0.189402) | 0.006632 / 0.007986 (-0.001354) | 0.003879 / 0.004328 (-0.000450) | 0.076238 / 0.004250 (0.071988) | 0.069372 / 0.037052 (0.032319) | 0.481040 / 0.258489 (0.222550) | 0.526332 / 0.293841 (0.232491) | 0.036768 / 0.128546 (-0.091778) | 0.009891 / 0.075646 (-0.065756) | 0.084426 / 0.419271 (-0.334846) | 0.062382 / 0.043533 (0.018849) | 0.480667 / 0.255139 (0.225528) | 0.509001 / 0.283200 (0.225802) | 0.029215 / 0.141683 (-0.112468) | 1.776075 / 1.452155 (0.323920) | 1.948558 / 1.492716 (0.455841) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.257879 / 0.018006 (0.239873) | 0.471038 / 0.000490 (0.470548) | 0.009273 / 0.000200 (0.009073) | 0.000208 / 0.000054 (0.000154) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.039249 / 0.037411 (0.001838) | 0.133281 / 0.014526 (0.118755) | 0.138261 / 0.176557 (-0.038296) | 0.191051 / 0.737135 (-0.546084) | 0.134493 / 0.296338 (-0.161845) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.507165 / 0.215209 (0.291955) | 5.081018 / 2.077655 (3.003364) | 2.747633 / 1.504120 (1.243513) | 2.558265 / 1.541195 (1.017070) | 2.710839 / 1.468490 (1.242348) | 0.579913 / 4.584777 (-4.004864) | 4.843657 / 3.745712 (1.097945) | 3.942503 / 5.269862 (-1.327358) | 2.529641 / 4.565676 (-2.036036) | 0.068826 / 0.424275 (-0.355449) | 0.008847 / 0.007607 (0.001240) | 0.605332 / 0.226044 (0.379287) | 6.039574 / 2.268929 (3.770646) | 3.437291 / 55.444624 (-52.007333) | 3.086631 / 6.876477 (-3.789846) | 3.189340 / 2.142072 (1.047267) | 0.702650 / 4.805227 (-4.102578) | 0.157403 / 6.500664 (-6.343261) | 0.074637 / 0.075469 (-0.000832) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.816532 / 1.841788 (-0.025256) | 24.526675 / 8.074308 (16.452367) | 17.371691 / 10.191392 (7.180299) | 0.236044 / 0.680424 (-0.444380) | 0.024759 / 0.534201 (-0.509442) | 0.530578 / 0.579283 (-0.048705) | 0.527424 / 0.434364 (0.093060) | 0.620267 / 0.540337 (0.079929) | 0.791159 / 1.386936 (-0.595777) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#78cfce823b98b6cce79a9297fe6fa9e8f80a869c \"CML watermark\")\n" ]
2023-10-23T15:13:28
2023-10-23T15:24:31
2023-10-23T15:13:38
MEMBER
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6344", "html_url": "https://github.com/huggingface/datasets/pull/6344", "diff_url": "https://github.com/huggingface/datasets/pull/6344.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6344.patch", "merged_at": "2023-10-23T15:13:38" }
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6344/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6344/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6343
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6343/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6343/comments
https://api.github.com/repos/huggingface/datasets/issues/6343/events
https://github.com/huggingface/datasets/pull/6343
1,957,370,711
PR_kwDODunzps5dipeb
6,343
Remove unused argument in `_get_data_files_patterns`
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006584 / 0.011353 (-0.004769) | 0.004197 / 0.011008 (-0.006812) | 0.083598 / 0.038508 (0.045090) | 0.075502 / 0.023109 (0.052392) | 0.312986 / 0.275898 (0.037088) | 0.344630 / 0.323480 (0.021150) | 0.005394 / 0.007986 (-0.002591) | 0.003485 / 0.004328 (-0.000843) | 0.064529 / 0.004250 (0.060279) | 0.055003 / 0.037052 (0.017950) | 0.320522 / 0.258489 (0.062033) | 0.362623 / 0.293841 (0.068782) | 0.030900 / 0.128546 (-0.097646) | 0.008459 / 0.075646 (-0.067187) | 0.286986 / 0.419271 (-0.132285) | 0.052310 / 0.043533 (0.008777) | 0.315873 / 0.255139 (0.060734) | 0.333962 / 0.283200 (0.050762) | 0.023836 / 0.141683 (-0.117847) | 1.481806 / 1.452155 (0.029651) | 1.567926 / 1.492716 (0.075209) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.268188 / 0.018006 (0.250182) | 0.520542 / 0.000490 (0.520052) | 0.017617 / 0.000200 (0.017417) | 0.000631 / 0.000054 (0.000577) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028828 / 0.037411 (-0.008584) | 0.083028 / 0.014526 (0.068502) | 0.099808 / 0.176557 (-0.076748) | 0.154282 / 0.737135 (-0.582853) | 0.098590 / 0.296338 (-0.197748) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.407548 / 0.215209 (0.192339) | 4.066128 / 2.077655 (1.988474) | 2.036757 / 1.504120 (0.532637) | 1.870130 / 1.541195 (0.328935) | 1.949031 / 1.468490 (0.480541) | 0.489263 / 4.584777 (-4.095514) | 3.506269 / 3.745712 (-0.239443) | 3.457232 / 5.269862 (-1.812629) | 2.060097 / 4.565676 (-2.505580) | 0.057252 / 0.424275 (-0.367024) | 0.007727 / 0.007607 (0.000120) | 0.480229 / 0.226044 (0.254185) | 4.807064 / 2.268929 (2.538135) | 2.495438 / 55.444624 (-52.949186) | 2.186194 / 6.876477 (-4.690283) | 2.243372 / 2.142072 (0.101300) | 0.580550 / 4.805227 (-4.224678) | 0.135398 / 6.500664 (-6.365266) | 0.061878 / 0.075469 (-0.013591) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.305635 / 1.841788 (-0.536152) | 19.194421 / 8.074308 (11.120113) | 14.531699 / 10.191392 (4.340307) | 0.167144 / 0.680424 (-0.513280) | 0.018270 / 0.534201 (-0.515931) | 0.393702 / 0.579283 (-0.185581) | 0.406518 / 0.434364 (-0.027846) | 0.458126 / 0.540337 (-0.082211) | 0.639839 / 1.386936 (-0.747097) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006742 / 0.011353 (-0.004611) | 0.004092 / 0.011008 (-0.006916) | 0.065547 / 0.038508 (0.027039) | 0.076293 / 0.023109 (0.053184) | 0.389701 / 0.275898 (0.113803) | 0.429158 / 0.323480 (0.105678) | 0.005606 / 0.007986 (-0.002380) | 0.003491 / 0.004328 (-0.000837) | 0.065903 / 0.004250 (0.061653) | 0.057346 / 0.037052 (0.020293) | 0.393233 / 0.258489 (0.134744) | 0.433106 / 0.293841 (0.139265) | 0.032612 / 0.128546 (-0.095934) | 0.008777 / 0.075646 (-0.066869) | 0.073135 / 0.419271 (-0.346137) | 0.048167 / 0.043533 (0.004635) | 0.389309 / 0.255139 (0.134170) | 0.416442 / 0.283200 (0.133242) | 0.022839 / 0.141683 (-0.118844) | 1.531607 / 1.452155 (0.079453) | 1.598950 / 1.492716 (0.106234) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.254856 / 0.018006 (0.236850) | 0.528186 / 0.000490 (0.527697) | 0.006975 / 0.000200 (0.006775) | 0.000102 / 0.000054 (0.000048) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032377 / 0.037411 (-0.005034) | 0.092706 / 0.014526 (0.078180) | 0.107618 / 0.176557 (-0.068939) | 0.160103 / 0.737135 (-0.577032) | 0.107226 / 0.296338 (-0.189112) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.430922 / 0.215209 (0.215713) | 4.312556 / 2.077655 (2.234901) | 2.287686 / 1.504120 (0.783567) | 2.111103 / 1.541195 (0.569908) | 2.284105 / 1.468490 (0.815614) | 0.485987 / 4.584777 (-4.098790) | 3.557320 / 3.745712 (-0.188392) | 3.341150 / 5.269862 (-1.928711) | 2.056705 / 4.565676 (-2.508972) | 0.057265 / 0.424275 (-0.367010) | 0.007264 / 0.007607 (-0.000344) | 0.505191 / 0.226044 (0.279146) | 5.045379 / 2.268929 (2.776450) | 2.732357 / 55.444624 (-52.712267) | 2.390256 / 6.876477 (-4.486220) | 2.643676 / 2.142072 (0.501604) | 0.584630 / 4.805227 (-4.220597) | 0.132402 / 6.500664 (-6.368262) | 0.061387 / 0.075469 (-0.014082) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.340721 / 1.841788 (-0.501066) | 19.744145 / 8.074308 (11.669837) | 14.694482 / 10.191392 (4.503090) | 0.166294 / 0.680424 (-0.514129) | 0.020691 / 0.534201 (-0.513510) | 0.398359 / 0.579283 (-0.180924) | 0.423831 / 0.434364 (-0.010533) | 0.474365 / 0.540337 (-0.065972) | 0.649410 / 1.386936 (-0.737526) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#b29bc9cef6237eb0d18f77c56686705f468bed25 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004369 / 0.011353 (-0.006984) | 0.002728 / 0.011008 (-0.008280) | 0.063754 / 0.038508 (0.025246) | 0.029396 / 0.023109 (0.006287) | 0.269409 / 0.275898 (-0.006489) | 0.287654 / 0.323480 (-0.035826) | 0.003926 / 0.007986 (-0.004060) | 0.002366 / 0.004328 (-0.001963) | 0.048910 / 0.004250 (0.044660) | 0.043126 / 0.037052 (0.006074) | 0.260774 / 0.258489 (0.002285) | 0.299996 / 0.293841 (0.006155) | 0.023359 / 0.128546 (-0.105187) | 0.007259 / 0.075646 (-0.068388) | 0.211412 / 0.419271 (-0.207860) | 0.053883 / 0.043533 (0.010350) | 0.268946 / 0.255139 (0.013807) | 0.287664 / 0.283200 (0.004465) | 0.017600 / 0.141683 (-0.124083) | 1.096478 / 1.452155 (-0.355676) | 1.193063 / 1.492716 (-0.299653) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.090985 / 0.018006 (0.072979) | 0.287168 / 0.000490 (0.286678) | 0.000208 / 0.000200 (0.000009) | 0.000052 / 0.000054 (-0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019238 / 0.037411 (-0.018173) | 0.062660 / 0.014526 (0.048134) | 0.073414 / 0.176557 (-0.103143) | 0.120842 / 0.737135 (-0.616294) | 0.077658 / 0.296338 (-0.218681) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.280285 / 0.215209 (0.065076) | 2.729807 / 2.077655 (0.652152) | 1.430686 / 1.504120 (-0.073434) | 1.307260 / 1.541195 (-0.233935) | 1.321013 / 1.468490 (-0.147477) | 0.387253 / 4.584777 (-4.197524) | 2.415635 / 3.745712 (-1.330077) | 2.557206 / 5.269862 (-2.712656) | 1.553224 / 4.565676 (-3.012453) | 0.045402 / 0.424275 (-0.378873) | 0.004798 / 0.007607 (-0.002809) | 0.330493 / 0.226044 (0.104449) | 3.226835 / 2.268929 (0.957906) | 1.739068 / 55.444624 (-53.705557) | 1.494841 / 6.876477 (-5.381636) | 1.528253 / 2.142072 (-0.613820) | 0.451525 / 4.805227 (-4.353702) | 0.096620 / 6.500664 (-6.404044) | 0.041176 / 0.075469 (-0.034293) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.930892 / 1.841788 (-0.910896) | 11.343351 / 8.074308 (3.269043) | 10.420327 / 10.191392 (0.228935) | 0.137629 / 0.680424 (-0.542795) | 0.013907 / 0.534201 (-0.520293) | 0.267778 / 0.579283 (-0.311505) | 0.260774 / 0.434364 (-0.173590) | 0.308213 / 0.540337 (-0.232124) | 0.419659 / 1.386936 (-0.967277) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004867 / 0.011353 (-0.006486) | 0.002830 / 0.011008 (-0.008178) | 0.048506 / 0.038508 (0.009998) | 0.048190 / 0.023109 (0.025080) | 0.279995 / 0.275898 (0.004097) | 0.296396 / 0.323480 (-0.027083) | 0.004700 / 0.007986 (-0.003285) | 0.003546 / 0.004328 (-0.000782) | 0.048237 / 0.004250 (0.043987) | 0.037102 / 0.037052 (0.000050) | 0.284582 / 0.258489 (0.026093) | 0.315896 / 0.293841 (0.022055) | 0.024699 / 0.128546 (-0.103848) | 0.007077 / 0.075646 (-0.068569) | 0.054471 / 0.419271 (-0.364800) | 0.032537 / 0.043533 (-0.010996) | 0.276761 / 0.255139 (0.021622) | 0.294741 / 0.283200 (0.011542) | 0.017766 / 0.141683 (-0.123917) | 1.118377 / 1.452155 (-0.333778) | 1.186617 / 1.492716 (-0.306100) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.088981 / 0.018006 (0.070975) | 0.297793 / 0.000490 (0.297303) | 0.000220 / 0.000200 (0.000020) | 0.000050 / 0.000054 (-0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.021300 / 0.037411 (-0.016111) | 0.070059 / 0.014526 (0.055533) | 0.080452 / 0.176557 (-0.096104) | 0.118461 / 0.737135 (-0.618674) | 0.081099 / 0.296338 (-0.215240) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.300560 / 0.215209 (0.085351) | 2.951461 / 2.077655 (0.873806) | 1.621978 / 1.504120 (0.117858) | 1.478871 / 1.541195 (-0.062324) | 1.520732 / 1.468490 (0.052242) | 0.408625 / 4.584777 (-4.176152) | 2.407253 / 3.745712 (-1.338459) | 2.546000 / 5.269862 (-2.723861) | 1.525920 / 4.565676 (-3.039757) | 0.046817 / 0.424275 (-0.377458) | 0.004880 / 0.007607 (-0.002727) | 0.350866 / 0.226044 (0.124821) | 3.489379 / 2.268929 (1.220451) | 1.967197 / 55.444624 (-53.477427) | 1.686083 / 6.876477 (-5.190394) | 1.699307 / 2.142072 (-0.442766) | 0.479659 / 4.805227 (-4.325568) | 0.098853 / 6.500664 (-6.401811) | 0.040718 / 0.075469 (-0.034751) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.018352 / 1.841788 (-0.823436) | 12.022551 / 8.074308 (3.948243) | 10.841890 / 10.191392 (0.650498) | 0.130732 / 0.680424 (-0.549692) | 0.016334 / 0.534201 (-0.517867) | 0.271984 / 0.579283 (-0.307299) | 0.276733 / 0.434364 (-0.157631) | 0.308049 / 0.540337 (-0.232289) | 0.415428 / 1.386936 (-0.971508) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#31d95717e4e5fc6dd7699878720f063d51f1d595 \"CML watermark\")\n" ]
2023-10-23T14:54:18
2023-11-16T09:09:42
2023-11-16T09:03:39
MEMBER
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6343", "html_url": "https://github.com/huggingface/datasets/pull/6343", "diff_url": "https://github.com/huggingface/datasets/pull/6343.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6343.patch", "merged_at": "2023-11-16T09:03:39" }
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6343/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6343/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6342
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6342/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6342/comments
https://api.github.com/repos/huggingface/datasets/issues/6342/events
https://github.com/huggingface/datasets/pull/6342
1,957,344,445
PR_kwDODunzps5dijxt
6,342
Release: 2.14.6
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007051 / 0.011353 (-0.004302) | 0.004291 / 0.011008 (-0.006717) | 0.085557 / 0.038508 (0.047048) | 0.087919 / 0.023109 (0.064810) | 0.356912 / 0.275898 (0.081014) | 0.394835 / 0.323480 (0.071355) | 0.004464 / 0.007986 (-0.003522) | 0.003688 / 0.004328 (-0.000640) | 0.065437 / 0.004250 (0.061186) | 0.060156 / 0.037052 (0.023103) | 0.361807 / 0.258489 (0.103318) | 0.420917 / 0.293841 (0.127076) | 0.031704 / 0.128546 (-0.096842) | 0.008921 / 0.075646 (-0.066726) | 0.287828 / 0.419271 (-0.131443) | 0.053600 / 0.043533 (0.010067) | 0.361833 / 0.255139 (0.106694) | 0.396732 / 0.283200 (0.113532) | 0.025874 / 0.141683 (-0.115809) | 1.474926 / 1.452155 (0.022771) | 1.563186 / 1.492716 (0.070469) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.316823 / 0.018006 (0.298817) | 0.604085 / 0.000490 (0.603595) | 0.020828 / 0.000200 (0.020628) | 0.000351 / 0.000054 (0.000297) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030468 / 0.037411 (-0.006943) | 0.083904 / 0.014526 (0.069378) | 0.103019 / 0.176557 (-0.073537) | 0.159018 / 0.737135 (-0.578117) | 0.102737 / 0.296338 (-0.193602) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.405311 / 0.215209 (0.190102) | 4.029060 / 2.077655 (1.951406) | 2.046590 / 1.504120 (0.542470) | 1.919335 / 1.541195 (0.378140) | 2.030371 / 1.468490 (0.561881) | 0.484209 / 4.584777 (-4.100568) | 3.486888 / 3.745712 (-0.258824) | 3.390777 / 5.269862 (-1.879084) | 2.110744 / 4.565676 (-2.454933) | 0.056587 / 0.424275 (-0.367688) | 0.007766 / 0.007607 (0.000159) | 0.488217 / 0.226044 (0.262173) | 4.853904 / 2.268929 (2.584976) | 2.595122 / 55.444624 (-52.849502) | 2.217712 / 6.876477 (-4.658765) | 2.500368 / 2.142072 (0.358296) | 0.580843 / 4.805227 (-4.224384) | 0.132719 / 6.500664 (-6.367945) | 0.060202 / 0.075469 (-0.015267) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.260748 / 1.841788 (-0.581040) | 20.148848 / 8.074308 (12.074540) | 14.738779 / 10.191392 (4.547387) | 0.167562 / 0.680424 (-0.512862) | 0.018944 / 0.534201 (-0.515257) | 0.394314 / 0.579283 (-0.184969) | 0.409345 / 0.434364 (-0.025019) | 0.458743 / 0.540337 (-0.081594) | 0.638175 / 1.386936 (-0.748761) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007097 / 0.011353 (-0.004256) | 0.004304 / 0.011008 (-0.006705) | 0.065539 / 0.038508 (0.027030) | 0.094078 / 0.023109 (0.070969) | 0.412411 / 0.275898 (0.136513) | 0.441900 / 0.323480 (0.118420) | 0.006038 / 0.007986 (-0.001948) | 0.003647 / 0.004328 (-0.000682) | 0.065298 / 0.004250 (0.061048) | 0.062571 / 0.037052 (0.025518) | 0.405156 / 0.258489 (0.146667) | 0.443779 / 0.293841 (0.149938) | 0.034470 / 0.128546 (-0.094077) | 0.008858 / 0.075646 (-0.066789) | 0.071840 / 0.419271 (-0.347431) | 0.050468 / 0.043533 (0.006935) | 0.404198 / 0.255139 (0.149059) | 0.430196 / 0.283200 (0.146997) | 0.025710 / 0.141683 (-0.115973) | 1.525374 / 1.452155 (0.073219) | 1.591830 / 1.492716 (0.099114) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.294330 / 0.018006 (0.276324) | 0.516943 / 0.000490 (0.516453) | 0.004807 / 0.000200 (0.004607) | 0.000103 / 0.000054 (0.000048) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034505 / 0.037411 (-0.002907) | 0.096645 / 0.014526 (0.082119) | 0.111926 / 0.176557 (-0.064630) | 0.165241 / 0.737135 (-0.571894) | 0.111834 / 0.296338 (-0.184504) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.436370 / 0.215209 (0.221161) | 4.357568 / 2.077655 (2.279913) | 2.360529 / 1.504120 (0.856409) | 2.196375 / 1.541195 (0.655180) | 2.307481 / 1.468490 (0.838991) | 0.494072 / 4.584777 (-4.090705) | 3.565078 / 3.745712 (-0.180634) | 3.405174 / 5.269862 (-1.864688) | 2.203307 / 4.565676 (-2.362369) | 0.058582 / 0.424275 (-0.365693) | 0.007410 / 0.007607 (-0.000197) | 0.514323 / 0.226044 (0.288279) | 5.139834 / 2.268929 (2.870905) | 2.884111 / 55.444624 (-52.560513) | 2.589021 / 6.876477 (-4.287456) | 2.787577 / 2.142072 (0.645504) | 0.590765 / 4.805227 (-4.214462) | 0.135237 / 6.500664 (-6.365427) | 0.061078 / 0.075469 (-0.014391) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.346938 / 1.841788 (-0.494850) | 21.009948 / 8.074308 (12.935640) | 15.203281 / 10.191392 (5.011889) | 0.166208 / 0.680424 (-0.514216) | 0.020634 / 0.534201 (-0.513567) | 0.413825 / 0.579283 (-0.165458) | 0.416477 / 0.434364 (-0.017887) | 0.485888 / 0.540337 (-0.054449) | 0.664941 / 1.386936 (-0.721995) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#395b30ee2c0f6088e28fe78a3e61b591e40a4668 \"CML watermark\")\n", "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005927 / 0.011353 (-0.005425) | 0.003622 / 0.011008 (-0.007386) | 0.081414 / 0.038508 (0.042906) | 0.061031 / 0.023109 (0.037922) | 0.358323 / 0.275898 (0.082425) | 0.394192 / 0.323480 (0.070712) | 0.003471 / 0.007986 (-0.004515) | 0.002930 / 0.004328 (-0.001399) | 0.064215 / 0.004250 (0.059964) | 0.048678 / 0.037052 (0.011625) | 0.367966 / 0.258489 (0.109477) | 0.412618 / 0.293841 (0.118777) | 0.027192 / 0.128546 (-0.101355) | 0.007921 / 0.075646 (-0.067725) | 0.262213 / 0.419271 (-0.157059) | 0.044750 / 0.043533 (0.001217) | 0.351573 / 0.255139 (0.096434) | 0.389000 / 0.283200 (0.105800) | 0.020842 / 0.141683 (-0.120840) | 1.448925 / 1.452155 (-0.003229) | 1.530478 / 1.492716 (0.037761) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.227787 / 0.018006 (0.209780) | 0.423161 / 0.000490 (0.422671) | 0.007557 / 0.000200 (0.007357) | 0.000205 / 0.000054 (0.000150) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024703 / 0.037411 (-0.012709) | 0.074044 / 0.014526 (0.059518) | 0.085520 / 0.176557 (-0.091037) | 0.146132 / 0.737135 (-0.591003) | 0.085637 / 0.296338 (-0.210701) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.393177 / 0.215209 (0.177968) | 3.926740 / 2.077655 (1.849085) | 1.892420 / 1.504120 (0.388300) | 1.716844 / 1.541195 (0.175650) | 1.784040 / 1.468490 (0.315550) | 0.499570 / 4.584777 (-4.085207) | 3.057764 / 3.745712 (-0.687948) | 2.885463 / 5.269862 (-2.384399) | 1.905206 / 4.565676 (-2.660471) | 0.058216 / 0.424275 (-0.366059) | 0.006805 / 0.007607 (-0.000802) | 0.465406 / 0.226044 (0.239361) | 4.658569 / 2.268929 (2.389641) | 2.461737 / 55.444624 (-52.982887) | 2.170620 / 6.876477 (-4.705856) | 2.373715 / 2.142072 (0.231643) | 0.592818 / 4.805227 (-4.212409) | 0.127960 / 6.500664 (-6.372704) | 0.061696 / 0.075469 (-0.013773) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.229073 / 1.841788 (-0.612715) | 17.832087 / 8.074308 (9.757778) | 13.889485 / 10.191392 (3.698093) | 0.142237 / 0.680424 (-0.538187) | 0.016752 / 0.534201 (-0.517449) | 0.338342 / 0.579283 (-0.240941) | 0.383933 / 0.434364 (-0.050431) | 0.393017 / 0.540337 (-0.147320) | 0.557621 / 1.386936 (-0.829315) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006218 / 0.011353 (-0.005135) | 0.003679 / 0.011008 (-0.007329) | 0.062934 / 0.038508 (0.024426) | 0.066764 / 0.023109 (0.043655) | 0.482737 / 0.275898 (0.206839) | 0.483241 / 0.323480 (0.159761) | 0.004828 / 0.007986 (-0.003158) | 0.002880 / 0.004328 (-0.001448) | 0.063111 / 0.004250 (0.058861) | 0.049500 / 0.037052 (0.012448) | 0.453155 / 0.258489 (0.194666) | 0.488776 / 0.293841 (0.194935) | 0.028568 / 0.128546 (-0.099978) | 0.008490 / 0.075646 (-0.067157) | 0.068202 / 0.419271 (-0.351069) | 0.040695 / 0.043533 (-0.002838) | 0.457473 / 0.255139 (0.202334) | 0.471968 / 0.283200 (0.188768) | 0.021261 / 0.141683 (-0.120422) | 1.476304 / 1.452155 (0.024150) | 1.503433 / 1.492716 (0.010716) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.227108 / 0.018006 (0.209102) | 0.428330 / 0.000490 (0.427840) | 0.004637 / 0.000200 (0.004437) | 0.000074 / 0.000054 (0.000020) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027253 / 0.037411 (-0.010158) | 0.081990 / 0.014526 (0.067464) | 0.092763 / 0.176557 (-0.083794) | 0.146155 / 0.737135 (-0.590981) | 0.093175 / 0.296338 (-0.203164) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.464585 / 0.215209 (0.249376) | 4.630704 / 2.077655 (2.553050) | 2.583272 / 1.504120 (1.079152) | 2.393810 / 1.541195 (0.852615) | 2.463255 / 1.468490 (0.994765) | 0.507045 / 4.584777 (-4.077732) | 3.181972 / 3.745712 (-0.563740) | 2.902321 / 5.269862 (-2.367541) | 1.905431 / 4.565676 (-2.660246) | 0.059427 / 0.424275 (-0.364848) | 0.006387 / 0.007607 (-0.001220) | 0.542247 / 0.226044 (0.316203) | 5.426868 / 2.268929 (3.157939) | 3.073489 / 55.444624 (-52.371136) | 2.719620 / 6.876477 (-4.156857) | 2.861865 / 2.142072 (0.719793) | 0.593757 / 4.805227 (-4.211471) | 0.125439 / 6.500664 (-6.375225) | 0.060901 / 0.075469 (-0.014568) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.359938 / 1.841788 (-0.481850) | 18.484867 / 8.074308 (10.410559) | 14.685645 / 10.191392 (4.494253) | 0.164098 / 0.680424 (-0.516325) | 0.018090 / 0.534201 (-0.516111) | 0.339760 / 0.579283 (-0.239523) | 0.376668 / 0.434364 (-0.057696) | 0.396963 / 0.540337 (-0.143374) | 0.549305 / 1.386936 (-0.837631) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#0c896f4195ec8a91e09f8bb9a57950bcec8b8450 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006052 / 0.011353 (-0.005301) | 0.003715 / 0.011008 (-0.007293) | 0.079646 / 0.038508 (0.041138) | 0.059053 / 0.023109 (0.035944) | 0.393016 / 0.275898 (0.117118) | 0.424758 / 0.323480 (0.101278) | 0.005407 / 0.007986 (-0.002578) | 0.002920 / 0.004328 (-0.001408) | 0.062145 / 0.004250 (0.057894) | 0.047289 / 0.037052 (0.010237) | 0.399848 / 0.258489 (0.141359) | 0.434239 / 0.293841 (0.140398) | 0.027388 / 0.128546 (-0.101158) | 0.007967 / 0.075646 (-0.067680) | 0.262546 / 0.419271 (-0.156725) | 0.045014 / 0.043533 (0.001482) | 0.398086 / 0.255139 (0.142947) | 0.414615 / 0.283200 (0.131415) | 0.020410 / 0.141683 (-0.121272) | 1.447276 / 1.452155 (-0.004879) | 1.512390 / 1.492716 (0.019673) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.224854 / 0.018006 (0.206847) | 0.434173 / 0.000490 (0.433683) | 0.010091 / 0.000200 (0.009891) | 0.000259 / 0.000054 (0.000205) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025316 / 0.037411 (-0.012095) | 0.073284 / 0.014526 (0.058758) | 0.085177 / 0.176557 (-0.091379) | 0.148905 / 0.737135 (-0.588230) | 0.084696 / 0.296338 (-0.211642) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.438259 / 0.215209 (0.223050) | 4.380679 / 2.077655 (2.303025) | 2.310329 / 1.504120 (0.806209) | 2.144002 / 1.541195 (0.602807) | 2.203761 / 1.468490 (0.735270) | 0.500559 / 4.584777 (-4.084218) | 3.031172 / 3.745712 (-0.714540) | 2.839425 / 5.269862 (-2.430436) | 1.878391 / 4.565676 (-2.687285) | 0.057325 / 0.424275 (-0.366950) | 0.006719 / 0.007607 (-0.000888) | 0.510122 / 0.226044 (0.284078) | 5.108632 / 2.268929 (2.839704) | 2.805716 / 55.444624 (-52.638909) | 2.422183 / 6.876477 (-4.454293) | 2.635280 / 2.142072 (0.493207) | 0.589351 / 4.805227 (-4.215876) | 0.125416 / 6.500664 (-6.375248) | 0.061142 / 0.075469 (-0.014327) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.234997 / 1.841788 (-0.606791) | 17.731828 / 8.074308 (9.657520) | 13.858081 / 10.191392 (3.666689) | 0.145975 / 0.680424 (-0.534449) | 0.016827 / 0.534201 (-0.517374) | 0.335701 / 0.579283 (-0.243582) | 0.361867 / 0.434364 (-0.072497) | 0.394620 / 0.540337 (-0.145718) | 0.532146 / 1.386936 (-0.854790) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006091 / 0.011353 (-0.005262) | 0.003663 / 0.011008 (-0.007345) | 0.062596 / 0.038508 (0.024088) | 0.061649 / 0.023109 (0.038539) | 0.440647 / 0.275898 (0.164749) | 0.472974 / 0.323480 (0.149494) | 0.005009 / 0.007986 (-0.002976) | 0.002879 / 0.004328 (-0.001449) | 0.062815 / 0.004250 (0.058565) | 0.049000 / 0.037052 (0.011947) | 0.442990 / 0.258489 (0.184501) | 0.477622 / 0.293841 (0.183781) | 0.028512 / 0.128546 (-0.100034) | 0.008031 / 0.075646 (-0.067615) | 0.067853 / 0.419271 (-0.351418) | 0.040823 / 0.043533 (-0.002710) | 0.437811 / 0.255139 (0.182672) | 0.464615 / 0.283200 (0.181416) | 0.021348 / 0.141683 (-0.120334) | 1.479230 / 1.452155 (0.027075) | 1.544053 / 1.492716 (0.051337) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.210697 / 0.018006 (0.192691) | 0.436450 / 0.000490 (0.435960) | 0.003413 / 0.000200 (0.003213) | 0.000089 / 0.000054 (0.000035) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027190 / 0.037411 (-0.010222) | 0.083254 / 0.014526 (0.068728) | 0.092936 / 0.176557 (-0.083620) | 0.147261 / 0.737135 (-0.589874) | 0.092910 / 0.296338 (-0.203429) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.454195 / 0.215209 (0.238986) | 4.569122 / 2.077655 (2.491468) | 2.497198 / 1.504120 (0.993079) | 2.314337 / 1.541195 (0.773142) | 2.378471 / 1.468490 (0.909981) | 0.515402 / 4.584777 (-4.069375) | 3.199374 / 3.745712 (-0.546338) | 2.899300 / 5.269862 (-2.370562) | 1.873314 / 4.565676 (-2.692362) | 0.058820 / 0.424275 (-0.365455) | 0.006651 / 0.007607 (-0.000957) | 0.526681 / 0.226044 (0.300636) | 5.275232 / 2.268929 (3.006303) | 2.969107 / 55.444624 (-52.475517) | 2.600959 / 6.876477 (-4.275518) | 2.762930 / 2.142072 (0.620858) | 0.605726 / 4.805227 (-4.199501) | 0.127618 / 6.500664 (-6.373046) | 0.062840 / 0.075469 (-0.012629) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.367276 / 1.841788 (-0.474512) | 18.069385 / 8.074308 (9.995077) | 14.691945 / 10.191392 (4.500553) | 0.147203 / 0.680424 (-0.533221) | 0.018484 / 0.534201 (-0.515717) | 0.333759 / 0.579283 (-0.245524) | 0.395503 / 0.434364 (-0.038861) | 0.387031 / 0.540337 (-0.153306) | 0.550428 / 1.386936 (-0.836508) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#4c8f7eb79dff66dd03211321dcb55f7a7a05ef38 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007675 / 0.011353 (-0.003678) | 0.004532 / 0.011008 (-0.006476) | 0.088176 / 0.038508 (0.049668) | 0.103257 / 0.023109 (0.080148) | 0.314785 / 0.275898 (0.038887) | 0.354280 / 0.323480 (0.030800) | 0.004638 / 0.007986 (-0.003348) | 0.003736 / 0.004328 (-0.000592) | 0.066744 / 0.004250 (0.062493) | 0.064647 / 0.037052 (0.027595) | 0.320227 / 0.258489 (0.061738) | 0.369581 / 0.293841 (0.075740) | 0.032347 / 0.128546 (-0.096199) | 0.009226 / 0.075646 (-0.066421) | 0.292966 / 0.419271 (-0.126306) | 0.055738 / 0.043533 (0.012206) | 0.316537 / 0.255139 (0.061398) | 0.334699 / 0.283200 (0.051499) | 0.027401 / 0.141683 (-0.114282) | 1.482390 / 1.452155 (0.030236) | 1.594771 / 1.492716 (0.102055) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.322181 / 0.018006 (0.304175) | 0.577701 / 0.000490 (0.577212) | 0.014565 / 0.000200 (0.014365) | 0.000393 / 0.000054 (0.000338) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033255 / 0.037411 (-0.004156) | 0.094271 / 0.014526 (0.079745) | 0.105360 / 0.176557 (-0.071197) | 0.163699 / 0.737135 (-0.573436) | 0.105620 / 0.296338 (-0.190719) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.383449 / 0.215209 (0.168240) | 3.824292 / 2.077655 (1.746637) | 1.861809 / 1.504120 (0.357689) | 1.698153 / 1.541195 (0.156958) | 1.819460 / 1.468490 (0.350970) | 0.488277 / 4.584777 (-4.096500) | 3.622772 / 3.745712 (-0.122940) | 3.486041 / 5.269862 (-1.783821) | 2.211679 / 4.565676 (-2.353998) | 0.057637 / 0.424275 (-0.366638) | 0.008028 / 0.007607 (0.000421) | 0.461917 / 0.226044 (0.235873) | 4.626493 / 2.268929 (2.357565) | 2.374846 / 55.444624 (-53.069779) | 1.976003 / 6.876477 (-4.900473) | 2.325342 / 2.142072 (0.183269) | 0.582538 / 4.805227 (-4.222689) | 0.133575 / 6.500664 (-6.367089) | 0.061696 / 0.075469 (-0.013773) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.271846 / 1.841788 (-0.569941) | 20.944702 / 8.074308 (12.870394) | 15.438119 / 10.191392 (5.246727) | 0.167334 / 0.680424 (-0.513090) | 0.019538 / 0.534201 (-0.514663) | 0.401467 / 0.579283 (-0.177816) | 0.428222 / 0.434364 (-0.006142) | 0.466108 / 0.540337 (-0.074229) | 0.645326 / 1.386936 (-0.741610) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007096 / 0.011353 (-0.004257) | 0.004398 / 0.011008 (-0.006610) | 0.066253 / 0.038508 (0.027745) | 0.089415 / 0.023109 (0.066306) | 0.395760 / 0.275898 (0.119862) | 0.436058 / 0.323480 (0.112579) | 0.005944 / 0.007986 (-0.002042) | 0.003821 / 0.004328 (-0.000507) | 0.065286 / 0.004250 (0.061036) | 0.060990 / 0.037052 (0.023937) | 0.394674 / 0.258489 (0.136185) | 0.437672 / 0.293841 (0.143831) | 0.032370 / 0.128546 (-0.096177) | 0.009025 / 0.075646 (-0.066622) | 0.071365 / 0.419271 (-0.347906) | 0.048232 / 0.043533 (0.004699) | 0.395677 / 0.255139 (0.140538) | 0.415869 / 0.283200 (0.132669) | 0.024632 / 0.141683 (-0.117051) | 1.511386 / 1.452155 (0.059231) | 1.604475 / 1.492716 (0.111759) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.312864 / 0.018006 (0.294858) | 0.535432 / 0.000490 (0.534943) | 0.005195 / 0.000200 (0.004995) | 0.000101 / 0.000054 (0.000047) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.035827 / 0.037411 (-0.001584) | 0.099353 / 0.014526 (0.084827) | 0.110796 / 0.176557 (-0.065761) | 0.165224 / 0.737135 (-0.571911) | 0.112111 / 0.296338 (-0.184228) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.428873 / 0.215209 (0.213664) | 4.284264 / 2.077655 (2.206609) | 2.303966 / 1.504120 (0.799847) | 2.153868 / 1.541195 (0.612674) | 2.275669 / 1.468490 (0.807179) | 0.495452 / 4.584777 (-4.089325) | 3.706773 / 3.745712 (-0.038939) | 3.471988 / 5.269862 (-1.797874) | 2.194851 / 4.565676 (-2.370825) | 0.058998 / 0.424275 (-0.365277) | 0.007522 / 0.007607 (-0.000085) | 0.511222 / 0.226044 (0.285177) | 5.097058 / 2.268929 (2.828130) | 2.856793 / 55.444624 (-52.587832) | 2.521907 / 6.876477 (-4.354569) | 2.783133 / 2.142072 (0.641060) | 0.600511 / 4.805227 (-4.204717) | 0.134130 / 6.500664 (-6.366534) | 0.061726 / 0.075469 (-0.013743) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.385272 / 1.841788 (-0.456516) | 21.149260 / 8.074308 (13.074952) | 15.548746 / 10.191392 (5.357354) | 0.167506 / 0.680424 (-0.512918) | 0.020494 / 0.534201 (-0.513707) | 0.400697 / 0.579283 (-0.178586) | 0.427386 / 0.434364 (-0.006978) | 0.478514 / 0.540337 (-0.061824) | 0.655753 / 1.386936 (-0.731183) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#4c8f7eb79dff66dd03211321dcb55f7a7a05ef38 \"CML watermark\")\n" ]
2023-10-23T14:43:26
2023-10-23T15:21:54
2023-10-23T15:07:25
MEMBER
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6342", "html_url": "https://github.com/huggingface/datasets/pull/6342", "diff_url": "https://github.com/huggingface/datasets/pull/6342.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6342.patch", "merged_at": "2023-10-23T15:07:25" }
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6342/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6342/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6340
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6340/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6340/comments
https://api.github.com/repos/huggingface/datasets/issues/6340/events
https://github.com/huggingface/datasets/pull/6340
1,956,917,893
PR_kwDODunzps5dhGpW
6,340
Release 2.14.5
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6340). All of your documentation changes will be reflected on that endpoint." ]
2023-10-23T11:10:22
2023-10-23T14:20:46
2023-10-23T11:12:40
MEMBER
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6340", "html_url": "https://github.com/huggingface/datasets/pull/6340", "diff_url": "https://github.com/huggingface/datasets/pull/6340.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6340.patch", "merged_at": null }
(wrong release number - I was continuing the 2.14 branch but 2.14.5 was released from `main`)
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6340/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6340/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6339
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6339/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6339/comments
https://api.github.com/repos/huggingface/datasets/issues/6339/events
https://github.com/huggingface/datasets/pull/6339
1,956,912,627
PR_kwDODunzps5dhFfg
6,339
minor release step improvement
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006572 / 0.011353 (-0.004780) | 0.004019 / 0.011008 (-0.006989) | 0.084080 / 0.038508 (0.045572) | 0.070111 / 0.023109 (0.047002) | 0.340440 / 0.275898 (0.064542) | 0.358839 / 0.323480 (0.035359) | 0.005254 / 0.007986 (-0.002732) | 0.003296 / 0.004328 (-0.001032) | 0.064368 / 0.004250 (0.060117) | 0.054549 / 0.037052 (0.017497) | 0.343817 / 0.258489 (0.085328) | 0.369871 / 0.293841 (0.076030) | 0.030621 / 0.128546 (-0.097925) | 0.008457 / 0.075646 (-0.067189) | 0.287839 / 0.419271 (-0.131432) | 0.051700 / 0.043533 (0.008167) | 0.331602 / 0.255139 (0.076463) | 0.339836 / 0.283200 (0.056636) | 0.023224 / 0.141683 (-0.118459) | 1.494597 / 1.452155 (0.042443) | 1.578640 / 1.492716 (0.085924) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.236985 / 0.018006 (0.218979) | 0.506153 / 0.000490 (0.505664) | 0.009753 / 0.000200 (0.009553) | 0.000345 / 0.000054 (0.000291) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028355 / 0.037411 (-0.009056) | 0.082104 / 0.014526 (0.067578) | 0.095141 / 0.176557 (-0.081415) | 0.151054 / 0.737135 (-0.586081) | 0.095139 / 0.296338 (-0.201200) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.403773 / 0.215209 (0.188564) | 4.025567 / 2.077655 (1.947912) | 2.024641 / 1.504120 (0.520521) | 1.857039 / 1.541195 (0.315845) | 1.957346 / 1.468490 (0.488856) | 0.481486 / 4.584777 (-4.103291) | 3.574463 / 3.745712 (-0.171249) | 3.399311 / 5.269862 (-1.870551) | 1.996806 / 4.565676 (-2.568870) | 0.056644 / 0.424275 (-0.367631) | 0.007503 / 0.007607 (-0.000104) | 0.479480 / 0.226044 (0.253435) | 4.793686 / 2.268929 (2.524757) | 2.481011 / 55.444624 (-52.963613) | 2.176473 / 6.876477 (-4.700004) | 2.203192 / 2.142072 (0.061120) | 0.574071 / 4.805227 (-4.231156) | 0.131852 / 6.500664 (-6.368812) | 0.058883 / 0.075469 (-0.016586) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.249945 / 1.841788 (-0.591842) | 18.439267 / 8.074308 (10.364959) | 14.100934 / 10.191392 (3.909542) | 0.164191 / 0.680424 (-0.516233) | 0.018086 / 0.534201 (-0.516115) | 0.390821 / 0.579283 (-0.188462) | 0.414166 / 0.434364 (-0.020198) | 0.460073 / 0.540337 (-0.080265) | 0.636299 / 1.386936 (-0.750637) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006606 / 0.011353 (-0.004747) | 0.003987 / 0.011008 (-0.007021) | 0.064616 / 0.038508 (0.026108) | 0.070830 / 0.023109 (0.047721) | 0.397340 / 0.275898 (0.121442) | 0.426823 / 0.323480 (0.103343) | 0.005345 / 0.007986 (-0.002641) | 0.003264 / 0.004328 (-0.001065) | 0.064728 / 0.004250 (0.060477) | 0.055763 / 0.037052 (0.018711) | 0.405347 / 0.258489 (0.146858) | 0.433163 / 0.293841 (0.139322) | 0.032394 / 0.128546 (-0.096153) | 0.008474 / 0.075646 (-0.067172) | 0.071583 / 0.419271 (-0.347689) | 0.048424 / 0.043533 (0.004892) | 0.400582 / 0.255139 (0.145443) | 0.418111 / 0.283200 (0.134911) | 0.022257 / 0.141683 (-0.119426) | 1.495521 / 1.452155 (0.043366) | 1.554626 / 1.492716 (0.061910) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.218249 / 0.018006 (0.200242) | 0.438527 / 0.000490 (0.438037) | 0.005406 / 0.000200 (0.005206) | 0.000098 / 0.000054 (0.000044) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031600 / 0.037411 (-0.005812) | 0.090836 / 0.014526 (0.076310) | 0.105000 / 0.176557 (-0.071556) | 0.157648 / 0.737135 (-0.579487) | 0.103827 / 0.296338 (-0.192512) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.426428 / 0.215209 (0.211219) | 4.259435 / 2.077655 (2.181780) | 2.300795 / 1.504120 (0.796675) | 2.121302 / 1.541195 (0.580108) | 2.145602 / 1.468490 (0.677112) | 0.486856 / 4.584777 (-4.097921) | 3.673568 / 3.745712 (-0.072144) | 3.278619 / 5.269862 (-1.991243) | 2.037760 / 4.565676 (-2.527917) | 0.057699 / 0.424275 (-0.366576) | 0.007269 / 0.007607 (-0.000338) | 0.499549 / 0.226044 (0.273505) | 4.996214 / 2.268929 (2.727285) | 2.766480 / 55.444624 (-52.678144) | 2.417308 / 6.876477 (-4.459168) | 2.581026 / 2.142072 (0.438953) | 0.589463 / 4.805227 (-4.215765) | 0.134820 / 6.500664 (-6.365844) | 0.061699 / 0.075469 (-0.013770) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.353704 / 1.841788 (-0.488084) | 19.104167 / 8.074308 (11.029859) | 14.652166 / 10.191392 (4.460774) | 0.171885 / 0.680424 (-0.508539) | 0.020222 / 0.534201 (-0.513978) | 0.396777 / 0.579283 (-0.182506) | 0.426304 / 0.434364 (-0.008060) | 0.471347 / 0.540337 (-0.068991) | 0.635887 / 1.386936 (-0.751049) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#ce19ec527c581eddec306a03ad1db554223cc94a \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004686 / 0.011353 (-0.006667) | 0.002998 / 0.011008 (-0.008010) | 0.063604 / 0.038508 (0.025096) | 0.048927 / 0.023109 (0.025818) | 0.247238 / 0.275898 (-0.028660) | 0.272409 / 0.323480 (-0.051071) | 0.003909 / 0.007986 (-0.004077) | 0.002469 / 0.004328 (-0.001859) | 0.048473 / 0.004250 (0.044223) | 0.037514 / 0.037052 (0.000462) | 0.257292 / 0.258489 (-0.001197) | 0.285203 / 0.293841 (-0.008638) | 0.023131 / 0.128546 (-0.105415) | 0.006803 / 0.075646 (-0.068843) | 0.202920 / 0.419271 (-0.216351) | 0.035653 / 0.043533 (-0.007880) | 0.254791 / 0.255139 (-0.000348) | 0.272973 / 0.283200 (-0.010226) | 0.017707 / 0.141683 (-0.123976) | 1.091606 / 1.452155 (-0.360549) | 1.151453 / 1.492716 (-0.341263) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.093701 / 0.018006 (0.075695) | 0.304199 / 0.000490 (0.303709) | 0.000223 / 0.000200 (0.000023) | 0.000051 / 0.000054 (-0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019291 / 0.037411 (-0.018120) | 0.062168 / 0.014526 (0.047642) | 0.073273 / 0.176557 (-0.103284) | 0.119497 / 0.737135 (-0.617638) | 0.075008 / 0.296338 (-0.221331) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.279983 / 0.215209 (0.064774) | 2.774413 / 2.077655 (0.696758) | 1.476678 / 1.504120 (-0.027441) | 1.336273 / 1.541195 (-0.204922) | 1.332349 / 1.468490 (-0.136142) | 0.403150 / 4.584777 (-4.181627) | 2.390026 / 3.745712 (-1.355686) | 2.619151 / 5.269862 (-2.650711) | 1.578607 / 4.565676 (-2.987069) | 0.046632 / 0.424275 (-0.377643) | 0.007352 / 0.007607 (-0.000255) | 0.333419 / 0.226044 (0.107375) | 3.288734 / 2.268929 (1.019805) | 1.843677 / 55.444624 (-53.600947) | 1.536746 / 6.876477 (-5.339731) | 1.573005 / 2.142072 (-0.569067) | 0.475699 / 4.805227 (-4.329529) | 0.104742 / 6.500664 (-6.395922) | 0.042450 / 0.075469 (-0.033019) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.949039 / 1.841788 (-0.892749) | 11.895928 / 8.074308 (3.821620) | 10.650521 / 10.191392 (0.459129) | 0.142308 / 0.680424 (-0.538116) | 0.014207 / 0.534201 (-0.519994) | 0.274011 / 0.579283 (-0.305272) | 0.288259 / 0.434364 (-0.146105) | 0.327729 / 0.540337 (-0.212609) | 0.395728 / 1.386936 (-0.991208) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004830 / 0.011353 (-0.006523) | 0.002978 / 0.011008 (-0.008030) | 0.048623 / 0.038508 (0.010114) | 0.055040 / 0.023109 (0.031930) | 0.276436 / 0.275898 (0.000538) | 0.302403 / 0.323480 (-0.021076) | 0.004080 / 0.007986 (-0.003905) | 0.002479 / 0.004328 (-0.001849) | 0.048078 / 0.004250 (0.043827) | 0.039680 / 0.037052 (0.002627) | 0.279095 / 0.258489 (0.020606) | 0.307399 / 0.293841 (0.013558) | 0.024533 / 0.128546 (-0.104013) | 0.007196 / 0.075646 (-0.068450) | 0.053879 / 0.419271 (-0.365393) | 0.032545 / 0.043533 (-0.010988) | 0.275501 / 0.255139 (0.020362) | 0.298530 / 0.283200 (0.015330) | 0.017992 / 0.141683 (-0.123691) | 1.144191 / 1.452155 (-0.307963) | 1.208309 / 1.492716 (-0.284408) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.095690 / 0.018006 (0.077684) | 0.304932 / 0.000490 (0.304442) | 0.000223 / 0.000200 (0.000023) | 0.000055 / 0.000054 (0.000000) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.021409 / 0.037411 (-0.016003) | 0.069861 / 0.014526 (0.055335) | 0.080959 / 0.176557 (-0.095597) | 0.119432 / 0.737135 (-0.617703) | 0.083649 / 0.296338 (-0.212690) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.297243 / 0.215209 (0.082034) | 2.909288 / 2.077655 (0.831634) | 1.571512 / 1.504120 (0.067392) | 1.452403 / 1.541195 (-0.088792) | 1.481290 / 1.468490 (0.012800) | 0.405795 / 4.584777 (-4.178982) | 2.452923 / 3.745712 (-1.292789) | 2.513371 / 5.269862 (-2.756490) | 1.593216 / 4.565676 (-2.972460) | 0.048073 / 0.424275 (-0.376202) | 0.005312 / 0.007607 (-0.002296) | 0.355783 / 0.226044 (0.129738) | 3.494062 / 2.268929 (1.225133) | 1.947388 / 55.444624 (-53.497236) | 1.651724 / 6.876477 (-5.224753) | 1.789007 / 2.142072 (-0.353065) | 0.487073 / 4.805227 (-4.318154) | 0.100271 / 6.500664 (-6.400393) | 0.041571 / 0.075469 (-0.033898) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.983766 / 1.841788 (-0.858021) | 12.384778 / 8.074308 (4.310469) | 10.669519 / 10.191392 (0.478127) | 0.133105 / 0.680424 (-0.547318) | 0.016665 / 0.534201 (-0.517536) | 0.269479 / 0.579283 (-0.309804) | 0.276498 / 0.434364 (-0.157866) | 0.302105 / 0.540337 (-0.238233) | 0.391204 / 1.386936 (-0.995732) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#12ebe695b4748c5a26e08b44ed51955f74f5801d \"CML watermark\")\n" ]
2023-10-23T11:07:04
2023-11-07T10:38:54
2023-11-07T10:32:41
MEMBER
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6339", "html_url": "https://github.com/huggingface/datasets/pull/6339", "diff_url": "https://github.com/huggingface/datasets/pull/6339.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6339.patch", "merged_at": "2023-11-07T10:32:41" }
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6339/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6339/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6338
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6338/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6338/comments
https://api.github.com/repos/huggingface/datasets/issues/6338/events
https://github.com/huggingface/datasets/pull/6338
1,956,886,072
PR_kwDODunzps5dg_sb
6,338
pin fsspec before it switches to glob.glob
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "closing in favor of https://github.com/huggingface/datasets/pull/6337", "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6338). All of your documentation changes will be reflected on that endpoint." ]
2023-10-23T10:50:54
2023-10-23T10:57:07
2023-10-23T10:51:52
MEMBER
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6338", "html_url": "https://github.com/huggingface/datasets/pull/6338", "diff_url": "https://github.com/huggingface/datasets/pull/6338.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6338.patch", "merged_at": null }
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6338/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6338/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6337
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6337/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6337/comments
https://api.github.com/repos/huggingface/datasets/issues/6337/events
https://github.com/huggingface/datasets/pull/6337
1,956,875,259
PR_kwDODunzps5dg9Uu
6,337
Pin supported upper version of fsspec
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006915 / 0.011353 (-0.004438) | 0.004110 / 0.011008 (-0.006898) | 0.084392 / 0.038508 (0.045884) | 0.079649 / 0.023109 (0.056540) | 0.305760 / 0.275898 (0.029862) | 0.343968 / 0.323480 (0.020488) | 0.005402 / 0.007986 (-0.002584) | 0.003342 / 0.004328 (-0.000986) | 0.064774 / 0.004250 (0.060523) | 0.055919 / 0.037052 (0.018866) | 0.315194 / 0.258489 (0.056705) | 0.355014 / 0.293841 (0.061173) | 0.032140 / 0.128546 (-0.096406) | 0.008865 / 0.075646 (-0.066781) | 0.287684 / 0.419271 (-0.131588) | 0.053504 / 0.043533 (0.009971) | 0.306852 / 0.255139 (0.051713) | 0.331125 / 0.283200 (0.047925) | 0.023476 / 0.141683 (-0.118207) | 1.506590 / 1.452155 (0.054435) | 1.574508 / 1.492716 (0.081792) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.239987 / 0.018006 (0.221981) | 0.459144 / 0.000490 (0.458654) | 0.008509 / 0.000200 (0.008309) | 0.000335 / 0.000054 (0.000280) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028353 / 0.037411 (-0.009058) | 0.082345 / 0.014526 (0.067819) | 0.499524 / 0.176557 (0.322967) | 0.152896 / 0.737135 (-0.584239) | 0.096978 / 0.296338 (-0.199360) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.404855 / 0.215209 (0.189646) | 4.053103 / 2.077655 (1.975448) | 2.069638 / 1.504120 (0.565518) | 1.917354 / 1.541195 (0.376159) | 2.035816 / 1.468490 (0.567326) | 0.480358 / 4.584777 (-4.104419) | 3.594316 / 3.745712 (-0.151396) | 3.582952 / 5.269862 (-1.686910) | 2.101142 / 4.565676 (-2.464535) | 0.057004 / 0.424275 (-0.367271) | 0.007715 / 0.007607 (0.000108) | 0.487417 / 0.226044 (0.261372) | 4.863100 / 2.268929 (2.594172) | 2.569038 / 55.444624 (-52.875587) | 2.187167 / 6.876477 (-4.689310) | 2.270034 / 2.142072 (0.127962) | 0.578095 / 4.805227 (-4.227132) | 0.133283 / 6.500664 (-6.367381) | 0.060164 / 0.075469 (-0.015305) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.269120 / 1.841788 (-0.572667) | 19.493072 / 8.074308 (11.418764) | 14.560576 / 10.191392 (4.369184) | 0.167440 / 0.680424 (-0.512984) | 0.018493 / 0.534201 (-0.515708) | 0.392774 / 0.579283 (-0.186509) | 0.420903 / 0.434364 (-0.013461) | 0.461904 / 0.540337 (-0.078433) | 0.643104 / 1.386936 (-0.743832) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006985 / 0.011353 (-0.004368) | 0.004246 / 0.011008 (-0.006762) | 0.066246 / 0.038508 (0.027738) | 0.080757 / 0.023109 (0.057648) | 0.391774 / 0.275898 (0.115876) | 0.424957 / 0.323480 (0.101478) | 0.005575 / 0.007986 (-0.002411) | 0.003447 / 0.004328 (-0.000881) | 0.066565 / 0.004250 (0.062315) | 0.057597 / 0.037052 (0.020544) | 0.394663 / 0.258489 (0.136174) | 0.430310 / 0.293841 (0.136469) | 0.032746 / 0.128546 (-0.095800) | 0.008783 / 0.075646 (-0.066863) | 0.071940 / 0.419271 (-0.347331) | 0.048877 / 0.043533 (0.005344) | 0.390269 / 0.255139 (0.135130) | 0.411867 / 0.283200 (0.128668) | 0.024101 / 0.141683 (-0.117582) | 1.507370 / 1.452155 (0.055215) | 1.585810 / 1.492716 (0.093093) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.222796 / 0.018006 (0.204790) | 0.459035 / 0.000490 (0.458546) | 0.005322 / 0.000200 (0.005122) | 0.000099 / 0.000054 (0.000045) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033237 / 0.037411 (-0.004174) | 0.098244 / 0.014526 (0.083718) | 0.106654 / 0.176557 (-0.069903) | 0.159675 / 0.737135 (-0.577460) | 0.108470 / 0.296338 (-0.187869) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.429085 / 0.215209 (0.213876) | 4.281206 / 2.077655 (2.203551) | 2.320492 / 1.504120 (0.816372) | 2.153218 / 1.541195 (0.612024) | 2.287122 / 1.468490 (0.818632) | 0.497307 / 4.584777 (-4.087470) | 3.799541 / 3.745712 (0.053828) | 3.380053 / 5.269862 (-1.889809) | 2.100009 / 4.565676 (-2.465667) | 0.057988 / 0.424275 (-0.366287) | 0.007381 / 0.007607 (-0.000226) | 0.506843 / 0.226044 (0.280798) | 5.071286 / 2.268929 (2.802357) | 2.750487 / 55.444624 (-52.694137) | 2.415613 / 6.876477 (-4.460864) | 2.667144 / 2.142072 (0.525072) | 0.624889 / 4.805227 (-4.180338) | 0.134191 / 6.500664 (-6.366473) | 0.060704 / 0.075469 (-0.014765) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.353074 / 1.841788 (-0.488714) | 20.507074 / 8.074308 (12.432766) | 14.911788 / 10.191392 (4.720396) | 0.149248 / 0.680424 (-0.531176) | 0.020593 / 0.534201 (-0.513608) | 0.398458 / 0.579283 (-0.180825) | 0.434846 / 0.434364 (0.000482) | 0.478853 / 0.540337 (-0.061484) | 0.648072 / 1.386936 (-0.738864) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#b30c72a2d3d9c191a590e0f0a6b3a6363ab15e8f \"CML watermark\")\n", "In particular I expect fsspec to do another breaking change in the next release (switch to glob.glob)", "_The documentation is not available anymore as the PR was closed or merged._", "see https://github.com/huggingface/datasets/pull/6338", "Yes, unfortunately breaking changes are quite usual from their part.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006099 / 0.011353 (-0.005253) | 0.003672 / 0.011008 (-0.007336) | 0.083095 / 0.038508 (0.044587) | 0.059607 / 0.023109 (0.036498) | 0.319591 / 0.275898 (0.043693) | 0.351945 / 0.323480 (0.028465) | 0.004785 / 0.007986 (-0.003201) | 0.002965 / 0.004328 (-0.001364) | 0.062907 / 0.004250 (0.058657) | 0.049122 / 0.037052 (0.012070) | 0.344641 / 0.258489 (0.086152) | 0.361519 / 0.293841 (0.067678) | 0.027254 / 0.128546 (-0.101292) | 0.008081 / 0.075646 (-0.067565) | 0.261569 / 0.419271 (-0.157702) | 0.045101 / 0.043533 (0.001568) | 0.313645 / 0.255139 (0.058506) | 0.337843 / 0.283200 (0.054644) | 0.020968 / 0.141683 (-0.120715) | 1.438450 / 1.452155 (-0.013705) | 1.507567 / 1.492716 (0.014850) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.230826 / 0.018006 (0.212820) | 0.434363 / 0.000490 (0.433873) | 0.008210 / 0.000200 (0.008010) | 0.000212 / 0.000054 (0.000157) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025278 / 0.037411 (-0.012133) | 0.073659 / 0.014526 (0.059133) | 0.085147 / 0.176557 (-0.091409) | 0.145451 / 0.737135 (-0.591684) | 0.086400 / 0.296338 (-0.209939) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.429887 / 0.215209 (0.214678) | 4.292626 / 2.077655 (2.214971) | 2.266824 / 1.504120 (0.762704) | 2.090472 / 1.541195 (0.549277) | 2.186477 / 1.468490 (0.717987) | 0.503684 / 4.584777 (-4.081093) | 3.100791 / 3.745712 (-0.644921) | 3.008938 / 5.269862 (-2.260923) | 1.885559 / 4.565676 (-2.680118) | 0.057434 / 0.424275 (-0.366841) | 0.006639 / 0.007607 (-0.000969) | 0.506579 / 0.226044 (0.280535) | 5.058905 / 2.268929 (2.789977) | 2.708321 / 55.444624 (-52.736304) | 2.367388 / 6.876477 (-4.509089) | 2.422660 / 2.142072 (0.280587) | 0.587562 / 4.805227 (-4.217665) | 0.125260 / 6.500664 (-6.375404) | 0.061856 / 0.075469 (-0.013613) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.280495 / 1.841788 (-0.561292) | 17.968873 / 8.074308 (9.894565) | 13.922838 / 10.191392 (3.731446) | 0.149907 / 0.680424 (-0.530517) | 0.016736 / 0.534201 (-0.517465) | 0.333417 / 0.579283 (-0.245866) | 0.367710 / 0.434364 (-0.066654) | 0.389648 / 0.540337 (-0.150690) | 0.535625 / 1.386936 (-0.851311) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006237 / 0.011353 (-0.005116) | 0.003787 / 0.011008 (-0.007221) | 0.062536 / 0.038508 (0.024028) | 0.062335 / 0.023109 (0.039226) | 0.455209 / 0.275898 (0.179311) | 0.488961 / 0.323480 (0.165482) | 0.004875 / 0.007986 (-0.003111) | 0.002961 / 0.004328 (-0.001368) | 0.063045 / 0.004250 (0.058795) | 0.048624 / 0.037052 (0.011571) | 0.455743 / 0.258489 (0.197254) | 0.494024 / 0.293841 (0.200183) | 0.028690 / 0.128546 (-0.099856) | 0.008147 / 0.075646 (-0.067499) | 0.069479 / 0.419271 (-0.349792) | 0.041613 / 0.043533 (-0.001919) | 0.460472 / 0.255139 (0.205333) | 0.475606 / 0.283200 (0.192406) | 0.020600 / 0.141683 (-0.121083) | 1.464960 / 1.452155 (0.012805) | 1.540942 / 1.492716 (0.048226) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.214558 / 0.018006 (0.196552) | 0.410482 / 0.000490 (0.409992) | 0.005539 / 0.000200 (0.005339) | 0.000076 / 0.000054 (0.000021) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027044 / 0.037411 (-0.010367) | 0.081512 / 0.014526 (0.066986) | 0.101963 / 0.176557 (-0.074593) | 0.146686 / 0.737135 (-0.590449) | 0.092676 / 0.296338 (-0.203663) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.468766 / 0.215209 (0.253557) | 4.680514 / 2.077655 (2.602859) | 2.562454 / 1.504120 (1.058334) | 2.383692 / 1.541195 (0.842497) | 2.481820 / 1.468490 (1.013330) | 0.509122 / 4.584777 (-4.075655) | 3.201597 / 3.745712 (-0.544115) | 2.853539 / 5.269862 (-2.416323) | 1.891535 / 4.565676 (-2.674141) | 0.058594 / 0.424275 (-0.365681) | 0.006448 / 0.007607 (-0.001159) | 0.535950 / 0.226044 (0.309906) | 5.388239 / 2.268929 (3.119311) | 2.999986 / 55.444624 (-52.444638) | 2.733291 / 6.876477 (-4.143186) | 2.841548 / 2.142072 (0.699475) | 0.602388 / 4.805227 (-4.202840) | 0.126369 / 6.500664 (-6.374295) | 0.061519 / 0.075469 (-0.013951) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.322746 / 1.841788 (-0.519042) | 17.940825 / 8.074308 (9.866517) | 14.679559 / 10.191392 (4.488167) | 0.146481 / 0.680424 (-0.533943) | 0.018060 / 0.534201 (-0.516141) | 0.334924 / 0.579283 (-0.244359) | 0.384735 / 0.434364 (-0.049629) | 0.391834 / 0.540337 (-0.148503) | 0.540011 / 1.386936 (-0.846925) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#d82f3c2264436ef60fac8c397fb11c80175c5132 \"CML watermark\")\n" ]
2023-10-23T10:44:16
2023-10-23T12:13:20
2023-10-23T12:04:36
MEMBER
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6337", "html_url": "https://github.com/huggingface/datasets/pull/6337", "diff_url": "https://github.com/huggingface/datasets/pull/6337.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6337.patch", "merged_at": "2023-10-23T12:04:36" }
Pin upper version of `fsspec` to avoid disruptions introduced by breaking changes (and the need of urgent patch releases with hotfixes) on each release on their side. See: - #6331 - #6210 - #5731 - #5617 - #5447 I propose that we explicitly test, introduce fixes and support each new `fsspec` version release. CC: @LysandreJik
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6337/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6337/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6336
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6336/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6336/comments
https://api.github.com/repos/huggingface/datasets/issues/6336/events
https://github.com/huggingface/datasets/pull/6336
1,956,827,232
PR_kwDODunzps5dgy0w
6,336
unpin-fsspec
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6336). All of your documentation changes will be reflected on that endpoint.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006202 / 0.011353 (-0.005151) | 0.003627 / 0.011008 (-0.007381) | 0.080643 / 0.038508 (0.042135) | 0.057135 / 0.023109 (0.034026) | 0.315853 / 0.275898 (0.039955) | 0.348503 / 0.323480 (0.025023) | 0.004762 / 0.007986 (-0.003224) | 0.002884 / 0.004328 (-0.001445) | 0.063208 / 0.004250 (0.058958) | 0.046777 / 0.037052 (0.009725) | 0.321426 / 0.258489 (0.062937) | 0.362128 / 0.293841 (0.068287) | 0.027494 / 0.128546 (-0.101052) | 0.007931 / 0.075646 (-0.067715) | 0.262262 / 0.419271 (-0.157009) | 0.044330 / 0.043533 (0.000797) | 0.310504 / 0.255139 (0.055366) | 0.339409 / 0.283200 (0.056209) | 0.021030 / 0.141683 (-0.120652) | 1.405333 / 1.452155 (-0.046822) | 1.493497 / 1.492716 (0.000781) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.225431 / 0.018006 (0.207425) | 0.451723 / 0.000490 (0.451233) | 0.007763 / 0.000200 (0.007563) | 0.000310 / 0.000054 (0.000256) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023381 / 0.037411 (-0.014031) | 0.074183 / 0.014526 (0.059657) | 0.084003 / 0.176557 (-0.092553) | 0.143628 / 0.737135 (-0.593507) | 0.084543 / 0.296338 (-0.211796) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.393062 / 0.215209 (0.177853) | 3.905649 / 2.077655 (1.827994) | 1.923155 / 1.504120 (0.419035) | 1.751554 / 1.541195 (0.210359) | 1.816141 / 1.468490 (0.347651) | 0.502789 / 4.584777 (-4.081988) | 3.006149 / 3.745712 (-0.739564) | 2.979645 / 5.269862 (-2.290216) | 1.877408 / 4.565676 (-2.688269) | 0.057544 / 0.424275 (-0.366731) | 0.006733 / 0.007607 (-0.000874) | 0.468469 / 0.226044 (0.242425) | 4.695595 / 2.268929 (2.426667) | 2.367238 / 55.444624 (-53.077387) | 2.041035 / 6.876477 (-4.835442) | 2.087396 / 2.142072 (-0.054676) | 0.586866 / 4.805227 (-4.218361) | 0.125616 / 6.500664 (-6.375049) | 0.060535 / 0.075469 (-0.014934) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.244753 / 1.841788 (-0.597035) | 17.652902 / 8.074308 (9.578594) | 13.733195 / 10.191392 (3.541803) | 0.143741 / 0.680424 (-0.536683) | 0.016775 / 0.534201 (-0.517426) | 0.335487 / 0.579283 (-0.243797) | 0.350292 / 0.434364 (-0.084072) | 0.388744 / 0.540337 (-0.151594) | 0.536630 / 1.386936 (-0.850306) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006008 / 0.011353 (-0.005345) | 0.003708 / 0.011008 (-0.007301) | 0.062504 / 0.038508 (0.023996) | 0.058570 / 0.023109 (0.035461) | 0.450549 / 0.275898 (0.174651) | 0.467768 / 0.323480 (0.144288) | 0.004955 / 0.007986 (-0.003031) | 0.002903 / 0.004328 (-0.001426) | 0.062778 / 0.004250 (0.058528) | 0.048750 / 0.037052 (0.011698) | 0.439848 / 0.258489 (0.181359) | 0.471780 / 0.293841 (0.177939) | 0.028472 / 0.128546 (-0.100074) | 0.008221 / 0.075646 (-0.067425) | 0.068325 / 0.419271 (-0.350946) | 0.040612 / 0.043533 (-0.002921) | 0.435530 / 0.255139 (0.180391) | 0.458992 / 0.283200 (0.175792) | 0.020143 / 0.141683 (-0.121539) | 1.479101 / 1.452155 (0.026947) | 1.507408 / 1.492716 (0.014692) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.207723 / 0.018006 (0.189717) | 0.406596 / 0.000490 (0.406106) | 0.004431 / 0.000200 (0.004231) | 0.000078 / 0.000054 (0.000024) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027037 / 0.037411 (-0.010374) | 0.081576 / 0.014526 (0.067050) | 0.091177 / 0.176557 (-0.085379) | 0.146191 / 0.737135 (-0.590944) | 0.092485 / 0.296338 (-0.203854) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.456676 / 0.215209 (0.241467) | 4.556214 / 2.077655 (2.478559) | 2.500146 / 1.504120 (0.996026) | 2.325175 / 1.541195 (0.783981) | 2.421023 / 1.468490 (0.952533) | 0.512135 / 4.584777 (-4.072641) | 3.167070 / 3.745712 (-0.578642) | 2.897697 / 5.269862 (-2.372165) | 1.881974 / 4.565676 (-2.683702) | 0.058453 / 0.424275 (-0.365823) | 0.006515 / 0.007607 (-0.001092) | 0.530742 / 0.226044 (0.304698) | 5.304943 / 2.268929 (3.036014) | 2.928824 / 55.444624 (-52.515800) | 2.598023 / 6.876477 (-4.278454) | 2.758496 / 2.142072 (0.616423) | 0.601777 / 4.805227 (-4.203450) | 0.126701 / 6.500664 (-6.373964) | 0.061808 / 0.075469 (-0.013661) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.357844 / 1.841788 (-0.483943) | 17.887666 / 8.074308 (9.813358) | 14.561904 / 10.191392 (4.370512) | 0.146788 / 0.680424 (-0.533636) | 0.018277 / 0.534201 (-0.515924) | 0.343168 / 0.579283 (-0.236115) | 0.382220 / 0.434364 (-0.052144) | 0.401234 / 0.540337 (-0.139104) | 0.546246 / 1.386936 (-0.840690) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#b0980a74d58098b8b1738e2411f1212161a211b8 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008919 / 0.011353 (-0.002434) | 0.006110 / 0.011008 (-0.004898) | 0.110554 / 0.038508 (0.072046) | 0.075705 / 0.023109 (0.052596) | 0.391235 / 0.275898 (0.115336) | 0.458331 / 0.323480 (0.134851) | 0.007489 / 0.007986 (-0.000497) | 0.003744 / 0.004328 (-0.000585) | 0.078124 / 0.004250 (0.073874) | 0.057244 / 0.037052 (0.020192) | 0.393251 / 0.258489 (0.134762) | 0.460153 / 0.293841 (0.166312) | 0.047245 / 0.128546 (-0.081301) | 0.014086 / 0.075646 (-0.061560) | 0.421272 / 0.419271 (0.002001) | 0.067668 / 0.043533 (0.024135) | 0.397325 / 0.255139 (0.142186) | 0.432683 / 0.283200 (0.149483) | 0.039086 / 0.141683 (-0.102596) | 1.764898 / 1.452155 (0.312744) | 1.848820 / 1.492716 (0.356104) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.258163 / 0.018006 (0.240156) | 0.498655 / 0.000490 (0.498165) | 0.014959 / 0.000200 (0.014759) | 0.000465 / 0.000054 (0.000410) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028889 / 0.037411 (-0.008522) | 0.091568 / 0.014526 (0.077042) | 0.102700 / 0.176557 (-0.073857) | 0.173580 / 0.737135 (-0.563555) | 0.108763 / 0.296338 (-0.187576) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.610147 / 0.215209 (0.394938) | 5.851239 / 2.077655 (3.773584) | 2.467471 / 1.504120 (0.963351) | 2.117189 / 1.541195 (0.575995) | 2.197947 / 1.468490 (0.729457) | 0.851736 / 4.584777 (-3.733041) | 5.163183 / 3.745712 (1.417471) | 5.039564 / 5.269862 (-0.230297) | 3.067215 / 4.565676 (-1.498462) | 0.098593 / 0.424275 (-0.325682) | 0.008646 / 0.007607 (0.001038) | 0.788397 / 0.226044 (0.562352) | 7.340837 / 2.268929 (5.071909) | 3.511611 / 55.444624 (-51.933013) | 2.767479 / 6.876477 (-4.108998) | 2.687368 / 2.142072 (0.545296) | 1.046387 / 4.805227 (-3.758841) | 0.215902 / 6.500664 (-6.284763) | 0.072939 / 0.075469 (-0.002530) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.512795 / 1.841788 (-0.328992) | 22.086131 / 8.074308 (14.011823) | 20.235550 / 10.191392 (10.044158) | 0.240381 / 0.680424 (-0.440043) | 0.029171 / 0.534201 (-0.505030) | 0.465123 / 0.579283 (-0.114160) | 0.569260 / 0.434364 (0.134896) | 0.540967 / 0.540337 (0.000629) | 0.764006 / 1.386936 (-0.622930) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.011024 / 0.011353 (-0.000329) | 0.005915 / 0.011008 (-0.005094) | 0.076455 / 0.038508 (0.037947) | 0.087842 / 0.023109 (0.064733) | 0.471732 / 0.275898 (0.195834) | 0.513666 / 0.323480 (0.190186) | 0.007062 / 0.007986 (-0.000924) | 0.004013 / 0.004328 (-0.000315) | 0.076016 / 0.004250 (0.071766) | 0.061296 / 0.037052 (0.024244) | 0.487277 / 0.258489 (0.228788) | 0.508185 / 0.293841 (0.214344) | 0.049963 / 0.128546 (-0.078583) | 0.013774 / 0.075646 (-0.061873) | 0.089376 / 0.419271 (-0.329895) | 0.067502 / 0.043533 (0.023969) | 0.471283 / 0.255139 (0.216144) | 0.507365 / 0.283200 (0.224165) | 0.033638 / 0.141683 (-0.108045) | 1.785544 / 1.452155 (0.333390) | 1.878765 / 1.492716 (0.386048) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.230462 / 0.018006 (0.212456) | 0.502458 / 0.000490 (0.501968) | 0.005987 / 0.000200 (0.005787) | 0.000114 / 0.000054 (0.000060) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031588 / 0.037411 (-0.005824) | 0.113566 / 0.014526 (0.099040) | 0.115734 / 0.176557 (-0.060822) | 0.174162 / 0.737135 (-0.562974) | 0.121574 / 0.296338 (-0.174764) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.662837 / 0.215209 (0.447628) | 6.420327 / 2.077655 (4.342672) | 3.033522 / 1.504120 (1.529402) | 2.728294 / 1.541195 (1.187099) | 2.790621 / 1.468490 (1.322131) | 0.852478 / 4.584777 (-3.732299) | 5.033637 / 3.745712 (1.287925) | 4.543152 / 5.269862 (-0.726709) | 2.980261 / 4.565676 (-1.585415) | 0.102444 / 0.424275 (-0.321831) | 0.008362 / 0.007607 (0.000755) | 0.786868 / 0.226044 (0.560823) | 7.887665 / 2.268929 (5.618737) | 4.010614 / 55.444624 (-51.434010) | 3.220715 / 6.876477 (-3.655762) | 3.317316 / 2.142072 (1.175244) | 1.098137 / 4.805227 (-3.707090) | 0.218309 / 6.500664 (-6.282355) | 0.078182 / 0.075469 (0.002713) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.696740 / 1.841788 (-0.145047) | 23.762454 / 8.074308 (15.688146) | 21.802645 / 10.191392 (11.611253) | 0.233654 / 0.680424 (-0.446770) | 0.032911 / 0.534201 (-0.501290) | 0.511760 / 0.579283 (-0.067524) | 0.586299 / 0.434364 (0.151935) | 0.583704 / 0.540337 (0.043367) | 0.780762 / 1.386936 (-0.606174) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#0a94aa2f738075bbc08291583f1b153220d5e6e7 \"CML watermark\")\n" ]
2023-10-23T10:16:46
2023-10-23T10:28:46
2023-10-23T10:17:48
MEMBER
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6336", "html_url": "https://github.com/huggingface/datasets/pull/6336", "diff_url": "https://github.com/huggingface/datasets/pull/6336.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6336.patch", "merged_at": "2023-10-23T10:17:48" }
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6336/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6336/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6335
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6335/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6335/comments
https://api.github.com/repos/huggingface/datasets/issues/6335/events
https://github.com/huggingface/datasets/pull/6335
1,956,740,818
PR_kwDODunzps5dggIV
6,335
Support fsspec 2023.10.0
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006013 / 0.011353 (-0.005340) | 0.003647 / 0.011008 (-0.007362) | 0.081781 / 0.038508 (0.043273) | 0.059020 / 0.023109 (0.035911) | 0.321823 / 0.275898 (0.045925) | 0.350159 / 0.323480 (0.026679) | 0.003599 / 0.007986 (-0.004386) | 0.002877 / 0.004328 (-0.001452) | 0.063941 / 0.004250 (0.059690) | 0.049460 / 0.037052 (0.012408) | 0.330185 / 0.258489 (0.071696) | 0.362220 / 0.293841 (0.068379) | 0.027613 / 0.128546 (-0.100934) | 0.007976 / 0.075646 (-0.067670) | 0.263386 / 0.419271 (-0.155885) | 0.045504 / 0.043533 (0.001971) | 0.321172 / 0.255139 (0.066033) | 0.345291 / 0.283200 (0.062091) | 0.023133 / 0.141683 (-0.118550) | 1.435816 / 1.452155 (-0.016339) | 1.557241 / 1.492716 (0.064524) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.222228 / 0.018006 (0.204222) | 0.420008 / 0.000490 (0.419518) | 0.008598 / 0.000200 (0.008398) | 0.000343 / 0.000054 (0.000288) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023725 / 0.037411 (-0.013686) | 0.073023 / 0.014526 (0.058497) | 0.814888 / 0.176557 (0.638332) | 0.294122 / 0.737135 (-0.443013) | 0.088945 / 0.296338 (-0.207393) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.393561 / 0.215209 (0.178352) | 3.946544 / 2.077655 (1.868890) | 1.916476 / 1.504120 (0.412356) | 1.721544 / 1.541195 (0.180349) | 1.768583 / 1.468490 (0.300093) | 0.508067 / 4.584777 (-4.076710) | 3.047832 / 3.745712 (-0.697880) | 2.952842 / 5.269862 (-2.317020) | 1.869337 / 4.565676 (-2.696339) | 0.057812 / 0.424275 (-0.366463) | 0.006694 / 0.007607 (-0.000913) | 0.463007 / 0.226044 (0.236963) | 4.635087 / 2.268929 (2.366158) | 2.419833 / 55.444624 (-53.024792) | 2.018519 / 6.876477 (-4.857958) | 2.043430 / 2.142072 (-0.098643) | 0.590895 / 4.805227 (-4.214333) | 0.126113 / 6.500664 (-6.374552) | 0.061045 / 0.075469 (-0.014424) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.226850 / 1.841788 (-0.614937) | 17.336630 / 8.074308 (9.262322) | 13.651049 / 10.191392 (3.459656) | 0.143308 / 0.680424 (-0.537116) | 0.016938 / 0.534201 (-0.517263) | 0.332829 / 0.579283 (-0.246454) | 0.368684 / 0.434364 (-0.065680) | 0.385848 / 0.540337 (-0.154489) | 0.546391 / 1.386936 (-0.840545) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006149 / 0.011353 (-0.005204) | 0.003818 / 0.011008 (-0.007191) | 0.064012 / 0.038508 (0.025504) | 0.059846 / 0.023109 (0.036737) | 0.455928 / 0.275898 (0.180030) | 0.480736 / 0.323480 (0.157256) | 0.004874 / 0.007986 (-0.003111) | 0.002877 / 0.004328 (-0.001451) | 0.064195 / 0.004250 (0.059944) | 0.048146 / 0.037052 (0.011094) | 0.452638 / 0.258489 (0.194149) | 0.484339 / 0.293841 (0.190499) | 0.028832 / 0.128546 (-0.099715) | 0.008162 / 0.075646 (-0.067485) | 0.069855 / 0.419271 (-0.349417) | 0.041429 / 0.043533 (-0.002104) | 0.453282 / 0.255139 (0.198143) | 0.473812 / 0.283200 (0.190613) | 0.021186 / 0.141683 (-0.120497) | 1.465207 / 1.452155 (0.013052) | 1.508216 / 1.492716 (0.015500) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.242491 / 0.018006 (0.224485) | 0.421219 / 0.000490 (0.420730) | 0.011201 / 0.000200 (0.011001) | 0.000083 / 0.000054 (0.000028) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027015 / 0.037411 (-0.010396) | 0.080465 / 0.014526 (0.065939) | 0.092622 / 0.176557 (-0.083934) | 0.146111 / 0.737135 (-0.591024) | 0.091546 / 0.296338 (-0.204793) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.458351 / 0.215209 (0.243142) | 4.591454 / 2.077655 (2.513799) | 2.508156 / 1.504120 (1.004037) | 2.328771 / 1.541195 (0.787576) | 2.423251 / 1.468490 (0.954761) | 0.508504 / 4.584777 (-4.076273) | 3.133789 / 3.745712 (-0.611923) | 2.862777 / 5.269862 (-2.407084) | 1.886327 / 4.565676 (-2.679350) | 0.058017 / 0.424275 (-0.366258) | 0.006496 / 0.007607 (-0.001111) | 0.529629 / 0.226044 (0.303585) | 5.310338 / 2.268929 (3.041409) | 2.973075 / 55.444624 (-52.471549) | 2.601313 / 6.876477 (-4.275163) | 2.777348 / 2.142072 (0.635275) | 0.593711 / 4.805227 (-4.211516) | 0.125453 / 6.500664 (-6.375211) | 0.061034 / 0.075469 (-0.014435) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.374391 / 1.841788 (-0.467397) | 18.768026 / 8.074308 (10.693718) | 15.053637 / 10.191392 (4.862245) | 0.158253 / 0.680424 (-0.522171) | 0.018126 / 0.534201 (-0.516075) | 0.337427 / 0.579283 (-0.241856) | 0.391678 / 0.434364 (-0.042686) | 0.398524 / 0.540337 (-0.141813) | 0.558629 / 1.386936 (-0.828307) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#e0b79660f180c88517884f831eca620bc46a0957 \"CML watermark\")\n", "I think https://github.com/huggingface/datasets/pull/6334 fixes it already no ?", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006432 / 0.011353 (-0.004921) | 0.003861 / 0.011008 (-0.007147) | 0.084132 / 0.038508 (0.045624) | 0.069391 / 0.023109 (0.046282) | 0.341081 / 0.275898 (0.065183) | 0.375975 / 0.323480 (0.052495) | 0.003962 / 0.007986 (-0.004024) | 0.003235 / 0.004328 (-0.001094) | 0.064927 / 0.004250 (0.060677) | 0.054190 / 0.037052 (0.017137) | 0.350719 / 0.258489 (0.092230) | 0.393216 / 0.293841 (0.099375) | 0.031002 / 0.128546 (-0.097544) | 0.008416 / 0.075646 (-0.067230) | 0.289268 / 0.419271 (-0.130003) | 0.052167 / 0.043533 (0.008634) | 0.347559 / 0.255139 (0.092420) | 0.370908 / 0.283200 (0.087709) | 0.022540 / 0.141683 (-0.119142) | 1.486297 / 1.452155 (0.034143) | 1.576968 / 1.492716 (0.084252) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.237048 / 0.018006 (0.219042) | 0.452065 / 0.000490 (0.451575) | 0.013963 / 0.000200 (0.013763) | 0.000242 / 0.000054 (0.000188) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028084 / 0.037411 (-0.009327) | 0.081271 / 0.014526 (0.066745) | 0.096490 / 0.176557 (-0.080067) | 0.152106 / 0.737135 (-0.585030) | 0.096174 / 0.296338 (-0.200164) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.386585 / 0.215209 (0.171375) | 3.854996 / 2.077655 (1.777342) | 1.832898 / 1.504120 (0.328778) | 1.662832 / 1.541195 (0.121638) | 1.730753 / 1.468490 (0.262263) | 0.485286 / 4.584777 (-4.099491) | 3.571410 / 3.745712 (-0.174302) | 3.373035 / 5.269862 (-1.896826) | 1.995570 / 4.565676 (-2.570107) | 0.056711 / 0.424275 (-0.367564) | 0.007447 / 0.007607 (-0.000160) | 0.462985 / 0.226044 (0.236941) | 4.617186 / 2.268929 (2.348257) | 2.313915 / 55.444624 (-53.130709) | 1.961697 / 6.876477 (-4.914780) | 1.990410 / 2.142072 (-0.151662) | 0.580536 / 4.805227 (-4.224692) | 0.146275 / 6.500664 (-6.354389) | 0.059458 / 0.075469 (-0.016011) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.274841 / 1.841788 (-0.566947) | 18.641853 / 8.074308 (10.567545) | 13.977525 / 10.191392 (3.786133) | 0.151469 / 0.680424 (-0.528955) | 0.018111 / 0.534201 (-0.516090) | 0.393243 / 0.579283 (-0.186040) | 0.412310 / 0.434364 (-0.022054) | 0.461646 / 0.540337 (-0.078692) | 0.633016 / 1.386936 (-0.753920) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006496 / 0.011353 (-0.004857) | 0.003973 / 0.011008 (-0.007035) | 0.064527 / 0.038508 (0.026019) | 0.069390 / 0.023109 (0.046281) | 0.401162 / 0.275898 (0.125264) | 0.431031 / 0.323480 (0.107551) | 0.005244 / 0.007986 (-0.002741) | 0.003283 / 0.004328 (-0.001046) | 0.064931 / 0.004250 (0.060680) | 0.054402 / 0.037052 (0.017350) | 0.397917 / 0.258489 (0.139428) | 0.436728 / 0.293841 (0.142887) | 0.031932 / 0.128546 (-0.096614) | 0.008557 / 0.075646 (-0.067089) | 0.073336 / 0.419271 (-0.345935) | 0.047559 / 0.043533 (0.004026) | 0.395825 / 0.255139 (0.140686) | 0.423002 / 0.283200 (0.139802) | 0.021708 / 0.141683 (-0.119975) | 1.501140 / 1.452155 (0.048985) | 1.558376 / 1.492716 (0.065660) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.289522 / 0.018006 (0.271516) | 0.449078 / 0.000490 (0.448589) | 0.034174 / 0.000200 (0.033974) | 0.000396 / 0.000054 (0.000342) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032533 / 0.037411 (-0.004878) | 0.093398 / 0.014526 (0.078872) | 0.106930 / 0.176557 (-0.069626) | 0.158743 / 0.737135 (-0.578393) | 0.106904 / 0.296338 (-0.189435) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.427479 / 0.215209 (0.212270) | 4.271758 / 2.077655 (2.194103) | 2.298770 / 1.504120 (0.794650) | 2.134906 / 1.541195 (0.593712) | 2.220487 / 1.468490 (0.751996) | 0.490506 / 4.584777 (-4.094270) | 3.593876 / 3.745712 (-0.151836) | 3.225656 / 5.269862 (-2.044205) | 2.004434 / 4.565676 (-2.561243) | 0.058015 / 0.424275 (-0.366260) | 0.007221 / 0.007607 (-0.000387) | 0.504928 / 0.226044 (0.278884) | 5.049547 / 2.268929 (2.780618) | 2.743843 / 55.444624 (-52.700781) | 2.398399 / 6.876477 (-4.478078) | 2.562939 / 2.142072 (0.420867) | 0.597229 / 4.805227 (-4.207998) | 0.134664 / 6.500664 (-6.366001) | 0.059612 / 0.075469 (-0.015857) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.369692 / 1.841788 (-0.472095) | 19.065326 / 8.074308 (10.991018) | 14.404508 / 10.191392 (4.213116) | 0.175809 / 0.680424 (-0.504615) | 0.020137 / 0.534201 (-0.514064) | 0.394043 / 0.579283 (-0.185240) | 0.424772 / 0.434364 (-0.009592) | 0.475587 / 0.540337 (-0.064751) | 0.644275 / 1.386936 (-0.742661) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#224977971accd63d97ba0a90cc108c4754055ebb \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007259 / 0.011353 (-0.004094) | 0.004396 / 0.011008 (-0.006612) | 0.096456 / 0.038508 (0.057948) | 0.078752 / 0.023109 (0.055643) | 0.359215 / 0.275898 (0.083317) | 0.396927 / 0.323480 (0.073448) | 0.005611 / 0.007986 (-0.002375) | 0.003687 / 0.004328 (-0.000641) | 0.072794 / 0.004250 (0.068544) | 0.059794 / 0.037052 (0.022741) | 0.372352 / 0.258489 (0.113863) | 0.414038 / 0.293841 (0.120197) | 0.034490 / 0.128546 (-0.094056) | 0.009790 / 0.075646 (-0.065857) | 0.326338 / 0.419271 (-0.092934) | 0.058582 / 0.043533 (0.015049) | 0.354221 / 0.255139 (0.099082) | 0.386669 / 0.283200 (0.103469) | 0.025356 / 0.141683 (-0.116327) | 1.664104 / 1.452155 (0.211950) | 1.766825 / 1.492716 (0.274108) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.251107 / 0.018006 (0.233101) | 0.478833 / 0.000490 (0.478344) | 0.010776 / 0.000200 (0.010577) | 0.000292 / 0.000054 (0.000238) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032869 / 0.037411 (-0.004543) | 0.098449 / 0.014526 (0.083923) | 0.109954 / 0.176557 (-0.066602) | 0.176786 / 0.737135 (-0.560350) | 0.113477 / 0.296338 (-0.182862) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.431169 / 0.215209 (0.215960) | 4.303239 / 2.077655 (2.225585) | 2.088885 / 1.504120 (0.584765) | 1.895900 / 1.541195 (0.354706) | 1.997442 / 1.468490 (0.528952) | 0.541840 / 4.584777 (-4.042937) | 3.991982 / 3.745712 (0.246270) | 3.842421 / 5.269862 (-1.427440) | 2.281150 / 4.565676 (-2.284526) | 0.063851 / 0.424275 (-0.360425) | 0.008470 / 0.007607 (0.000863) | 0.515886 / 0.226044 (0.289841) | 5.202908 / 2.268929 (2.933980) | 2.662789 / 55.444624 (-52.781835) | 2.266731 / 6.876477 (-4.609746) | 2.343760 / 2.142072 (0.201688) | 0.641050 / 4.805227 (-4.164177) | 0.148236 / 6.500664 (-6.352428) | 0.067422 / 0.075469 (-0.008047) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.475729 / 1.841788 (-0.366059) | 22.401583 / 8.074308 (14.327274) | 15.886237 / 10.191392 (5.694845) | 0.171828 / 0.680424 (-0.508595) | 0.022161 / 0.534201 (-0.512040) | 0.465873 / 0.579283 (-0.113411) | 0.476386 / 0.434364 (0.042022) | 0.538317 / 0.540337 (-0.002020) | 0.754375 / 1.386936 (-0.632561) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007429 / 0.011353 (-0.003924) | 0.004592 / 0.011008 (-0.006416) | 0.072315 / 0.038508 (0.033807) | 0.080806 / 0.023109 (0.057697) | 0.444607 / 0.275898 (0.168709) | 0.476970 / 0.323480 (0.153490) | 0.006030 / 0.007986 (-0.001956) | 0.003755 / 0.004328 (-0.000573) | 0.074602 / 0.004250 (0.070352) | 0.061846 / 0.037052 (0.024794) | 0.450928 / 0.258489 (0.192439) | 0.493932 / 0.293841 (0.200091) | 0.037398 / 0.128546 (-0.091148) | 0.009807 / 0.075646 (-0.065840) | 0.080531 / 0.419271 (-0.338741) | 0.054052 / 0.043533 (0.010519) | 0.453034 / 0.255139 (0.197895) | 0.464959 / 0.283200 (0.181760) | 0.024718 / 0.141683 (-0.116965) | 1.687552 / 1.452155 (0.235397) | 1.765746 / 1.492716 (0.273029) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.266998 / 0.018006 (0.248992) | 0.479832 / 0.000490 (0.479342) | 0.005429 / 0.000200 (0.005229) | 0.000117 / 0.000054 (0.000062) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.038885 / 0.037411 (0.001474) | 0.105931 / 0.014526 (0.091405) | 0.120880 / 0.176557 (-0.055677) | 0.184006 / 0.737135 (-0.553130) | 0.120750 / 0.296338 (-0.175589) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.478626 / 0.215209 (0.263417) | 4.797355 / 2.077655 (2.719700) | 2.582758 / 1.504120 (1.078638) | 2.396488 / 1.541195 (0.855293) | 2.515597 / 1.468490 (1.047107) | 0.544541 / 4.584777 (-4.040236) | 4.150702 / 3.745712 (0.404990) | 3.676837 / 5.269862 (-1.593024) | 2.287275 / 4.565676 (-2.278402) | 0.064602 / 0.424275 (-0.359673) | 0.008253 / 0.007607 (0.000646) | 0.576201 / 0.226044 (0.350157) | 5.859839 / 2.268929 (3.590910) | 3.248603 / 55.444624 (-52.196021) | 2.841959 / 6.876477 (-4.034518) | 2.991120 / 2.142072 (0.849047) | 0.667755 / 4.805227 (-4.137472) | 0.151219 / 6.500664 (-6.349445) | 0.068990 / 0.075469 (-0.006479) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.572359 / 1.841788 (-0.269429) | 21.890279 / 8.074308 (13.815971) | 15.927473 / 10.191392 (5.736081) | 0.170388 / 0.680424 (-0.510036) | 0.023282 / 0.534201 (-0.510919) | 0.459371 / 0.579283 (-0.119912) | 0.468838 / 0.434364 (0.034475) | 0.546438 / 0.540337 (0.006101) | 0.746912 / 1.386936 (-0.640024) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#8197ce872d2e24bd1ffbb07213faea25078f1386 \"CML watermark\")\n", "Yes, @lhoestq, you are right. I think we cross-send fixing PRs in a 15 minute interval... :sweat_smile: \r\n\r\nI would say the code in this PR is simpler and easier to understand, but feel free to ignore it.", "I think the correct way it to check if \"file\" in in the tuple if it's a tuple (in case someone adds another protocol name for the local filesystem)" ]
2023-10-23T09:29:17
2023-11-14T14:18:12
2023-11-14T14:17:40
MEMBER
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6335", "html_url": "https://github.com/huggingface/datasets/pull/6335", "diff_url": "https://github.com/huggingface/datasets/pull/6335.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6335.patch", "merged_at": null }
Fix #6333.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6335/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6335/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6334
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6334/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6334/comments
https://api.github.com/repos/huggingface/datasets/issues/6334/events
https://github.com/huggingface/datasets/pull/6334
1,956,719,774
PR_kwDODunzps5dgbpR
6,334
datasets.filesystems: fix is_remote_filesystems
{ "login": "ap--", "id": 1463443, "node_id": "MDQ6VXNlcjE0NjM0NDM=", "avatar_url": "https://avatars.githubusercontent.com/u/1463443?v=4", "gravatar_id": "", "url": "https://api.github.com/users/ap--", "html_url": "https://github.com/ap--", "followers_url": "https://api.github.com/users/ap--/followers", "following_url": "https://api.github.com/users/ap--/following{/other_user}", "gists_url": "https://api.github.com/users/ap--/gists{/gist_id}", "starred_url": "https://api.github.com/users/ap--/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ap--/subscriptions", "organizations_url": "https://api.github.com/users/ap--/orgs", "repos_url": "https://api.github.com/users/ap--/repos", "events_url": "https://api.github.com/users/ap--/events{/privacy}", "received_events_url": "https://api.github.com/users/ap--/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006648 / 0.011353 (-0.004705) | 0.004104 / 0.011008 (-0.006904) | 0.084718 / 0.038508 (0.046210) | 0.075342 / 0.023109 (0.052232) | 0.332624 / 0.275898 (0.056726) | 0.376758 / 0.323480 (0.053278) | 0.005371 / 0.007986 (-0.002614) | 0.003317 / 0.004328 (-0.001011) | 0.065153 / 0.004250 (0.060902) | 0.055270 / 0.037052 (0.018218) | 0.342410 / 0.258489 (0.083920) | 0.397484 / 0.293841 (0.103643) | 0.031168 / 0.128546 (-0.097379) | 0.008545 / 0.075646 (-0.067101) | 0.297641 / 0.419271 (-0.121631) | 0.052404 / 0.043533 (0.008871) | 0.327633 / 0.255139 (0.072494) | 0.362177 / 0.283200 (0.078977) | 0.025056 / 0.141683 (-0.116627) | 1.459023 / 1.452155 (0.006868) | 1.529651 / 1.492716 (0.036935) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.242838 / 0.018006 (0.224832) | 0.451007 / 0.000490 (0.450517) | 0.013732 / 0.000200 (0.013532) | 0.000345 / 0.000054 (0.000290) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028068 / 0.037411 (-0.009343) | 0.081970 / 0.014526 (0.067444) | 0.096148 / 0.176557 (-0.080409) | 0.151758 / 0.737135 (-0.585377) | 0.095617 / 0.296338 (-0.200721) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.389188 / 0.215209 (0.173979) | 3.867506 / 2.077655 (1.789852) | 1.941912 / 1.504120 (0.437792) | 1.759270 / 1.541195 (0.218076) | 1.774714 / 1.468490 (0.306224) | 0.476587 / 4.584777 (-4.108190) | 3.539342 / 3.745712 (-0.206370) | 3.434389 / 5.269862 (-1.835472) | 2.047581 / 4.565676 (-2.518096) | 0.056322 / 0.424275 (-0.367954) | 0.007286 / 0.007607 (-0.000321) | 0.461826 / 0.226044 (0.235781) | 4.604179 / 2.268929 (2.335251) | 2.405267 / 55.444624 (-53.039357) | 2.133998 / 6.876477 (-4.742479) | 2.187724 / 2.142072 (0.045652) | 0.566578 / 4.805227 (-4.238650) | 0.130007 / 6.500664 (-6.370657) | 0.059685 / 0.075469 (-0.015784) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.256204 / 1.841788 (-0.585584) | 18.829475 / 8.074308 (10.755167) | 13.937879 / 10.191392 (3.746487) | 0.163948 / 0.680424 (-0.516475) | 0.018118 / 0.534201 (-0.516083) | 0.389369 / 0.579283 (-0.189914) | 0.399988 / 0.434364 (-0.034376) | 0.459504 / 0.540337 (-0.080834) | 0.674696 / 1.386936 (-0.712240) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006806 / 0.011353 (-0.004547) | 0.004103 / 0.011008 (-0.006905) | 0.064477 / 0.038508 (0.025969) | 0.079514 / 0.023109 (0.056405) | 0.391657 / 0.275898 (0.115759) | 0.422997 / 0.323480 (0.099517) | 0.005485 / 0.007986 (-0.002501) | 0.003461 / 0.004328 (-0.000868) | 0.064621 / 0.004250 (0.060371) | 0.057686 / 0.037052 (0.020633) | 0.396885 / 0.258489 (0.138396) | 0.431508 / 0.293841 (0.137667) | 0.032305 / 0.128546 (-0.096241) | 0.008617 / 0.075646 (-0.067030) | 0.071577 / 0.419271 (-0.347694) | 0.047769 / 0.043533 (0.004236) | 0.394037 / 0.255139 (0.138898) | 0.412593 / 0.283200 (0.129393) | 0.023800 / 0.141683 (-0.117883) | 1.479114 / 1.452155 (0.026959) | 1.562422 / 1.492716 (0.069706) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.229822 / 0.018006 (0.211816) | 0.452465 / 0.000490 (0.451975) | 0.005877 / 0.000200 (0.005677) | 0.000097 / 0.000054 (0.000043) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033528 / 0.037411 (-0.003884) | 0.091819 / 0.014526 (0.077294) | 0.106188 / 0.176557 (-0.070368) | 0.159480 / 0.737135 (-0.577655) | 0.106326 / 0.296338 (-0.190013) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.427396 / 0.215209 (0.212187) | 4.275196 / 2.077655 (2.197541) | 2.287446 / 1.504120 (0.783326) | 2.137089 / 1.541195 (0.595894) | 2.198439 / 1.468490 (0.729949) | 0.491006 / 4.584777 (-4.093771) | 3.531067 / 3.745712 (-0.214645) | 3.264357 / 5.269862 (-2.005505) | 2.047760 / 4.565676 (-2.517916) | 0.057982 / 0.424275 (-0.366293) | 0.007278 / 0.007607 (-0.000329) | 0.507471 / 0.226044 (0.281426) | 5.073901 / 2.268929 (2.804973) | 2.781799 / 55.444624 (-52.662825) | 2.410759 / 6.876477 (-4.465718) | 2.623331 / 2.142072 (0.481258) | 0.601601 / 4.805227 (-4.203626) | 0.131461 / 6.500664 (-6.369204) | 0.060045 / 0.075469 (-0.015424) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.372946 / 1.841788 (-0.468842) | 19.560818 / 8.074308 (11.486509) | 14.388468 / 10.191392 (4.197076) | 0.177310 / 0.680424 (-0.503114) | 0.020233 / 0.534201 (-0.513967) | 0.395938 / 0.579283 (-0.183345) | 0.418336 / 0.434364 (-0.016028) | 0.471731 / 0.540337 (-0.068607) | 0.684679 / 1.386936 (-0.702257) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#4bedb7dcbaedd292ae5764f0fe6d44c16e1c2c10 \"CML watermark\")\n", "We did a patch release containing your fix @ap-- !" ]
2023-10-23T09:17:54
2023-10-23T17:30:55
2023-10-23T10:14:10
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6334", "html_url": "https://github.com/huggingface/datasets/pull/6334", "diff_url": "https://github.com/huggingface/datasets/pull/6334.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6334.patch", "merged_at": "2023-10-23T10:14:10" }
Close #6330 `fsspec.implementations.LocalFilesystem.protocol` was changed from `str` "file" to `tuple[str,...]` ("file", "local") in `fsspec>=2023.10.0` This commit supports both styles.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6334/reactions", "total_count": 2, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 2, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6334/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6333
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6333/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6333/comments
https://api.github.com/repos/huggingface/datasets/issues/6333/events
https://github.com/huggingface/datasets/issues/6333
1,956,714,423
I_kwDODunzps50oRe3
6,333
Support fsspec 2023.10.0
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[]
open
false
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[ { "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false } ]
[]
2023-10-23T09:14:53
2023-10-23T09:15:10
null
MEMBER
null
null
null
Once root issue is fixed, remove temporary pin of fsspec < 2023.10.0 introduced by: - #6331 Related to issue: - #6330 As @ZachNagengast suggested, the issue might be related to: - https://github.com/fsspec/filesystem_spec/pull/1381
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6333/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6333/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6332
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6332/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6332/comments
https://api.github.com/repos/huggingface/datasets/issues/6332/events
https://github.com/huggingface/datasets/pull/6332
1,956,697,328
PR_kwDODunzps5dgW3w
6,332
Replace deprecated license_file in setup.cfg
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006884 / 0.011353 (-0.004469) | 0.004132 / 0.011008 (-0.006877) | 0.085993 / 0.038508 (0.047485) | 0.084049 / 0.023109 (0.060940) | 0.346194 / 0.275898 (0.070296) | 0.386999 / 0.323480 (0.063519) | 0.004185 / 0.007986 (-0.003801) | 0.004354 / 0.004328 (0.000026) | 0.065137 / 0.004250 (0.060886) | 0.057629 / 0.037052 (0.020577) | 0.353639 / 0.258489 (0.095150) | 0.400815 / 0.293841 (0.106974) | 0.031370 / 0.128546 (-0.097176) | 0.008719 / 0.075646 (-0.066927) | 0.289579 / 0.419271 (-0.129693) | 0.052826 / 0.043533 (0.009293) | 0.351110 / 0.255139 (0.095971) | 0.375663 / 0.283200 (0.092464) | 0.025892 / 0.141683 (-0.115791) | 1.481943 / 1.452155 (0.029789) | 1.541494 / 1.492716 (0.048778) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.240007 / 0.018006 (0.222000) | 0.456216 / 0.000490 (0.455726) | 0.009348 / 0.000200 (0.009148) | 0.000370 / 0.000054 (0.000315) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029541 / 0.037411 (-0.007870) | 0.088394 / 0.014526 (0.073868) | 0.098460 / 0.176557 (-0.078096) | 0.154053 / 0.737135 (-0.583083) | 0.098821 / 0.296338 (-0.197518) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.386751 / 0.215209 (0.171542) | 3.809818 / 2.077655 (1.732164) | 1.833439 / 1.504120 (0.329319) | 1.686924 / 1.541195 (0.145729) | 1.796882 / 1.468490 (0.328392) | 0.488853 / 4.584777 (-4.095924) | 3.606369 / 3.745712 (-0.139343) | 3.460003 / 5.269862 (-1.809858) | 2.087493 / 4.565676 (-2.478184) | 0.056838 / 0.424275 (-0.367437) | 0.007679 / 0.007607 (0.000072) | 0.455080 / 0.226044 (0.229036) | 4.539227 / 2.268929 (2.270299) | 2.337245 / 55.444624 (-53.107379) | 1.988195 / 6.876477 (-4.888281) | 2.067473 / 2.142072 (-0.074600) | 0.576640 / 4.805227 (-4.228587) | 0.132140 / 6.500664 (-6.368525) | 0.060737 / 0.075469 (-0.014732) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.268866 / 1.841788 (-0.572922) | 19.695296 / 8.074308 (11.620988) | 14.431254 / 10.191392 (4.239862) | 0.166779 / 0.680424 (-0.513645) | 0.018262 / 0.534201 (-0.515939) | 0.390406 / 0.579283 (-0.188877) | 0.411284 / 0.434364 (-0.023080) | 0.456696 / 0.540337 (-0.083642) | 0.629660 / 1.386936 (-0.757276) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007210 / 0.011353 (-0.004143) | 0.004124 / 0.011008 (-0.006884) | 0.065877 / 0.038508 (0.027368) | 0.086242 / 0.023109 (0.063133) | 0.420087 / 0.275898 (0.144189) | 0.454327 / 0.323480 (0.130847) | 0.005586 / 0.007986 (-0.002399) | 0.003465 / 0.004328 (-0.000863) | 0.065153 / 0.004250 (0.060902) | 0.059337 / 0.037052 (0.022285) | 0.420913 / 0.258489 (0.162424) | 0.458552 / 0.293841 (0.164711) | 0.032335 / 0.128546 (-0.096211) | 0.008672 / 0.075646 (-0.066974) | 0.072029 / 0.419271 (-0.347242) | 0.048148 / 0.043533 (0.004615) | 0.423334 / 0.255139 (0.168196) | 0.440616 / 0.283200 (0.157416) | 0.023761 / 0.141683 (-0.117922) | 1.487022 / 1.452155 (0.034868) | 1.554028 / 1.492716 (0.061312) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.216693 / 0.018006 (0.198687) | 0.446359 / 0.000490 (0.445869) | 0.005294 / 0.000200 (0.005094) | 0.000100 / 0.000054 (0.000045) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034655 / 0.037411 (-0.002756) | 0.099479 / 0.014526 (0.084953) | 0.111822 / 0.176557 (-0.064735) | 0.160675 / 0.737135 (-0.576461) | 0.108718 / 0.296338 (-0.187621) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.440270 / 0.215209 (0.225061) | 4.389013 / 2.077655 (2.311358) | 2.408007 / 1.504120 (0.903887) | 2.237233 / 1.541195 (0.696038) | 2.344131 / 1.468490 (0.875641) | 0.493143 / 4.584777 (-4.091634) | 3.620024 / 3.745712 (-0.125688) | 3.335810 / 5.269862 (-1.934052) | 2.079256 / 4.565676 (-2.486420) | 0.058324 / 0.424275 (-0.365951) | 0.007410 / 0.007607 (-0.000197) | 0.512057 / 0.226044 (0.286013) | 5.120629 / 2.268929 (2.851701) | 2.913268 / 55.444624 (-52.531356) | 2.558214 / 6.876477 (-4.318262) | 2.784146 / 2.142072 (0.642074) | 0.593308 / 4.805227 (-4.211920) | 0.134941 / 6.500664 (-6.365723) | 0.062292 / 0.075469 (-0.013177) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.351795 / 1.841788 (-0.489993) | 20.489559 / 8.074308 (12.415251) | 15.046116 / 10.191392 (4.854724) | 0.166339 / 0.680424 (-0.514085) | 0.020449 / 0.534201 (-0.513752) | 0.406570 / 0.579283 (-0.172713) | 0.423405 / 0.434364 (-0.010959) | 0.474541 / 0.540337 (-0.065796) | 0.653280 / 1.386936 (-0.733656) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#3bde0f0f0e556e55b95c72b0f83bdcf7145c813c \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006362 / 0.011353 (-0.004991) | 0.003990 / 0.011008 (-0.007018) | 0.084020 / 0.038508 (0.045512) | 0.072198 / 0.023109 (0.049089) | 0.335992 / 0.275898 (0.060094) | 0.362056 / 0.323480 (0.038576) | 0.005298 / 0.007986 (-0.002688) | 0.003421 / 0.004328 (-0.000908) | 0.065343 / 0.004250 (0.061092) | 0.053310 / 0.037052 (0.016258) | 0.344855 / 0.258489 (0.086366) | 0.385524 / 0.293841 (0.091683) | 0.030209 / 0.128546 (-0.098337) | 0.008465 / 0.075646 (-0.067181) | 0.287359 / 0.419271 (-0.131912) | 0.051371 / 0.043533 (0.007838) | 0.338716 / 0.255139 (0.083577) | 0.351730 / 0.283200 (0.068530) | 0.023581 / 0.141683 (-0.118102) | 1.473772 / 1.452155 (0.021617) | 1.560594 / 1.492716 (0.067878) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.309019 / 0.018006 (0.291013) | 0.561428 / 0.000490 (0.560939) | 0.007237 / 0.000200 (0.007038) | 0.000266 / 0.000054 (0.000212) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028172 / 0.037411 (-0.009239) | 0.081050 / 0.014526 (0.066524) | 0.095952 / 0.176557 (-0.080604) | 0.151796 / 0.737135 (-0.585340) | 0.096132 / 0.296338 (-0.200206) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.384287 / 0.215209 (0.169078) | 3.840797 / 2.077655 (1.763142) | 1.891120 / 1.504120 (0.387000) | 1.743498 / 1.541195 (0.202303) | 1.821037 / 1.468490 (0.352547) | 0.484946 / 4.584777 (-4.099831) | 3.586053 / 3.745712 (-0.159659) | 3.446215 / 5.269862 (-1.823647) | 2.054352 / 4.565676 (-2.511325) | 0.057315 / 0.424275 (-0.366960) | 0.007541 / 0.007607 (-0.000066) | 0.464088 / 0.226044 (0.238044) | 4.634005 / 2.268929 (2.365076) | 2.355818 / 55.444624 (-53.088806) | 2.045584 / 6.876477 (-4.830893) | 2.039455 / 2.142072 (-0.102617) | 0.576137 / 4.805227 (-4.229090) | 0.132071 / 6.500664 (-6.368593) | 0.059611 / 0.075469 (-0.015858) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.280078 / 1.841788 (-0.561710) | 19.054079 / 8.074308 (10.979771) | 14.291090 / 10.191392 (4.099698) | 0.170607 / 0.680424 (-0.509817) | 0.018489 / 0.534201 (-0.515712) | 0.391802 / 0.579283 (-0.187481) | 0.418945 / 0.434364 (-0.015419) | 0.464084 / 0.540337 (-0.076254) | 0.638099 / 1.386936 (-0.748837) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006735 / 0.011353 (-0.004618) | 0.004133 / 0.011008 (-0.006876) | 0.064620 / 0.038508 (0.026112) | 0.076395 / 0.023109 (0.053286) | 0.399659 / 0.275898 (0.123761) | 0.426821 / 0.323480 (0.103341) | 0.006407 / 0.007986 (-0.001578) | 0.003472 / 0.004328 (-0.000857) | 0.064922 / 0.004250 (0.060671) | 0.058312 / 0.037052 (0.021260) | 0.403286 / 0.258489 (0.144797) | 0.437772 / 0.293841 (0.143931) | 0.032323 / 0.128546 (-0.096223) | 0.008727 / 0.075646 (-0.066919) | 0.071344 / 0.419271 (-0.347927) | 0.048673 / 0.043533 (0.005141) | 0.400693 / 0.255139 (0.145554) | 0.418668 / 0.283200 (0.135468) | 0.022871 / 0.141683 (-0.118812) | 1.517691 / 1.452155 (0.065536) | 1.552021 / 1.492716 (0.059305) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.305279 / 0.018006 (0.287272) | 0.520054 / 0.000490 (0.519564) | 0.007247 / 0.000200 (0.007047) | 0.000098 / 0.000054 (0.000044) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032001 / 0.037411 (-0.005410) | 0.091273 / 0.014526 (0.076747) | 0.106480 / 0.176557 (-0.070077) | 0.163122 / 0.737135 (-0.574014) | 0.105244 / 0.296338 (-0.191094) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.432207 / 0.215209 (0.216998) | 4.304856 / 2.077655 (2.227202) | 2.326790 / 1.504120 (0.822670) | 2.150081 / 1.541195 (0.608886) | 2.150558 / 1.468490 (0.682068) | 0.488808 / 4.584777 (-4.095969) | 3.690435 / 3.745712 (-0.055277) | 3.302625 / 5.269862 (-1.967236) | 2.044193 / 4.565676 (-2.521483) | 0.057520 / 0.424275 (-0.366755) | 0.007281 / 0.007607 (-0.000326) | 0.521078 / 0.226044 (0.295034) | 5.162620 / 2.268929 (2.893691) | 2.744041 / 55.444624 (-52.700583) | 2.407211 / 6.876477 (-4.469266) | 2.606290 / 2.142072 (0.464217) | 0.586412 / 4.805227 (-4.218815) | 0.132152 / 6.500664 (-6.368512) | 0.059424 / 0.075469 (-0.016045) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.351879 / 1.841788 (-0.489908) | 19.460608 / 8.074308 (11.386299) | 14.643413 / 10.191392 (4.452021) | 0.168062 / 0.680424 (-0.512362) | 0.020396 / 0.534201 (-0.513805) | 0.395885 / 0.579283 (-0.183398) | 0.439551 / 0.434364 (0.005187) | 0.473051 / 0.540337 (-0.067286) | 0.644614 / 1.386936 (-0.742322) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#732b2ed47728fffc8d74f92691c21de8ac7423fe \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.014708 / 0.011353 (0.003355) | 0.008309 / 0.011008 (-0.002699) | 0.138986 / 0.038508 (0.100478) | 0.121781 / 0.023109 (0.098671) | 0.495536 / 0.275898 (0.219637) | 0.565195 / 0.323480 (0.241715) | 0.008018 / 0.007986 (0.000032) | 0.004904 / 0.004328 (0.000575) | 0.080622 / 0.004250 (0.076371) | 0.078917 / 0.037052 (0.041865) | 0.489424 / 0.258489 (0.230935) | 0.540496 / 0.293841 (0.246656) | 0.061110 / 0.128546 (-0.067437) | 0.021443 / 0.075646 (-0.054203) | 0.395789 / 0.419271 (-0.023482) | 0.076727 / 0.043533 (0.033194) | 0.427808 / 0.255139 (0.172669) | 0.519672 / 0.283200 (0.236473) | 0.041607 / 0.141683 (-0.100076) | 2.098675 / 1.452155 (0.646520) | 2.175123 / 1.492716 (0.682407) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.275784 / 0.018006 (0.257777) | 0.707103 / 0.000490 (0.706613) | 0.011524 / 0.000200 (0.011324) | 0.000390 / 0.000054 (0.000336) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032897 / 0.037411 (-0.004514) | 0.123239 / 0.014526 (0.108713) | 0.151815 / 0.176557 (-0.024741) | 0.214790 / 0.737135 (-0.522345) | 0.139166 / 0.296338 (-0.157173) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.740662 / 0.215209 (0.525453) | 7.540376 / 2.077655 (5.462721) | 3.168207 / 1.504120 (1.664087) | 2.745663 / 1.541195 (1.204468) | 2.714020 / 1.468490 (1.245530) | 1.182632 / 4.584777 (-3.402145) | 6.365807 / 3.745712 (2.620095) | 6.317228 / 5.269862 (1.047366) | 4.061107 / 4.565676 (-0.504569) | 0.146939 / 0.424275 (-0.277336) | 0.011765 / 0.007607 (0.004158) | 0.910564 / 0.226044 (0.684519) | 9.020618 / 2.268929 (6.751689) | 4.180748 / 55.444624 (-51.263876) | 3.290257 / 6.876477 (-3.586220) | 3.363172 / 2.142072 (1.221099) | 1.239142 / 4.805227 (-3.566086) | 0.294965 / 6.500664 (-6.205699) | 0.088520 / 0.075469 (0.013051) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.867528 / 1.841788 (0.025741) | 29.494058 / 8.074308 (21.419750) | 31.386703 / 10.191392 (21.195311) | 0.302488 / 0.680424 (-0.377936) | 0.036116 / 0.534201 (-0.498085) | 0.622112 / 0.579283 (0.042829) | 0.775658 / 0.434364 (0.341294) | 0.632452 / 0.540337 (0.092115) | 0.909424 / 1.386936 (-0.477512) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.016002 / 0.011353 (0.004649) | 0.007007 / 0.011008 (-0.004002) | 0.100463 / 0.038508 (0.061955) | 0.124423 / 0.023109 (0.101314) | 0.556014 / 0.275898 (0.280116) | 0.600909 / 0.323480 (0.277429) | 0.007272 / 0.007986 (-0.000714) | 0.006743 / 0.004328 (0.002415) | 0.088575 / 0.004250 (0.084324) | 0.066003 / 0.037052 (0.028951) | 0.580080 / 0.258489 (0.321591) | 0.655567 / 0.293841 (0.361726) | 0.065295 / 0.128546 (-0.063252) | 0.021105 / 0.075646 (-0.054541) | 0.120044 / 0.419271 (-0.299227) | 0.081133 / 0.043533 (0.037600) | 0.570322 / 0.255139 (0.315183) | 0.581134 / 0.283200 (0.297934) | 0.046298 / 0.141683 (-0.095385) | 2.113200 / 1.452155 (0.661045) | 2.344187 / 1.492716 (0.851471) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.284517 / 0.018006 (0.266511) | 0.611834 / 0.000490 (0.611345) | 0.005581 / 0.000200 (0.005381) | 0.000153 / 0.000054 (0.000098) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.042162 / 0.037411 (0.004750) | 0.114496 / 0.014526 (0.099970) | 0.134034 / 0.176557 (-0.042523) | 0.201649 / 0.737135 (-0.535486) | 0.143235 / 0.296338 (-0.153103) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.764863 / 0.215209 (0.549654) | 7.603076 / 2.077655 (5.525421) | 3.318911 / 1.504120 (1.814791) | 2.939815 / 1.541195 (1.398620) | 2.870911 / 1.468490 (1.402421) | 1.171978 / 4.584777 (-3.412799) | 6.479933 / 3.745712 (2.734221) | 5.944387 / 5.269862 (0.674526) | 4.282625 / 4.565676 (-0.283051) | 0.123672 / 0.424275 (-0.300603) | 0.009666 / 0.007607 (0.002059) | 0.870683 / 0.226044 (0.644638) | 9.187788 / 2.268929 (6.918859) | 4.431818 / 55.444624 (-51.012807) | 3.460457 / 6.876477 (-3.416020) | 3.708198 / 2.142072 (1.566126) | 1.353673 / 4.805227 (-3.451554) | 0.264274 / 6.500664 (-6.236390) | 0.074943 / 0.075469 (-0.000526) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 2.073810 / 1.841788 (0.232023) | 29.182464 / 8.074308 (21.108156) | 30.527040 / 10.191392 (20.335648) | 0.307561 / 0.680424 (-0.372863) | 0.047384 / 0.534201 (-0.486817) | 0.662760 / 0.579283 (0.083477) | 0.768321 / 0.434364 (0.333957) | 0.692296 / 0.540337 (0.151959) | 0.955197 / 1.386936 (-0.431739) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#1e82d6f017c7fc0ab6b65847c1e34772c880d3b7 \"CML watermark\")\n" ]
2023-10-23T09:05:26
2023-11-07T08:23:10
2023-11-07T08:09:06
MEMBER
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6332", "html_url": "https://github.com/huggingface/datasets/pull/6332", "diff_url": "https://github.com/huggingface/datasets/pull/6332.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6332.patch", "merged_at": "2023-11-07T08:09:06" }
Replace deprecated license_file in `setup.cfg`. See: https://github.com/huggingface/datasets/actions/runs/6610930650/job/17953825724?pr=6331 ``` /tmp/pip-build-env-a51hls20/overlay/lib/python3.8/site-packages/setuptools/config/setupcfg.py:293: _DeprecatedConfig: Deprecated config in `setup.cfg` !! ******************************************************************************** The license_file parameter is deprecated, use license_files instead. By 2023-Oct-30, you need to update your project and remove deprecated calls or your builds will no longer be supported. See https://setuptools.pypa.io/en/latest/userguide/declarative_config.html for details. ******************************************************************************** !! ```
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6332/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6332/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6331
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6331/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6331/comments
https://api.github.com/repos/huggingface/datasets/issues/6331/events
https://github.com/huggingface/datasets/pull/6331
1,956,671,256
PR_kwDODunzps5dgRQt
6,331
Temporarily pin fsspec < 2023.10.0
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009605 / 0.011353 (-0.001747) | 0.004864 / 0.011008 (-0.006144) | 0.114605 / 0.038508 (0.076097) | 0.090874 / 0.023109 (0.067765) | 0.429203 / 0.275898 (0.153305) | 0.489888 / 0.323480 (0.166408) | 0.006542 / 0.007986 (-0.001443) | 0.004585 / 0.004328 (0.000257) | 0.090251 / 0.004250 (0.086001) | 0.066612 / 0.037052 (0.029560) | 0.437491 / 0.258489 (0.179002) | 0.515196 / 0.293841 (0.221355) | 0.047756 / 0.128546 (-0.080791) | 0.013587 / 0.075646 (-0.062059) | 0.376960 / 0.419271 (-0.042311) | 0.069701 / 0.043533 (0.026168) | 0.430850 / 0.255139 (0.175711) | 0.475061 / 0.283200 (0.191861) | 0.034800 / 0.141683 (-0.106883) | 1.799947 / 1.452155 (0.347793) | 1.941863 / 1.492716 (0.449147) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.316685 / 0.018006 (0.298679) | 0.595098 / 0.000490 (0.594608) | 0.015447 / 0.000200 (0.015247) | 0.000463 / 0.000054 (0.000409) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.039364 / 0.037411 (0.001953) | 0.091295 / 0.014526 (0.076769) | 0.109380 / 0.176557 (-0.067177) | 0.185454 / 0.737135 (-0.551681) | 0.104476 / 0.296338 (-0.191862) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.626291 / 0.215209 (0.411082) | 5.869948 / 2.077655 (3.792293) | 2.466267 / 1.504120 (0.962147) | 2.183572 / 1.541195 (0.642377) | 2.208286 / 1.468490 (0.739796) | 0.817175 / 4.584777 (-3.767602) | 5.255141 / 3.745712 (1.509429) | 4.878668 / 5.269862 (-0.391193) | 2.917020 / 4.565676 (-1.648657) | 0.104995 / 0.424275 (-0.319280) | 0.008687 / 0.007607 (0.001080) | 0.678993 / 0.226044 (0.452948) | 7.004983 / 2.268929 (4.736054) | 3.444040 / 55.444624 (-52.000584) | 2.745075 / 6.876477 (-4.131402) | 2.720151 / 2.142072 (0.578078) | 0.995803 / 4.805227 (-3.809424) | 0.205928 / 6.500664 (-6.294736) | 0.077053 / 0.075469 (0.001584) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.587354 / 1.841788 (-0.254434) | 23.843227 / 8.074308 (15.768919) | 21.355771 / 10.191392 (11.164379) | 0.225593 / 0.680424 (-0.454831) | 0.029054 / 0.534201 (-0.505147) | 0.469676 / 0.579283 (-0.109607) | 0.582619 / 0.434364 (0.148255) | 0.576932 / 0.540337 (0.036594) | 0.946182 / 1.386936 (-0.440754) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009819 / 0.011353 (-0.001534) | 0.005562 / 0.011008 (-0.005446) | 0.075512 / 0.038508 (0.037004) | 0.084294 / 0.023109 (0.061185) | 0.549516 / 0.275898 (0.273618) | 0.550364 / 0.323480 (0.226884) | 0.006603 / 0.007986 (-0.001383) | 0.004587 / 0.004328 (0.000259) | 0.084040 / 0.004250 (0.079789) | 0.066815 / 0.037052 (0.029762) | 0.549224 / 0.258489 (0.290735) | 0.556213 / 0.293841 (0.262372) | 0.048538 / 0.128546 (-0.080008) | 0.014050 / 0.075646 (-0.061596) | 0.088955 / 0.419271 (-0.330317) | 0.062393 / 0.043533 (0.018860) | 0.528770 / 0.255139 (0.273631) | 0.564854 / 0.283200 (0.281655) | 0.033976 / 0.141683 (-0.107707) | 1.858558 / 1.452155 (0.406403) | 1.894616 / 1.492716 (0.401899) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.378597 / 0.018006 (0.360591) | 0.650586 / 0.000490 (0.650097) | 0.033179 / 0.000200 (0.032979) | 0.000477 / 0.000054 (0.000423) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031779 / 0.037411 (-0.005632) | 0.103393 / 0.014526 (0.088867) | 0.119810 / 0.176557 (-0.056747) | 0.192188 / 0.737135 (-0.544948) | 0.114545 / 0.296338 (-0.181794) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.623571 / 0.215209 (0.408362) | 6.350249 / 2.077655 (4.272594) | 3.207773 / 1.504120 (1.703653) | 2.861118 / 1.541195 (1.319923) | 2.864445 / 1.468490 (1.395955) | 0.827451 / 4.584777 (-3.757326) | 5.323860 / 3.745712 (1.578148) | 4.569197 / 5.269862 (-0.700665) | 2.967595 / 4.565676 (-1.598081) | 0.090926 / 0.424275 (-0.333349) | 0.007820 / 0.007607 (0.000213) | 0.731610 / 0.226044 (0.505565) | 7.342651 / 2.268929 (5.073723) | 3.781727 / 55.444624 (-51.662897) | 3.222100 / 6.876477 (-3.654377) | 3.546145 / 2.142072 (1.404073) | 1.030500 / 4.805227 (-3.774728) | 0.226563 / 6.500664 (-6.274101) | 0.078633 / 0.075469 (0.003164) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.733677 / 1.841788 (-0.108111) | 24.650616 / 8.074308 (16.576308) | 22.033745 / 10.191392 (11.842353) | 0.211055 / 0.680424 (-0.469369) | 0.031658 / 0.534201 (-0.502543) | 0.467190 / 0.579283 (-0.112094) | 0.598303 / 0.434364 (0.163939) | 0.569318 / 0.540337 (0.028981) | 0.825984 / 1.386936 (-0.560952) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#7eef7749031232d0b29f7ca10e3fa9f997b19ef7 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006873 / 0.011353 (-0.004479) | 0.004174 / 0.011008 (-0.006835) | 0.085874 / 0.038508 (0.047366) | 0.074207 / 0.023109 (0.051098) | 0.307342 / 0.275898 (0.031444) | 0.339972 / 0.323480 (0.016493) | 0.005522 / 0.007986 (-0.002463) | 0.003576 / 0.004328 (-0.000753) | 0.065680 / 0.004250 (0.061430) | 0.056274 / 0.037052 (0.019222) | 0.313121 / 0.258489 (0.054632) | 0.364699 / 0.293841 (0.070858) | 0.031297 / 0.128546 (-0.097249) | 0.008652 / 0.075646 (-0.066994) | 0.288431 / 0.419271 (-0.130840) | 0.053081 / 0.043533 (0.009548) | 0.309076 / 0.255139 (0.053937) | 0.329251 / 0.283200 (0.046052) | 0.024840 / 0.141683 (-0.116843) | 1.484155 / 1.452155 (0.032001) | 1.598665 / 1.492716 (0.105949) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.270933 / 0.018006 (0.252927) | 0.565867 / 0.000490 (0.565377) | 0.006964 / 0.000200 (0.006764) | 0.000298 / 0.000054 (0.000244) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028393 / 0.037411 (-0.009018) | 0.081756 / 0.014526 (0.067230) | 0.095733 / 0.176557 (-0.080823) | 0.152426 / 0.737135 (-0.584710) | 0.096655 / 0.296338 (-0.199683) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.403992 / 0.215209 (0.188783) | 4.027230 / 2.077655 (1.949576) | 2.031102 / 1.504120 (0.526982) | 1.843727 / 1.541195 (0.302532) | 1.898342 / 1.468490 (0.429852) | 0.479186 / 4.584777 (-4.105591) | 3.488153 / 3.745712 (-0.257559) | 3.523953 / 5.269862 (-1.745909) | 2.078392 / 4.565676 (-2.487284) | 0.056104 / 0.424275 (-0.368171) | 0.007368 / 0.007607 (-0.000239) | 0.479630 / 0.226044 (0.253585) | 4.787400 / 2.268929 (2.518471) | 2.488268 / 55.444624 (-52.956356) | 2.229955 / 6.876477 (-4.646522) | 2.260468 / 2.142072 (0.118396) | 0.587934 / 4.805227 (-4.217294) | 0.147124 / 6.500664 (-6.353540) | 0.059954 / 0.075469 (-0.015515) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.283155 / 1.841788 (-0.558632) | 19.013574 / 8.074308 (10.939266) | 13.915188 / 10.191392 (3.723796) | 0.174101 / 0.680424 (-0.506323) | 0.018172 / 0.534201 (-0.516029) | 0.390322 / 0.579283 (-0.188961) | 0.405493 / 0.434364 (-0.028871) | 0.456914 / 0.540337 (-0.083424) | 0.635213 / 1.386936 (-0.751723) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006622 / 0.011353 (-0.004731) | 0.003997 / 0.011008 (-0.007011) | 0.064542 / 0.038508 (0.026034) | 0.074165 / 0.023109 (0.051056) | 0.392285 / 0.275898 (0.116387) | 0.423522 / 0.323480 (0.100042) | 0.006361 / 0.007986 (-0.001625) | 0.003463 / 0.004328 (-0.000866) | 0.064891 / 0.004250 (0.060641) | 0.058485 / 0.037052 (0.021433) | 0.425217 / 0.258489 (0.166728) | 0.435907 / 0.293841 (0.142066) | 0.031501 / 0.128546 (-0.097045) | 0.008575 / 0.075646 (-0.067071) | 0.072094 / 0.419271 (-0.347178) | 0.047904 / 0.043533 (0.004371) | 0.397174 / 0.255139 (0.142035) | 0.417940 / 0.283200 (0.134741) | 0.023324 / 0.141683 (-0.118358) | 1.517245 / 1.452155 (0.065090) | 1.586497 / 1.492716 (0.093781) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.268311 / 0.018006 (0.250305) | 0.561118 / 0.000490 (0.560628) | 0.004352 / 0.000200 (0.004152) | 0.000095 / 0.000054 (0.000041) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033039 / 0.037411 (-0.004373) | 0.091596 / 0.014526 (0.077071) | 0.111520 / 0.176557 (-0.065036) | 0.161755 / 0.737135 (-0.575381) | 0.107681 / 0.296338 (-0.188657) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.427170 / 0.215209 (0.211961) | 4.252648 / 2.077655 (2.174994) | 2.257623 / 1.504120 (0.753503) | 2.098446 / 1.541195 (0.557251) | 2.128544 / 1.468490 (0.660054) | 0.496639 / 4.584777 (-4.088138) | 3.593385 / 3.745712 (-0.152328) | 3.396367 / 5.269862 (-1.873494) | 2.073369 / 4.565676 (-2.492308) | 0.058386 / 0.424275 (-0.365889) | 0.007515 / 0.007607 (-0.000093) | 0.502358 / 0.226044 (0.276313) | 5.015224 / 2.268929 (2.746296) | 2.735740 / 55.444624 (-52.708885) | 2.388368 / 6.876477 (-4.488109) | 2.682857 / 2.142072 (0.540785) | 0.595003 / 4.805227 (-4.210225) | 0.135419 / 6.500664 (-6.365245) | 0.062824 / 0.075469 (-0.012645) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.367507 / 1.841788 (-0.474281) | 19.569288 / 8.074308 (11.494979) | 14.748693 / 10.191392 (4.557301) | 0.198659 / 0.680424 (-0.481765) | 0.020954 / 0.534201 (-0.513247) | 0.414858 / 0.579283 (-0.164426) | 0.421226 / 0.434364 (-0.013138) | 0.477774 / 0.540337 (-0.062563) | 0.676173 / 1.386936 (-0.710763) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#87ed467af77d87ad7e38279cf9a24c341545cbac \"CML watermark\")\n" ]
2023-10-23T08:51:50
2023-10-23T09:26:42
2023-10-23T09:17:55
MEMBER
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6331", "html_url": "https://github.com/huggingface/datasets/pull/6331", "diff_url": "https://github.com/huggingface/datasets/pull/6331.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6331.patch", "merged_at": "2023-10-23T09:17:55" }
Temporarily pin fsspec < 2023.10.0 until permanent solution is found. Hot fix #6330. See: https://github.com/huggingface/datasets/actions/runs/6610904287/job/17953774987 ``` ... ERROR tests/test_iterable_dataset.py::test_iterable_dataset_from_file - NotImplementedError: Loading a dataset cached in a LocalFileSystem is not supported. = 373 failed, 2055 passed, 17 skipped, 8 warnings, 6 errors in 228.14s (0:03:48) = ```
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6331/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6331/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6330
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6330/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6330/comments
https://api.github.com/repos/huggingface/datasets/issues/6330/events
https://github.com/huggingface/datasets/issues/6330
1,956,053,294
I_kwDODunzps50lwEu
6,330
Latest fsspec==2023.10.0 issue with streaming datasets
{ "login": "ZachNagengast", "id": 1981179, "node_id": "MDQ6VXNlcjE5ODExNzk=", "avatar_url": "https://avatars.githubusercontent.com/u/1981179?v=4", "gravatar_id": "", "url": "https://api.github.com/users/ZachNagengast", "html_url": "https://github.com/ZachNagengast", "followers_url": "https://api.github.com/users/ZachNagengast/followers", "following_url": "https://api.github.com/users/ZachNagengast/following{/other_user}", "gists_url": "https://api.github.com/users/ZachNagengast/gists{/gist_id}", "starred_url": "https://api.github.com/users/ZachNagengast/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ZachNagengast/subscriptions", "organizations_url": "https://api.github.com/users/ZachNagengast/orgs", "repos_url": "https://api.github.com/users/ZachNagengast/repos", "events_url": "https://api.github.com/users/ZachNagengast/events{/privacy}", "received_events_url": "https://api.github.com/users/ZachNagengast/received_events", "type": "User", "site_admin": false }
[]
closed
false
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[ { "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false } ]
[ "I also encountered a similar error below.\r\nAppreciate the team could shed some light on this issue.\r\n\r\n```\r\n---------------------------------------------------------------------------\r\nNotImplementedError Traceback (most recent call last)\r\n[/home/ubuntu/work/EveryDream2trainer/prepare_dataset.ipynb](https://vscode-remote+ssh-002dremote-002braspberry-002dg5-002e4x.vscode-resource.vscode-cdn.net/home/ubuntu/work/EveryDream2trainer/prepare_dataset.ipynb) Cell 1 line 4\r\n [1](vscode-notebook-cell://ssh-remote%2Braspberry-g5.4x/home/ubuntu/work/EveryDream2trainer/prepare_dataset.ipynb#W0sdnNjb2RlLXJlbW90ZQ%3D%3D?line=0) from datasets import load_dataset, load_dataset\r\n [3](vscode-notebook-cell://ssh-remote%2Braspberry-g5.4x/home/ubuntu/work/EveryDream2trainer/prepare_dataset.ipynb#W0sdnNjb2RlLXJlbW90ZQ%3D%3D?line=2) # ds = load_dataset(\"parquet\", data_dir=\"/home/ubuntu/work/EveryDream2trainer/datasets/monse_v1/data\")\r\n----> [4](vscode-notebook-cell://ssh-remote%2Braspberry-g5.4x/home/ubuntu/work/EveryDream2trainer/prepare_dataset.ipynb#W0sdnNjb2RlLXJlbW90ZQ%3D%3D?line=3) ds = load_dataset(\"Raspberry-ai/monse-v1\")\r\n\r\nFile [/opt/conda/envs/everydream/lib/python3.10/site-packages/datasets/load.py:1804](https://vscode-remote+ssh-002dremote-002braspberry-002dg5-002e4x.vscode-resource.vscode-cdn.net/opt/conda/envs/everydream/lib/python3.10/site-packages/datasets/load.py:1804), in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, ignore_verifications, keep_in_memory, save_infos, revision, use_auth_token, task, streaming, num_proc, storage_options, **config_kwargs)\r\n 1800 # Build dataset for splits\r\n 1801 keep_in_memory = (\r\n 1802 keep_in_memory if keep_in_memory is not None else is_small_dataset(builder_instance.info.dataset_size)\r\n 1803 )\r\n-> 1804 ds = builder_instance.as_dataset(split=split, verification_mode=verification_mode, in_memory=keep_in_memory)\r\n 1805 # Rename and cast features to match task schema\r\n 1806 if task is not None:\r\n\r\nFile [/opt/conda/envs/everydream/lib/python3.10/site-packages/datasets/builder.py:1108](https://vscode-remote+ssh-002dremote-002braspberry-002dg5-002e4x.vscode-resource.vscode-cdn.net/opt/conda/envs/everydream/lib/python3.10/site-packages/datasets/builder.py:1108), in DatasetBuilder.as_dataset(self, split, run_post_process, verification_mode, ignore_verifications, in_memory)\r\n 1106 is_local = not is_remote_filesystem(self._fs)\r\n 1107 if not is_local:\r\n-> 1108 raise NotImplementedError(f\"Loading a dataset cached in a {type(self._fs).__name__} is not supported.\")\r\n 1109 if not os.path.exists(self._output_dir):\r\n 1110 raise FileNotFoundError(\r\n 1111 f\"Dataset {self.name}: could not find data in {self._output_dir}. Please make sure to call \"\r\n 1112 \"builder.download_and_prepare(), or use \"\r\n 1113 \"datasets.load_dataset() before trying to access the Dataset object.\"\r\n 1114 )\r\n\r\nNotImplementedError: Loading a dataset cached in a LocalFileSystem is not supported.\r\n```\r\n\r\nCode to reproduce the issue:\r\n\r\n```\r\nfrom datasets import load_dataset\r\n\r\nds = load_dataset(\"Raspberry-ai/monse-v1\")\r\n```\r\n\r\n\r\nDependencies:\r\n```\r\nPackage Version\r\n------------------------- ------------\r\nabsl-py 2.0.0\r\naccelerate 0.23.0\r\naiohttp 3.8.4\r\naiosignal 1.3.1\r\nantlr4-python3-runtime 4.9.3\r\nanyio 4.0.0\r\nappdirs 1.4.4\r\nargon2-cffi 23.1.0\r\nargon2-cffi-bindings 21.2.0\r\narrow 1.3.0\r\nasttokens 2.4.0\r\nasync-lru 2.0.4\r\nasync-timeout 4.0.3\r\nattrs 23.1.0\r\nBabel 2.13.0\r\nbackcall 0.2.0\r\nbeautifulsoup4 4.12.2\r\nbitsandbytes 0.41.1\r\nbleach 6.1.0\r\nbraceexpand 0.1.7\r\ncachetools 5.3.1\r\ncertifi 2023.7.22\r\ncffi 1.16.0\r\ncharset-normalizer 3.3.1\r\nclick 8.1.7\r\ncmake 3.27.7\r\ncolorama 0.4.6\r\ncomm 0.1.4\r\ncompel 1.1.6\r\ndatasets 2.11.0\r\ndebugpy 1.8.0\r\ndecorator 5.1.1\r\ndefusedxml 0.7.1\r\ndiffusers 0.18.0\r\ndill 0.3.6\r\ndocker-pycreds 0.4.0\r\ndowg 0.3.1\r\neinops 0.7.0\r\neinops-exts 0.0.4\r\nexceptiongroup 1.1.3\r\nexecuting 2.0.0\r\nfastjsonschema 2.18.1\r\nfilelock 3.12.4\r\nfqdn 1.5.1\r\nfrozenlist 1.4.0\r\nfsspec 2023.10.0\r\nftfy 6.1.1\r\ngitdb 4.0.11\r\nGitPython 3.1.40\r\ngoogle-auth 2.23.3\r\ngoogle-auth-oauthlib 1.1.0\r\ngrpcio 1.59.0\r\nhuggingface-hub 0.18.0\r\nidna 3.4\r\nimportlib-metadata 6.8.0\r\ninflection 0.5.1\r\nipykernel 6.25.2\r\nipython 8.16.1\r\nisoduration 20.11.0\r\njedi 0.19.1\r\nJinja2 3.1.2\r\njoblib 1.3.2\r\njson5 0.9.14\r\njsonpointer 2.4\r\njsonschema 4.19.1\r\njsonschema-specifications 2023.7.1\r\njupyter_client 8.4.0\r\njupyter_core 5.4.0\r\njupyter-events 0.8.0\r\njupyter-lsp 2.2.0\r\njupyter_server 2.8.0\r\njupyter_server_terminals 0.4.4\r\njupyterlab 4.0.7\r\njupyterlab-pygments 0.2.2\r\njupyterlab_server 2.25.0\r\nlightning-utilities 0.9.0\r\nlion-pytorch 0.1.2\r\nlit 17.0.3\r\nMarkdown 3.5\r\nMarkupSafe 2.1.3\r\nmatplotlib-inline 0.1.6\r\nmistune 3.0.2\r\nmore-itertools 10.1.0\r\nmpmath 1.3.0\r\nmultidict 6.0.4\r\nmultiprocess 0.70.14\r\nmypy-extensions 1.0.0\r\nnbclient 0.8.0\r\nnbconvert 7.9.2\r\nnbformat 5.9.2\r\nnest-asyncio 1.5.8\r\nnetworkx 3.2\r\nnltk 3.8.1\r\nnotebook_shim 0.2.3\r\nnumpy 1.23.5\r\noauthlib 3.2.2\r\nomegaconf 2.2.3\r\nopen-clip-torch 2.22.0\r\nopen-flamingo 2.0.0\r\noverrides 7.4.0\r\npackaging 23.2\r\npandas 2.1.1\r\npandocfilters 1.5.0\r\nparso 0.8.3\r\npathtools 0.1.2\r\npexpect 4.8.0\r\npickleshare 0.7.5\r\nPillow 10.1.0\r\npip 23.3.1\r\nplatformdirs 3.11.0\r\nprometheus-client 0.17.1\r\nprompt-toolkit 3.0.39\r\nprotobuf 3.20.1\r\npsutil 5.9.6\r\nptyprocess 0.7.0\r\npure-eval 0.2.2\r\npyarrow 13.0.0\r\npyasn1 0.5.0\r\npyasn1-modules 0.3.0\r\npycparser 2.21\r\npyDeprecate 0.3.2\r\nPygments 2.16.1\r\npynvml 11.4.1\r\npyparsing 3.1.1\r\npyre-extensions 0.0.29\r\npython-dateutil 2.8.2\r\npython-json-logger 2.0.7\r\npytorch-lightning 1.6.5\r\npytz 2023.3.post1\r\nPyYAML 6.0.1\r\npyzmq 25.1.1\r\nreferencing 0.30.2\r\nregex 2023.10.3\r\nrequests 2.31.0\r\nrequests-oauthlib 1.3.1\r\nresponses 0.18.0\r\nrfc3339-validator 0.1.4\r\nrfc3986-validator 0.1.1\r\nrpds-py 0.10.6\r\nrsa 4.9\r\nsafetensors 0.4.0\r\nscipy 1.11.3\r\nSend2Trash 1.8.2\r\nsentencepiece 0.1.98\r\nsentry-sdk 1.32.0\r\nsetproctitle 1.3.3\r\nsetuptools 68.2.2\r\nsix 1.16.0\r\nsmmap 5.0.1\r\nsniffio 1.3.0\r\nsoupsieve 2.5\r\nstack-data 0.6.3\r\nsympy 1.12\r\ntensorboard 2.15.0\r\ntensorboard-data-server 0.7.1\r\nterminado 0.17.1\r\ntimm 0.9.8\r\ntinycss2 1.2.1\r\ntokenizers 0.13.3\r\ntomli 2.0.1\r\ntorch 2.0.1+cu118\r\ntorchmetrics 1.2.0\r\ntorchvision 0.15.2+cu118\r\ntornado 6.3.3\r\ntqdm 4.66.1\r\ntraitlets 5.11.2\r\ntransformers 4.29.2\r\ntriton 2.0.0\r\ntypes-python-dateutil 2.8.19.14\r\ntyping_extensions 4.8.0\r\ntyping-inspect 0.9.0\r\ntzdata 2023.3\r\nuri-template 1.3.0\r\nurllib3 2.0.7\r\nwandb 0.15.12\r\nwcwidth 0.2.8\r\nwebcolors 1.13\r\nwebdataset 0.2.62\r\nwebencodings 0.5.1\r\nwebsocket-client 1.6.4\r\nWerkzeug 3.0.0\r\nwheel 0.41.2\r\nxformers 0.0.20\r\nxxhash 3.4.1\r\nyarl 1.9.2\r\nzipp 3.17.0\r\n```", "@humpydonkey FWIW setting fsspec down to 2023.9.2 fixed the issue\r\n\r\n`pip install fsspec==2023.9.2`", "got it, thanks @ZachNagengast ", "Thanks for reporting and for the investigation, @ZachNagengast! :hugs: \r\n\r\nWe are investigating the root cause of the issue. In the meantime, we are going to pin fsspec < 2023.10.0. ", "https://stackoverflow.com/questions/77433096/notimplementederror-loading-a-dataset-cached-in-a-localfilesystem-is-not-suppor/77433141#77433141", "You can also update `datasets`:\r\n\r\n```\r\npip install -U datasets\r\n```\r\n\r\nIt will also update `fsspec` to use the right version" ]
2023-10-22T20:57:10
2023-11-07T10:02:14
2023-10-23T09:17:56
CONTRIBUTOR
null
null
null
### Describe the bug Loading a streaming dataset with this version of fsspec fails with the following error: `NotImplementedError: Loading a streaming dataset cached in a LocalFileSystem is not supported yet.` I suspect the issue is with this PR https://github.com/fsspec/filesystem_spec/pull/1381 ### Steps to reproduce the bug 1. Upgrade fsspec to version `2023.10.0` 2. Attempt to load a streaming dataset e.g. `load_dataset("laion/gpt4v-emotion-dataset", split="train", streaming=True)` 3. Observe the following exception: ``` File "/opt/hostedtoolcache/Python/3.11.6/x64/lib/python3.11/site-packages/datasets/load.py", line 2146, in load_dataset return builder_instance.as_streaming_dataset(split=split) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/hostedtoolcache/Python/3.11.6/x64/lib/python3.11/site-packages/datasets/builder.py", line 1318, in as_streaming_dataset raise NotImplementedError( NotImplementedError: Loading a streaming dataset cached in a LocalFileSystem is not supported yet. ``` ### Expected behavior Should stream the dataset as normal. ### Environment info datasets@main fsspec==2023.10.0
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6330/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6330/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6329
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6329/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6329/comments
https://api.github.com/repos/huggingface/datasets/issues/6329/events
https://github.com/huggingface/datasets/issues/6329
1,955,858,020
I_kwDODunzps50lAZk
6,329
شبکه های متن به گفتار ابتدا متن داده شده را به بازنمایی میانی
{ "login": "shabnam706", "id": 147399213, "node_id": "U_kgDOCMkiLQ", "avatar_url": "https://avatars.githubusercontent.com/u/147399213?v=4", "gravatar_id": "", "url": "https://api.github.com/users/shabnam706", "html_url": "https://github.com/shabnam706", "followers_url": "https://api.github.com/users/shabnam706/followers", "following_url": "https://api.github.com/users/shabnam706/following{/other_user}", "gists_url": "https://api.github.com/users/shabnam706/gists{/gist_id}", "starred_url": "https://api.github.com/users/shabnam706/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/shabnam706/subscriptions", "organizations_url": "https://api.github.com/users/shabnam706/orgs", "repos_url": "https://api.github.com/users/shabnam706/repos", "events_url": "https://api.github.com/users/shabnam706/events{/privacy}", "received_events_url": "https://api.github.com/users/shabnam706/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[]
2023-10-22T11:07:46
2023-10-23T09:22:58
2023-10-23T09:22:58
NONE
null
null
null
شبکه های متن به گفتار ابتدا متن داده شده را به بازنمایی میانی
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6329/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6329/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6328
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6328/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6328/comments
https://api.github.com/repos/huggingface/datasets/issues/6328/events
https://github.com/huggingface/datasets/issues/6328
1,955,857,904
I_kwDODunzps50lAXw
6,328
شبکه های متن به گفتار ابتدا متن داده شده را به بازنمایی میانی
{ "login": "shabnam706", "id": 147399213, "node_id": "U_kgDOCMkiLQ", "avatar_url": "https://avatars.githubusercontent.com/u/147399213?v=4", "gravatar_id": "", "url": "https://api.github.com/users/shabnam706", "html_url": "https://github.com/shabnam706", "followers_url": "https://api.github.com/users/shabnam706/followers", "following_url": "https://api.github.com/users/shabnam706/following{/other_user}", "gists_url": "https://api.github.com/users/shabnam706/gists{/gist_id}", "starred_url": "https://api.github.com/users/shabnam706/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/shabnam706/subscriptions", "organizations_url": "https://api.github.com/users/shabnam706/orgs", "repos_url": "https://api.github.com/users/shabnam706/repos", "events_url": "https://api.github.com/users/shabnam706/events{/privacy}", "received_events_url": "https://api.github.com/users/shabnam706/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "شبکه های متن به گفتار ابتدا متن داده شده را به بازنمایی میانی" ]
2023-10-22T11:07:21
2023-10-23T09:22:38
2023-10-23T09:22:38
NONE
null
null
null
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6328/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6328/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6327
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6327/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6327/comments
https://api.github.com/repos/huggingface/datasets/issues/6327/events
https://github.com/huggingface/datasets/issues/6327
1,955,470,755
I_kwDODunzps50jh2j
6,327
FileNotFoundError when trying to load the downloaded dataset with `load_dataset(..., streaming=True)`
{ "login": "yzhangcs", "id": 18402347, "node_id": "MDQ6VXNlcjE4NDAyMzQ3", "avatar_url": "https://avatars.githubusercontent.com/u/18402347?v=4", "gravatar_id": "", "url": "https://api.github.com/users/yzhangcs", "html_url": "https://github.com/yzhangcs", "followers_url": "https://api.github.com/users/yzhangcs/followers", "following_url": "https://api.github.com/users/yzhangcs/following{/other_user}", "gists_url": "https://api.github.com/users/yzhangcs/gists{/gist_id}", "starred_url": "https://api.github.com/users/yzhangcs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/yzhangcs/subscriptions", "organizations_url": "https://api.github.com/users/yzhangcs/orgs", "repos_url": "https://api.github.com/users/yzhangcs/repos", "events_url": "https://api.github.com/users/yzhangcs/events{/privacy}", "received_events_url": "https://api.github.com/users/yzhangcs/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "You can clone the `togethercomputer/RedPajama-Data-1T-Sample` repo and load the dataset with `load_dataset(\"path/to/cloned_repo\")` to use it offline.", "@mariosasko Thank you for your kind reply! I'll try it as a workaround.\r\nDoes that mean that currently it's not supported to simply load with a short name?", "It is, but manually downloading repo files to the cache can easily lead to failure (the HF cache is not meant to be modified by a user besides deleting the files 🙂), as in your case. Hence, the clone + `load_dataset(\"path/to/cloned_repo\")` workflow should be used instead." ]
2023-10-21T12:27:03
2023-10-23T18:50:07
2023-10-23T18:50:07
NONE
null
null
null
### Describe the bug Hi, I'm trying to load the dataset `togethercomputer/RedPajama-Data-1T-Sample` with `load_dataset` in streaming mode, i.e., `streaming=True`, but `FileNotFoundError` occurs. ### Steps to reproduce the bug I've downloaded the dataset and save it to the cache dir in advance. My hope is loading the files in offline environment and without taking too much hours to prepross the entire data before running into the training process. So I try the following code to load the files streamingly ```py dataset = load_dataset('togethercomputer/RedPajama-Data-1T-Sample', streaming=True) print(next(iter(dataset['train']))) ``` Sadly, it raises the following: ``` FileNotFoundError: [Errno 2] No such file or directory: 'CURRENT_CODE_PATH/arxiv_sample.jsonl' ``` I've noticed that the dataset can be properly found in the begining ``` Using the latest cached version of the module from /root/.cache/huggingface/modules/datasets_modules/datasets/togethercomputer--RedPajama-Data-1T-Sample/6ea3bc8ec2e84ec6d2df1930942e9028ace8c5b9d9143823cf911c50bbd92039 (last modified on Sat Oct 21 20:12:57 2023) since it couldn't be found locally at togethercomputer/RedPajama-Data-1T-Sample., or remotely on the Hugging Face Hub. ``` But it seems that the paths couldn't be properly parsed when loading iteratively. How should I fix this error. I've tried specifying `data_files` or `data_dir` as `.../arxiv_sample.jsonl` but none of them works. Thanks. ### Expected behavior Properly load the dataset. ### Environment info `datasets==2.14.5`
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6327/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6327/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6326
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6326/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6326/comments
https://api.github.com/repos/huggingface/datasets/issues/6326/events
https://github.com/huggingface/datasets/pull/6326
1,955,420,536
PR_kwDODunzps5dcSRa
6,326
Create battery_analysis.py
{ "login": "vinitkm", "id": 130216732, "node_id": "U_kgDOB8LzHA", "avatar_url": "https://avatars.githubusercontent.com/u/130216732?v=4", "gravatar_id": "", "url": "https://api.github.com/users/vinitkm", "html_url": "https://github.com/vinitkm", "followers_url": "https://api.github.com/users/vinitkm/followers", "following_url": "https://api.github.com/users/vinitkm/following{/other_user}", "gists_url": "https://api.github.com/users/vinitkm/gists{/gist_id}", "starred_url": "https://api.github.com/users/vinitkm/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/vinitkm/subscriptions", "organizations_url": "https://api.github.com/users/vinitkm/orgs", "repos_url": "https://api.github.com/users/vinitkm/repos", "events_url": "https://api.github.com/users/vinitkm/events{/privacy}", "received_events_url": "https://api.github.com/users/vinitkm/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[]
2023-10-21T10:07:48
2023-10-23T14:56:20
2023-10-23T14:56:20
NONE
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6326", "html_url": "https://github.com/huggingface/datasets/pull/6326", "diff_url": "https://github.com/huggingface/datasets/pull/6326.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6326.patch", "merged_at": null }
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6326/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6326/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6325
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6325/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6325/comments
https://api.github.com/repos/huggingface/datasets/issues/6325/events
https://github.com/huggingface/datasets/pull/6325
1,955,420,178
PR_kwDODunzps5dcSM3
6,325
Create battery_analysis.py
{ "login": "vinitkm", "id": 130216732, "node_id": "U_kgDOB8LzHA", "avatar_url": "https://avatars.githubusercontent.com/u/130216732?v=4", "gravatar_id": "", "url": "https://api.github.com/users/vinitkm", "html_url": "https://github.com/vinitkm", "followers_url": "https://api.github.com/users/vinitkm/followers", "following_url": "https://api.github.com/users/vinitkm/following{/other_user}", "gists_url": "https://api.github.com/users/vinitkm/gists{/gist_id}", "starred_url": "https://api.github.com/users/vinitkm/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/vinitkm/subscriptions", "organizations_url": "https://api.github.com/users/vinitkm/orgs", "repos_url": "https://api.github.com/users/vinitkm/repos", "events_url": "https://api.github.com/users/vinitkm/events{/privacy}", "received_events_url": "https://api.github.com/users/vinitkm/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[]
2023-10-21T10:06:37
2023-10-23T14:55:58
2023-10-23T14:55:58
NONE
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6325", "html_url": "https://github.com/huggingface/datasets/pull/6325", "diff_url": "https://github.com/huggingface/datasets/pull/6325.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6325.patch", "merged_at": null }
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6325/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6325/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6324
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6324/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6324/comments
https://api.github.com/repos/huggingface/datasets/issues/6324/events
https://github.com/huggingface/datasets/issues/6324
1,955,126,687
I_kwDODunzps50iN2f
6,324
Conversion to Arrow fails due to wrong type heuristic
{ "login": "jphme", "id": 2862336, "node_id": "MDQ6VXNlcjI4NjIzMzY=", "avatar_url": "https://avatars.githubusercontent.com/u/2862336?v=4", "gravatar_id": "", "url": "https://api.github.com/users/jphme", "html_url": "https://github.com/jphme", "followers_url": "https://api.github.com/users/jphme/followers", "following_url": "https://api.github.com/users/jphme/following{/other_user}", "gists_url": "https://api.github.com/users/jphme/gists{/gist_id}", "starred_url": "https://api.github.com/users/jphme/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jphme/subscriptions", "organizations_url": "https://api.github.com/users/jphme/orgs", "repos_url": "https://api.github.com/users/jphme/repos", "events_url": "https://api.github.com/users/jphme/events{/privacy}", "received_events_url": "https://api.github.com/users/jphme/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "Unlike Pandas, Arrow is strict with types, so converting the problematic strings to ints (or ints to strings) to ensure all the values have the same type is the only fix. \r\n\r\nJSON support has been requested in Arrow [here](https://github.com/apache/arrow/issues/32538), but I don't expect this to be implemented soon. \r\n\r\nAlso, this type could be represented with the Arrow Union type. However, due to low usage, the Union type has limited support in the Arrow ecosystem (e.g., IIRC Parquet still does not support it). So, we should probably wait a bit more before adding support for it in `datasets`", "> Unlike Pandas, Arrow is strict with types, so converting the problematic strings to ints (or ints to strings) to ensure all the values have the same type is the only fix.\r\n> \r\n> JSON support has been requested in Arrow [here](https://github.com/apache/arrow/issues/32538), but I don't expect this to be implemented soon.\r\n> \r\n> Also, this type could be represented with the Arrow Union type. However, due to low usage, the Union type has limited support in the Arrow ecosystem (e.g., IIRC Parquet still does not support it). So, we should probably wait a bit more before adding support for it in `datasets`\r\n\r\nOk many thanks, I was able to mitigate the problem by manually checking and converting all problematic fields now." ]
2023-10-20T23:20:58
2023-10-23T20:52:57
2023-10-23T20:52:57
NONE
null
null
null
### Describe the bug I have a list of dictionaries with valid/JSON-serializable values. One key is the denominator for a paragraph. In 99.9% of cases its a number, but there are some occurences of '1a', '2b' and so on. If trying to convert this list to a dataset with `Dataset.from_list()`, I always get `ArrowInvalid: Could not convert '1' with type str: tried to convert to int64`, presumably because pyarrow tries to convert the keys to integers. Is there any way to circumvent this and fix dtypes? I didn't find anything in the documentation. ### Steps to reproduce the bug * create a list of dicts with one key being a string of an integer for the first few thousand occurences and try to convert to dataset. ### Expected behavior There shouldn't be an error (e.g. some flag to turn off automatic str to numeric conversion). ### Environment info - `datasets` version: 2.14.5 - Platform: Linux-5.15.0-84-generic-x86_64-with-glibc2.35 - Python version: 3.9.18 - Huggingface_hub version: 0.17.3 - PyArrow version: 13.0.0 - Pandas version: 2.1.1
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6324/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6324/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6323
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6323/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6323/comments
https://api.github.com/repos/huggingface/datasets/issues/6323/events
https://github.com/huggingface/datasets/issues/6323
1,954,245,980
I_kwDODunzps50e21c
6,323
Loading dataset from large GCS bucket very slow since 2.14
{ "login": "jbcdnr", "id": 6209990, "node_id": "MDQ6VXNlcjYyMDk5OTA=", "avatar_url": "https://avatars.githubusercontent.com/u/6209990?v=4", "gravatar_id": "", "url": "https://api.github.com/users/jbcdnr", "html_url": "https://github.com/jbcdnr", "followers_url": "https://api.github.com/users/jbcdnr/followers", "following_url": "https://api.github.com/users/jbcdnr/following{/other_user}", "gists_url": "https://api.github.com/users/jbcdnr/gists{/gist_id}", "starred_url": "https://api.github.com/users/jbcdnr/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jbcdnr/subscriptions", "organizations_url": "https://api.github.com/users/jbcdnr/orgs", "repos_url": "https://api.github.com/users/jbcdnr/repos", "events_url": "https://api.github.com/users/jbcdnr/events{/privacy}", "received_events_url": "https://api.github.com/users/jbcdnr/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
[]
2023-10-20T12:59:55
2023-10-20T12:59:55
null
NONE
null
null
null
### Describe the bug Since updating to >2.14 we have very slow access to our parquet files on GCS when loading a dataset (>30 min vs 3s). Our GCS bucket has many objects and resolving globs is very slow. I could track down the problem to this change: https://github.com/huggingface/datasets/blame/bade7af74437347a760830466eb74f7a8ce0d799/src/datasets/data_files.py#L348 The underlying implementation with gcsfs is really slow. Could you go back to the old way if we are simply giving the parquet files and no glob pattern? Thank you. ### Steps to reproduce the bug Load a dataset from a GCS bucket that has many files. ### Expected behavior Used to be fast (3s) in 2.13 ### Environment info datasets==2.14.5
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6323/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6323/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6322
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6322/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6322/comments
https://api.github.com/repos/huggingface/datasets/issues/6322/events
https://github.com/huggingface/datasets/pull/6322
1,952,947,461
PR_kwDODunzps5dT5vG
6,322
Fix regex `get_data_files` formatting for base paths
{ "login": "ZachNagengast", "id": 1981179, "node_id": "MDQ6VXNlcjE5ODExNzk=", "avatar_url": "https://avatars.githubusercontent.com/u/1981179?v=4", "gravatar_id": "", "url": "https://api.github.com/users/ZachNagengast", "html_url": "https://github.com/ZachNagengast", "followers_url": "https://api.github.com/users/ZachNagengast/followers", "following_url": "https://api.github.com/users/ZachNagengast/following{/other_user}", "gists_url": "https://api.github.com/users/ZachNagengast/gists{/gist_id}", "starred_url": "https://api.github.com/users/ZachNagengast/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ZachNagengast/subscriptions", "organizations_url": "https://api.github.com/users/ZachNagengast/orgs", "repos_url": "https://api.github.com/users/ZachNagengast/repos", "events_url": "https://api.github.com/users/ZachNagengast/events{/privacy}", "received_events_url": "https://api.github.com/users/ZachNagengast/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "_The documentation is not available anymore as the PR was closed or merged._", "> The reason why I used the the glob_pattern_to_regex in the entire pattern is because otherwise I got an error for Windows local paths: a base_path like 'C:\\\\Users\\\\runneradmin... made the function string_to_dict raise re.error: incomplete escape \\U at position 2\r\n\r\nWhat is the expected inputs and outputs for the windows `base_path`\r\n\r\n> That issue was fixed once we pass the base_path as POSIX.\r\n\r\nI'm not sure what you meant by that, are there still changes needed?\r\n", "We took the liberty of continuing this PR to include it in today's patch release :)\r\nI hope you don't mind", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007109 / 0.011353 (-0.004244) | 0.004209 / 0.011008 (-0.006799) | 0.097401 / 0.038508 (0.058892) | 0.079532 / 0.023109 (0.056423) | 0.341300 / 0.275898 (0.065402) | 0.402165 / 0.323480 (0.078685) | 0.005838 / 0.007986 (-0.002148) | 0.003310 / 0.004328 (-0.001018) | 0.072804 / 0.004250 (0.068553) | 0.059418 / 0.037052 (0.022366) | 0.339277 / 0.258489 (0.080788) | 0.418495 / 0.293841 (0.124654) | 0.035975 / 0.128546 (-0.092571) | 0.008101 / 0.075646 (-0.067546) | 0.339236 / 0.419271 (-0.080035) | 0.059326 / 0.043533 (0.015794) | 0.326880 / 0.255139 (0.071741) | 0.393614 / 0.283200 (0.110414) | 0.025830 / 0.141683 (-0.115852) | 1.657726 / 1.452155 (0.205571) | 1.817250 / 1.492716 (0.324534) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.256015 / 0.018006 (0.238008) | 0.482447 / 0.000490 (0.481957) | 0.012166 / 0.000200 (0.011966) | 0.000343 / 0.000054 (0.000288) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029898 / 0.037411 (-0.007514) | 0.088218 / 0.014526 (0.073692) | 0.102353 / 0.176557 (-0.074203) | 0.165863 / 0.737135 (-0.571272) | 0.100342 / 0.296338 (-0.195996) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.429362 / 0.215209 (0.214153) | 4.147327 / 2.077655 (2.069672) | 2.014653 / 1.504120 (0.510533) | 1.824394 / 1.541195 (0.283199) | 1.936408 / 1.468490 (0.467917) | 0.542960 / 4.584777 (-4.041817) | 3.917215 / 3.745712 (0.171503) | 3.714825 / 5.269862 (-1.555036) | 2.180279 / 4.565676 (-2.385398) | 0.057808 / 0.424275 (-0.366467) | 0.008426 / 0.007607 (0.000819) | 0.472372 / 0.226044 (0.246327) | 4.879656 / 2.268929 (2.610728) | 2.602729 / 55.444624 (-52.841896) | 2.142593 / 6.876477 (-4.733884) | 2.206070 / 2.142072 (0.063997) | 0.635591 / 4.805227 (-4.169636) | 0.140928 / 6.500664 (-6.359736) | 0.065119 / 0.075469 (-0.010350) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.455909 / 1.841788 (-0.385879) | 20.803592 / 8.074308 (12.729284) | 14.788713 / 10.191392 (4.597321) | 0.170546 / 0.680424 (-0.509878) | 0.021189 / 0.534201 (-0.513012) | 0.432368 / 0.579283 (-0.146915) | 0.444664 / 0.434364 (0.010300) | 0.517744 / 0.540337 (-0.022593) | 0.699265 / 1.386936 (-0.687671) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007592 / 0.011353 (-0.003760) | 0.004045 / 0.011008 (-0.006964) | 0.073434 / 0.038508 (0.034926) | 0.076962 / 0.023109 (0.053853) | 0.468873 / 0.275898 (0.192975) | 0.479968 / 0.323480 (0.156488) | 0.006270 / 0.007986 (-0.001716) | 0.003652 / 0.004328 (-0.000677) | 0.069893 / 0.004250 (0.065643) | 0.061902 / 0.037052 (0.024850) | 0.443379 / 0.258489 (0.184890) | 0.492627 / 0.293841 (0.198786) | 0.035967 / 0.128546 (-0.092579) | 0.009276 / 0.075646 (-0.066370) | 0.083060 / 0.419271 (-0.336212) | 0.050870 / 0.043533 (0.007337) | 0.438246 / 0.255139 (0.183107) | 0.472074 / 0.283200 (0.188874) | 0.023724 / 0.141683 (-0.117959) | 1.677178 / 1.452155 (0.225023) | 1.732273 / 1.492716 (0.239557) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.244693 / 0.018006 (0.226687) | 0.470067 / 0.000490 (0.469577) | 0.005574 / 0.000200 (0.005374) | 0.000105 / 0.000054 (0.000051) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.036242 / 0.037411 (-0.001169) | 0.099166 / 0.014526 (0.084641) | 0.116785 / 0.176557 (-0.059772) | 0.174986 / 0.737135 (-0.562149) | 0.118130 / 0.296338 (-0.178209) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.475907 / 0.215209 (0.260698) | 4.708125 / 2.077655 (2.630470) | 2.600855 / 1.504120 (1.096735) | 2.446498 / 1.541195 (0.905303) | 2.538786 / 1.468490 (1.070296) | 0.566787 / 4.584777 (-4.017990) | 4.066187 / 3.745712 (0.320475) | 3.743632 / 5.269862 (-1.526229) | 2.337737 / 4.565676 (-2.227939) | 0.068402 / 0.424275 (-0.355873) | 0.008674 / 0.007607 (0.001067) | 0.593428 / 0.226044 (0.367384) | 5.840687 / 2.268929 (3.571759) | 3.194937 / 55.444624 (-52.249688) | 2.899033 / 6.876477 (-3.977444) | 2.977870 / 2.142072 (0.835797) | 0.683673 / 4.805227 (-4.121554) | 0.154933 / 6.500664 (-6.345731) | 0.071619 / 0.075469 (-0.003850) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.501895 / 1.841788 (-0.339893) | 21.709792 / 8.074308 (13.635484) | 15.679556 / 10.191392 (5.488164) | 0.188028 / 0.680424 (-0.492396) | 0.022555 / 0.534201 (-0.511646) | 0.439840 / 0.579283 (-0.139443) | 0.452140 / 0.434364 (0.017776) | 0.526421 / 0.540337 (-0.013916) | 0.731692 / 1.386936 (-0.655244) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#02ecc84a2e2ed664f574ccbcab0e525a7377a01d \"CML watermark\")\n" ]
2023-10-19T19:45:10
2023-10-23T14:40:45
2023-10-23T14:31:21
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6322", "html_url": "https://github.com/huggingface/datasets/pull/6322", "diff_url": "https://github.com/huggingface/datasets/pull/6322.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6322.patch", "merged_at": "2023-10-23T14:31:21" }
With this pr https://github.com/huggingface/datasets/pull/6309, it is formatting the entire base path into regex, which results in the undesired formatting error `doesn't match the pattern` because of the line in `glob_pattern_to_regex`: `.replace("//", "/")`: - Input: `hf://datasets/...` - Output: `hf:/datasets/...` This fix will only convert the `split_pattern` to regex and keep the `base_path` unchanged. cc @albertvillanova hopefully this still works with your implementation
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6322/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6322/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6321
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6321/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6321/comments
https://api.github.com/repos/huggingface/datasets/issues/6321/events
https://github.com/huggingface/datasets/pull/6321
1,952,643,483
PR_kwDODunzps5dS3Mc
6,321
Fix typos
{ "login": "python273", "id": 3097956, "node_id": "MDQ6VXNlcjMwOTc5NTY=", "avatar_url": "https://avatars.githubusercontent.com/u/3097956?v=4", "gravatar_id": "", "url": "https://api.github.com/users/python273", "html_url": "https://github.com/python273", "followers_url": "https://api.github.com/users/python273/followers", "following_url": "https://api.github.com/users/python273/following{/other_user}", "gists_url": "https://api.github.com/users/python273/gists{/gist_id}", "starred_url": "https://api.github.com/users/python273/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/python273/subscriptions", "organizations_url": "https://api.github.com/users/python273/orgs", "repos_url": "https://api.github.com/users/python273/repos", "events_url": "https://api.github.com/users/python273/events{/privacy}", "received_events_url": "https://api.github.com/users/python273/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007809 / 0.011353 (-0.003544) | 0.004573 / 0.011008 (-0.006435) | 0.101201 / 0.038508 (0.062693) | 0.089703 / 0.023109 (0.066594) | 0.416502 / 0.275898 (0.140604) | 0.463352 / 0.323480 (0.139872) | 0.006101 / 0.007986 (-0.001885) | 0.003783 / 0.004328 (-0.000545) | 0.076531 / 0.004250 (0.072281) | 0.064017 / 0.037052 (0.026964) | 0.422453 / 0.258489 (0.163964) | 0.485926 / 0.293841 (0.192085) | 0.036797 / 0.128546 (-0.091749) | 0.010172 / 0.075646 (-0.065474) | 0.344442 / 0.419271 (-0.074829) | 0.062240 / 0.043533 (0.018707) | 0.422685 / 0.255139 (0.167546) | 0.451457 / 0.283200 (0.168257) | 0.027831 / 0.141683 (-0.113852) | 1.737187 / 1.452155 (0.285033) | 1.847631 / 1.492716 (0.354915) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.270336 / 0.018006 (0.252330) | 0.500540 / 0.000490 (0.500050) | 0.017042 / 0.000200 (0.016842) | 0.000704 / 0.000054 (0.000650) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033450 / 0.037411 (-0.003962) | 0.100314 / 0.014526 (0.085788) | 0.117216 / 0.176557 (-0.059340) | 0.182352 / 0.737135 (-0.554784) | 0.114903 / 0.296338 (-0.181436) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.458562 / 0.215209 (0.243353) | 4.570492 / 2.077655 (2.492837) | 2.230286 / 1.504120 (0.726167) | 2.032229 / 1.541195 (0.491034) | 2.130431 / 1.468490 (0.661941) | 0.563254 / 4.584777 (-4.021523) | 4.108455 / 3.745712 (0.362743) | 3.994059 / 5.269862 (-1.275802) | 2.424589 / 4.565676 (-2.141087) | 0.067534 / 0.424275 (-0.356741) | 0.008774 / 0.007607 (0.001167) | 0.546356 / 0.226044 (0.320312) | 5.527772 / 2.268929 (3.258843) | 2.934410 / 55.444624 (-52.510215) | 2.536871 / 6.876477 (-4.339605) | 2.598704 / 2.142072 (0.456632) | 0.676721 / 4.805227 (-4.128506) | 0.155904 / 6.500664 (-6.344760) | 0.073274 / 0.075469 (-0.002195) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.559170 / 1.841788 (-0.282618) | 23.228524 / 8.074308 (15.154216) | 16.743246 / 10.191392 (6.551854) | 0.184113 / 0.680424 (-0.496310) | 0.021804 / 0.534201 (-0.512397) | 0.466158 / 0.579283 (-0.113125) | 0.539911 / 0.434364 (0.105547) | 0.544377 / 0.540337 (0.004040) | 0.765779 / 1.386936 (-0.621157) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008249 / 0.011353 (-0.003104) | 0.004734 / 0.011008 (-0.006275) | 0.077083 / 0.038508 (0.038575) | 0.096959 / 0.023109 (0.073850) | 0.497501 / 0.275898 (0.221603) | 0.530687 / 0.323480 (0.207207) | 0.006379 / 0.007986 (-0.001607) | 0.003899 / 0.004328 (-0.000430) | 0.076165 / 0.004250 (0.071915) | 0.069406 / 0.037052 (0.032354) | 0.515847 / 0.258489 (0.257358) | 0.540639 / 0.293841 (0.246798) | 0.038334 / 0.128546 (-0.090213) | 0.010112 / 0.075646 (-0.065534) | 0.084918 / 0.419271 (-0.334353) | 0.056866 / 0.043533 (0.013333) | 0.495555 / 0.255139 (0.240416) | 0.518988 / 0.283200 (0.235789) | 0.028556 / 0.141683 (-0.113127) | 1.799320 / 1.452155 (0.347165) | 1.874647 / 1.492716 (0.381931) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.264283 / 0.018006 (0.246277) | 0.510278 / 0.000490 (0.509788) | 0.015219 / 0.000200 (0.015019) | 0.000160 / 0.000054 (0.000105) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.038462 / 0.037411 (0.001051) | 0.115420 / 0.014526 (0.100894) | 0.124250 / 0.176557 (-0.052306) | 0.187724 / 0.737135 (-0.549411) | 0.126674 / 0.296338 (-0.169664) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.499345 / 0.215209 (0.284136) | 4.983924 / 2.077655 (2.906269) | 2.705099 / 1.504120 (1.200980) | 2.516344 / 1.541195 (0.975149) | 2.621103 / 1.468490 (1.152613) | 0.583254 / 4.584777 (-4.001523) | 4.231215 / 3.745712 (0.485503) | 4.028326 / 5.269862 (-1.241536) | 2.459171 / 4.565676 (-2.106505) | 0.069194 / 0.424275 (-0.355081) | 0.008850 / 0.007607 (0.001243) | 0.593878 / 0.226044 (0.367834) | 5.926478 / 2.268929 (3.657549) | 3.287435 / 55.444624 (-52.157189) | 2.902104 / 6.876477 (-3.974372) | 3.151307 / 2.142072 (1.009234) | 0.696922 / 4.805227 (-4.108306) | 0.161140 / 6.500664 (-6.339524) | 0.073728 / 0.075469 (-0.001741) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.636456 / 1.841788 (-0.205331) | 23.884606 / 8.074308 (15.810298) | 17.180875 / 10.191392 (6.989483) | 0.176782 / 0.680424 (-0.503642) | 0.023731 / 0.534201 (-0.510470) | 0.475191 / 0.579283 (-0.104092) | 0.506603 / 0.434364 (0.072239) | 0.571976 / 0.540337 (0.031638) | 0.826935 / 1.386936 (-0.560002) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#2b19f6b30f49e09b0d1f0c4a38b10d76f35ac483 \"CML watermark\")\n" ]
2023-10-19T16:24:35
2023-10-19T17:18:00
2023-10-19T17:07:35
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6321", "html_url": "https://github.com/huggingface/datasets/pull/6321", "diff_url": "https://github.com/huggingface/datasets/pull/6321.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6321.patch", "merged_at": "2023-10-19T17:07:35" }
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6321/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6321/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6320
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6320/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6320/comments
https://api.github.com/repos/huggingface/datasets/issues/6320/events
https://github.com/huggingface/datasets/issues/6320
1,952,618,316
I_kwDODunzps50YpdM
6,320
Dataset slice splits can't load training and validation at the same time
{ "login": "timlac", "id": 32488097, "node_id": "MDQ6VXNlcjMyNDg4MDk3", "avatar_url": "https://avatars.githubusercontent.com/u/32488097?v=4", "gravatar_id": "", "url": "https://api.github.com/users/timlac", "html_url": "https://github.com/timlac", "followers_url": "https://api.github.com/users/timlac/followers", "following_url": "https://api.github.com/users/timlac/following{/other_user}", "gists_url": "https://api.github.com/users/timlac/gists{/gist_id}", "starred_url": "https://api.github.com/users/timlac/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/timlac/subscriptions", "organizations_url": "https://api.github.com/users/timlac/orgs", "repos_url": "https://api.github.com/users/timlac/repos", "events_url": "https://api.github.com/users/timlac/events{/privacy}", "received_events_url": "https://api.github.com/users/timlac/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "The expression \"train+test\" concatenates the splits.\r\n\r\nThe individual splits as separate datasets can be obtained as follows:\r\n```python\r\ntrain_ds, test_ds = load_dataset(\"<dataset_name>\", split=[\"train\", \"test\"])\r\ntrain_10pct_ds, test_10pct_ds = load_dataset(\"<dataset_name>\", split=[\"train[:10%]\", \"test[:%10]\"])\r\n```" ]
2023-10-19T16:09:22
2023-11-30T16:21:15
2023-11-30T16:21:15
NONE
null
null
null
### Describe the bug According to the [documentation](https://huggingface.co./docs/datasets/v2.14.5/loading#slice-splits) is should be possible to run the following command: `train_test_ds = datasets.load_dataset("bookcorpus", split="train+test")` to load the train and test sets from the dataset. However executing the equivalent code: `speech_commands_v1 = load_dataset("superb", "ks", split="train+test")` only yields the following output: > Dataset({ > features: ['file', 'audio', 'label'], > num_rows: 54175 > }) Where loading the dataset without the split argument yields: > DatasetDict({ > train: Dataset({ > features: ['file', 'audio', 'label'], > num_rows: 51094 > }) > validation: Dataset({ > features: ['file', 'audio', 'label'], > num_rows: 6798 > }) > test: Dataset({ > features: ['file', 'audio', 'label'], > num_rows: 3081 > }) > }) Thus, the API seems to be broken in this regard. This is a bit annoying since I want to be able to use the split argument with `split="train[:10%]+test[:10%]"` to have smaller dataset to work with when validating my model is working correctly. ### Steps to reproduce the bug `speech_commands_v1 = load_dataset("superb", "ks", split="train+test")` ### Expected behavior > DatasetDict({ > train: Dataset({ > features: ['file', 'audio', 'label'], > num_rows: 51094 > }) > test: Dataset({ > features: ['file', 'audio', 'label'], > num_rows: 3081 > }) > }) ### Environment info ``` import datasets print(datasets.__version__) ``` > 2.14.5 ``` import sys print(sys.version) ``` > 3.9.17 (main, Jul 5 2023, 20:41:20) > [GCC 11.2.0]
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6320/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6320/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6319
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6319/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6319/comments
https://api.github.com/repos/huggingface/datasets/issues/6319/events
https://github.com/huggingface/datasets/issues/6319
1,952,101,717
I_kwDODunzps50WrVV
6,319
Datasets.map is severely broken
{ "login": "phalexo", "id": 4603365, "node_id": "MDQ6VXNlcjQ2MDMzNjU=", "avatar_url": "https://avatars.githubusercontent.com/u/4603365?v=4", "gravatar_id": "", "url": "https://api.github.com/users/phalexo", "html_url": "https://github.com/phalexo", "followers_url": "https://api.github.com/users/phalexo/followers", "following_url": "https://api.github.com/users/phalexo/following{/other_user}", "gists_url": "https://api.github.com/users/phalexo/gists{/gist_id}", "starred_url": "https://api.github.com/users/phalexo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/phalexo/subscriptions", "organizations_url": "https://api.github.com/users/phalexo/orgs", "repos_url": "https://api.github.com/users/phalexo/repos", "events_url": "https://api.github.com/users/phalexo/events{/privacy}", "received_events_url": "https://api.github.com/users/phalexo/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
[ "Hi! Instead of processing a single example at a time, you should use the batched `map` for the best performance (with `num_proc=1`) - the fast tokenizers can process a batch's samples in parallel in that scenario.\r\n\r\nE.g., the following code in Colab takes an hour to complete:\r\n```python\r\n# !pip install datasets transformers\r\nfrom datasets import load_dataset\r\nfrom transformers import AutoTokenizer\r\ntokenizer = AutoTokenizer.from_pretrained(\"bert-base-cased\")\r\ndataset = dataset.map(lambda ex: tokenizer(ex[\"text\"]), batched=True, remove_columns=[\"text\", \"meta\"])\r\n```", "Batched is far worse. A single batch of 1000 took hours and that was only 1%\r\n\r\n\r\nOn Thu, Oct 19, 2023, 2:26 PM Mario Šaško ***@***.***> wrote:\r\n\r\n> Hi! You should use the batched map for the best performance (with\r\n> num_proc=1) - the fast tokenizers can process a batch's samples in\r\n> parallel.\r\n>\r\n> E.g., the following code in Colab takes an hour to complete:\r\n>\r\n> # !pip install datasets transformersfrom datasets import load_datasetfrom transformers import AutoTokenizertokenizer = AutoTokenizer.from_pretrained(\"bert-base-cased\")dataset = dataset.map(lambda ex: tokenizer(ex[\"text\"]), batched=True, remove_columns=[\"text\", \"meta\"])\r\n>\r\n> —\r\n> Reply to this email directly, view it on GitHub\r\n> <https://github.com/huggingface/datasets/issues/6319#issuecomment-1771503757>,\r\n> or unsubscribe\r\n> <https://github.com/notifications/unsubscribe-auth/ABDD3ZJHPSRVDEXFNMXR2N3YAFWFZAVCNFSM6AAAAAA6HDKPSCVHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMYTONZRGUYDGNZVG4>\r\n> .\r\n> You are receiving this because you authored the thread.Message ID:\r\n> ***@***.***>\r\n>\r\n", "Can you please provide a self-contained reproducer?", "Which specific version of datasets are you using?\r\n\r\nWhat is the architecture of your colab setup? Ram? Cores? OS?\r\n\r\n\r\nOn Thu, Oct 19, 2023, 2:27 PM pensive introvert ***@***.***>\r\nwrote:\r\n\r\n> Batched is far worse. A single batch of 1000 took hours and that was only\r\n> 1%\r\n>\r\n>\r\n> On Thu, Oct 19, 2023, 2:26 PM Mario Šaško ***@***.***>\r\n> wrote:\r\n>\r\n>> Hi! You should use the batched map for the best performance (with\r\n>> num_proc=1) - the fast tokenizers can process a batch's samples in\r\n>> parallel.\r\n>>\r\n>> E.g., the following code in Colab takes an hour to complete:\r\n>>\r\n>> # !pip install datasets transformersfrom datasets import load_datasetfrom transformers import AutoTokenizertokenizer = AutoTokenizer.from_pretrained(\"bert-base-cased\")dataset = dataset.map(lambda ex: tokenizer(ex[\"text\"]), batched=True, remove_columns=[\"text\", \"meta\"])\r\n>>\r\n>> —\r\n>> Reply to this email directly, view it on GitHub\r\n>> <https://github.com/huggingface/datasets/issues/6319#issuecomment-1771503757>,\r\n>> or unsubscribe\r\n>> <https://github.com/notifications/unsubscribe-auth/ABDD3ZJHPSRVDEXFNMXR2N3YAFWFZAVCNFSM6AAAAAA6HDKPSCVHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMYTONZRGUYDGNZVG4>\r\n>> .\r\n>> You are receiving this because you authored the thread.Message ID:\r\n>> ***@***.***>\r\n>>\r\n>\r\n", "from functools import partial\r\nimport transformers\r\nfrom datasets import load_dataset, concatenate_datasets, load_from_disk\r\n\r\nmodel_name_or_path=\"/opt/data/data/daryl149/llama-2-7b-chat-hf\"\r\noutput_dir=\"/opt/data/data/LongLoRA/checkpoints\"\r\ncache_dir=\"/opt/data/data/LongLoRA/cache\"\r\nmodel_max_length=16384\r\n\r\nIGNORE_INDEX = -100\r\nDEFAULT_PAD_TOKEN = \"[PAD]\"\r\nDEFAULT_EOS_TOKEN = \"</s>\"\r\nDEFAULT_BOS_TOKEN = \"<s>\"\r\nDEFAULT_UNK_TOKEN = \"<unk>\"\r\n\r\n\r\ntokenizer = transformers.LlamaTokenizerFast.from_pretrained(\r\n model_name_or_path,\r\n cache_dir=cache_dir,\r\n model_max_length=model_max_length,\r\n padding_side=\"right\",\r\n use_fast=True,\r\n #use_fast=False\r\n)\r\n\r\nspecial_tokens_dict = dict()\r\nif tokenizer.pad_token is None:\r\n special_tokens_dict[\"pad_token\"] = DEFAULT_PAD_TOKEN\r\nif tokenizer.eos_token is None:\r\n special_tokens_dict[\"eos_token\"] = DEFAULT_EOS_TOKEN\r\nif tokenizer.bos_token is None:\r\n special_tokens_dict[\"bos_token\"] = DEFAULT_BOS_TOKEN\r\nif tokenizer.unk_token is None:\r\n special_tokens_dict[\"unk_token\"] = DEFAULT_UNK_TOKEN\r\n\r\ntokenizer.add_special_tokens(special_tokens_dict)\r\n\r\ndef tokenize_fn(tokenizer, example):\r\n context_length = tokenizer.model_max_length\r\n outputs = tokenizer(\r\n tokenizer.eos_token.join(example[\"text\"]),\r\n #truncation=False,\r\n truncation=True,\r\n return_tensors=\"pt\",\r\n #return_tensors=\"np\",\r\n pad_to_multiple_of=context_length,\r\n padding=True,\r\n )\r\n return {\"input_ids\": outputs[\"input_ids\"].view(-1, context_length)}\r\n\r\nfor idx in range(100):\r\n dataset = load_dataset(\"togethercomputer/RedPajama-Data-1T-Sample\",\r\ncache_dir=cache_dir, split=f'train[{idx}%:{idx+1}%]')\r\n dataset = dataset.map(partial(tokenize_fn, tokenizer), batched=False,\r\nnum_proc=16, remove_columns=[\"text\", \"meta\"])\r\n dataset.save_to_disk(training_args.cache_dir + f\"/training_data_{idx}\")\r\n\r\n\r\nOn Thu, Oct 19, 2023 at 2:30 PM Mario Šaško ***@***.***>\r\nwrote:\r\n\r\n> Can you please provide a self-contained reproducer?\r\n>\r\n> —\r\n> Reply to this email directly, view it on GitHub\r\n> <https://github.com/huggingface/datasets/issues/6319#issuecomment-1771509229>,\r\n> or unsubscribe\r\n> <https://github.com/notifications/unsubscribe-auth/ABDD3ZNBZ3BE7Q4EQZZK6MLYAFWURAVCNFSM6AAAAAA6HDKPSCVHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMYTONZRGUYDSMRSHE>\r\n> .\r\n> You are receiving this because you authored the thread.Message ID:\r\n> ***@***.***>\r\n>\r\n", "I changed the tokenizer to one without \"Fast suffix, and something changed.\r\nThe fraction, although still slowed a lot at 80% was able to get over the\r\nfinish line of 100%\r\n\r\nI have to do more testng, see if the whole set can be processed\r\n\r\n\r\n\r\nOn Thu, Oct 19, 2023 at 3:03 PM pensive introvert <\r\n***@***.***> wrote:\r\n\r\n> from functools import partial\r\n> import transformers\r\n> from datasets import load_dataset, concatenate_datasets, load_from_disk\r\n>\r\n> model_name_or_path=\"/opt/data/data/daryl149/llama-2-7b-chat-hf\"\r\n> output_dir=\"/opt/data/data/LongLoRA/checkpoints\"\r\n> cache_dir=\"/opt/data/data/LongLoRA/cache\"\r\n> model_max_length=16384\r\n>\r\n> IGNORE_INDEX = -100\r\n> DEFAULT_PAD_TOKEN = \"[PAD]\"\r\n> DEFAULT_EOS_TOKEN = \"</s>\"\r\n> DEFAULT_BOS_TOKEN = \"<s>\"\r\n> DEFAULT_UNK_TOKEN = \"<unk>\"\r\n>\r\n>\r\n> tokenizer = transformers.LlamaTokenizerFast.from_pretrained(\r\n> model_name_or_path,\r\n> cache_dir=cache_dir,\r\n> model_max_length=model_max_length,\r\n> padding_side=\"right\",\r\n> use_fast=True,\r\n> #use_fast=False\r\n> )\r\n>\r\n> special_tokens_dict = dict()\r\n> if tokenizer.pad_token is None:\r\n> special_tokens_dict[\"pad_token\"] = DEFAULT_PAD_TOKEN\r\n> if tokenizer.eos_token is None:\r\n> special_tokens_dict[\"eos_token\"] = DEFAULT_EOS_TOKEN\r\n> if tokenizer.bos_token is None:\r\n> special_tokens_dict[\"bos_token\"] = DEFAULT_BOS_TOKEN\r\n> if tokenizer.unk_token is None:\r\n> special_tokens_dict[\"unk_token\"] = DEFAULT_UNK_TOKEN\r\n>\r\n> tokenizer.add_special_tokens(special_tokens_dict)\r\n>\r\n> def tokenize_fn(tokenizer, example):\r\n> context_length = tokenizer.model_max_length\r\n> outputs = tokenizer(\r\n> tokenizer.eos_token.join(example[\"text\"]),\r\n> #truncation=False,\r\n> truncation=True,\r\n> return_tensors=\"pt\",\r\n> #return_tensors=\"np\",\r\n> pad_to_multiple_of=context_length,\r\n> padding=True,\r\n> )\r\n> return {\"input_ids\": outputs[\"input_ids\"].view(-1, context_length)}\r\n>\r\n> for idx in range(100):\r\n> dataset = load_dataset(\"togethercomputer/RedPajama-Data-1T-Sample\",\r\n> cache_dir=cache_dir, split=f'train[{idx}%:{idx+1}%]')\r\n> dataset = dataset.map(partial(tokenize_fn, tokenizer), batched=False,\r\n> num_proc=16, remove_columns=[\"text\", \"meta\"])\r\n> dataset.save_to_disk(training_args.cache_dir + f\"/training_data_{idx}\")\r\n>\r\n>\r\n> On Thu, Oct 19, 2023 at 2:30 PM Mario Šaško ***@***.***>\r\n> wrote:\r\n>\r\n>> Can you please provide a self-contained reproducer?\r\n>>\r\n>> —\r\n>> Reply to this email directly, view it on GitHub\r\n>> <https://github.com/huggingface/datasets/issues/6319#issuecomment-1771509229>,\r\n>> or unsubscribe\r\n>> <https://github.com/notifications/unsubscribe-auth/ABDD3ZNBZ3BE7Q4EQZZK6MLYAFWURAVCNFSM6AAAAAA6HDKPSCVHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMYTONZRGUYDSMRSHE>\r\n>> .\r\n>> You are receiving this because you authored the thread.Message ID:\r\n>> ***@***.***>\r\n>>\r\n>\r\n", "So, using LlamaTokenizerFast was the problem. Changing it to LlamaTokenizer\r\nfixed things,\r\n\r\nOn Thu, Oct 19, 2023 at 4:04 PM pensive introvert <\r\n***@***.***> wrote:\r\n\r\n> I changed the tokenizer to one without \"Fast suffix, and something\r\n> changed. The fraction, although still slowed a lot at 80% was able to get\r\n> over the finish line of 100%\r\n>\r\n> I have to do more testng, see if the whole set can be processed\r\n>\r\n>\r\n>\r\n> On Thu, Oct 19, 2023 at 3:03 PM pensive introvert <\r\n> ***@***.***> wrote:\r\n>\r\n>> from functools import partial\r\n>> import transformers\r\n>> from datasets import load_dataset, concatenate_datasets, load_from_disk\r\n>>\r\n>> model_name_or_path=\"/opt/data/data/daryl149/llama-2-7b-chat-hf\"\r\n>> output_dir=\"/opt/data/data/LongLoRA/checkpoints\"\r\n>> cache_dir=\"/opt/data/data/LongLoRA/cache\"\r\n>> model_max_length=16384\r\n>>\r\n>> IGNORE_INDEX = -100\r\n>> DEFAULT_PAD_TOKEN = \"[PAD]\"\r\n>> DEFAULT_EOS_TOKEN = \"</s>\"\r\n>> DEFAULT_BOS_TOKEN = \"<s>\"\r\n>> DEFAULT_UNK_TOKEN = \"<unk>\"\r\n>>\r\n>>\r\n>> tokenizer = transformers.LlamaTokenizerFast.from_pretrained(\r\n>> model_name_or_path,\r\n>> cache_dir=cache_dir,\r\n>> model_max_length=model_max_length,\r\n>> padding_side=\"right\",\r\n>> use_fast=True,\r\n>> #use_fast=False\r\n>> )\r\n>>\r\n>> special_tokens_dict = dict()\r\n>> if tokenizer.pad_token is None:\r\n>> special_tokens_dict[\"pad_token\"] = DEFAULT_PAD_TOKEN\r\n>> if tokenizer.eos_token is None:\r\n>> special_tokens_dict[\"eos_token\"] = DEFAULT_EOS_TOKEN\r\n>> if tokenizer.bos_token is None:\r\n>> special_tokens_dict[\"bos_token\"] = DEFAULT_BOS_TOKEN\r\n>> if tokenizer.unk_token is None:\r\n>> special_tokens_dict[\"unk_token\"] = DEFAULT_UNK_TOKEN\r\n>>\r\n>> tokenizer.add_special_tokens(special_tokens_dict)\r\n>>\r\n>> def tokenize_fn(tokenizer, example):\r\n>> context_length = tokenizer.model_max_length\r\n>> outputs = tokenizer(\r\n>> tokenizer.eos_token.join(example[\"text\"]),\r\n>> #truncation=False,\r\n>> truncation=True,\r\n>> return_tensors=\"pt\",\r\n>> #return_tensors=\"np\",\r\n>> pad_to_multiple_of=context_length,\r\n>> padding=True,\r\n>> )\r\n>> return {\"input_ids\": outputs[\"input_ids\"].view(-1, context_length)}\r\n>>\r\n>> for idx in range(100):\r\n>> dataset = load_dataset(\"togethercomputer/RedPajama-Data-1T-Sample\",\r\n>> cache_dir=cache_dir, split=f'train[{idx}%:{idx+1}%]')\r\n>> dataset = dataset.map(partial(tokenize_fn, tokenizer), batched=False,\r\n>> num_proc=16, remove_columns=[\"text\", \"meta\"])\r\n>> dataset.save_to_disk(training_args.cache_dir +\r\n>> f\"/training_data_{idx}\")\r\n>>\r\n>>\r\n>> On Thu, Oct 19, 2023 at 2:30 PM Mario Šaško ***@***.***>\r\n>> wrote:\r\n>>\r\n>>> Can you please provide a self-contained reproducer?\r\n>>>\r\n>>> —\r\n>>> Reply to this email directly, view it on GitHub\r\n>>> <https://github.com/huggingface/datasets/issues/6319#issuecomment-1771509229>,\r\n>>> or unsubscribe\r\n>>> <https://github.com/notifications/unsubscribe-auth/ABDD3ZNBZ3BE7Q4EQZZK6MLYAFWURAVCNFSM6AAAAAA6HDKPSCVHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMYTONZRGUYDSMRSHE>\r\n>>> .\r\n>>> You are receiving this because you authored the thread.Message ID:\r\n>>> ***@***.***>\r\n>>>\r\n>>\r\n", "Indeed, the tokenizer is super slow. Perhaps @ArthurZucker knows the reason why.\r\n\r\n([This](https://colab.research.google.com/drive/1VgeurX-4Fl2X6aBQTwh_X4kuQKZ6K9L1?usp=sharing) simplified Colab can be used to reproduce the behavior)", "same issue here\r\nsample to reproduce: https://github.com/philschmid/document-ai-transformers/blob/main/training/donut_sroie.ipynb\r\nwith following map line\r\nhttps://github.com/philschmid/document-ai-transformers/blob/main/training/donut_sroie.ipynb\r\n\r\nIf I directly iterate over the dataset and call the mapping method, it is very fast\r\n```py\r\nfor sample in dataset:\r\n def preprocess_documents_for_donut(sample):\r\n```\r\n\r\nif i removed `.convert('RGB')` It can run to completion without getting stuck. I suspect it has something to do with the Image.\r\n\r\nIf I use batch, it's even slower.", "@ewfian \r\n\r\n> If I directly iterate over the dataset and call the mapping method, it is very fast\r\n\r\n`Dataset.map` must also convert the images into bytes to write them to an Arrow file (the write itself takes some time, too). \r\n\r\nYou can make the `map` faster by manually converting the images into an \"arrow-compatible\" representation. Otherwise, the Pillow defaults are used when saving an image, which seems particularly slow for the notebook's case.\r\n\r\n```python\r\ndef preprocess_documents_for_donut(sample):\r\n text = json.loads(sample[\"text\"])\r\n d_doc = task_start_token + json2token(text) + eos_token\r\n image = sample[\"image\"].convert('RGB')\r\n # convert image to bytes\r\n buffer = io.BytesIO()\r\n image.save(buffer, format=\"PNG\", compress_level=1)\r\n return {\"image\": {\"bytes\": buffer.getvalue()}, \"text\": d_doc}\r\n\r\nproc_dataset = dataset.map(preprocess_documents_for_donut, writer_batch_size=50)\r\n```", "The problem I had was to do with map using fork and copying locks from the\r\nparent process in acquired state. I ended up changing the context to use\r\nforkserver instead.\r\n\r\n\r\nOn Wed, Nov 29, 2023, 10:04 PM Mario Šaško ***@***.***> wrote:\r\n\r\n> @ewfian <https://github.com/ewfian>\r\n>\r\n> If I directly iterate over the dataset and call the mapping method, it is\r\n> very fast\r\n>\r\n> Dataset.map must also convert the images into bytes to write them to an\r\n> Arrow file (the write itself takes some time, too).\r\n>\r\n> You can make the map faster by manually converting the images into an\r\n> \"arrow-compatible\" representation. Otherwise, the Pillow defaults are used\r\n> when saving an image, which seems particularly slow for the notebook's case.\r\n>\r\n> def preprocess_documents_for_donut(sample):\r\n> text = json.loads(sample[\"text\"])\r\n> d_doc = task_start_token + json2token(text) + eos_token\r\n> image = sample[\"image\"].convert('RGB')\r\n> # convert image to bytes\r\n> buffer = io.BytesIO()\r\n> image.save(buffer, format=\"PNG\", compress_level=1)\r\n> return {\"image\": {\"bytes\": buffer.getvalue()}, \"text\": d_doc}\r\n> proc_dataset = dataset.map(preprocess_documents_for_donut, writer_batch_size=50)\r\n>\r\n> —\r\n> Reply to this email directly, view it on GitHub\r\n> <https://github.com/huggingface/datasets/issues/6319#issuecomment-1833033973>,\r\n> or unsubscribe\r\n> <https://github.com/notifications/unsubscribe-auth/ABDD3ZKKEKJVWBFH7QHLRJ3YG7ZUJAVCNFSM6AAAAAA6HDKPSCVHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMYTQMZTGAZTGOJXGM>\r\n> .\r\n> You are receiving this because you authored the thread.Message ID:\r\n> ***@***.***>\r\n>\r\n" ]
2023-10-19T12:19:33
2023-11-30T03:27:26
null
NONE
null
null
null
### Describe the bug Regardless of how many cores I used, I have 16 or 32 threads, map slows down to a crawl at around 80% done, lingers maybe until 97% extremely slowly and NEVER finishes the job. It just hangs. After watching this for 27 hours I control-C out of it. Until the end one process appears to be doing something, but it never ends. I saw some comments about fast tokenizers using Rust and all and tried different variations. NOTHING works. ### Steps to reproduce the bug Running it without breaking the dataset into parts results in the same behavior. The loop was an attempt to see if this was a RAM issue. for idx in range(100): dataset = load_dataset("togethercomputer/RedPajama-Data-1T-Sample", cache_dir=cache_dir, split=f'train[{idx}%:{idx+1}%]') dataset = dataset.map(partial(tokenize_fn, tokenizer), batched=False, num_proc=1, remove_columns=["text", "meta"]) dataset.save_to_disk(training_args.cache_dir + f"/training_data_{idx}") ### Expected behavior I expect map to run at more or less the same speed it starts with and FINISH its processing. ### Environment info Python 3.8, same with 3.10 makes no difference. Ubuntu 20.04,
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6319/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6319/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6318
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6318/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6318/comments
https://api.github.com/repos/huggingface/datasets/issues/6318/events
https://github.com/huggingface/datasets/pull/6318
1,952,100,706
PR_kwDODunzps5dRC9V
6,318
Deterministic set hash
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006827 / 0.011353 (-0.004526) | 0.004468 / 0.011008 (-0.006540) | 0.088687 / 0.038508 (0.050179) | 0.072560 / 0.023109 (0.049451) | 0.333421 / 0.275898 (0.057523) | 0.374977 / 0.323480 (0.051497) | 0.005829 / 0.007986 (-0.002156) | 0.003284 / 0.004328 (-0.001045) | 0.068929 / 0.004250 (0.064678) | 0.057212 / 0.037052 (0.020160) | 0.328911 / 0.258489 (0.070422) | 0.389107 / 0.293841 (0.095266) | 0.033518 / 0.128546 (-0.095029) | 0.009919 / 0.075646 (-0.065728) | 0.308100 / 0.419271 (-0.111171) | 0.059380 / 0.043533 (0.015847) | 0.345587 / 0.255139 (0.090448) | 0.353703 / 0.283200 (0.070503) | 0.026454 / 0.141683 (-0.115229) | 1.573309 / 1.452155 (0.121155) | 1.663812 / 1.492716 (0.171095) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.255081 / 0.018006 (0.237075) | 0.472613 / 0.000490 (0.472123) | 0.016120 / 0.000200 (0.015920) | 0.000383 / 0.000054 (0.000328) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028219 / 0.037411 (-0.009192) | 0.086600 / 0.014526 (0.072074) | 0.099484 / 0.176557 (-0.077073) | 0.154604 / 0.737135 (-0.582531) | 0.099168 / 0.296338 (-0.197171) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.421703 / 0.215209 (0.206494) | 4.188600 / 2.077655 (2.110945) | 2.037575 / 1.504120 (0.533456) | 1.843389 / 1.541195 (0.302194) | 1.912554 / 1.468490 (0.444064) | 0.517452 / 4.584777 (-4.067325) | 3.838002 / 3.745712 (0.092290) | 3.698899 / 5.269862 (-1.570963) | 2.175393 / 4.565676 (-2.390283) | 0.066059 / 0.424275 (-0.358216) | 0.008455 / 0.007607 (0.000848) | 0.506813 / 0.226044 (0.280768) | 4.826994 / 2.268929 (2.558066) | 2.544437 / 55.444624 (-52.900187) | 2.164938 / 6.876477 (-4.711539) | 2.171725 / 2.142072 (0.029652) | 0.603757 / 4.805227 (-4.201470) | 0.149113 / 6.500664 (-6.351551) | 0.065093 / 0.075469 (-0.010376) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.366887 / 1.841788 (-0.474901) | 20.508089 / 8.074308 (12.433780) | 14.836531 / 10.191392 (4.645139) | 0.167418 / 0.680424 (-0.513006) | 0.019707 / 0.534201 (-0.514494) | 0.409897 / 0.579283 (-0.169387) | 0.439412 / 0.434364 (0.005048) | 0.495784 / 0.540337 (-0.044553) | 0.685367 / 1.386936 (-0.701569) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007604 / 0.011353 (-0.003749) | 0.004368 / 0.011008 (-0.006640) | 0.072628 / 0.038508 (0.034120) | 0.084187 / 0.023109 (0.061077) | 0.461396 / 0.275898 (0.185498) | 0.481429 / 0.323480 (0.157949) | 0.005894 / 0.007986 (-0.002092) | 0.003472 / 0.004328 (-0.000857) | 0.068717 / 0.004250 (0.064466) | 0.061066 / 0.037052 (0.024014) | 0.464217 / 0.258489 (0.205728) | 0.498061 / 0.293841 (0.204220) | 0.035458 / 0.128546 (-0.093089) | 0.009474 / 0.075646 (-0.066173) | 0.079633 / 0.419271 (-0.339639) | 0.053966 / 0.043533 (0.010433) | 0.454911 / 0.255139 (0.199772) | 0.470837 / 0.283200 (0.187637) | 0.026358 / 0.141683 (-0.115325) | 1.665131 / 1.452155 (0.212976) | 1.730365 / 1.492716 (0.237648) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.234810 / 0.018006 (0.216804) | 0.453672 / 0.000490 (0.453183) | 0.004620 / 0.000200 (0.004420) | 0.000119 / 0.000054 (0.000064) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.035310 / 0.037411 (-0.002101) | 0.100379 / 0.014526 (0.085853) | 0.118802 / 0.176557 (-0.057754) | 0.173853 / 0.737135 (-0.563282) | 0.115714 / 0.296338 (-0.180624) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.466797 / 0.215209 (0.251588) | 4.698324 / 2.077655 (2.620670) | 2.446897 / 1.504120 (0.942777) | 2.277346 / 1.541195 (0.736151) | 2.347211 / 1.468490 (0.878721) | 0.514377 / 4.584777 (-4.070400) | 3.931269 / 3.745712 (0.185557) | 3.573575 / 5.269862 (-1.696286) | 2.208122 / 4.565676 (-2.357554) | 0.061081 / 0.424275 (-0.363194) | 0.007803 / 0.007607 (0.000196) | 0.544376 / 0.226044 (0.318332) | 5.440003 / 2.268929 (3.171074) | 3.012559 / 55.444624 (-52.432065) | 2.617286 / 6.876477 (-4.259191) | 2.863978 / 2.142072 (0.721906) | 0.610024 / 4.805227 (-4.195203) | 0.133643 / 6.500664 (-6.367021) | 0.064766 / 0.075469 (-0.010703) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.465225 / 1.841788 (-0.376563) | 21.308351 / 8.074308 (13.234043) | 15.176634 / 10.191392 (4.985242) | 0.172701 / 0.680424 (-0.507723) | 0.020345 / 0.534201 (-0.513855) | 0.433923 / 0.579283 (-0.145360) | 0.450183 / 0.434364 (0.015819) | 0.514048 / 0.540337 (-0.026289) | 0.736302 / 1.386936 (-0.650634) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#7f1a7d621fff3b08ace02643466097654a5e010f \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008305 / 0.011353 (-0.003048) | 0.006007 / 0.011008 (-0.005001) | 0.103521 / 0.038508 (0.065013) | 0.075776 / 0.023109 (0.052666) | 0.378888 / 0.275898 (0.102990) | 0.405245 / 0.323480 (0.081765) | 0.004596 / 0.007986 (-0.003390) | 0.003687 / 0.004328 (-0.000641) | 0.079043 / 0.004250 (0.074792) | 0.055895 / 0.037052 (0.018843) | 0.406565 / 0.258489 (0.148076) | 0.433869 / 0.293841 (0.140028) | 0.045321 / 0.128546 (-0.083226) | 0.014317 / 0.075646 (-0.061329) | 0.345312 / 0.419271 (-0.073960) | 0.064485 / 0.043533 (0.020953) | 0.381744 / 0.255139 (0.126605) | 0.401162 / 0.283200 (0.117962) | 0.035973 / 0.141683 (-0.105709) | 1.829616 / 1.452155 (0.377461) | 1.868487 / 1.492716 (0.375771) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.245432 / 0.018006 (0.227426) | 0.494249 / 0.000490 (0.493759) | 0.010878 / 0.000200 (0.010678) | 0.000492 / 0.000054 (0.000437) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032778 / 0.037411 (-0.004633) | 0.103418 / 0.014526 (0.088892) | 0.108010 / 0.176557 (-0.068547) | 0.176477 / 0.737135 (-0.560658) | 0.107732 / 0.296338 (-0.188606) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.572471 / 0.215209 (0.357262) | 5.647039 / 2.077655 (3.569384) | 2.385069 / 1.504120 (0.880949) | 2.048928 / 1.541195 (0.507733) | 2.108538 / 1.468490 (0.640048) | 0.861436 / 4.584777 (-3.723341) | 4.933452 / 3.745712 (1.187739) | 4.735219 / 5.269862 (-0.534642) | 2.926971 / 4.565676 (-1.638705) | 0.097687 / 0.424275 (-0.326588) | 0.008346 / 0.007607 (0.000739) | 0.677754 / 0.226044 (0.451709) | 6.798433 / 2.268929 (4.529504) | 3.129862 / 55.444624 (-52.314762) | 2.454033 / 6.876477 (-4.422444) | 2.464590 / 2.142072 (0.322517) | 1.034497 / 4.805227 (-3.770730) | 0.205753 / 6.500664 (-6.294911) | 0.076618 / 0.075469 (0.001149) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.617569 / 1.841788 (-0.224219) | 22.091489 / 8.074308 (14.017181) | 20.406312 / 10.191392 (10.214920) | 0.222012 / 0.680424 (-0.458411) | 0.027787 / 0.534201 (-0.506414) | 0.441669 / 0.579283 (-0.137615) | 0.564773 / 0.434364 (0.130409) | 0.510389 / 0.540337 (-0.029948) | 0.753672 / 1.386936 (-0.633264) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.011107 / 0.011353 (-0.000246) | 0.004973 / 0.011008 (-0.006035) | 0.078331 / 0.038508 (0.039823) | 0.083964 / 0.023109 (0.060855) | 0.518980 / 0.275898 (0.243082) | 0.528264 / 0.323480 (0.204784) | 0.007452 / 0.007986 (-0.000534) | 0.003931 / 0.004328 (-0.000397) | 0.079724 / 0.004250 (0.075474) | 0.061739 / 0.037052 (0.024686) | 0.517804 / 0.258489 (0.259315) | 0.582764 / 0.293841 (0.288923) | 0.049674 / 0.128546 (-0.078873) | 0.014540 / 0.075646 (-0.061106) | 0.093130 / 0.419271 (-0.326141) | 0.060647 / 0.043533 (0.017114) | 0.492628 / 0.255139 (0.237489) | 0.549761 / 0.283200 (0.266562) | 0.034313 / 0.141683 (-0.107369) | 1.824574 / 1.452155 (0.372419) | 2.013664 / 1.492716 (0.520947) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.231335 / 0.018006 (0.213329) | 0.521477 / 0.000490 (0.520987) | 0.011314 / 0.000200 (0.011114) | 0.000397 / 0.000054 (0.000343) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033303 / 0.037411 (-0.004108) | 0.098238 / 0.014526 (0.083712) | 0.119527 / 0.176557 (-0.057030) | 0.169163 / 0.737135 (-0.567972) | 0.114536 / 0.296338 (-0.181803) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.578401 / 0.215209 (0.363191) | 5.966438 / 2.077655 (3.888783) | 2.646370 / 1.504120 (1.142250) | 2.361833 / 1.541195 (0.820638) | 2.476573 / 1.468490 (1.008083) | 0.777411 / 4.584777 (-3.807366) | 4.811070 / 3.745712 (1.065357) | 4.314221 / 5.269862 (-0.955641) | 2.743317 / 4.565676 (-1.822359) | 0.110394 / 0.424275 (-0.313881) | 0.008333 / 0.007607 (0.000726) | 0.729588 / 0.226044 (0.503543) | 7.743226 / 2.268929 (5.474298) | 3.606294 / 55.444624 (-51.838330) | 2.838069 / 6.876477 (-4.038408) | 3.087494 / 2.142072 (0.945421) | 1.053341 / 4.805227 (-3.751886) | 0.205105 / 6.500664 (-6.295559) | 0.075204 / 0.075469 (-0.000265) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.561959 / 1.841788 (-0.279829) | 21.407849 / 8.074308 (13.333541) | 19.084263 / 10.191392 (8.892871) | 0.226129 / 0.680424 (-0.454295) | 0.029695 / 0.534201 (-0.504506) | 0.427035 / 0.579283 (-0.152248) | 0.565353 / 0.434364 (0.130989) | 0.526789 / 0.540337 (-0.013548) | 0.734820 / 1.386936 (-0.652116) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#5b52536f4e39df3b98f7e0b03ee71b24c4fff49a \"CML watermark\")\n" ]
2023-10-19T12:19:13
2023-10-19T16:27:20
2023-10-19T16:16:31
MEMBER
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6318", "html_url": "https://github.com/huggingface/datasets/pull/6318", "diff_url": "https://github.com/huggingface/datasets/pull/6318.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6318.patch", "merged_at": "2023-10-19T16:16:31" }
Sort the items in a set according to their `datasets.fingerprint.Hasher.hash` hash to get a deterministic hash of sets. This is useful to get deterministic hashes of tokenizers that use a trie based on python sets. reported in https://github.com/huggingface/datasets/issues/3847
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6318/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6318/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6317
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6317/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6317/comments
https://api.github.com/repos/huggingface/datasets/issues/6317/events
https://github.com/huggingface/datasets/issues/6317
1,951,965,668
I_kwDODunzps50WKHk
6,317
sentiment140 dataset unavailable
{ "login": "AndreasKarasenko", "id": 52670382, "node_id": "MDQ6VXNlcjUyNjcwMzgy", "avatar_url": "https://avatars.githubusercontent.com/u/52670382?v=4", "gravatar_id": "", "url": "https://api.github.com/users/AndreasKarasenko", "html_url": "https://github.com/AndreasKarasenko", "followers_url": "https://api.github.com/users/AndreasKarasenko/followers", "following_url": "https://api.github.com/users/AndreasKarasenko/following{/other_user}", "gists_url": "https://api.github.com/users/AndreasKarasenko/gists{/gist_id}", "starred_url": "https://api.github.com/users/AndreasKarasenko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/AndreasKarasenko/subscriptions", "organizations_url": "https://api.github.com/users/AndreasKarasenko/orgs", "repos_url": "https://api.github.com/users/AndreasKarasenko/repos", "events_url": "https://api.github.com/users/AndreasKarasenko/events{/privacy}", "received_events_url": "https://api.github.com/users/AndreasKarasenko/received_events", "type": "User", "site_admin": false }
[]
closed
false
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[ { "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false } ]
[ "Thanks for reporting. We are investigating the issue.", "We have opened an issue in the corresponding Hub dataset: https://huggingface.co./datasets/sentiment140/discussions/3\r\n\r\nLet's continue the discussion there." ]
2023-10-19T11:25:21
2023-10-19T13:04:56
2023-10-19T13:04:56
NONE
null
null
null
### Describe the bug loading the dataset using load_dataset("sentiment140") returns the following error ConnectionError: Couldn't reach http://cs.stanford.edu/people/alecmgo/trainingandtestdata.zip (error 403) ### Steps to reproduce the bug Run the following code (version should not matter). ``` from datasets import load_dataset data = load_dataset("sentiment140") ``` ### Expected behavior The dataset should be loaded just like any other. The main issue is that it is no longer hosted by stanford. It is still available from a [Google Drive Link](https://docs.google.com/file/d/0B04GJPshIjmPRnZManQwWEdTZjg/edit). ### Environment info - `datasets` version: 2.14.5 - Platform: Windows-10-10.0.19045-SP0 - Python version: 3.10.8 - Huggingface_hub version: 0.17.3 - PyArrow version: 13.0.0 - Pandas version: 2.1.1
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6317/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6317/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6316
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6316/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6316/comments
https://api.github.com/repos/huggingface/datasets/issues/6316/events
https://github.com/huggingface/datasets/pull/6316
1,951,819,869
PR_kwDODunzps5dQGpg
6,316
Fix loading Hub datasets with CSV metadata file
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008896 / 0.011353 (-0.002456) | 0.005811 / 0.011008 (-0.005197) | 0.108582 / 0.038508 (0.070074) | 0.096509 / 0.023109 (0.073399) | 0.481725 / 0.275898 (0.205827) | 0.534743 / 0.323480 (0.211263) | 0.005517 / 0.007986 (-0.002468) | 0.006479 / 0.004328 (0.002151) | 0.081313 / 0.004250 (0.077062) | 0.063578 / 0.037052 (0.026525) | 0.493977 / 0.258489 (0.235488) | 0.551897 / 0.293841 (0.258056) | 0.051835 / 0.128546 (-0.076711) | 0.014105 / 0.075646 (-0.061541) | 0.385866 / 0.419271 (-0.033405) | 0.069131 / 0.043533 (0.025598) | 0.484780 / 0.255139 (0.229641) | 0.493221 / 0.283200 (0.210021) | 0.039560 / 0.141683 (-0.102123) | 1.782331 / 1.452155 (0.330176) | 1.899193 / 1.492716 (0.406477) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.329978 / 0.018006 (0.311972) | 0.600839 / 0.000490 (0.600349) | 0.013187 / 0.000200 (0.012987) | 0.000499 / 0.000054 (0.000444) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031835 / 0.037411 (-0.005576) | 0.103740 / 0.014526 (0.089214) | 0.115875 / 0.176557 (-0.060681) | 0.189880 / 0.737135 (-0.547255) | 0.132614 / 0.296338 (-0.163725) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.596255 / 0.215209 (0.381046) | 5.967993 / 2.077655 (3.890339) | 2.612675 / 1.504120 (1.108555) | 2.251461 / 1.541195 (0.710266) | 2.308585 / 1.468490 (0.840095) | 0.816516 / 4.584777 (-3.768261) | 5.241791 / 3.745712 (1.496079) | 4.680745 / 5.269862 (-0.589117) | 2.997370 / 4.565676 (-1.568307) | 0.098632 / 0.424275 (-0.325643) | 0.010912 / 0.007607 (0.003305) | 0.659092 / 0.226044 (0.433047) | 6.825562 / 2.268929 (4.556634) | 3.323844 / 55.444624 (-52.120780) | 2.796203 / 6.876477 (-4.080274) | 2.946994 / 2.142072 (0.804922) | 1.002814 / 4.805227 (-3.802413) | 0.202613 / 6.500664 (-6.298051) | 0.072011 / 0.075469 (-0.003459) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.613873 / 1.841788 (-0.227914) | 24.500990 / 8.074308 (16.426682) | 21.941599 / 10.191392 (11.750207) | 0.214450 / 0.680424 (-0.465974) | 0.031227 / 0.534201 (-0.502974) | 0.498297 / 0.579283 (-0.080986) | 0.597460 / 0.434364 (0.163096) | 0.558152 / 0.540337 (0.017815) | 0.789693 / 1.386936 (-0.597243) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.011299 / 0.011353 (-0.000053) | 0.005103 / 0.011008 (-0.005905) | 0.083161 / 0.038508 (0.044653) | 0.094201 / 0.023109 (0.071092) | 0.560457 / 0.275898 (0.284559) | 0.590459 / 0.323480 (0.266980) | 0.007059 / 0.007986 (-0.000926) | 0.004418 / 0.004328 (0.000090) | 0.081343 / 0.004250 (0.077093) | 0.067069 / 0.037052 (0.030016) | 0.538137 / 0.258489 (0.279648) | 0.600416 / 0.293841 (0.306575) | 0.049046 / 0.128546 (-0.079500) | 0.014299 / 0.075646 (-0.061347) | 0.093631 / 0.419271 (-0.325641) | 0.062536 / 0.043533 (0.019003) | 0.557238 / 0.255139 (0.302099) | 0.571050 / 0.283200 (0.287850) | 0.035881 / 0.141683 (-0.105802) | 1.918487 / 1.452155 (0.466332) | 2.013979 / 1.492716 (0.521263) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.400995 / 0.018006 (0.382989) | 0.634898 / 0.000490 (0.634408) | 0.041809 / 0.000200 (0.041609) | 0.000279 / 0.000054 (0.000224) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034160 / 0.037411 (-0.003251) | 0.109996 / 0.014526 (0.095470) | 0.124335 / 0.176557 (-0.052222) | 0.188100 / 0.737135 (-0.549035) | 0.135897 / 0.296338 (-0.160442) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.639751 / 0.215209 (0.424542) | 6.403312 / 2.077655 (4.325657) | 3.146453 / 1.504120 (1.642333) | 2.840358 / 1.541195 (1.299164) | 2.908667 / 1.468490 (1.440177) | 0.818767 / 4.584777 (-3.766010) | 5.416939 / 3.745712 (1.671227) | 4.853498 / 5.269862 (-0.416364) | 3.023526 / 4.565676 (-1.542150) | 0.110850 / 0.424275 (-0.313425) | 0.013103 / 0.007607 (0.005496) | 0.799720 / 0.226044 (0.573676) | 7.837704 / 2.268929 (5.568775) | 4.016526 / 55.444624 (-51.428099) | 3.338965 / 6.876477 (-3.537512) | 3.715721 / 2.142072 (1.573648) | 1.088340 / 4.805227 (-3.716887) | 0.213610 / 6.500664 (-6.287054) | 0.079244 / 0.075469 (0.003775) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.833175 / 1.841788 (-0.008612) | 25.307218 / 8.074308 (17.232910) | 23.716075 / 10.191392 (13.524683) | 0.259114 / 0.680424 (-0.421310) | 0.035171 / 0.534201 (-0.499029) | 0.530128 / 0.579283 (-0.049155) | 0.651484 / 0.434364 (0.217120) | 0.589414 / 0.540337 (0.049077) | 0.862691 / 1.386936 (-0.524245) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#1bdfba93b8a739b9d885b8fb1909d47ff689bbc2 \"CML watermark\")\n", "_The documentation is not available anymore as the PR was closed or merged._", "Me too, I thought the same... quite surprised... :open_mouth: ", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006929 / 0.011353 (-0.004423) | 0.004345 / 0.011008 (-0.006663) | 0.085522 / 0.038508 (0.047014) | 0.083380 / 0.023109 (0.060271) | 0.310332 / 0.275898 (0.034434) | 0.350525 / 0.323480 (0.027045) | 0.004367 / 0.007986 (-0.003618) | 0.005503 / 0.004328 (0.001175) | 0.066311 / 0.004250 (0.062061) | 0.059545 / 0.037052 (0.022492) | 0.314090 / 0.258489 (0.055601) | 0.366661 / 0.293841 (0.072821) | 0.031581 / 0.128546 (-0.096965) | 0.008852 / 0.075646 (-0.066794) | 0.289312 / 0.419271 (-0.129960) | 0.052960 / 0.043533 (0.009427) | 0.308134 / 0.255139 (0.052995) | 0.330342 / 0.283200 (0.047142) | 0.026157 / 0.141683 (-0.115526) | 1.488463 / 1.452155 (0.036308) | 1.561441 / 1.492716 (0.068725) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.327735 / 0.018006 (0.309729) | 0.568162 / 0.000490 (0.567672) | 0.012097 / 0.000200 (0.011897) | 0.000438 / 0.000054 (0.000383) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029503 / 0.037411 (-0.007909) | 0.084327 / 0.014526 (0.069801) | 0.102065 / 0.176557 (-0.074492) | 0.157392 / 0.737135 (-0.579744) | 0.101428 / 0.296338 (-0.194910) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.386767 / 0.215209 (0.171558) | 3.870757 / 2.077655 (1.793102) | 1.870048 / 1.504120 (0.365928) | 1.678221 / 1.541195 (0.137026) | 1.799423 / 1.468490 (0.330933) | 0.477718 / 4.584777 (-4.107059) | 3.618351 / 3.745712 (-0.127361) | 3.577921 / 5.269862 (-1.691941) | 2.146217 / 4.565676 (-2.419459) | 0.056290 / 0.424275 (-0.367985) | 0.007378 / 0.007607 (-0.000229) | 0.460678 / 0.226044 (0.234633) | 4.606243 / 2.268929 (2.337314) | 2.303460 / 55.444624 (-53.141164) | 1.982662 / 6.876477 (-4.893814) | 2.103891 / 2.142072 (-0.038182) | 0.570700 / 4.805227 (-4.234527) | 0.131747 / 6.500664 (-6.368918) | 0.060915 / 0.075469 (-0.014554) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.286364 / 1.841788 (-0.555424) | 20.106330 / 8.074308 (12.032022) | 14.780833 / 10.191392 (4.589441) | 0.164301 / 0.680424 (-0.516123) | 0.018730 / 0.534201 (-0.515471) | 0.398530 / 0.579283 (-0.180754) | 0.418084 / 0.434364 (-0.016280) | 0.468735 / 0.540337 (-0.071602) | 0.690122 / 1.386936 (-0.696814) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007262 / 0.011353 (-0.004091) | 0.004228 / 0.011008 (-0.006780) | 0.065866 / 0.038508 (0.027358) | 0.096151 / 0.023109 (0.073042) | 0.409352 / 0.275898 (0.133454) | 0.441234 / 0.323480 (0.117754) | 0.005946 / 0.007986 (-0.002039) | 0.003630 / 0.004328 (-0.000698) | 0.066271 / 0.004250 (0.062020) | 0.061567 / 0.037052 (0.024515) | 0.409097 / 0.258489 (0.150608) | 0.447675 / 0.293841 (0.153834) | 0.032804 / 0.128546 (-0.095743) | 0.008793 / 0.075646 (-0.066853) | 0.070790 / 0.419271 (-0.348482) | 0.048650 / 0.043533 (0.005117) | 0.411021 / 0.255139 (0.155882) | 0.421398 / 0.283200 (0.138198) | 0.025305 / 0.141683 (-0.116378) | 1.494826 / 1.452155 (0.042671) | 1.580441 / 1.492716 (0.087724) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.321871 / 0.018006 (0.303865) | 0.526471 / 0.000490 (0.525982) | 0.006913 / 0.000200 (0.006713) | 0.000108 / 0.000054 (0.000054) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034889 / 0.037411 (-0.002522) | 0.096096 / 0.014526 (0.081570) | 0.111920 / 0.176557 (-0.064636) | 0.166103 / 0.737135 (-0.571032) | 0.111162 / 0.296338 (-0.185176) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.428037 / 0.215209 (0.212828) | 4.294150 / 2.077655 (2.216495) | 2.270331 / 1.504120 (0.766211) | 2.108235 / 1.541195 (0.567041) | 2.242560 / 1.468490 (0.774070) | 0.489941 / 4.584777 (-4.094836) | 3.688111 / 3.745712 (-0.057601) | 3.450180 / 5.269862 (-1.819681) | 2.175106 / 4.565676 (-2.390570) | 0.057657 / 0.424275 (-0.366619) | 0.007478 / 0.007607 (-0.000130) | 0.505242 / 0.226044 (0.279198) | 5.047817 / 2.268929 (2.778888) | 2.724125 / 55.444624 (-52.720500) | 2.419765 / 6.876477 (-4.456711) | 2.723231 / 2.142072 (0.581159) | 0.602382 / 4.805227 (-4.202846) | 0.132362 / 6.500664 (-6.368302) | 0.060600 / 0.075469 (-0.014869) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.363356 / 1.841788 (-0.478431) | 21.446474 / 8.074308 (13.372165) | 15.074732 / 10.191392 (4.883340) | 0.191837 / 0.680424 (-0.488587) | 0.020565 / 0.534201 (-0.513636) | 0.396692 / 0.579283 (-0.182591) | 0.432390 / 0.434364 (-0.001974) | 0.491747 / 0.540337 (-0.048591) | 0.699203 / 1.386936 (-0.687733) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#c3a8a87c841426495d3a7ed1863c26660a6a551f \"CML watermark\")\n" ]
2023-10-19T10:21:34
2023-10-20T06:23:21
2023-10-20T06:14:09
MEMBER
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6316", "html_url": "https://github.com/huggingface/datasets/pull/6316", "diff_url": "https://github.com/huggingface/datasets/pull/6316.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6316.patch", "merged_at": "2023-10-20T06:14:09" }
Currently, the reading of the metadata file infers the file extension (.jsonl or .csv) from the passed filename. However, downloaded files from the Hub don't have file extension. For example: - the original file: `hf://datasets/__DUMMY_TRANSFORMERS_USER__/test-dataset-5916a4-16977085077831/metadata.jsonl` - corresponds to the downloaded path: `/tmp/pytest-of-username/pytest-46/cache/datasets/downloads/9f5374dbb470f711f6b89d66a5eec1f19cc96324b26bcbebe29138bda6cb20e6`, which does not have extension In the case where the metadata file does not have an extension, the reader assumes it is a JSONL file, thus the reported error when trying to read a CSV file as a JSONL one: `ArrowInvalid: JSON parse error: Invalid value. in row 0` This behavior was introduced by: - #4837 This PR extracts the metadata file extension from the original filename (instead of the downloaded one) and passes it as a parameter to the read_metadata function. Fix #6315.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6316/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6316/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6315
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6315/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6315/comments
https://api.github.com/repos/huggingface/datasets/issues/6315/events
https://github.com/huggingface/datasets/issues/6315
1,951,800,819
I_kwDODunzps50Vh3z
6,315
Hub datasets with CSV metadata raise ArrowInvalid: JSON parse error: Invalid value. in row 0
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[ { "id": 1935892857, "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug", "name": "bug", "color": "d73a4a", "default": true, "description": "Something isn't working" } ]
closed
false
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[ { "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false } ]
[]
2023-10-19T10:11:29
2023-10-20T06:14:10
2023-10-20T06:14:10
MEMBER
null
null
null
When trying to load a Hub dataset that contains a CSV metadata file, it raises an `ArrowInvalid` error: ``` E pyarrow.lib.ArrowInvalid: JSON parse error: Invalid value. in row 0 pyarrow/error.pxi:100: ArrowInvalid ``` See: https://huggingface.co./datasets/lukarape/public_small_papers/discussions/1
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6315/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6315/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6314
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6314/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6314/comments
https://api.github.com/repos/huggingface/datasets/issues/6314/events
https://github.com/huggingface/datasets/pull/6314
1,951,684,763
PR_kwDODunzps5dPo25
6,314
Support creating new branch in push_to_hub
{ "login": "jmif", "id": 1000442, "node_id": "MDQ6VXNlcjEwMDA0NDI=", "avatar_url": "https://avatars.githubusercontent.com/u/1000442?v=4", "gravatar_id": "", "url": "https://api.github.com/users/jmif", "html_url": "https://github.com/jmif", "followers_url": "https://api.github.com/users/jmif/followers", "following_url": "https://api.github.com/users/jmif/following{/other_user}", "gists_url": "https://api.github.com/users/jmif/gists{/gist_id}", "starred_url": "https://api.github.com/users/jmif/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jmif/subscriptions", "organizations_url": "https://api.github.com/users/jmif/orgs", "repos_url": "https://api.github.com/users/jmif/repos", "events_url": "https://api.github.com/users/jmif/events{/privacy}", "received_events_url": "https://api.github.com/users/jmif/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[]
2023-10-19T09:12:39
2023-10-19T09:20:06
2023-10-19T09:19:48
NONE
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6314", "html_url": "https://github.com/huggingface/datasets/pull/6314", "diff_url": "https://github.com/huggingface/datasets/pull/6314.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6314.patch", "merged_at": null }
This adds support for creating a new branch when pushing a dataset to the hub. Tested both methods locally and branches are created.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6314/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6314/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6313
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6313/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6313/comments
https://api.github.com/repos/huggingface/datasets/issues/6313/events
https://github.com/huggingface/datasets/pull/6313
1,951,527,712
PR_kwDODunzps5dPGmL
6,313
Fix commit message formatting in multi-commit uploads
{ "login": "qgallouedec", "id": 45557362, "node_id": "MDQ6VXNlcjQ1NTU3MzYy", "avatar_url": "https://avatars.githubusercontent.com/u/45557362?v=4", "gravatar_id": "", "url": "https://api.github.com/users/qgallouedec", "html_url": "https://github.com/qgallouedec", "followers_url": "https://api.github.com/users/qgallouedec/followers", "following_url": "https://api.github.com/users/qgallouedec/following{/other_user}", "gists_url": "https://api.github.com/users/qgallouedec/gists{/gist_id}", "starred_url": "https://api.github.com/users/qgallouedec/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/qgallouedec/subscriptions", "organizations_url": "https://api.github.com/users/qgallouedec/orgs", "repos_url": "https://api.github.com/users/qgallouedec/repos", "events_url": "https://api.github.com/users/qgallouedec/events{/privacy}", "received_events_url": "https://api.github.com/users/qgallouedec/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006760 / 0.011353 (-0.004593) | 0.003918 / 0.011008 (-0.007091) | 0.084016 / 0.038508 (0.045508) | 0.069927 / 0.023109 (0.046818) | 0.307898 / 0.275898 (0.032000) | 0.337453 / 0.323480 (0.013973) | 0.004132 / 0.007986 (-0.003854) | 0.003248 / 0.004328 (-0.001081) | 0.064526 / 0.004250 (0.060275) | 0.056424 / 0.037052 (0.019371) | 0.316313 / 0.258489 (0.057824) | 0.356302 / 0.293841 (0.062461) | 0.030634 / 0.128546 (-0.097912) | 0.008467 / 0.075646 (-0.067180) | 0.286676 / 0.419271 (-0.132595) | 0.051813 / 0.043533 (0.008280) | 0.309874 / 0.255139 (0.054735) | 0.332513 / 0.283200 (0.049313) | 0.023919 / 0.141683 (-0.117764) | 1.509033 / 1.452155 (0.056878) | 1.549636 / 1.492716 (0.056920) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.221464 / 0.018006 (0.203458) | 0.447873 / 0.000490 (0.447384) | 0.002408 / 0.000200 (0.002208) | 0.000090 / 0.000054 (0.000035) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027634 / 0.037411 (-0.009777) | 0.081802 / 0.014526 (0.067276) | 0.781489 / 0.176557 (0.604933) | 0.165184 / 0.737135 (-0.571951) | 0.121526 / 0.296338 (-0.174813) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.408215 / 0.215209 (0.193006) | 4.091192 / 2.077655 (2.013538) | 2.062608 / 1.504120 (0.558488) | 1.895747 / 1.541195 (0.354552) | 1.873682 / 1.468490 (0.405192) | 0.484184 / 4.584777 (-4.100593) | 3.469096 / 3.745712 (-0.276616) | 3.365325 / 5.269862 (-1.904537) | 2.000333 / 4.565676 (-2.565343) | 0.056661 / 0.424275 (-0.367614) | 0.007100 / 0.007607 (-0.000507) | 0.478587 / 0.226044 (0.252542) | 4.768703 / 2.268929 (2.499774) | 2.472432 / 55.444624 (-52.972192) | 2.133611 / 6.876477 (-4.742865) | 2.154296 / 2.142072 (0.012223) | 0.582293 / 4.805227 (-4.222934) | 0.131932 / 6.500664 (-6.368732) | 0.060259 / 0.075469 (-0.015211) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.259167 / 1.841788 (-0.582620) | 18.465604 / 8.074308 (10.391296) | 14.024528 / 10.191392 (3.833136) | 0.162320 / 0.680424 (-0.518104) | 0.018144 / 0.534201 (-0.516057) | 0.389931 / 0.579283 (-0.189352) | 0.396456 / 0.434364 (-0.037908) | 0.454734 / 0.540337 (-0.085603) | 0.636406 / 1.386936 (-0.750530) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006565 / 0.011353 (-0.004788) | 0.004008 / 0.011008 (-0.007000) | 0.064526 / 0.038508 (0.026018) | 0.071963 / 0.023109 (0.048854) | 0.415456 / 0.275898 (0.139557) | 0.441199 / 0.323480 (0.117719) | 0.005619 / 0.007986 (-0.002366) | 0.003261 / 0.004328 (-0.001067) | 0.064817 / 0.004250 (0.060567) | 0.055349 / 0.037052 (0.018296) | 0.425172 / 0.258489 (0.166683) | 0.452629 / 0.293841 (0.158788) | 0.031676 / 0.128546 (-0.096870) | 0.008432 / 0.075646 (-0.067214) | 0.071752 / 0.419271 (-0.347519) | 0.047176 / 0.043533 (0.003643) | 0.408641 / 0.255139 (0.153502) | 0.428579 / 0.283200 (0.145380) | 0.021548 / 0.141683 (-0.120135) | 1.495153 / 1.452155 (0.042999) | 1.557933 / 1.492716 (0.065217) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.212749 / 0.018006 (0.194743) | 0.441263 / 0.000490 (0.440773) | 0.005831 / 0.000200 (0.005631) | 0.000092 / 0.000054 (0.000037) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031844 / 0.037411 (-0.005567) | 0.091590 / 0.014526 (0.077064) | 0.102859 / 0.176557 (-0.073697) | 0.155859 / 0.737135 (-0.581276) | 0.104717 / 0.296338 (-0.191622) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.425924 / 0.215209 (0.210715) | 4.292829 / 2.077655 (2.215174) | 2.314350 / 1.504120 (0.810230) | 2.163087 / 1.541195 (0.621892) | 2.217310 / 1.468490 (0.748820) | 0.490889 / 4.584777 (-4.093887) | 3.498287 / 3.745712 (-0.247425) | 3.224980 / 5.269862 (-2.044881) | 1.987739 / 4.565676 (-2.577938) | 0.057486 / 0.424275 (-0.366790) | 0.007199 / 0.007607 (-0.000408) | 0.501194 / 0.226044 (0.275149) | 5.015202 / 2.268929 (2.746273) | 2.816307 / 55.444624 (-52.628318) | 2.474593 / 6.876477 (-4.401884) | 2.649510 / 2.142072 (0.507437) | 0.597167 / 4.805227 (-4.208060) | 0.131199 / 6.500664 (-6.369465) | 0.059532 / 0.075469 (-0.015938) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.384053 / 1.841788 (-0.457734) | 18.964201 / 8.074308 (10.889893) | 14.336209 / 10.191392 (4.144817) | 0.187522 / 0.680424 (-0.492902) | 0.020201 / 0.534201 (-0.514000) | 0.394778 / 0.579283 (-0.184505) | 0.408393 / 0.434364 (-0.025971) | 0.470965 / 0.540337 (-0.069373) | 0.667974 / 1.386936 (-0.718962) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#3b3333d790800ddaa3bf386ee71dc800258c921c \"CML watermark\")\n" ]
2023-10-19T07:53:56
2023-10-20T14:06:13
2023-10-20T13:57:39
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6313", "html_url": "https://github.com/huggingface/datasets/pull/6313", "diff_url": "https://github.com/huggingface/datasets/pull/6313.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6313.patch", "merged_at": "2023-10-20T13:57:38" }
Currently, the commit message keeps on adding: - `Upload dataset (part 00000-of-00002)` - `Upload dataset (part 00000-of-00002) (part 00001-of-00002)` Introduced in https://github.com/huggingface/datasets/pull/6269 This PR fixes this issue to have - `Upload dataset (part 00000-of-00002)` - `Upload dataset (part 00001-of-00002)`
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6313/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6313/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6312
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6312/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6312/comments
https://api.github.com/repos/huggingface/datasets/issues/6312/events
https://github.com/huggingface/datasets/pull/6312
1,950,128,416
PR_kwDODunzps5dKWDF
6,312
docs: resolving namespace conflict, refactored variable
{ "login": "smty2018", "id": 74114936, "node_id": "MDQ6VXNlcjc0MTE0OTM2", "avatar_url": "https://avatars.githubusercontent.com/u/74114936?v=4", "gravatar_id": "", "url": "https://api.github.com/users/smty2018", "html_url": "https://github.com/smty2018", "followers_url": "https://api.github.com/users/smty2018/followers", "following_url": "https://api.github.com/users/smty2018/following{/other_user}", "gists_url": "https://api.github.com/users/smty2018/gists{/gist_id}", "starred_url": "https://api.github.com/users/smty2018/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/smty2018/subscriptions", "organizations_url": "https://api.github.com/users/smty2018/orgs", "repos_url": "https://api.github.com/users/smty2018/repos", "events_url": "https://api.github.com/users/smty2018/events{/privacy}", "received_events_url": "https://api.github.com/users/smty2018/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006209 / 0.011353 (-0.005144) | 0.003708 / 0.011008 (-0.007300) | 0.080435 / 0.038508 (0.041926) | 0.060105 / 0.023109 (0.036995) | 0.392962 / 0.275898 (0.117064) | 0.429381 / 0.323480 (0.105902) | 0.003596 / 0.007986 (-0.004390) | 0.003849 / 0.004328 (-0.000480) | 0.062377 / 0.004250 (0.058127) | 0.048718 / 0.037052 (0.011666) | 0.400906 / 0.258489 (0.142417) | 0.440335 / 0.293841 (0.146494) | 0.027807 / 0.128546 (-0.100739) | 0.008066 / 0.075646 (-0.067580) | 0.262542 / 0.419271 (-0.156730) | 0.045513 / 0.043533 (0.001980) | 0.399608 / 0.255139 (0.144469) | 0.418007 / 0.283200 (0.134807) | 0.023475 / 0.141683 (-0.118208) | 1.476563 / 1.452155 (0.024409) | 1.528898 / 1.492716 (0.036182) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.223798 / 0.018006 (0.205792) | 0.430526 / 0.000490 (0.430036) | 0.009232 / 0.000200 (0.009032) | 0.000082 / 0.000054 (0.000028) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024921 / 0.037411 (-0.012490) | 0.077692 / 0.014526 (0.063166) | 0.085382 / 0.176557 (-0.091174) | 0.146220 / 0.737135 (-0.590915) | 0.086396 / 0.296338 (-0.209943) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.439986 / 0.215209 (0.224777) | 4.384552 / 2.077655 (2.306897) | 2.373697 / 1.504120 (0.869577) | 2.176138 / 1.541195 (0.634943) | 2.225914 / 1.468490 (0.757424) | 0.505776 / 4.584777 (-4.079001) | 3.053744 / 3.745712 (-0.691968) | 3.080443 / 5.269862 (-2.189419) | 1.904392 / 4.565676 (-2.661285) | 0.058112 / 0.424275 (-0.366163) | 0.006631 / 0.007607 (-0.000976) | 0.503409 / 0.226044 (0.277365) | 5.053375 / 2.268929 (2.784447) | 2.789963 / 55.444624 (-52.654661) | 2.452659 / 6.876477 (-4.423818) | 2.512353 / 2.142072 (0.370280) | 0.590095 / 4.805227 (-4.215132) | 0.126267 / 6.500664 (-6.374397) | 0.061246 / 0.075469 (-0.014223) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.249884 / 1.841788 (-0.591903) | 17.684730 / 8.074308 (9.610422) | 13.967467 / 10.191392 (3.776075) | 0.144202 / 0.680424 (-0.536222) | 0.017004 / 0.534201 (-0.517197) | 0.333634 / 0.579283 (-0.245649) | 0.387251 / 0.434364 (-0.047113) | 0.390189 / 0.540337 (-0.150148) | 0.535662 / 1.386936 (-0.851274) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006379 / 0.011353 (-0.004974) | 0.003681 / 0.011008 (-0.007327) | 0.063005 / 0.038508 (0.024497) | 0.064221 / 0.023109 (0.041112) | 0.446074 / 0.275898 (0.170176) | 0.471997 / 0.323480 (0.148517) | 0.005074 / 0.007986 (-0.002911) | 0.002945 / 0.004328 (-0.001383) | 0.063305 / 0.004250 (0.059054) | 0.050608 / 0.037052 (0.013556) | 0.443260 / 0.258489 (0.184771) | 0.478497 / 0.293841 (0.184656) | 0.028980 / 0.128546 (-0.099566) | 0.008145 / 0.075646 (-0.067502) | 0.068412 / 0.419271 (-0.350859) | 0.041552 / 0.043533 (-0.001980) | 0.436649 / 0.255139 (0.181510) | 0.462397 / 0.283200 (0.179198) | 0.019929 / 0.141683 (-0.121753) | 1.530248 / 1.452155 (0.078093) | 1.611117 / 1.492716 (0.118401) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.232894 / 0.018006 (0.214888) | 0.421451 / 0.000490 (0.420961) | 0.003984 / 0.000200 (0.003784) | 0.000084 / 0.000054 (0.000030) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027776 / 0.037411 (-0.009635) | 0.081632 / 0.014526 (0.067106) | 0.094031 / 0.176557 (-0.082526) | 0.147930 / 0.737135 (-0.589206) | 0.094226 / 0.296338 (-0.202112) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.471722 / 0.215209 (0.256513) | 4.713241 / 2.077655 (2.635587) | 2.662660 / 1.504120 (1.158540) | 2.490778 / 1.541195 (0.949583) | 2.555786 / 1.468490 (1.087296) | 0.512209 / 4.584777 (-4.072568) | 3.210612 / 3.745712 (-0.535100) | 2.863346 / 5.269862 (-2.406516) | 1.884664 / 4.565676 (-2.681012) | 0.058514 / 0.424275 (-0.365761) | 0.006473 / 0.007607 (-0.001134) | 0.543279 / 0.226044 (0.317235) | 5.441485 / 2.268929 (3.172556) | 3.145398 / 55.444624 (-52.299226) | 2.749603 / 6.876477 (-4.126874) | 2.925738 / 2.142072 (0.783666) | 0.598725 / 4.805227 (-4.206502) | 0.125616 / 6.500664 (-6.375048) | 0.061314 / 0.075469 (-0.014155) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.384270 / 1.841788 (-0.457518) | 18.307618 / 8.074308 (10.233310) | 14.635768 / 10.191392 (4.444376) | 0.148787 / 0.680424 (-0.531637) | 0.018191 / 0.534201 (-0.516010) | 0.333166 / 0.579283 (-0.246117) | 0.405116 / 0.434364 (-0.029247) | 0.392798 / 0.540337 (-0.147540) | 0.582299 / 1.386936 (-0.804637) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#7004f0f2ec59832fe53af033efdca10d00377760 \"CML watermark\")\n" ]
2023-10-18T16:10:59
2023-10-19T16:31:59
2023-10-19T16:23:07
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6312", "html_url": "https://github.com/huggingface/datasets/pull/6312", "diff_url": "https://github.com/huggingface/datasets/pull/6312.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6312.patch", "merged_at": "2023-10-19T16:23:07" }
In docs of about_arrow.md, in the below example code ![image](https://github.com/huggingface/datasets/assets/74114936/fc70e152-e15f-422e-949a-1c4c4c9aa116) The variable name 'time' was being used in a way that could potentially lead to a namespace conflict with Python's built-in 'time' module. It is not a good convention and can lead to unintended variable shadowing for any user re-using the example code. To ensure code clarity, and prevent potential naming conflicts renamed the variable 'time' to 'elapsed_time' in the example code.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6312/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6312/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6311
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6311/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6311/comments
https://api.github.com/repos/huggingface/datasets/issues/6311/events
https://github.com/huggingface/datasets/issues/6311
1,949,304,993
I_kwDODunzps50MAih
6,311
cast_column to Sequence with length=4 occur exception raise in datasets/table.py:2146
{ "login": "neiblegy", "id": 16574677, "node_id": "MDQ6VXNlcjE2NTc0Njc3", "avatar_url": "https://avatars.githubusercontent.com/u/16574677?v=4", "gravatar_id": "", "url": "https://api.github.com/users/neiblegy", "html_url": "https://github.com/neiblegy", "followers_url": "https://api.github.com/users/neiblegy/followers", "following_url": "https://api.github.com/users/neiblegy/following{/other_user}", "gists_url": "https://api.github.com/users/neiblegy/gists{/gist_id}", "starred_url": "https://api.github.com/users/neiblegy/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/neiblegy/subscriptions", "organizations_url": "https://api.github.com/users/neiblegy/orgs", "repos_url": "https://api.github.com/users/neiblegy/repos", "events_url": "https://api.github.com/users/neiblegy/events{/privacy}", "received_events_url": "https://api.github.com/users/neiblegy/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
[ "Thanks for reporting! We've spotted the bugs with the `array.values` handling and are fixing them in https://github.com/huggingface/datasets/pull/6283 (should be part of the next release).", "> Thanks for reporting! We've spotted the bugs with the `array.values` handling and are fixing them in #6283 (should be part of the next release).\r\n\r\ni encounter another exception while cast_column to type `Sequence(feature={\"points\": Array2D(shape=(-1, 2), dtype=\"int64\"), \"label\": ClassLabel(num_classes=num_classes, names=names)})`\r\n\r\nwhile my data like this: '{\"points\": [[0.6,0.6], [0.7,0.7], [0.8,0.8]], \"label\": \"A1\"}'\r\n\r\nhere is the backtrace info:\r\n\r\n```\r\n out = func(dataset, *args, **kwargs)\r\n File \"/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/arrow_dataset.py\", line 2110, in cast_column\r\n return self.cast(features)\r\n File \"/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/arrow_dataset.py\", line 2055, in cast\r\n dataset = dataset.map(\r\n File \"/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/arrow_dataset.py\", line 592, in wrapper\r\n out: Union[\"Dataset\", \"DatasetDict\"] = func(self, *args, **kwargs)\r\n File \"/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/arrow_dataset.py\", line 557, in wrapper\r\n out: Union[\"Dataset\", \"DatasetDict\"] = func(self, *args, **kwargs)\r\n File \"/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/arrow_dataset.py\", line 3097, in map\r\n for rank, done, content in Dataset._map_single(**dataset_kwargs):\r\n File \"/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/arrow_dataset.py\", line 3474, in _map_single\r\n batch = apply_function_on_filtered_inputs(\r\n File \"/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/arrow_dataset.py\", line 3353, in apply_function_on_filtered_inputs\r\n processed_inputs = function(*fn_args, *additional_args, **fn_kwargs)\r\n File \"/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/table.py\", line 2329, in table_cast\r\n return cast_table_to_schema(table, schema)\r\n File \"/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/table.py\", line 2288, in cast_table_to_schema\r\n arrays = [cast_array_to_feature(table[name], feature) for name, feature in features.items()]\r\n File \"/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/table.py\", line 2288, in <listcomp>\r\n arrays = [cast_array_to_feature(table[name], feature) for name, feature in features.items()]\r\n File \"/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/table.py\", line 1831, in wrapper\r\n return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks])\r\n File \"/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/table.py\", line 1831, in <listcomp>\r\n return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks])\r\n File \"/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/table.py\", line 2073, in cast_array_to_feature\r\n arrays = [_c(array.field(name), subfeature) for name, subfeature in feature.items()]\r\n File \"/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/table.py\", line 2073, in <listcomp>\r\n arrays = [_c(array.field(name), subfeature) for name, subfeature in feature.items()]\r\n File \"/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/table.py\", line 1833, in wrapper\r\n return func(array, *args, **kwargs)\r\n File \"/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/table.py\", line 2095, in cast_array_to_feature\r\n casted_values = _c(array.values, feature.feature)\r\n File \"/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/table.py\", line 1833, in wrapper\r\n return func(array, *args, **kwargs)\r\n File \"/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/table.py\", line 2144, in cast_array_to_feature\r\n return array_cast(array, feature(), allow_number_to_str=allow_number_to_str)\r\n File \"/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/table.py\", line 1833, in wrapper\r\n return func(array, *args, **kwargs)\r\n File \"/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/table.py\", line 1967, in array_cast\r\n return pa_type.wrap_array(array)\r\n File \"pyarrow/types.pxi\", line 1369, in pyarrow.lib.BaseExtensionType.wrap_array\r\nTypeError: Incompatible storage type for extension<arrow.py_extension_type<Array2DExtensionType>>: expected list<item: list<item: double>>, got list<item: double>\r\n```\r\nand i print(array) in datasets/table.py:1967 indeed get 2D list. is that same issue in #6283 ?\r\n\r\nbesides this, hugging face datasets seems don't naturally support multi-labels which means `Sequence(ClassLabel)` illegal if data is [\"label1\", \"label2\"]. so i have to define a class derived from `ClassLabel`, like this:\r\n\r\n```\r\nclass AisClassLabels(ClassLabel):\r\n def encode_example(self, example_data):\r\n if self.num_classes is None:\r\n raise ValueError(\r\n \"Trying to use ClassLabel feature with undefined number of class. \"\r\n \"Please set ClassLabel.names or num_classes.\"\r\n )\r\n if not isinstance(example_data, list):\r\n example_data = [example_data]\r\n\r\n for i in range(len(example_data)):\r\n if isinstance(example_data[i], str):\r\n example_data[i] = self.str2int(example_data[i])\r\n if not -1 <= example_data[i] < self.num_classes:\r\n raise ValueError(f\"Class label {example_data:d} greater than configured num_classes {self.num_classes}\")\r\n return example_data\r\n```\r\nand it works well in my case. but is there any recommend way to implement multi-labels?", "`Incompatible storage type for extension<arrow.py_extension_type<Array2DExtensionType>>: expected list<item: list<item: double>>, got list<item: double>`\r\nif i change `Array2D(shape=(-1, 2), dtype=\"int64\")` to `Sequence(Value(\"int64\"))` , every thing goes well. but my data is 2D int list", "i test Sequence(ClassLabel) is ok if one column is label list. but it is not ok in nested column such as `Sequence(feature= {\"points\": Sequence(Value(\"int32\")), \"label\": Sequence(ClassLabel(num_classes....)))`. in this case i need override ClassLabels. encode_example as i given above." ]
2023-10-18T09:38:05
2023-10-20T10:17:43
null
NONE
null
null
null
### Describe the bug i load a dataset from local csv file which has 187383612 examples, then use `map` to generate new columns for test. here is my code : ``` import os from datasets import load_dataset from datasets.features import Sequence, Value def add_new_path(example): example["ais_bbox"] = [100,100,200,200] example["ais_image_path"] = os.path.join("images", example["image_path"]) if example["image_path"] else "" return example ais_dataset = load_dataset("/data/ryan.gao/ais_dataset_cache/raw/1749/") hf_ds = ais_dataset.map(add_new_path, batched=False, num_proc=32) ds = hf_ds.cast_column("ais_bbox", Sequence(Value("int32"), length=4)) ``` and the `cast_column` raise an exception ``` Casting the dataset: 3%|███▉ ... File "/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 2110, in cast_column return self.cast(features) File "/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 2055, in cast dataset = dataset.map( File "/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 592, in wrapper out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs) File "/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 557, in wrapper out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs) File "/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 3097, in map for rank, done, content in Dataset._map_single(**dataset_kwargs): File "/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 3474, in _map_single batch = apply_function_on_filtered_inputs( File "/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 3353, in apply_function_on_filtered_inputs processed_inputs = function(*fn_args, *additional_args, **fn_kwargs) File "/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/table.py", line 2329, in table_cast return cast_table_to_schema(table, schema) File "/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/table.py", line 2288, in cast_table_to_schema arrays = [cast_array_to_feature(table[name], feature) for name, feature in features.items()] File "/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/table.py", line 2288, in <listcomp> arrays = [cast_array_to_feature(table[name], feature) for name, feature in features.items()] File "/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/table.py", line 1831, in wrapper return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks]) File "/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/table.py", line 1831, in <listcomp> return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks]) File "/home/protoss.gao/.local/lib/python3.9/site-packages/datasets/table.py", line 2145, in cast_array_to_feature raise TypeError(f"Couldn't cast array of type\n{array.type}\nto\n{feature}") TypeError: Couldn't cast array of type list<item: int64> to Sequence(feature=Value(dtype='int32', id=None), length=4, id=None) ``` i check the source code and make debug info: in datasets/table.py:2092 ``` 2091 if feature.length > -1: 2092 if feature.length * len(array) == len(array.values): 2093 return pa.FixedSizeListArray.from_arrays(_c(array.values, feature.feature), feature.length) 2094 print(len(array)) 2095 print(len(array.values)) ``` my feature.length is 4. but feature.length * len(array) == len(array.values) is false. print(len(array)) is 262 print(len(array.values)) is 4000 then I use "for item in array" to print each item then get 262 * [100,100,200,200] and use "for item in array.values" to print each item and get 4000 int32 which are 1000 * [100,100,200,200] i'm wondering the `chunk` in each `array.chunks`, the "chunk.values" may get all the chunks's value rather than single chunk? but i check the pyarrow's doc seems chunk.values is chunk's value not all. ### Steps to reproduce the bug code provided above. ### Expected behavior feature.length * len(array) == len(array.values) should be true. and there should not has Exception. ### Environment info python3.9 x86_64 datasets: 2.14.4 pyarrow: 13.0.0 or 10.0.0
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6311/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6311/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6310
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6310/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6310/comments
https://api.github.com/repos/huggingface/datasets/issues/6310/events
https://github.com/huggingface/datasets/pull/6310
1,947,457,988
PR_kwDODunzps5dBPnY
6,310
Add return_file_name in load_dataset
{ "login": "juliendenize", "id": 40604584, "node_id": "MDQ6VXNlcjQwNjA0NTg0", "avatar_url": "https://avatars.githubusercontent.com/u/40604584?v=4", "gravatar_id": "", "url": "https://api.github.com/users/juliendenize", "html_url": "https://github.com/juliendenize", "followers_url": "https://api.github.com/users/juliendenize/followers", "following_url": "https://api.github.com/users/juliendenize/following{/other_user}", "gists_url": "https://api.github.com/users/juliendenize/gists{/gist_id}", "starred_url": "https://api.github.com/users/juliendenize/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/juliendenize/subscriptions", "organizations_url": "https://api.github.com/users/juliendenize/orgs", "repos_url": "https://api.github.com/users/juliendenize/repos", "events_url": "https://api.github.com/users/juliendenize/events{/privacy}", "received_events_url": "https://api.github.com/users/juliendenize/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6310). All of your documentation changes will be reflected on that endpoint.", "> Thanks for the change !\r\n> \r\n> Since `return` in python often refers to what is actually returned by the function (here `load_dataset`), I think we can use another word for the parameter. Maybe name it `with_file_names`?\r\n> \r\n> cc @mariosasko in case you have an opinion\r\n\r\nI changed the argument name to your suggestion, I agree that it should be less confusing :)", "> Thanks! I've left some comments.\r\n> \r\n> @lhoestq WDYT about returning a data file's name (the last part) instead of the full path? This way we could have the same values in the streaming and the non-streaming mode. (In the non-streaming mode, we would also have to iterate over remote files to not output the files' hash (from the HF cache))\r\n\r\nConcerning the last part of the file name, do you have suggestions on how to do that? Because it can happen that the files are located in different folders with the same name so I am wondering what would be the way to go." ]
2023-10-17T13:36:57
2023-11-27T21:11:14
null
NONE
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6310", "html_url": "https://github.com/huggingface/datasets/pull/6310", "diff_url": "https://github.com/huggingface/datasets/pull/6310.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6310.patch", "merged_at": null }
Proposition to fix #5806. Added an optional parameter `return_file_name` in the dataset builder config. When set to `True`, the function will include the file name corresponding to the sample in the returned output. There is a difference between arrow-based and folder-based datasets to return the file name: - for arrow-based: a column is concatenated after the table is cast. - for folder-based: `dataset.info.features` has the entry `file_name` and the original file name is passed to the `sample_metadata` dictionary. The difference in behavior might be a concern, also I do not know whether the `file_name` should return the original file path or the downloaded one for folder-based datasets. I added some tests for the datasets that already had a test file.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6310/reactions", "total_count": 1, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 1, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6310/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6309
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6309/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6309/comments
https://api.github.com/repos/huggingface/datasets/issues/6309/events
https://github.com/huggingface/datasets/pull/6309
1,946,916,969
PR_kwDODunzps5c_YcX
6,309
Fix get_data_patterns for directories with the word data twice
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006461 / 0.011353 (-0.004891) | 0.004035 / 0.011008 (-0.006973) | 0.085037 / 0.038508 (0.046529) | 0.072434 / 0.023109 (0.049325) | 0.308565 / 0.275898 (0.032667) | 0.330455 / 0.323480 (0.006975) | 0.003782 / 0.007986 (-0.004204) | 0.004363 / 0.004328 (0.000034) | 0.065242 / 0.004250 (0.060991) | 0.056111 / 0.037052 (0.019058) | 0.318008 / 0.258489 (0.059519) | 0.357904 / 0.293841 (0.064063) | 0.030702 / 0.128546 (-0.097844) | 0.008741 / 0.075646 (-0.066905) | 0.287666 / 0.419271 (-0.131605) | 0.052281 / 0.043533 (0.008748) | 0.306894 / 0.255139 (0.051755) | 0.335739 / 0.283200 (0.052540) | 0.023712 / 0.141683 (-0.117971) | 1.492304 / 1.452155 (0.040149) | 1.544540 / 1.492716 (0.051823) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.299419 / 0.018006 (0.281413) | 0.547195 / 0.000490 (0.546705) | 0.011571 / 0.000200 (0.011371) | 0.000223 / 0.000054 (0.000168) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028364 / 0.037411 (-0.009048) | 0.081445 / 0.014526 (0.066919) | 0.626670 / 0.176557 (0.450114) | 0.159964 / 0.737135 (-0.577171) | 0.100528 / 0.296338 (-0.195811) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.409915 / 0.215209 (0.194705) | 4.108689 / 2.077655 (2.031034) | 2.046247 / 1.504120 (0.542127) | 1.851081 / 1.541195 (0.309887) | 1.857857 / 1.468490 (0.389367) | 0.493246 / 4.584777 (-4.091531) | 3.581557 / 3.745712 (-0.164155) | 3.456708 / 5.269862 (-1.813153) | 2.051054 / 4.565676 (-2.514623) | 0.057553 / 0.424275 (-0.366722) | 0.007287 / 0.007607 (-0.000320) | 0.493094 / 0.226044 (0.267050) | 4.873051 / 2.268929 (2.604122) | 2.515266 / 55.444624 (-52.929358) | 2.144743 / 6.876477 (-4.731733) | 2.159412 / 2.142072 (0.017340) | 0.595627 / 4.805227 (-4.209601) | 0.133773 / 6.500664 (-6.366891) | 0.059965 / 0.075469 (-0.015504) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.259625 / 1.841788 (-0.582163) | 19.030742 / 8.074308 (10.956434) | 14.039246 / 10.191392 (3.847854) | 0.168116 / 0.680424 (-0.512308) | 0.018168 / 0.534201 (-0.516033) | 0.391187 / 0.579283 (-0.188096) | 0.420901 / 0.434364 (-0.013463) | 0.465827 / 0.540337 (-0.074511) | 0.718373 / 1.386936 (-0.668563) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006616 / 0.011353 (-0.004737) | 0.004048 / 0.011008 (-0.006960) | 0.064568 / 0.038508 (0.026060) | 0.075933 / 0.023109 (0.052824) | 0.396353 / 0.275898 (0.120455) | 0.424159 / 0.323480 (0.100679) | 0.005446 / 0.007986 (-0.002540) | 0.003393 / 0.004328 (-0.000935) | 0.064673 / 0.004250 (0.060422) | 0.056983 / 0.037052 (0.019930) | 0.402478 / 0.258489 (0.143989) | 0.433240 / 0.293841 (0.139399) | 0.032100 / 0.128546 (-0.096446) | 0.008664 / 0.075646 (-0.066983) | 0.070502 / 0.419271 (-0.348770) | 0.047800 / 0.043533 (0.004267) | 0.399506 / 0.255139 (0.144367) | 0.418376 / 0.283200 (0.135176) | 0.022654 / 0.141683 (-0.119029) | 1.487280 / 1.452155 (0.035125) | 1.543733 / 1.492716 (0.051017) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.317660 / 0.018006 (0.299654) | 0.523922 / 0.000490 (0.523432) | 0.007086 / 0.000200 (0.006886) | 0.000109 / 0.000054 (0.000055) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032381 / 0.037411 (-0.005030) | 0.091636 / 0.014526 (0.077110) | 0.104743 / 0.176557 (-0.071814) | 0.158793 / 0.737135 (-0.578342) | 0.103164 / 0.296338 (-0.193175) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.434081 / 0.215209 (0.218872) | 4.329448 / 2.077655 (2.251794) | 2.335855 / 1.504120 (0.831735) | 2.177513 / 1.541195 (0.636319) | 2.205406 / 1.468490 (0.736916) | 0.500117 / 4.584777 (-4.084660) | 3.693715 / 3.745712 (-0.051997) | 3.305803 / 5.269862 (-1.964059) | 2.048283 / 4.565676 (-2.517394) | 0.058301 / 0.424275 (-0.365974) | 0.007196 / 0.007607 (-0.000411) | 0.512917 / 0.226044 (0.286873) | 5.129283 / 2.268929 (2.860355) | 2.836200 / 55.444624 (-52.608425) | 2.499022 / 6.876477 (-4.377455) | 2.652305 / 2.142072 (0.510232) | 0.604219 / 4.805227 (-4.201008) | 0.137310 / 6.500664 (-6.363354) | 0.060880 / 0.075469 (-0.014589) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.346948 / 1.841788 (-0.494839) | 19.499516 / 8.074308 (11.425208) | 14.701500 / 10.191392 (4.510108) | 0.168626 / 0.680424 (-0.511798) | 0.020002 / 0.534201 (-0.514199) | 0.394729 / 0.579283 (-0.184554) | 0.428323 / 0.434364 (-0.006040) | 0.481202 / 0.540337 (-0.059136) | 0.684768 / 1.386936 (-0.702169) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#fed9c07458afc73870e8ec9846bf1fc5cac0b378 \"CML watermark\")\n", "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6309). All of your documentation changes will be reflected on that endpoint.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007033 / 0.011353 (-0.004320) | 0.004411 / 0.011008 (-0.006597) | 0.086146 / 0.038508 (0.047638) | 0.086669 / 0.023109 (0.063560) | 0.329145 / 0.275898 (0.053247) | 0.348728 / 0.323480 (0.025248) | 0.004404 / 0.007986 (-0.003582) | 0.003656 / 0.004328 (-0.000673) | 0.066120 / 0.004250 (0.061869) | 0.059157 / 0.037052 (0.022105) | 0.316537 / 0.258489 (0.058048) | 0.369065 / 0.293841 (0.075224) | 0.031921 / 0.128546 (-0.096625) | 0.008877 / 0.075646 (-0.066770) | 0.290068 / 0.419271 (-0.129204) | 0.054007 / 0.043533 (0.010475) | 0.308823 / 0.255139 (0.053684) | 0.331189 / 0.283200 (0.047989) | 0.027313 / 0.141683 (-0.114370) | 1.486772 / 1.452155 (0.034617) | 1.570359 / 1.492716 (0.077643) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.315991 / 0.018006 (0.297985) | 0.577876 / 0.000490 (0.577386) | 0.011207 / 0.000200 (0.011007) | 0.000089 / 0.000054 (0.000035) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031753 / 0.037411 (-0.005658) | 0.089270 / 0.014526 (0.074744) | 0.102518 / 0.176557 (-0.074038) | 0.160260 / 0.737135 (-0.576875) | 0.103365 / 0.296338 (-0.192973) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.405789 / 0.215209 (0.190580) | 4.052740 / 2.077655 (1.975085) | 2.052076 / 1.504120 (0.547956) | 1.873966 / 1.541195 (0.332771) | 1.997156 / 1.468490 (0.528665) | 0.494975 / 4.584777 (-4.089802) | 3.600007 / 3.745712 (-0.145705) | 3.626459 / 5.269862 (-1.643403) | 2.176927 / 4.565676 (-2.388750) | 0.057894 / 0.424275 (-0.366381) | 0.007469 / 0.007607 (-0.000138) | 0.487422 / 0.226044 (0.261377) | 4.868744 / 2.268929 (2.599815) | 2.528707 / 55.444624 (-52.915918) | 2.149520 / 6.876477 (-4.726956) | 2.275491 / 2.142072 (0.133419) | 0.589112 / 4.805227 (-4.216115) | 0.136644 / 6.500664 (-6.364020) | 0.062144 / 0.075469 (-0.013325) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.286625 / 1.841788 (-0.555163) | 20.528128 / 8.074308 (12.453819) | 15.290866 / 10.191392 (5.099474) | 0.168380 / 0.680424 (-0.512044) | 0.018908 / 0.534201 (-0.515293) | 0.397210 / 0.579283 (-0.182073) | 0.426133 / 0.434364 (-0.008231) | 0.471754 / 0.540337 (-0.068584) | 0.653343 / 1.386936 (-0.733593) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007599 / 0.011353 (-0.003754) | 0.004499 / 0.011008 (-0.006509) | 0.066248 / 0.038508 (0.027740) | 0.097704 / 0.023109 (0.074595) | 0.414558 / 0.275898 (0.138660) | 0.451088 / 0.323480 (0.127609) | 0.005932 / 0.007986 (-0.002054) | 0.003698 / 0.004328 (-0.000630) | 0.065784 / 0.004250 (0.061534) | 0.064777 / 0.037052 (0.027725) | 0.443318 / 0.258489 (0.184829) | 0.456896 / 0.293841 (0.163055) | 0.033436 / 0.128546 (-0.095111) | 0.008977 / 0.075646 (-0.066669) | 0.072067 / 0.419271 (-0.347205) | 0.049571 / 0.043533 (0.006038) | 0.420325 / 0.255139 (0.165186) | 0.443588 / 0.283200 (0.160388) | 0.026723 / 0.141683 (-0.114960) | 1.512566 / 1.452155 (0.060411) | 1.647591 / 1.492716 (0.154875) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.326410 / 0.018006 (0.308404) | 0.532878 / 0.000490 (0.532388) | 0.006257 / 0.000200 (0.006057) | 0.000104 / 0.000054 (0.000049) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.037289 / 0.037411 (-0.000122) | 0.104940 / 0.014526 (0.090414) | 0.113597 / 0.176557 (-0.062960) | 0.170562 / 0.737135 (-0.566573) | 0.114583 / 0.296338 (-0.181755) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.435530 / 0.215209 (0.220321) | 4.332659 / 2.077655 (2.255005) | 2.343576 / 1.504120 (0.839456) | 2.190517 / 1.541195 (0.649322) | 2.323101 / 1.468490 (0.854611) | 0.493019 / 4.584777 (-4.091758) | 3.686726 / 3.745712 (-0.058986) | 3.437143 / 5.269862 (-1.832719) | 2.167193 / 4.565676 (-2.398483) | 0.059636 / 0.424275 (-0.364639) | 0.007696 / 0.007607 (0.000089) | 0.511159 / 0.226044 (0.285115) | 5.119358 / 2.268929 (2.850429) | 2.814934 / 55.444624 (-52.629690) | 2.477871 / 6.876477 (-4.398606) | 2.774473 / 2.142072 (0.632401) | 0.590258 / 4.805227 (-4.214969) | 0.135923 / 6.500664 (-6.364741) | 0.062793 / 0.075469 (-0.012676) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.350192 / 1.841788 (-0.491596) | 21.382135 / 8.074308 (13.307827) | 16.024198 / 10.191392 (5.832806) | 0.163623 / 0.680424 (-0.516801) | 0.020749 / 0.534201 (-0.513452) | 0.402578 / 0.579283 (-0.176705) | 0.436569 / 0.434364 (0.002205) | 0.477217 / 0.540337 (-0.063121) | 0.682929 / 1.386936 (-0.704007) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#fa36173f2e8c6f266efd236933eff3a95af0382c \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006671 / 0.011353 (-0.004681) | 0.004176 / 0.011008 (-0.006832) | 0.084095 / 0.038508 (0.045587) | 0.076345 / 0.023109 (0.053236) | 0.341201 / 0.275898 (0.065303) | 0.381920 / 0.323480 (0.058440) | 0.005578 / 0.007986 (-0.002408) | 0.003535 / 0.004328 (-0.000794) | 0.065227 / 0.004250 (0.060976) | 0.054983 / 0.037052 (0.017931) | 0.345938 / 0.258489 (0.087449) | 0.398708 / 0.293841 (0.104867) | 0.031029 / 0.128546 (-0.097518) | 0.008643 / 0.075646 (-0.067004) | 0.287286 / 0.419271 (-0.131985) | 0.052424 / 0.043533 (0.008892) | 0.342914 / 0.255139 (0.087775) | 0.366982 / 0.283200 (0.083782) | 0.024511 / 0.141683 (-0.117172) | 1.510575 / 1.452155 (0.058421) | 1.593214 / 1.492716 (0.100497) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.272703 / 0.018006 (0.254697) | 0.583235 / 0.000490 (0.582746) | 0.008467 / 0.000200 (0.008267) | 0.000295 / 0.000054 (0.000240) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029654 / 0.037411 (-0.007757) | 0.085078 / 0.014526 (0.070552) | 0.106391 / 0.176557 (-0.070165) | 0.155790 / 0.737135 (-0.581345) | 0.104835 / 0.296338 (-0.191503) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.408584 / 0.215209 (0.193375) | 4.082557 / 2.077655 (2.004902) | 2.054001 / 1.504120 (0.549881) | 1.868470 / 1.541195 (0.327275) | 1.950600 / 1.468490 (0.482110) | 0.492572 / 4.584777 (-4.092205) | 3.497105 / 3.745712 (-0.248607) | 3.464596 / 5.269862 (-1.805265) | 2.106399 / 4.565676 (-2.459278) | 0.057413 / 0.424275 (-0.366862) | 0.007449 / 0.007607 (-0.000158) | 0.482900 / 0.226044 (0.256856) | 4.844152 / 2.268929 (2.575223) | 2.499930 / 55.444624 (-52.944695) | 2.180396 / 6.876477 (-4.696081) | 2.282830 / 2.142072 (0.140758) | 0.581371 / 4.805227 (-4.223857) | 0.134641 / 6.500664 (-6.366023) | 0.063137 / 0.075469 (-0.012332) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.274291 / 1.841788 (-0.567496) | 19.426189 / 8.074308 (11.351881) | 14.292833 / 10.191392 (4.101441) | 0.166321 / 0.680424 (-0.514102) | 0.018419 / 0.534201 (-0.515782) | 0.392433 / 0.579283 (-0.186850) | 0.415128 / 0.434364 (-0.019236) | 0.459274 / 0.540337 (-0.081063) | 0.714668 / 1.386936 (-0.672268) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006740 / 0.011353 (-0.004613) | 0.004283 / 0.011008 (-0.006725) | 0.063845 / 0.038508 (0.025337) | 0.077037 / 0.023109 (0.053927) | 0.425103 / 0.275898 (0.149205) | 0.445525 / 0.323480 (0.122046) | 0.005755 / 0.007986 (-0.002230) | 0.003589 / 0.004328 (-0.000739) | 0.064515 / 0.004250 (0.060265) | 0.057398 / 0.037052 (0.020346) | 0.424781 / 0.258489 (0.166292) | 0.452162 / 0.293841 (0.158321) | 0.032164 / 0.128546 (-0.096382) | 0.008660 / 0.075646 (-0.066986) | 0.069873 / 0.419271 (-0.349399) | 0.048100 / 0.043533 (0.004567) | 0.409097 / 0.255139 (0.153958) | 0.441533 / 0.283200 (0.158333) | 0.024122 / 0.141683 (-0.117560) | 1.503431 / 1.452155 (0.051277) | 1.577518 / 1.492716 (0.084802) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.264433 / 0.018006 (0.246426) | 0.553631 / 0.000490 (0.553141) | 0.006354 / 0.000200 (0.006154) | 0.000106 / 0.000054 (0.000051) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033259 / 0.037411 (-0.004152) | 0.094908 / 0.014526 (0.080382) | 0.108238 / 0.176557 (-0.068318) | 0.161354 / 0.737135 (-0.575781) | 0.109073 / 0.296338 (-0.187265) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.434450 / 0.215209 (0.219241) | 4.347501 / 2.077655 (2.269847) | 2.362225 / 1.504120 (0.858105) | 2.189285 / 1.541195 (0.648090) | 2.288797 / 1.468490 (0.820307) | 0.487782 / 4.584777 (-4.096995) | 3.598732 / 3.745712 (-0.146980) | 3.343263 / 5.269862 (-1.926599) | 2.086256 / 4.565676 (-2.479420) | 0.057838 / 0.424275 (-0.366437) | 0.007412 / 0.007607 (-0.000195) | 0.510098 / 0.226044 (0.284054) | 5.088743 / 2.268929 (2.819814) | 2.809105 / 55.444624 (-52.635519) | 2.476005 / 6.876477 (-4.400471) | 2.753785 / 2.142072 (0.611712) | 0.585045 / 4.805227 (-4.220182) | 0.131162 / 6.500664 (-6.369502) | 0.060431 / 0.075469 (-0.015038) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.342149 / 1.841788 (-0.499639) | 20.602369 / 8.074308 (12.528061) | 14.973301 / 10.191392 (4.781909) | 0.151655 / 0.680424 (-0.528769) | 0.020793 / 0.534201 (-0.513408) | 0.401657 / 0.579283 (-0.177626) | 0.419845 / 0.434364 (-0.014519) | 0.467225 / 0.540337 (-0.073113) | 0.672469 / 1.386936 (-0.714467) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#474beafbc1c2735ff4747f5675855583be2ede06 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007006 / 0.011353 (-0.004346) | 0.004282 / 0.011008 (-0.006726) | 0.085413 / 0.038508 (0.046905) | 0.085148 / 0.023109 (0.062038) | 0.336543 / 0.275898 (0.060645) | 0.367959 / 0.323480 (0.044479) | 0.004337 / 0.007986 (-0.003648) | 0.004535 / 0.004328 (0.000207) | 0.065379 / 0.004250 (0.061128) | 0.059993 / 0.037052 (0.022941) | 0.343162 / 0.258489 (0.084673) | 0.383766 / 0.293841 (0.089925) | 0.031520 / 0.128546 (-0.097026) | 0.008605 / 0.075646 (-0.067042) | 0.288620 / 0.419271 (-0.130651) | 0.053617 / 0.043533 (0.010084) | 0.339389 / 0.255139 (0.084250) | 0.350842 / 0.283200 (0.067642) | 0.027816 / 0.141683 (-0.113867) | 1.505500 / 1.452155 (0.053346) | 1.566511 / 1.492716 (0.073795) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.272203 / 0.018006 (0.254197) | 0.569729 / 0.000490 (0.569240) | 0.010061 / 0.000200 (0.009861) | 0.000328 / 0.000054 (0.000273) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030015 / 0.037411 (-0.007396) | 0.083991 / 0.014526 (0.069465) | 0.099796 / 0.176557 (-0.076761) | 0.159131 / 0.737135 (-0.578004) | 0.099102 / 0.296338 (-0.197237) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.390076 / 0.215209 (0.174867) | 3.897157 / 2.077655 (1.819502) | 1.935912 / 1.504120 (0.431793) | 1.815109 / 1.541195 (0.273915) | 1.875041 / 1.468490 (0.406551) | 0.482168 / 4.584777 (-4.102609) | 3.556140 / 3.745712 (-0.189572) | 3.528889 / 5.269862 (-1.740972) | 2.132767 / 4.565676 (-2.432909) | 0.057761 / 0.424275 (-0.366514) | 0.007353 / 0.007607 (-0.000254) | 0.464801 / 0.226044 (0.238757) | 4.637301 / 2.268929 (2.368372) | 2.362239 / 55.444624 (-53.082386) | 2.049811 / 6.876477 (-4.826665) | 2.143485 / 2.142072 (0.001412) | 0.580929 / 4.805227 (-4.224299) | 0.140252 / 6.500664 (-6.360412) | 0.061352 / 0.075469 (-0.014117) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.257487 / 1.841788 (-0.584301) | 19.453319 / 8.074308 (11.379011) | 14.276332 / 10.191392 (4.084940) | 0.166772 / 0.680424 (-0.513652) | 0.018339 / 0.534201 (-0.515862) | 0.393008 / 0.579283 (-0.186275) | 0.420960 / 0.434364 (-0.013404) | 0.464331 / 0.540337 (-0.076007) | 0.717973 / 1.386936 (-0.668963) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007255 / 0.011353 (-0.004098) | 0.004230 / 0.011008 (-0.006778) | 0.065191 / 0.038508 (0.026683) | 0.085765 / 0.023109 (0.062655) | 0.412464 / 0.275898 (0.136566) | 0.446067 / 0.323480 (0.122587) | 0.005875 / 0.007986 (-0.002110) | 0.003700 / 0.004328 (-0.000628) | 0.065430 / 0.004250 (0.061179) | 0.060284 / 0.037052 (0.023231) | 0.419984 / 0.258489 (0.161495) | 0.453779 / 0.293841 (0.159938) | 0.032595 / 0.128546 (-0.095952) | 0.008873 / 0.075646 (-0.066773) | 0.072124 / 0.419271 (-0.347148) | 0.048072 / 0.043533 (0.004539) | 0.408725 / 0.255139 (0.153586) | 0.432485 / 0.283200 (0.149285) | 0.024662 / 0.141683 (-0.117021) | 1.540434 / 1.452155 (0.088279) | 1.624768 / 1.492716 (0.132051) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.253220 / 0.018006 (0.235214) | 0.555469 / 0.000490 (0.554980) | 0.007765 / 0.000200 (0.007565) | 0.000101 / 0.000054 (0.000046) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032666 / 0.037411 (-0.004745) | 0.094786 / 0.014526 (0.080260) | 0.108219 / 0.176557 (-0.068337) | 0.161546 / 0.737135 (-0.575589) | 0.109828 / 0.296338 (-0.186510) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.437024 / 0.215209 (0.221815) | 4.354065 / 2.077655 (2.276411) | 2.336832 / 1.504120 (0.832713) | 2.161959 / 1.541195 (0.620764) | 2.257214 / 1.468490 (0.788724) | 0.501576 / 4.584777 (-4.083201) | 3.654292 / 3.745712 (-0.091420) | 3.349504 / 5.269862 (-1.920357) | 2.092998 / 4.565676 (-2.472679) | 0.058740 / 0.424275 (-0.365535) | 0.007420 / 0.007607 (-0.000187) | 0.513443 / 0.226044 (0.287399) | 5.151247 / 2.268929 (2.882319) | 2.816036 / 55.444624 (-52.628589) | 2.451863 / 6.876477 (-4.424613) | 2.709908 / 2.142072 (0.567836) | 0.597834 / 4.805227 (-4.207394) | 0.136547 / 6.500664 (-6.364117) | 0.062030 / 0.075469 (-0.013439) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.371412 / 1.841788 (-0.470375) | 20.398981 / 8.074308 (12.324673) | 14.932307 / 10.191392 (4.740915) | 0.167796 / 0.680424 (-0.512628) | 0.020740 / 0.534201 (-0.513461) | 0.397162 / 0.579283 (-0.182121) | 0.435493 / 0.434364 (0.001129) | 0.477074 / 0.540337 (-0.063264) | 0.697546 / 1.386936 (-0.689390) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#017cefbc832bfe662afd87d9d1241104bf67c53e \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007388 / 0.011353 (-0.003964) | 0.004408 / 0.011008 (-0.006600) | 0.098225 / 0.038508 (0.059717) | 0.079368 / 0.023109 (0.056259) | 0.381866 / 0.275898 (0.105968) | 0.425942 / 0.323480 (0.102462) | 0.005978 / 0.007986 (-0.002007) | 0.003677 / 0.004328 (-0.000651) | 0.075488 / 0.004250 (0.071238) | 0.061725 / 0.037052 (0.024672) | 0.389126 / 0.258489 (0.130637) | 0.444099 / 0.293841 (0.150258) | 0.036222 / 0.128546 (-0.092324) | 0.009926 / 0.075646 (-0.065720) | 0.336632 / 0.419271 (-0.082640) | 0.060867 / 0.043533 (0.017335) | 0.385437 / 0.255139 (0.130298) | 0.416599 / 0.283200 (0.133399) | 0.025118 / 0.141683 (-0.116565) | 1.728073 / 1.452155 (0.275919) | 1.847750 / 1.492716 (0.355033) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.263774 / 0.018006 (0.245768) | 0.491242 / 0.000490 (0.490752) | 0.013621 / 0.000200 (0.013421) | 0.000333 / 0.000054 (0.000279) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032911 / 0.037411 (-0.004500) | 0.095738 / 0.014526 (0.081212) | 0.110482 / 0.176557 (-0.066075) | 0.175533 / 0.737135 (-0.561603) | 0.109240 / 0.296338 (-0.187098) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.453967 / 0.215209 (0.238758) | 4.489384 / 2.077655 (2.411730) | 2.185496 / 1.504120 (0.681376) | 1.979126 / 1.541195 (0.437931) | 2.016364 / 1.468490 (0.547874) | 0.565539 / 4.584777 (-4.019238) | 4.106561 / 3.745712 (0.360849) | 3.906402 / 5.269862 (-1.363460) | 2.342186 / 4.565676 (-2.223491) | 0.067815 / 0.424275 (-0.356460) | 0.008663 / 0.007607 (0.001056) | 0.543841 / 0.226044 (0.317796) | 5.433491 / 2.268929 (3.164563) | 2.785723 / 55.444624 (-52.658901) | 2.355716 / 6.876477 (-4.520760) | 2.397563 / 2.142072 (0.255491) | 0.682587 / 4.805227 (-4.122641) | 0.156548 / 6.500664 (-6.344116) | 0.070654 / 0.075469 (-0.004815) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.475183 / 1.841788 (-0.366605) | 21.353030 / 8.074308 (13.278722) | 15.938324 / 10.191392 (5.746932) | 0.167010 / 0.680424 (-0.513413) | 0.020931 / 0.534201 (-0.513270) | 0.464376 / 0.579283 (-0.114907) | 0.472546 / 0.434364 (0.038182) | 0.544645 / 0.540337 (0.004308) | 0.752940 / 1.386936 (-0.633996) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007359 / 0.011353 (-0.003994) | 0.004276 / 0.011008 (-0.006732) | 0.075345 / 0.038508 (0.036837) | 0.080105 / 0.023109 (0.056995) | 0.480456 / 0.275898 (0.204558) | 0.514974 / 0.323480 (0.191494) | 0.006087 / 0.007986 (-0.001899) | 0.003717 / 0.004328 (-0.000611) | 0.075067 / 0.004250 (0.070816) | 0.063739 / 0.037052 (0.026686) | 0.487569 / 0.258489 (0.229080) | 0.530198 / 0.293841 (0.236357) | 0.036056 / 0.128546 (-0.092491) | 0.009606 / 0.075646 (-0.066041) | 0.082343 / 0.419271 (-0.336929) | 0.055488 / 0.043533 (0.011956) | 0.484789 / 0.255139 (0.229650) | 0.501918 / 0.283200 (0.218718) | 0.025340 / 0.141683 (-0.116342) | 1.784417 / 1.452155 (0.332262) | 1.854202 / 1.492716 (0.361486) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.252476 / 0.018006 (0.234470) | 0.484967 / 0.000490 (0.484478) | 0.005471 / 0.000200 (0.005271) | 0.000111 / 0.000054 (0.000057) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.037084 / 0.037411 (-0.000327) | 0.106648 / 0.014526 (0.092122) | 0.123393 / 0.176557 (-0.053164) | 0.183088 / 0.737135 (-0.554047) | 0.122572 / 0.296338 (-0.173767) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.516003 / 0.215209 (0.300793) | 5.107748 / 2.077655 (3.030093) | 2.778044 / 1.504120 (1.273924) | 2.589944 / 1.541195 (1.048749) | 2.649921 / 1.468490 (1.181431) | 0.572783 / 4.584777 (-4.011994) | 4.211331 / 3.745712 (0.465619) | 3.738859 / 5.269862 (-1.531003) | 2.331628 / 4.565676 (-2.234048) | 0.067347 / 0.424275 (-0.356928) | 0.008513 / 0.007607 (0.000905) | 0.601056 / 0.226044 (0.375012) | 5.990921 / 2.268929 (3.721992) | 3.311544 / 55.444624 (-52.133081) | 2.929850 / 6.876477 (-3.946627) | 3.118741 / 2.142072 (0.976669) | 0.685975 / 4.805227 (-4.119253) | 0.155105 / 6.500664 (-6.345559) | 0.069629 / 0.075469 (-0.005840) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.602367 / 1.841788 (-0.239421) | 22.577072 / 8.074308 (14.502764) | 17.049655 / 10.191392 (6.858263) | 0.182412 / 0.680424 (-0.498011) | 0.023137 / 0.534201 (-0.511064) | 0.466988 / 0.579283 (-0.112295) | 0.483887 / 0.434364 (0.049523) | 0.556099 / 0.540337 (0.015761) | 0.798332 / 1.386936 (-0.588604) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#3e6d8318bd73a91852c22d14f1d788ac6dc8ae90 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009086 / 0.011353 (-0.002267) | 0.004755 / 0.011008 (-0.006253) | 0.128866 / 0.038508 (0.090358) | 0.086099 / 0.023109 (0.062990) | 0.378079 / 0.275898 (0.102181) | 0.487431 / 0.323480 (0.163951) | 0.004712 / 0.007986 (-0.003274) | 0.003622 / 0.004328 (-0.000706) | 0.081214 / 0.004250 (0.076963) | 0.057226 / 0.037052 (0.020174) | 0.407655 / 0.258489 (0.149166) | 0.448630 / 0.293841 (0.154789) | 0.049051 / 0.128546 (-0.079495) | 0.014537 / 0.075646 (-0.061110) | 0.467343 / 0.419271 (0.048071) | 0.070482 / 0.043533 (0.026949) | 0.379664 / 0.255139 (0.124525) | 0.464181 / 0.283200 (0.180981) | 0.039973 / 0.141683 (-0.101710) | 1.731164 / 1.452155 (0.279010) | 1.886895 / 1.492716 (0.394178) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.251327 / 0.018006 (0.233321) | 0.502670 / 0.000490 (0.502180) | 0.012183 / 0.000200 (0.011984) | 0.000111 / 0.000054 (0.000057) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028892 / 0.037411 (-0.008519) | 0.093789 / 0.014526 (0.079263) | 0.104255 / 0.176557 (-0.072301) | 0.170257 / 0.737135 (-0.566879) | 0.115430 / 0.296338 (-0.180909) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.573745 / 0.215209 (0.358536) | 5.873732 / 2.077655 (3.796077) | 2.485188 / 1.504120 (0.981068) | 2.018476 / 1.541195 (0.477282) | 2.062765 / 1.468490 (0.594275) | 0.913816 / 4.584777 (-3.670961) | 5.362338 / 3.745712 (1.616626) | 4.698758 / 5.269862 (-0.571103) | 3.132973 / 4.565676 (-1.432703) | 0.093594 / 0.424275 (-0.330681) | 0.008359 / 0.007607 (0.000751) | 0.693997 / 0.226044 (0.467953) | 7.042645 / 2.268929 (4.773717) | 3.196180 / 55.444624 (-52.248445) | 2.384585 / 6.876477 (-4.491892) | 2.301256 / 2.142072 (0.159183) | 1.048025 / 4.805227 (-3.757202) | 0.206931 / 6.500664 (-6.293733) | 0.069401 / 0.075469 (-0.006068) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.598898 / 1.841788 (-0.242889) | 22.963667 / 8.074308 (14.889359) | 20.373688 / 10.191392 (10.182296) | 0.239716 / 0.680424 (-0.440707) | 0.040213 / 0.534201 (-0.493988) | 0.503268 / 0.579283 (-0.076015) | 0.630750 / 0.434364 (0.196386) | 0.578007 / 0.540337 (0.037669) | 0.789564 / 1.386936 (-0.597372) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009129 / 0.011353 (-0.002224) | 0.005453 / 0.011008 (-0.005555) | 0.101040 / 0.038508 (0.062532) | 0.099172 / 0.023109 (0.076062) | 0.508453 / 0.275898 (0.232555) | 0.570858 / 0.323480 (0.247378) | 0.006584 / 0.007986 (-0.001401) | 0.003800 / 0.004328 (-0.000528) | 0.094349 / 0.004250 (0.090098) | 0.064642 / 0.037052 (0.027590) | 0.563008 / 0.258489 (0.304518) | 0.625560 / 0.293841 (0.331719) | 0.050121 / 0.128546 (-0.078426) | 0.014183 / 0.075646 (-0.061463) | 0.106564 / 0.419271 (-0.312707) | 0.061030 / 0.043533 (0.017498) | 0.522311 / 0.255139 (0.267172) | 0.598356 / 0.283200 (0.315156) | 0.042008 / 0.141683 (-0.099675) | 1.879999 / 1.452155 (0.427844) | 1.963879 / 1.492716 (0.471162) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.270573 / 0.018006 (0.252567) | 0.554356 / 0.000490 (0.553866) | 0.008145 / 0.000200 (0.007945) | 0.000218 / 0.000054 (0.000163) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031089 / 0.037411 (-0.006322) | 0.099568 / 0.014526 (0.085043) | 0.118304 / 0.176557 (-0.058253) | 0.182991 / 0.737135 (-0.554144) | 0.115874 / 0.296338 (-0.180465) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.615020 / 0.215209 (0.399811) | 6.279740 / 2.077655 (4.202085) | 2.882094 / 1.504120 (1.377974) | 2.559265 / 1.541195 (1.018070) | 2.639259 / 1.468490 (1.170769) | 0.903727 / 4.584777 (-3.681050) | 5.248555 / 3.745712 (1.502843) | 4.817340 / 5.269862 (-0.452522) | 3.056880 / 4.565676 (-1.508797) | 0.096602 / 0.424275 (-0.327673) | 0.008660 / 0.007607 (0.001053) | 0.794347 / 0.226044 (0.568303) | 7.625127 / 2.268929 (5.356198) | 3.766826 / 55.444624 (-51.677798) | 2.968254 / 6.876477 (-3.908223) | 3.260595 / 2.142072 (1.118523) | 1.066228 / 4.805227 (-3.739000) | 0.207158 / 6.500664 (-6.293506) | 0.076920 / 0.075469 (0.001451) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.741442 / 1.841788 (-0.100345) | 23.499552 / 8.074308 (15.425244) | 22.064966 / 10.191392 (11.873574) | 0.239173 / 0.680424 (-0.441251) | 0.032105 / 0.534201 (-0.502096) | 0.484709 / 0.579283 (-0.094574) | 0.583632 / 0.434364 (0.149268) | 0.569018 / 0.540337 (0.028681) | 0.815764 / 1.386936 (-0.571172) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#3aeb078ba1afd713e901df43343c160877403d07 \"CML watermark\")\n" ]
2023-10-17T09:00:39
2023-10-18T14:01:52
2023-10-18T13:50:35
MEMBER
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6309", "html_url": "https://github.com/huggingface/datasets/pull/6309", "diff_url": "https://github.com/huggingface/datasets/pull/6309.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6309.patch", "merged_at": "2023-10-18T13:50:35" }
Before the fix, `get_data_patterns` inferred wrongly the split name for paths with the word "data" twice: - For the URL path: `hf://datasets/piuba-bigdata/articles_and_comments@f328d536425ae8fcac5d098c8408f437bffdd357/data/train-00001-of-00009.parquet` (note the org name `piuba-bigdata/` ending with `data/`) - The inferred split name was: `articles_and_comments@f328d536425ae8fcac5d098c8408f437bffdd357/data/train` instead of `train` This PR fixes this issue by passing the `base_path` (`hf://datasets/piuba-bigdata/articles_and_comments@f328d536425ae8fcac5d098c8408f437bffdd357`) to `_get_data_files_patterns` and prepending it to the regex split pattern (`data/{split}-[0-9][0-9][0-9][0-9][0-9]-of-[0-9][0-9][0-9][0-9][0-9].*\\..*`). Fix #6305. Fix https://huggingface.co./datasets/piuba-bigdata/articles_and_comments/discussions/1
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6309/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6309/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6308
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6308/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6308/comments
https://api.github.com/repos/huggingface/datasets/issues/6308/events
https://github.com/huggingface/datasets/issues/6308
1,946,810,625
I_kwDODunzps50CfkB
6,308
module 'resource' has no attribute 'error'
{ "login": "NeoWang9999", "id": 48009681, "node_id": "MDQ6VXNlcjQ4MDA5Njgx", "avatar_url": "https://avatars.githubusercontent.com/u/48009681?v=4", "gravatar_id": "", "url": "https://api.github.com/users/NeoWang9999", "html_url": "https://github.com/NeoWang9999", "followers_url": "https://api.github.com/users/NeoWang9999/followers", "following_url": "https://api.github.com/users/NeoWang9999/following{/other_user}", "gists_url": "https://api.github.com/users/NeoWang9999/gists{/gist_id}", "starred_url": "https://api.github.com/users/NeoWang9999/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/NeoWang9999/subscriptions", "organizations_url": "https://api.github.com/users/NeoWang9999/orgs", "repos_url": "https://api.github.com/users/NeoWang9999/repos", "events_url": "https://api.github.com/users/NeoWang9999/events{/privacy}", "received_events_url": "https://api.github.com/users/NeoWang9999/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "This (Windows) issue was fixed in `fsspec` in https://github.com/fsspec/filesystem_spec/pull/1275. So, to avoid the error, update the `fsspec` installation with `pip install -U fsspec`.", "> This (Windows) issue was fixed in `fsspec` in [fsspec/filesystem_spec#1275](https://github.com/fsspec/filesystem_spec/pull/1275). So, to avoid the error, update the `fsspec` installation with `pip install -U fsspec`.\r\n\r\nafter I run `pip install -U fsspec`\r\n\r\nit occurs a new error:\r\n```\r\nERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflict\r\ns.\r\ndatasets 2.14.5 requires fsspec[http]<2023.9.0,>=2023.1.0, but you have fsspec 2023.9.2 which is incompatible.\r\n\r\n```", "The `fsspec<2023.9.0` upper bound will be removed in the next release. The `ResourceError` fix is also present in version 2023.6.0, so use that version in the meantime (`pip install fsspec==2023.6.0`).", "> The `fsspec<2023.9.0` upper bound will be removed in the next release. The `ResourceError` fix is also present in version 2023.6.0, so use that version in the meantime (`pip install fsspec==2023.6.0`).\r\n\r\nthanks for reply!" ]
2023-10-17T08:08:54
2023-10-25T17:09:22
2023-10-25T17:09:22
NONE
null
null
null
### Describe the bug just run import: `from datasets import load_dataset` and then: ``` File "C:\ProgramData\anaconda3\envs\py310\lib\site-packages\datasets\__init__.py", line 22, in <module> from .arrow_dataset import Dataset File "C:\ProgramData\anaconda3\envs\py310\lib\site-packages\datasets\arrow_dataset.py", line 66, in <module> from .arrow_reader import ArrowReader File "C:\ProgramData\anaconda3\envs\py310\lib\site-packages\datasets\arrow_reader.py", line 30, in <module> from .download.download_config import DownloadConfig File "C:\ProgramData\anaconda3\envs\py310\lib\site-packages\datasets\download\__init__.py", line 10, in <module> from .streaming_download_manager import StreamingDownloadManager File "C:\ProgramData\anaconda3\envs\py310\lib\site-packages\datasets\download\streaming_download_manager.py", line 21, in <module> from ..filesystems import COMPRESSION_FILESYSTEMS File "C:\ProgramData\anaconda3\envs\py310\lib\site-packages\datasets\filesystems\__init__.py", line 8, in <module> import fsspec.asyn File "C:\ProgramData\anaconda3\envs\py310\lib\site-packages\fsspec\asyn.py", line 157, in <module> ResourceEror = resource.error AttributeError: module 'resource' has no attribute 'error' Process finished with exit code 1 ``` and the error codes are: ``` try: import resource except ImportError: resource = None ResourceError = OSError else: ResourceEror = resource.error ``` 1. miss spelling : "ResourceEror " should be "ResourceErorr" 2. module 'resource' has no attribute 'error' ### Steps to reproduce the bug only one step: `from datasets import load_dataset` ### Expected behavior slove error: module 'resource' has no attribute 'error' ### Environment info python=3.10 datasets==2.14.5
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6308/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6308/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6307
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6307/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6307/comments
https://api.github.com/repos/huggingface/datasets/issues/6307/events
https://github.com/huggingface/datasets/pull/6307
1,946,414,808
PR_kwDODunzps5c9s0j
6,307
Fix typo in code example in docs
{ "login": "bryant1410", "id": 3905501, "node_id": "MDQ6VXNlcjM5MDU1MDE=", "avatar_url": "https://avatars.githubusercontent.com/u/3905501?v=4", "gravatar_id": "", "url": "https://api.github.com/users/bryant1410", "html_url": "https://github.com/bryant1410", "followers_url": "https://api.github.com/users/bryant1410/followers", "following_url": "https://api.github.com/users/bryant1410/following{/other_user}", "gists_url": "https://api.github.com/users/bryant1410/gists{/gist_id}", "starred_url": "https://api.github.com/users/bryant1410/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/bryant1410/subscriptions", "organizations_url": "https://api.github.com/users/bryant1410/orgs", "repos_url": "https://api.github.com/users/bryant1410/repos", "events_url": "https://api.github.com/users/bryant1410/events{/privacy}", "received_events_url": "https://api.github.com/users/bryant1410/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.011548 / 0.011353 (0.000196) | 0.004630 / 0.011008 (-0.006378) | 0.105349 / 0.038508 (0.066841) | 0.110557 / 0.023109 (0.087448) | 0.395463 / 0.275898 (0.119565) | 0.448391 / 0.323480 (0.124912) | 0.005112 / 0.007986 (-0.002873) | 0.003854 / 0.004328 (-0.000474) | 0.088513 / 0.004250 (0.084263) | 0.073081 / 0.037052 (0.036028) | 0.391572 / 0.258489 (0.133083) | 0.459543 / 0.293841 (0.165702) | 0.040424 / 0.128546 (-0.088122) | 0.010306 / 0.075646 (-0.065340) | 0.365493 / 0.419271 (-0.053778) | 0.068154 / 0.043533 (0.024622) | 0.397675 / 0.255139 (0.142536) | 0.447147 / 0.283200 (0.163947) | 0.033482 / 0.141683 (-0.108201) | 1.857087 / 1.452155 (0.404932) | 1.973311 / 1.492716 (0.480595) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.257938 / 0.018006 (0.239932) | 0.569572 / 0.000490 (0.569083) | 0.012155 / 0.000200 (0.011955) | 0.000112 / 0.000054 (0.000058) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033094 / 0.037411 (-0.004318) | 0.102370 / 0.014526 (0.087844) | 0.122421 / 0.176557 (-0.054136) | 0.189983 / 0.737135 (-0.547152) | 0.117902 / 0.296338 (-0.178437) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.468419 / 0.215209 (0.253210) | 4.671410 / 2.077655 (2.593755) | 2.371136 / 1.504120 (0.867016) | 2.191877 / 1.541195 (0.650682) | 2.301894 / 1.468490 (0.833404) | 0.572260 / 4.584777 (-4.012517) | 4.302031 / 3.745712 (0.556319) | 4.128431 / 5.269862 (-1.141431) | 2.464543 / 4.565676 (-2.101133) | 0.067663 / 0.424275 (-0.356612) | 0.008947 / 0.007607 (0.001340) | 0.570063 / 0.226044 (0.344018) | 5.684460 / 2.268929 (3.415531) | 2.969708 / 55.444624 (-52.474916) | 2.573568 / 6.876477 (-4.302909) | 2.666074 / 2.142072 (0.524001) | 0.710098 / 4.805227 (-4.095129) | 0.158413 / 6.500664 (-6.342251) | 0.072776 / 0.075469 (-0.002693) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.564166 / 1.841788 (-0.277622) | 23.612774 / 8.074308 (15.538465) | 17.725070 / 10.191392 (7.533678) | 0.178982 / 0.680424 (-0.501442) | 0.021615 / 0.534201 (-0.512586) | 0.467090 / 0.579283 (-0.112193) | 0.472648 / 0.434364 (0.038284) | 0.578820 / 0.540337 (0.038483) | 0.783533 / 1.386936 (-0.603403) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008895 / 0.011353 (-0.002458) | 0.004617 / 0.011008 (-0.006392) | 0.077677 / 0.038508 (0.039169) | 0.090283 / 0.023109 (0.067174) | 0.491115 / 0.275898 (0.215217) | 0.525189 / 0.323480 (0.201709) | 0.007845 / 0.007986 (-0.000141) | 0.003742 / 0.004328 (-0.000586) | 0.077856 / 0.004250 (0.073606) | 0.067447 / 0.037052 (0.030394) | 0.488423 / 0.258489 (0.229933) | 0.532938 / 0.293841 (0.239097) | 0.041035 / 0.128546 (-0.087511) | 0.009917 / 0.075646 (-0.065730) | 0.085313 / 0.419271 (-0.333958) | 0.063374 / 0.043533 (0.019841) | 0.472287 / 0.255139 (0.217148) | 0.509773 / 0.283200 (0.226573) | 0.028706 / 0.141683 (-0.112977) | 1.775558 / 1.452155 (0.323403) | 1.967778 / 1.492716 (0.475061) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.249834 / 0.018006 (0.231828) | 0.467266 / 0.000490 (0.466776) | 0.005837 / 0.000200 (0.005637) | 0.000128 / 0.000054 (0.000074) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.038759 / 0.037411 (0.001347) | 0.113156 / 0.014526 (0.098630) | 0.123936 / 0.176557 (-0.052621) | 0.186831 / 0.737135 (-0.550304) | 0.125195 / 0.296338 (-0.171143) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.545666 / 0.215209 (0.330457) | 5.465713 / 2.077655 (3.388058) | 2.941279 / 1.504120 (1.437159) | 2.688377 / 1.541195 (1.147182) | 2.619501 / 1.468490 (1.151010) | 0.577974 / 4.584777 (-4.006803) | 4.300966 / 3.745712 (0.555254) | 3.879552 / 5.269862 (-1.390310) | 2.454932 / 4.565676 (-2.110745) | 0.069233 / 0.424275 (-0.355043) | 0.009729 / 0.007607 (0.002122) | 0.595290 / 0.226044 (0.369245) | 5.945445 / 2.268929 (3.676516) | 3.314607 / 55.444624 (-52.130017) | 2.894474 / 6.876477 (-3.982002) | 3.140790 / 2.142072 (0.998718) | 0.695808 / 4.805227 (-4.109419) | 0.158087 / 6.500664 (-6.342577) | 0.071374 / 0.075469 (-0.004095) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.706482 / 1.841788 (-0.135306) | 24.022666 / 8.074308 (15.948358) | 17.658003 / 10.191392 (7.466611) | 0.196771 / 0.680424 (-0.483653) | 0.023928 / 0.534201 (-0.510273) | 0.471992 / 0.579283 (-0.107291) | 0.510463 / 0.434364 (0.076099) | 0.621250 / 0.540337 (0.080912) | 0.807670 / 1.386936 (-0.579266) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#f77539cbd88d00ec1ab2b9d4edfd01d5a58ef88a \"CML watermark\")\n" ]
2023-10-17T02:28:50
2023-10-17T12:59:26
2023-10-17T06:36:19
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6307", "html_url": "https://github.com/huggingface/datasets/pull/6307", "diff_url": "https://github.com/huggingface/datasets/pull/6307.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6307.patch", "merged_at": "2023-10-17T06:36:18" }
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6307/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6307/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6306
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6306/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6306/comments
https://api.github.com/repos/huggingface/datasets/issues/6306/events
https://github.com/huggingface/datasets/issues/6306
1,946,363,452
I_kwDODunzps50AyY8
6,306
pyinstaller : OSError: could not get source code
{ "login": "dusk877647949", "id": 57702070, "node_id": "MDQ6VXNlcjU3NzAyMDcw", "avatar_url": "https://avatars.githubusercontent.com/u/57702070?v=4", "gravatar_id": "", "url": "https://api.github.com/users/dusk877647949", "html_url": "https://github.com/dusk877647949", "followers_url": "https://api.github.com/users/dusk877647949/followers", "following_url": "https://api.github.com/users/dusk877647949/following{/other_user}", "gists_url": "https://api.github.com/users/dusk877647949/gists{/gist_id}", "starred_url": "https://api.github.com/users/dusk877647949/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/dusk877647949/subscriptions", "organizations_url": "https://api.github.com/users/dusk877647949/orgs", "repos_url": "https://api.github.com/users/dusk877647949/repos", "events_url": "https://api.github.com/users/dusk877647949/events{/privacy}", "received_events_url": "https://api.github.com/users/dusk877647949/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "more information:\r\n``` \r\nFile \"text2vec\\__init__.py\", line 8, in <module>\r\nFile \"<frozen importlib._bootstrap>\", line 1027, in _find_and_load\r\nFile \"<frozen importlib._bootstrap>\", line 1006, in _find_and_load_unlocked\r\nFile \"<frozen importlib._bootstrap>\", line 688, in _load_unlocked\r\nFile \"PyInstaller\\loader\\pyimod02_importers.py\", line 499, in exec_module\r\nFile \"text2vec\\bertmatching_model.py\", line 19, in <module>\r\nFile \"<frozen importlib._bootstrap>\", line 1027, in _find_and_load\r\nFile \"<frozen importlib._bootstrap>\", line 1006, in _find_and_load_unlocked\r\nFile \"<frozen importlib._bootstrap>\", line 688, in _load_unlocked\r\nFile \"PyInstaller\\loader\\pyimod02_importers.py\", line 499, in exec_module\r\nFile \"text2vec\\bertmatching_dataset.py\", line 7, in <module>\r\nFile \"<frozen importlib._bootstrap>\", line 1027, in _find_and_load\r\nFile \"<frozen importlib._bootstrap>\", line 1006, in _find_and_load_unlocked\r\nFile \"<frozen importlib._bootstrap>\", line 688, in _load_unlocked\r\nFile \"PyInstaller\\loader\\pyimod02_importers.py\", line 499, in exec_module\r\nFile \"datasets\\__init__.py\", line 52, in <module>\r\nFile \"<frozen importlib._bootstrap>\", line 1027, in _find_and_load\r\nFile \"<frozen importlib._bootstrap>\", line 1006, in _find_and_load_unlocked\r\nFile \"<frozen importlib._bootstrap>\", line 688, in _load_unlocked\r\nFile \"PyInstaller\\loader\\pyimod02_importers.py\", line 499, in exec_module\r\nFile \"datasets\\inspect.py\", line 30, in <module>\r\nFile \"<frozen importlib._bootstrap>\", line 1027, in _find_and_load\r\nFile \"<frozen importlib._bootstrap>\", line 1006, in _find_and_load_unlocked\r\nFile \"<frozen importlib._bootstrap>\", line 688, in _load_unlocked\r\nFile \"PyInstaller\\loader\\pyimod02_importers.py\", line 499, in exec_module\r\nFile \"datasets\\load.py\", line 58, in <module>\r\nFile \"<frozen importlib._bootstrap>\", line 1027, in _find_and_load\r\nFile \"<frozen importlib._bootstrap>\", line 1006, in _find_and_load_unlocked\r\nFile \"<frozen importlib._bootstrap>\", line 688, in _load_unlocked\r\nFile \"PyInstaller\\loader\\pyimod02_importers.py\", line 499, in exec_module\r\nFile \"datasets\\packaged_modules\\__init__.py\", line 31, in <module>\r\nFile \"inspect.py\", line 1147, in getsource\r\nFile \"inspect.py\", line 1129, in getsourcelines\r\nFile \"inspect.py\", line 958, in findsource\r\nOSError: could not get source code\r\n```\r\n", "Can you share a reproducer? I haven't been able to reproduce the error myself.", "> '\r\n\r\nthanks,I solve it.it's about pyinstaller.", "1", "> > '\r\n> \r\n> thanks,I solve it.it's about pyinstaller.\r\n\r\nI encountered the same error, how to solve it?" ]
2023-10-17T01:41:51
2023-11-02T07:24:51
2023-10-18T14:03:42
NONE
null
null
null
### Describe the bug I ran a package with pyinstaller and got the following error: ### Steps to reproduce the bug ``` ... File "datasets\__init__.py", line 52, in <module> File "<frozen importlib._bootstrap>", line 1027, in _find_and_load File "<frozen importlib._bootstrap>", line 1006, in _find_and_load_unlocked File "<frozen importlib._bootstrap>", line 688, in _load_unlocked File "PyInstaller\loader\pyimod02_importers.py", line 499, in exec_module File "datasets\inspect.py", line 30, in <module> File "<frozen importlib._bootstrap>", line 1027, in _find_and_load File "<frozen importlib._bootstrap>", line 1006, in _find_and_load_unlocked File "<frozen importlib._bootstrap>", line 688, in _load_unlocked File "PyInstaller\loader\pyimod02_importers.py", line 499, in exec_module File "datasets\load.py", line 58, in <module> File "<frozen importlib._bootstrap>", line 1027, in _find_and_load File "<frozen importlib._bootstrap>", line 1006, in _find_and_load_unlocked File "<frozen importlib._bootstrap>", line 688, in _load_unlocked File "PyInstaller\loader\pyimod02_importers.py", line 499, in exec_module File "datasets\packaged_modules\__init__.py", line 31, in <module> File "inspect.py", line 1147, in getsource File "inspect.py", line 1129, in getsourcelines File "inspect.py", line 958, in findsource OSError: could not get source code ``` ### Expected behavior I have looked up the relevant information, but I can't find a suitable reason ### Environment info ```python python 3.10 datasets 2.14.4 pyinstaller 5.6.2 ```
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6306/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6306/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6305
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6305/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6305/comments
https://api.github.com/repos/huggingface/datasets/issues/6305/events
https://github.com/huggingface/datasets/issues/6305
1,946,010,912
I_kwDODunzps5z_cUg
6,305
Cannot load dataset with `2.14.5`: `FileNotFound` error
{ "login": "finiteautomata", "id": 167943, "node_id": "MDQ6VXNlcjE2Nzk0Mw==", "avatar_url": "https://avatars.githubusercontent.com/u/167943?v=4", "gravatar_id": "", "url": "https://api.github.com/users/finiteautomata", "html_url": "https://github.com/finiteautomata", "followers_url": "https://api.github.com/users/finiteautomata/followers", "following_url": "https://api.github.com/users/finiteautomata/following{/other_user}", "gists_url": "https://api.github.com/users/finiteautomata/gists{/gist_id}", "starred_url": "https://api.github.com/users/finiteautomata/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/finiteautomata/subscriptions", "organizations_url": "https://api.github.com/users/finiteautomata/orgs", "repos_url": "https://api.github.com/users/finiteautomata/repos", "events_url": "https://api.github.com/users/finiteautomata/events{/privacy}", "received_events_url": "https://api.github.com/users/finiteautomata/received_events", "type": "User", "site_admin": false }
[]
closed
false
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[ { "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false } ]
[ "Thanks for reporting, @finiteautomata.\r\n\r\nWe are investigating it. ", "There is a bug in `datasets`. You can see our proposed fix:\r\n- #6309 " ]
2023-10-16T20:11:27
2023-10-18T13:50:36
2023-10-18T13:50:36
NONE
null
null
null
### Describe the bug I'm trying to load [piuba-bigdata/articles_and_comments] and I'm stumbling with this error on `2.14.5`. However, this works on `2.10.0`. ### Steps to reproduce the bug [Colab link](https://colab.research.google.com/drive/1SAftFMQnFE708ikRnJJHIXZV7R5IBOCE#scrollTo=r2R2ipCCDmsg) ```python Downloading readme: 100% 1.19k/1.19k [00:00<00:00, 30.9kB/s] --------------------------------------------------------------------------- FileNotFoundError Traceback (most recent call last) [<ipython-input-2-807c3583d297>](https://localhost:8080/#) in <cell line: 3>() 1 from datasets import load_dataset 2 ----> 3 load_dataset("piuba-bigdata/articles_and_comments", split="train") 2 frames [/usr/local/lib/python3.10/dist-packages/datasets/load.py](https://localhost:8080/#) in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, ignore_verifications, keep_in_memory, save_infos, revision, token, use_auth_token, task, streaming, num_proc, storage_options, **config_kwargs) 2127 2128 # Create a dataset builder -> 2129 builder_instance = load_dataset_builder( 2130 path=path, 2131 name=name, [/usr/local/lib/python3.10/dist-packages/datasets/load.py](https://localhost:8080/#) in load_dataset_builder(path, name, data_dir, data_files, cache_dir, features, download_config, download_mode, revision, token, use_auth_token, storage_options, **config_kwargs) 1813 download_config = download_config.copy() if download_config else DownloadConfig() 1814 download_config.storage_options.update(storage_options) -> 1815 dataset_module = dataset_module_factory( 1816 path, 1817 revision=revision, [/usr/local/lib/python3.10/dist-packages/datasets/load.py](https://localhost:8080/#) in dataset_module_factory(path, revision, download_config, download_mode, dynamic_modules_path, data_dir, data_files, **download_kwargs) 1506 raise e1 from None 1507 if isinstance(e1, FileNotFoundError): -> 1508 raise FileNotFoundError( 1509 f"Couldn't find a dataset script at {relative_to_absolute_path(combined_path)} or any data file in the same directory. " 1510 f"Couldn't find '{path}' on the Hugging Face Hub either: {type(e1).__name__}: {e1}" FileNotFoundError: Couldn't find a dataset script at /content/piuba-bigdata/articles_and_comments/articles_and_comments.py or any data file in the same directory. Couldn't find 'piuba-bigdata/articles_and_comments' on the Hugging Face Hub either: FileNotFoundError: No (supported) data files or dataset script found in piuba-bigdata/articles_and_comments. ``` ### Expected behavior It should load normally. ### Environment info ``` - `datasets` version: 2.14.5 - Platform: Linux-5.15.120+-x86_64-with-glibc2.35 - Python version: 3.10.12 - Huggingface_hub version: 0.18.0 - PyArrow version: 9.0.0 - Pandas version: 1.5.3 ```
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6305/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6305/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6304
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6304/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6304/comments
https://api.github.com/repos/huggingface/datasets/issues/6304/events
https://github.com/huggingface/datasets/pull/6304
1,945,913,521
PR_kwDODunzps5c7-4q
6,304
Update README.md
{ "login": "smty2018", "id": 74114936, "node_id": "MDQ6VXNlcjc0MTE0OTM2", "avatar_url": "https://avatars.githubusercontent.com/u/74114936?v=4", "gravatar_id": "", "url": "https://api.github.com/users/smty2018", "html_url": "https://github.com/smty2018", "followers_url": "https://api.github.com/users/smty2018/followers", "following_url": "https://api.github.com/users/smty2018/following{/other_user}", "gists_url": "https://api.github.com/users/smty2018/gists{/gist_id}", "starred_url": "https://api.github.com/users/smty2018/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/smty2018/subscriptions", "organizations_url": "https://api.github.com/users/smty2018/orgs", "repos_url": "https://api.github.com/users/smty2018/repos", "events_url": "https://api.github.com/users/smty2018/events{/privacy}", "received_events_url": "https://api.github.com/users/smty2018/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006678 / 0.011353 (-0.004675) | 0.004013 / 0.011008 (-0.006995) | 0.083372 / 0.038508 (0.044864) | 0.070339 / 0.023109 (0.047230) | 0.339026 / 0.275898 (0.063128) | 0.370945 / 0.323480 (0.047465) | 0.004050 / 0.007986 (-0.003935) | 0.003283 / 0.004328 (-0.001046) | 0.064956 / 0.004250 (0.060705) | 0.055427 / 0.037052 (0.018374) | 0.341787 / 0.258489 (0.083297) | 0.385030 / 0.293841 (0.091189) | 0.031791 / 0.128546 (-0.096755) | 0.008511 / 0.075646 (-0.067135) | 0.286538 / 0.419271 (-0.132734) | 0.052893 / 0.043533 (0.009360) | 0.338522 / 0.255139 (0.083383) | 0.371821 / 0.283200 (0.088622) | 0.023731 / 0.141683 (-0.117951) | 1.485857 / 1.452155 (0.033702) | 1.515218 / 1.492716 (0.022502) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.232798 / 0.018006 (0.214792) | 0.446783 / 0.000490 (0.446293) | 0.007395 / 0.000200 (0.007195) | 0.000385 / 0.000054 (0.000330) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028866 / 0.037411 (-0.008545) | 0.081653 / 0.014526 (0.067127) | 0.094457 / 0.176557 (-0.082099) | 0.151761 / 0.737135 (-0.585375) | 0.095579 / 0.296338 (-0.200760) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.379926 / 0.215209 (0.164717) | 3.801839 / 2.077655 (1.724184) | 1.830302 / 1.504120 (0.326182) | 1.686912 / 1.541195 (0.145717) | 1.803418 / 1.468490 (0.334928) | 0.484431 / 4.584777 (-4.100346) | 3.592748 / 3.745712 (-0.152964) | 3.402578 / 5.269862 (-1.867284) | 2.043434 / 4.565676 (-2.522242) | 0.057274 / 0.424275 (-0.367001) | 0.007211 / 0.007607 (-0.000396) | 0.462611 / 0.226044 (0.236567) | 4.610703 / 2.268929 (2.341775) | 2.397668 / 55.444624 (-53.046956) | 2.149983 / 6.876477 (-4.726494) | 2.199100 / 2.142072 (0.057028) | 0.575883 / 4.805227 (-4.229344) | 0.133421 / 6.500664 (-6.367243) | 0.061168 / 0.075469 (-0.014301) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.246792 / 1.841788 (-0.594995) | 18.974385 / 8.074308 (10.900077) | 14.268859 / 10.191392 (4.077467) | 0.166340 / 0.680424 (-0.514084) | 0.018227 / 0.534201 (-0.515974) | 0.389646 / 0.579283 (-0.189637) | 0.418780 / 0.434364 (-0.015584) | 0.458063 / 0.540337 (-0.082275) | 0.635156 / 1.386936 (-0.751780) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006613 / 0.011353 (-0.004740) | 0.003977 / 0.011008 (-0.007031) | 0.064609 / 0.038508 (0.026101) | 0.070418 / 0.023109 (0.047308) | 0.395814 / 0.275898 (0.119916) | 0.424803 / 0.323480 (0.101323) | 0.005342 / 0.007986 (-0.002644) | 0.003252 / 0.004328 (-0.001076) | 0.065177 / 0.004250 (0.060927) | 0.055299 / 0.037052 (0.018247) | 0.403983 / 0.258489 (0.145494) | 0.438522 / 0.293841 (0.144681) | 0.032336 / 0.128546 (-0.096210) | 0.008524 / 0.075646 (-0.067122) | 0.071645 / 0.419271 (-0.347627) | 0.048137 / 0.043533 (0.004604) | 0.395170 / 0.255139 (0.140031) | 0.421727 / 0.283200 (0.138528) | 0.023028 / 0.141683 (-0.118655) | 1.500739 / 1.452155 (0.048584) | 1.568887 / 1.492716 (0.076170) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.227542 / 0.018006 (0.209536) | 0.447882 / 0.000490 (0.447393) | 0.005416 / 0.000200 (0.005216) | 0.000089 / 0.000054 (0.000035) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032954 / 0.037411 (-0.004457) | 0.091994 / 0.014526 (0.077468) | 0.105957 / 0.176557 (-0.070600) | 0.158728 / 0.737135 (-0.578407) | 0.104734 / 0.296338 (-0.191605) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.436275 / 0.215209 (0.221066) | 4.344864 / 2.077655 (2.267209) | 2.304949 / 1.504120 (0.800829) | 2.123963 / 1.541195 (0.582768) | 2.189099 / 1.468490 (0.720609) | 0.492662 / 4.584777 (-4.092115) | 3.633662 / 3.745712 (-0.112051) | 3.251338 / 5.269862 (-2.018524) | 2.061378 / 4.565676 (-2.504299) | 0.058100 / 0.424275 (-0.366175) | 0.007311 / 0.007607 (-0.000297) | 0.516227 / 0.226044 (0.290183) | 5.184228 / 2.268929 (2.915300) | 2.780343 / 55.444624 (-52.664281) | 2.423428 / 6.876477 (-4.453048) | 2.617371 / 2.142072 (0.475298) | 0.590455 / 4.805227 (-4.214772) | 0.131728 / 6.500664 (-6.368936) | 0.059994 / 0.075469 (-0.015475) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.354920 / 1.841788 (-0.486868) | 19.427822 / 8.074308 (11.353514) | 15.289037 / 10.191392 (5.097645) | 0.170437 / 0.680424 (-0.509987) | 0.020242 / 0.534201 (-0.513959) | 0.394921 / 0.579283 (-0.184362) | 0.426447 / 0.434364 (-0.007917) | 0.468321 / 0.540337 (-0.072017) | 0.671052 / 1.386936 (-0.715884) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#bade7af74437347a760830466eb74f7a8ce0d799 \"CML watermark\")\n" ]
2023-10-16T19:10:39
2023-10-17T15:13:37
2023-10-17T15:04:52
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6304", "html_url": "https://github.com/huggingface/datasets/pull/6304", "diff_url": "https://github.com/huggingface/datasets/pull/6304.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6304.patch", "merged_at": "2023-10-17T15:04:52" }
Fixed typos in ReadMe and added punctuation marks Tensorflow --> TensorFlow
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6304/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6304/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6303
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6303/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6303/comments
https://api.github.com/repos/huggingface/datasets/issues/6303/events
https://github.com/huggingface/datasets/issues/6303
1,943,466,532
I_kwDODunzps5z1vIk
6,303
Parquet uploads off-by-one naming scheme
{ "login": "ZachNagengast", "id": 1981179, "node_id": "MDQ6VXNlcjE5ODExNzk=", "avatar_url": "https://avatars.githubusercontent.com/u/1981179?v=4", "gravatar_id": "", "url": "https://api.github.com/users/ZachNagengast", "html_url": "https://github.com/ZachNagengast", "followers_url": "https://api.github.com/users/ZachNagengast/followers", "following_url": "https://api.github.com/users/ZachNagengast/following{/other_user}", "gists_url": "https://api.github.com/users/ZachNagengast/gists{/gist_id}", "starred_url": "https://api.github.com/users/ZachNagengast/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ZachNagengast/subscriptions", "organizations_url": "https://api.github.com/users/ZachNagengast/orgs", "repos_url": "https://api.github.com/users/ZachNagengast/repos", "events_url": "https://api.github.com/users/ZachNagengast/events{/privacy}", "received_events_url": "https://api.github.com/users/ZachNagengast/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
[ "You can find the reasoning behind this naming scheme [here](https://github.com/huggingface/transformers/pull/16343#discussion_r931182168).\r\n\r\nThis point has been raised several times, so I'd be okay with starting with `00001-` (also to be consistent with the `transformers` sharding), but I'm not sure @lhoestq agrees.", "We start at 0 in `datasets` for consistency with Apache Spark, Apache Beam, Dask and others.\r\n\r\nAlso note `transformers` isn't a good reference on this topic. I talked with the maintainers when they added shards but it was already released this way. Though we found that there is a backward-compatible way in `transformers` to start at 0, but no request from `transformers` users to changes this AFAIK.", "not sure it would be a good idea to break the consistency now, IMO", "Makes sense to start at 0 for plenty of good reasons so I'm on board.\r\n\r\nWhat about the second part `-of-0000X`? With single commit PR #6269 just getting merged, there was a note about issues with 100+ file edits https://github.com/huggingface/datasets/pull/6269#issuecomment-1755428581.\r\n\r\nThat would be my last remaining concern in the context of the `push_to_hub(..., append=True)` work to be done, where appending a single file to the full dataset will require renaming every other existing file in the dataset. If it doesn't seem like a big issue for this work then all the better 👍" ]
2023-10-14T18:31:03
2023-10-16T16:33:21
null
CONTRIBUTOR
null
null
null
### Describe the bug I noticed this numbering scheme not matching up in a different project and wanted to raise it as an issue for discussion, what is the actual proper way to have these stored? <img width="425" alt="image" src="https://github.com/huggingface/datasets/assets/1981179/3ffa2144-7c9a-446f-b521-a5e9db71e7ce"> The `-SSSSS-of-NNNNN` seems to be used widely across the codebase. The section that creates the part in my screenshot is here https://github.com/huggingface/datasets/blob/main/src/datasets/arrow_dataset.py#L5287 There are also some edits to this section in the single commit branch. ### Steps to reproduce the bug 1. Upload a dataset that requires at least two parquet files in it 2. Observe the naming scheme ### Expected behavior The couple options here are of course **1. keeping it as is** **2. Starting the index at 1:** train-00001-of-00002-{hash}.parquet train-00002-of-00002-{hash}.parquet **3. My preferred option** (which would solve my specific issue), dropping the total entirely: train-00000-{hash}.parquet train-00001-{hash}.parquet This also solves an issue that will occur with an `append` variable for `push_to_hub` (see https://github.com/huggingface/datasets/issues/6290) where as you add a new parquet file, you need to rename everything in the repo as well. However, I know there are parts of the repo that use 0 as the starting file or may require the total, so raising the question for discussion. ### Environment info - `datasets` version: 2.14.6.dev0 - Platform: macOS-14.0-arm64-arm-64bit - Python version: 3.10.12 - Huggingface_hub version: 0.18.0 - PyArrow version: 12.0.1 - Pandas version: 1.5.3
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6303/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6303/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6302
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6302/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6302/comments
https://api.github.com/repos/huggingface/datasets/issues/6302/events
https://github.com/huggingface/datasets/issues/6302
1,942,096,078
I_kwDODunzps5zwgjO
6,302
ArrowWriter/ParquetWriter `write` method does not increase `_num_bytes` and hence datasets not sharding at `max_shard_size`
{ "login": "Rassibassi", "id": 2855550, "node_id": "MDQ6VXNlcjI4NTU1NTA=", "avatar_url": "https://avatars.githubusercontent.com/u/2855550?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Rassibassi", "html_url": "https://github.com/Rassibassi", "followers_url": "https://api.github.com/users/Rassibassi/followers", "following_url": "https://api.github.com/users/Rassibassi/following{/other_user}", "gists_url": "https://api.github.com/users/Rassibassi/gists{/gist_id}", "starred_url": "https://api.github.com/users/Rassibassi/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Rassibassi/subscriptions", "organizations_url": "https://api.github.com/users/Rassibassi/orgs", "repos_url": "https://api.github.com/users/Rassibassi/repos", "events_url": "https://api.github.com/users/Rassibassi/events{/privacy}", "received_events_url": "https://api.github.com/users/Rassibassi/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "`writer._num_bytes` is updated every `writer_batch_size`-th call to the `write` method (default `writer_batch_size` is 1000 (examples)). You should be able to see the update by passing a smaller `writer_batch_size` to the `load_dataset_builder`.\r\n\r\nWe could improve this by supporting the string `writer_batch_size` version as we do with `max_shard_size`, and capping `writer_batch_size` to `max_shard_size` in scenarios where the default `writer_batch_size` > `max_shard_size`. ", "Thanks, reducing `writer_batch_size` solved my problem :)" ]
2023-10-13T14:43:36
2023-10-17T06:52:12
2023-10-17T06:52:11
NONE
null
null
null
### Describe the bug An example from [1], does not work when limiting shards with `max_shard_size`. Try the following example with low `max_shard_size`, such as: ```python builder.download_and_prepare(output_dir, storage_options=storage_options, file_format="parquet", max_shard_size="10MB") ``` The reason for this is that, in line [2] `writer._num_bytes > max_shard_size` is never true, because the `write` method of `ArrowWriter` [3] does not increase `self._num_bytes`. Such that respective Arrow/Parquet shards are only written to file based on the `writer_batch_size` or `config.DEFAULT_MAX_BATCH_SIZE`, but not based on `max_shard_size`. [1] https://huggingface.co./docs/datasets/filesystems#download-and-prepare-a-dataset-into-a-cloud-storage [2] https://github.com/huggingface/datasets/blob/3e8d420808718c9a1453a2e7ee3484ca12c9c70d/src/datasets/builder.py#L1677 [3] https://github.com/huggingface/datasets/blob/3e8d420808718c9a1453a2e7ee3484ca12c9c70d/src/datasets/arrow_writer.py#L459 ### Steps to reproduce the bug Get example from: https://huggingface.co./docs/datasets/filesystems#download-and-prepare-a-dataset-into-a-cloud-storage Call `builder.download_and_prepare` with low `max_shard_size` such as `10MB`, e.g.: ```python builder.download_and_prepare(output_dir, storage_options=storage_options, file_format="parquet", max_shard_size="10MB") ``` ### Expected behavior Shards should be written based on `max_shard_size` instead of batch size. ### Environment info ``` >>> import datasets >>> datasets.__version__ '2.14.6.dev0 ```
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6302/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6302/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6301
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6301/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6301/comments
https://api.github.com/repos/huggingface/datasets/issues/6301/events
https://github.com/huggingface/datasets/pull/6301
1,940,183,999
PR_kwDODunzps5cpPVh
6,301
Unpin `tensorflow` maximum version
{ "login": "mariosasko", "id": 47462742, "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "gravatar_id": "", "url": "https://api.github.com/users/mariosasko", "html_url": "https://github.com/mariosasko", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "repos_url": "https://api.github.com/users/mariosasko/repos", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006663 / 0.011353 (-0.004690) | 0.004091 / 0.011008 (-0.006918) | 0.084954 / 0.038508 (0.046445) | 0.071869 / 0.023109 (0.048760) | 0.314706 / 0.275898 (0.038808) | 0.352794 / 0.323480 (0.029314) | 0.004027 / 0.007986 (-0.003959) | 0.003371 / 0.004328 (-0.000957) | 0.065456 / 0.004250 (0.061205) | 0.055828 / 0.037052 (0.018775) | 0.316502 / 0.258489 (0.058013) | 0.377979 / 0.293841 (0.084138) | 0.030870 / 0.128546 (-0.097676) | 0.008616 / 0.075646 (-0.067030) | 0.288625 / 0.419271 (-0.130646) | 0.052314 / 0.043533 (0.008781) | 0.322725 / 0.255139 (0.067586) | 0.351810 / 0.283200 (0.068611) | 0.025726 / 0.141683 (-0.115957) | 1.439308 / 1.452155 (-0.012847) | 1.524484 / 1.492716 (0.031768) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.235212 / 0.018006 (0.217206) | 0.444926 / 0.000490 (0.444437) | 0.009887 / 0.000200 (0.009687) | 0.000402 / 0.000054 (0.000347) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028956 / 0.037411 (-0.008455) | 0.084401 / 0.014526 (0.069875) | 0.339686 / 0.176557 (0.163130) | 0.186785 / 0.737135 (-0.550350) | 0.195017 / 0.296338 (-0.101322) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.405480 / 0.215209 (0.190271) | 4.024315 / 2.077655 (1.946661) | 2.056398 / 1.504120 (0.552278) | 1.912099 / 1.541195 (0.370904) | 1.950119 / 1.468490 (0.481629) | 0.486071 / 4.584777 (-4.098706) | 3.578501 / 3.745712 (-0.167211) | 3.268980 / 5.269862 (-2.000881) | 2.018114 / 4.565676 (-2.547563) | 0.057440 / 0.424275 (-0.366835) | 0.007281 / 0.007607 (-0.000326) | 0.474760 / 0.226044 (0.248716) | 4.746908 / 2.268929 (2.477979) | 2.550111 / 55.444624 (-52.894513) | 2.171932 / 6.876477 (-4.704544) | 2.392235 / 2.142072 (0.250162) | 0.585940 / 4.805227 (-4.219287) | 0.136445 / 6.500664 (-6.364219) | 0.062125 / 0.075469 (-0.013344) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.270763 / 1.841788 (-0.571025) | 19.213516 / 8.074308 (11.139208) | 13.992620 / 10.191392 (3.801228) | 0.167356 / 0.680424 (-0.513068) | 0.018261 / 0.534201 (-0.515940) | 0.392489 / 0.579283 (-0.186794) | 0.418845 / 0.434364 (-0.015519) | 0.461824 / 0.540337 (-0.078513) | 0.649661 / 1.386936 (-0.737275) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006675 / 0.011353 (-0.004678) | 0.003913 / 0.011008 (-0.007096) | 0.064943 / 0.038508 (0.026435) | 0.072426 / 0.023109 (0.049317) | 0.400785 / 0.275898 (0.124887) | 0.434359 / 0.323480 (0.110879) | 0.005370 / 0.007986 (-0.002616) | 0.003290 / 0.004328 (-0.001038) | 0.065035 / 0.004250 (0.060785) | 0.054924 / 0.037052 (0.017872) | 0.404442 / 0.258489 (0.145953) | 0.439027 / 0.293841 (0.145186) | 0.032467 / 0.128546 (-0.096080) | 0.008565 / 0.075646 (-0.067081) | 0.070653 / 0.419271 (-0.348619) | 0.048034 / 0.043533 (0.004501) | 0.400869 / 0.255139 (0.145730) | 0.423048 / 0.283200 (0.139848) | 0.022757 / 0.141683 (-0.118926) | 1.516956 / 1.452155 (0.064801) | 1.581599 / 1.492716 (0.088883) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.214761 / 0.018006 (0.196755) | 0.440921 / 0.000490 (0.440431) | 0.007538 / 0.000200 (0.007338) | 0.000087 / 0.000054 (0.000033) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032313 / 0.037411 (-0.005099) | 0.091365 / 0.014526 (0.076839) | 0.106665 / 0.176557 (-0.069891) | 0.158637 / 0.737135 (-0.578498) | 0.104894 / 0.296338 (-0.191445) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.432995 / 0.215209 (0.217786) | 4.339911 / 2.077655 (2.262256) | 2.313139 / 1.504120 (0.809019) | 2.142552 / 1.541195 (0.601357) | 2.279275 / 1.468490 (0.810785) | 0.501133 / 4.584777 (-4.083644) | 3.696160 / 3.745712 (-0.049552) | 3.341886 / 5.269862 (-1.927976) | 2.105972 / 4.565676 (-2.459705) | 0.059268 / 0.424275 (-0.365008) | 0.007568 / 0.007607 (-0.000039) | 0.512546 / 0.226044 (0.286502) | 5.130219 / 2.268929 (2.861290) | 2.808292 / 55.444624 (-52.636332) | 2.478721 / 6.876477 (-4.397755) | 2.679341 / 2.142072 (0.537269) | 0.599022 / 4.805227 (-4.206206) | 0.143761 / 6.500664 (-6.356903) | 0.062061 / 0.075469 (-0.013409) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.430507 / 1.841788 (-0.411281) | 20.458085 / 8.074308 (12.383777) | 15.268356 / 10.191392 (5.076964) | 0.163359 / 0.680424 (-0.517065) | 0.020908 / 0.534201 (-0.513293) | 0.396870 / 0.579283 (-0.182413) | 0.432630 / 0.434364 (-0.001733) | 0.475909 / 0.540337 (-0.064429) | 0.681031 / 1.386936 (-0.705905) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#fd1dd6aa4c7fa7744c1c1f877573ff59f1529292 \"CML watermark\")\n", "CI failures are unrelated", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005815 / 0.011353 (-0.005538) | 0.003419 / 0.011008 (-0.007589) | 0.080286 / 0.038508 (0.041778) | 0.056487 / 0.023109 (0.033377) | 0.304414 / 0.275898 (0.028516) | 0.341039 / 0.323480 (0.017559) | 0.004392 / 0.007986 (-0.003594) | 0.002852 / 0.004328 (-0.001477) | 0.062339 / 0.004250 (0.058089) | 0.044683 / 0.037052 (0.007630) | 0.311651 / 0.258489 (0.053162) | 0.357249 / 0.293841 (0.063409) | 0.027300 / 0.128546 (-0.101246) | 0.007963 / 0.075646 (-0.067683) | 0.261948 / 0.419271 (-0.157323) | 0.044952 / 0.043533 (0.001419) | 0.309990 / 0.255139 (0.054851) | 0.340735 / 0.283200 (0.057536) | 0.020786 / 0.141683 (-0.120897) | 1.471378 / 1.452155 (0.019224) | 1.517260 / 1.492716 (0.024543) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.245447 / 0.018006 (0.227441) | 0.418967 / 0.000490 (0.418477) | 0.007039 / 0.000200 (0.006840) | 0.000196 / 0.000054 (0.000142) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022880 / 0.037411 (-0.014532) | 0.071862 / 0.014526 (0.057337) | 0.083009 / 0.176557 (-0.093547) | 0.143414 / 0.737135 (-0.593722) | 0.082896 / 0.296338 (-0.213442) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.390645 / 0.215209 (0.175436) | 3.888104 / 2.077655 (1.810450) | 1.859572 / 1.504120 (0.355452) | 1.683803 / 1.541195 (0.142608) | 1.697902 / 1.468490 (0.229412) | 0.499537 / 4.584777 (-4.085239) | 3.015832 / 3.745712 (-0.729881) | 2.805696 / 5.269862 (-2.464166) | 1.830408 / 4.565676 (-2.735268) | 0.058191 / 0.424275 (-0.366085) | 0.006357 / 0.007607 (-0.001250) | 0.462486 / 0.226044 (0.236442) | 4.634951 / 2.268929 (2.366022) | 2.309364 / 55.444624 (-53.135260) | 1.979521 / 6.876477 (-4.896956) | 2.080011 / 2.142072 (-0.062062) | 0.593086 / 4.805227 (-4.212141) | 0.124856 / 6.500664 (-6.375808) | 0.060172 / 0.075469 (-0.015297) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.251439 / 1.841788 (-0.590349) | 17.068999 / 8.074308 (8.994691) | 13.527209 / 10.191392 (3.335817) | 0.146636 / 0.680424 (-0.533788) | 0.016866 / 0.534201 (-0.517335) | 0.333202 / 0.579283 (-0.246081) | 0.360444 / 0.434364 (-0.073920) | 0.388378 / 0.540337 (-0.151959) | 0.530519 / 1.386936 (-0.856417) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006043 / 0.011353 (-0.005310) | 0.003612 / 0.011008 (-0.007396) | 0.062644 / 0.038508 (0.024135) | 0.056104 / 0.023109 (0.032995) | 0.446328 / 0.275898 (0.170430) | 0.478044 / 0.323480 (0.154564) | 0.004641 / 0.007986 (-0.003345) | 0.002896 / 0.004328 (-0.001432) | 0.062344 / 0.004250 (0.058093) | 0.046339 / 0.037052 (0.009287) | 0.454866 / 0.258489 (0.196377) | 0.484242 / 0.293841 (0.190401) | 0.028602 / 0.128546 (-0.099944) | 0.008075 / 0.075646 (-0.067571) | 0.067980 / 0.419271 (-0.351291) | 0.041339 / 0.043533 (-0.002194) | 0.452911 / 0.255139 (0.197772) | 0.474180 / 0.283200 (0.190981) | 0.019395 / 0.141683 (-0.122288) | 1.432161 / 1.452155 (-0.019993) | 1.505800 / 1.492716 (0.013083) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.216983 / 0.018006 (0.198977) | 0.406232 / 0.000490 (0.405743) | 0.005101 / 0.000200 (0.004902) | 0.000077 / 0.000054 (0.000022) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026295 / 0.037411 (-0.011116) | 0.080490 / 0.014526 (0.065964) | 0.088105 / 0.176557 (-0.088451) | 0.143294 / 0.737135 (-0.593841) | 0.089125 / 0.296338 (-0.207213) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.465512 / 0.215209 (0.250302) | 4.648656 / 2.077655 (2.571002) | 2.598225 / 1.504120 (1.094105) | 2.409588 / 1.541195 (0.868393) | 2.513745 / 1.468490 (1.045255) | 0.507425 / 4.584777 (-4.077352) | 3.130164 / 3.745712 (-0.615548) | 2.836817 / 5.269862 (-2.433045) | 1.836029 / 4.565676 (-2.729647) | 0.058829 / 0.424275 (-0.365446) | 0.006551 / 0.007607 (-0.001056) | 0.537892 / 0.226044 (0.311848) | 5.401079 / 2.268929 (3.132150) | 3.019817 / 55.444624 (-52.424807) | 2.695131 / 6.876477 (-4.181346) | 2.805321 / 2.142072 (0.663248) | 0.595681 / 4.805227 (-4.209546) | 0.124368 / 6.500664 (-6.376296) | 0.060712 / 0.075469 (-0.014757) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.361508 / 1.841788 (-0.480279) | 17.811373 / 8.074308 (9.737065) | 14.482705 / 10.191392 (4.291313) | 0.153193 / 0.680424 (-0.527231) | 0.018347 / 0.534201 (-0.515854) | 0.330900 / 0.579283 (-0.248383) | 0.374948 / 0.434364 (-0.059416) | 0.385615 / 0.540337 (-0.154722) | 0.568077 / 1.386936 (-0.818859) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#18ef408c21f8efbb2142f050a691b5c916455af3 \"CML watermark\")\n" ]
2023-10-12T14:58:07
2023-10-12T15:58:20
2023-10-12T15:49:54
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6301", "html_url": "https://github.com/huggingface/datasets/pull/6301", "diff_url": "https://github.com/huggingface/datasets/pull/6301.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6301.patch", "merged_at": "2023-10-12T15:49:54" }
Removes the temporary pin introduced in #6264
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6301/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6301/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6300
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6300/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6300/comments
https://api.github.com/repos/huggingface/datasets/issues/6300/events
https://github.com/huggingface/datasets/pull/6300
1,940,153,432
PR_kwDODunzps5cpIoG
6,300
Unpin `jax` maximum version
{ "login": "mariosasko", "id": 47462742, "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "gravatar_id": "", "url": "https://api.github.com/users/mariosasko", "html_url": "https://github.com/mariosasko", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "repos_url": "https://api.github.com/users/mariosasko/repos", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
[ "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008410 / 0.011353 (-0.002943) | 0.004888 / 0.011008 (-0.006120) | 0.103342 / 0.038508 (0.064834) | 0.103697 / 0.023109 (0.080587) | 0.416445 / 0.275898 (0.140547) | 0.454604 / 0.323480 (0.131124) | 0.004976 / 0.007986 (-0.003010) | 0.003957 / 0.004328 (-0.000371) | 0.077398 / 0.004250 (0.073148) | 0.069026 / 0.037052 (0.031973) | 0.420484 / 0.258489 (0.161995) | 0.471828 / 0.293841 (0.177987) | 0.037133 / 0.128546 (-0.091413) | 0.010009 / 0.075646 (-0.065637) | 0.349573 / 0.419271 (-0.069698) | 0.063240 / 0.043533 (0.019708) | 0.421554 / 0.255139 (0.166415) | 0.433548 / 0.283200 (0.150348) | 0.029397 / 0.141683 (-0.112286) | 1.716860 / 1.452155 (0.264705) | 1.851264 / 1.492716 (0.358547) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.269733 / 0.018006 (0.251727) | 0.493313 / 0.000490 (0.492823) | 0.010438 / 0.000200 (0.010238) | 0.000401 / 0.000054 (0.000347) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034690 / 0.037411 (-0.002722) | 0.105304 / 0.014526 (0.090778) | 0.115831 / 0.176557 (-0.060726) | 0.185017 / 0.737135 (-0.552118) | 0.117480 / 0.296338 (-0.178859) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.479414 / 0.215209 (0.264205) | 4.785526 / 2.077655 (2.707871) | 2.388412 / 1.504120 (0.884292) | 2.178222 / 1.541195 (0.637027) | 2.248214 / 1.468490 (0.779723) | 0.571723 / 4.584777 (-4.013054) | 4.721250 / 3.745712 (0.975538) | 4.073893 / 5.269862 (-1.195969) | 2.618131 / 4.565676 (-1.947546) | 0.068406 / 0.424275 (-0.355869) | 0.008890 / 0.007607 (0.001283) | 0.564224 / 0.226044 (0.338180) | 5.631412 / 2.268929 (3.362483) | 3.072212 / 55.444624 (-52.372412) | 2.760574 / 6.876477 (-4.115903) | 2.963060 / 2.142072 (0.820987) | 0.708150 / 4.805227 (-4.097077) | 0.160324 / 6.500664 (-6.340340) | 0.075402 / 0.075469 (-0.000067) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.649965 / 1.841788 (-0.191823) | 24.297517 / 8.074308 (16.223209) | 17.658675 / 10.191392 (7.467283) | 0.171399 / 0.680424 (-0.509025) | 0.021172 / 0.534201 (-0.513029) | 0.477196 / 0.579283 (-0.102087) | 0.503900 / 0.434364 (0.069536) | 0.555858 / 0.540337 (0.015520) | 0.824302 / 1.386936 (-0.562634) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008613 / 0.011353 (-0.002740) | 0.004848 / 0.011008 (-0.006160) | 0.078344 / 0.038508 (0.039836) | 0.098976 / 0.023109 (0.075867) | 0.520713 / 0.275898 (0.244815) | 0.566350 / 0.323480 (0.242870) | 0.006658 / 0.007986 (-0.001327) | 0.004043 / 0.004328 (-0.000285) | 0.077881 / 0.004250 (0.073631) | 0.070731 / 0.037052 (0.033678) | 0.519717 / 0.258489 (0.261228) | 0.575623 / 0.293841 (0.281782) | 0.038542 / 0.128546 (-0.090004) | 0.010277 / 0.075646 (-0.065369) | 0.084269 / 0.419271 (-0.335002) | 0.058088 / 0.043533 (0.014555) | 0.541790 / 0.255139 (0.286651) | 0.534915 / 0.283200 (0.251715) | 0.027851 / 0.141683 (-0.113831) | 1.814827 / 1.452155 (0.362672) | 1.898208 / 1.492716 (0.405492) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.244162 / 0.018006 (0.226156) | 0.482895 / 0.000490 (0.482405) | 0.005734 / 0.000200 (0.005534) | 0.000127 / 0.000054 (0.000072) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.039328 / 0.037411 (0.001917) | 0.119795 / 0.014526 (0.105269) | 0.128570 / 0.176557 (-0.047986) | 0.191207 / 0.737135 (-0.545929) | 0.127147 / 0.296338 (-0.169192) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.533545 / 0.215209 (0.318336) | 5.320135 / 2.077655 (3.242480) | 2.924573 / 1.504120 (1.420453) | 2.741351 / 1.541195 (1.200156) | 2.824217 / 1.468490 (1.355727) | 0.595842 / 4.584777 (-3.988935) | 4.343499 / 3.745712 (0.597787) | 3.976546 / 5.269862 (-1.293316) | 2.532541 / 4.565676 (-2.033135) | 0.070480 / 0.424275 (-0.353795) | 0.008868 / 0.007607 (0.001260) | 0.634297 / 0.226044 (0.408253) | 6.327314 / 2.268929 (4.058386) | 3.530741 / 55.444624 (-51.913883) | 3.121435 / 6.876477 (-3.755042) | 3.344473 / 2.142072 (1.202401) | 0.719413 / 4.805227 (-4.085814) | 0.162348 / 6.500664 (-6.338316) | 0.074964 / 0.075469 (-0.000505) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.679095 / 1.841788 (-0.162693) | 25.071620 / 8.074308 (16.997312) | 18.422398 / 10.191392 (8.231006) | 0.223981 / 0.680424 (-0.456443) | 0.026537 / 0.534201 (-0.507664) | 0.513867 / 0.579283 (-0.065416) | 0.535874 / 0.434364 (0.101510) | 0.567971 / 0.540337 (0.027634) | 0.842545 / 1.386936 (-0.544391) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#d8b871016c25cb3b90ac1ff65a4e54f0454f525e \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006445 / 0.011353 (-0.004908) | 0.003978 / 0.011008 (-0.007030) | 0.084542 / 0.038508 (0.046034) | 0.069231 / 0.023109 (0.046122) | 0.308794 / 0.275898 (0.032896) | 0.339246 / 0.323480 (0.015766) | 0.005269 / 0.007986 (-0.002716) | 0.003285 / 0.004328 (-0.001043) | 0.065336 / 0.004250 (0.061086) | 0.053480 / 0.037052 (0.016428) | 0.316775 / 0.258489 (0.058286) | 0.357885 / 0.293841 (0.064044) | 0.031309 / 0.128546 (-0.097237) | 0.008450 / 0.075646 (-0.067196) | 0.287911 / 0.419271 (-0.131361) | 0.052756 / 0.043533 (0.009223) | 0.321516 / 0.255139 (0.066377) | 0.331998 / 0.283200 (0.048799) | 0.024129 / 0.141683 (-0.117553) | 1.507718 / 1.452155 (0.055563) | 1.571400 / 1.492716 (0.078683) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.237536 / 0.018006 (0.219530) | 0.499691 / 0.000490 (0.499201) | 0.007644 / 0.000200 (0.007444) | 0.000284 / 0.000054 (0.000230) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028243 / 0.037411 (-0.009168) | 0.081556 / 0.014526 (0.067030) | 0.096877 / 0.176557 (-0.079680) | 0.149985 / 0.737135 (-0.587150) | 0.095556 / 0.296338 (-0.200783) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.383215 / 0.215209 (0.168006) | 3.815800 / 2.077655 (1.738145) | 1.832227 / 1.504120 (0.328107) | 1.664001 / 1.541195 (0.122806) | 1.698786 / 1.468490 (0.230296) | 0.487594 / 4.584777 (-4.097183) | 3.569767 / 3.745712 (-0.175945) | 3.262387 / 5.269862 (-2.007475) | 2.017105 / 4.565676 (-2.548572) | 0.057555 / 0.424275 (-0.366720) | 0.007170 / 0.007607 (-0.000437) | 0.460134 / 0.226044 (0.234090) | 4.629800 / 2.268929 (2.360871) | 2.357126 / 55.444624 (-53.087499) | 1.970144 / 6.876477 (-4.906332) | 2.123520 / 2.142072 (-0.018552) | 0.613058 / 4.805227 (-4.192169) | 0.135869 / 6.500664 (-6.364795) | 0.061292 / 0.075469 (-0.014177) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.311294 / 1.841788 (-0.530494) | 18.640807 / 8.074308 (10.566499) | 13.946834 / 10.191392 (3.755442) | 0.163976 / 0.680424 (-0.516448) | 0.018527 / 0.534201 (-0.515674) | 0.390530 / 0.579283 (-0.188753) | 0.412661 / 0.434364 (-0.021703) | 0.459514 / 0.540337 (-0.080823) | 0.635026 / 1.386936 (-0.751910) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006645 / 0.011353 (-0.004708) | 0.003943 / 0.011008 (-0.007066) | 0.064470 / 0.038508 (0.025962) | 0.069895 / 0.023109 (0.046786) | 0.411091 / 0.275898 (0.135193) | 0.437628 / 0.323480 (0.114148) | 0.005214 / 0.007986 (-0.002772) | 0.003281 / 0.004328 (-0.001047) | 0.064434 / 0.004250 (0.060183) | 0.054294 / 0.037052 (0.017241) | 0.413576 / 0.258489 (0.155087) | 0.448793 / 0.293841 (0.154952) | 0.031754 / 0.128546 (-0.096793) | 0.008530 / 0.075646 (-0.067117) | 0.069950 / 0.419271 (-0.349322) | 0.047747 / 0.043533 (0.004214) | 0.411241 / 0.255139 (0.156102) | 0.430076 / 0.283200 (0.146876) | 0.023462 / 0.141683 (-0.118220) | 1.519501 / 1.452155 (0.067346) | 1.575782 / 1.492716 (0.083066) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.231816 / 0.018006 (0.213810) | 0.442802 / 0.000490 (0.442312) | 0.005738 / 0.000200 (0.005539) | 0.000087 / 0.000054 (0.000032) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031426 / 0.037411 (-0.005985) | 0.090758 / 0.014526 (0.076233) | 0.103414 / 0.176557 (-0.073142) | 0.156409 / 0.737135 (-0.580726) | 0.103900 / 0.296338 (-0.192439) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.438897 / 0.215209 (0.223688) | 4.385318 / 2.077655 (2.307663) | 2.352042 / 1.504120 (0.847923) | 2.182228 / 1.541195 (0.641033) | 2.266256 / 1.468490 (0.797766) | 0.492780 / 4.584777 (-4.091997) | 3.665787 / 3.745712 (-0.079925) | 3.315329 / 5.269862 (-1.954533) | 2.027993 / 4.565676 (-2.537684) | 0.058220 / 0.424275 (-0.366055) | 0.007429 / 0.007607 (-0.000178) | 0.508790 / 0.226044 (0.282746) | 5.107093 / 2.268929 (2.838164) | 2.799789 / 55.444624 (-52.644836) | 2.462828 / 6.876477 (-4.413649) | 2.610193 / 2.142072 (0.468120) | 0.588133 / 4.805227 (-4.217094) | 0.133418 / 6.500664 (-6.367246) | 0.059793 / 0.075469 (-0.015676) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.363358 / 1.841788 (-0.478430) | 19.258372 / 8.074308 (11.184064) | 14.730977 / 10.191392 (4.539584) | 0.169493 / 0.680424 (-0.510931) | 0.020462 / 0.534201 (-0.513739) | 0.397980 / 0.579283 (-0.181303) | 0.426638 / 0.434364 (-0.007726) | 0.474249 / 0.540337 (-0.066088) | 0.677640 / 1.386936 (-0.709296) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#90b3d2619ecb8f01dd12283c30f04dfe6e443795 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006536 / 0.011353 (-0.004817) | 0.003827 / 0.011008 (-0.007181) | 0.084394 / 0.038508 (0.045886) | 0.073166 / 0.023109 (0.050056) | 0.309380 / 0.275898 (0.033482) | 0.338501 / 0.323480 (0.015021) | 0.005346 / 0.007986 (-0.002640) | 0.003273 / 0.004328 (-0.001056) | 0.064606 / 0.004250 (0.060356) | 0.053500 / 0.037052 (0.016447) | 0.313143 / 0.258489 (0.054654) | 0.354364 / 0.293841 (0.060523) | 0.030919 / 0.128546 (-0.097627) | 0.008512 / 0.075646 (-0.067134) | 0.292774 / 0.419271 (-0.126498) | 0.052441 / 0.043533 (0.008908) | 0.310503 / 0.255139 (0.055364) | 0.341211 / 0.283200 (0.058011) | 0.023608 / 0.141683 (-0.118074) | 1.456220 / 1.452155 (0.004065) | 1.540189 / 1.492716 (0.047473) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.234321 / 0.018006 (0.216315) | 0.451809 / 0.000490 (0.451319) | 0.008560 / 0.000200 (0.008360) | 0.000085 / 0.000054 (0.000031) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028165 / 0.037411 (-0.009246) | 0.082548 / 0.014526 (0.068023) | 0.752621 / 0.176557 (0.576065) | 0.263949 / 0.737135 (-0.473187) | 0.097635 / 0.296338 (-0.198704) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.386611 / 0.215209 (0.171402) | 3.847528 / 2.077655 (1.769873) | 1.859173 / 1.504120 (0.355053) | 1.685269 / 1.541195 (0.144074) | 1.715823 / 1.468490 (0.247333) | 0.485272 / 4.584777 (-4.099505) | 3.500724 / 3.745712 (-0.244988) | 3.252149 / 5.269862 (-2.017713) | 2.052914 / 4.565676 (-2.512762) | 0.056794 / 0.424275 (-0.367481) | 0.007317 / 0.007607 (-0.000291) | 0.457924 / 0.226044 (0.231879) | 4.570092 / 2.268929 (2.301163) | 2.328829 / 55.444624 (-53.115796) | 1.986502 / 6.876477 (-4.889975) | 2.164645 / 2.142072 (0.022573) | 0.580455 / 4.805227 (-4.224772) | 0.134415 / 6.500664 (-6.366249) | 0.060506 / 0.075469 (-0.014963) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.267423 / 1.841788 (-0.574364) | 18.653450 / 8.074308 (10.579142) | 13.919682 / 10.191392 (3.728290) | 0.144001 / 0.680424 (-0.536423) | 0.018218 / 0.534201 (-0.515983) | 0.389933 / 0.579283 (-0.189350) | 0.418366 / 0.434364 (-0.015998) | 0.456341 / 0.540337 (-0.083997) | 0.631401 / 1.386936 (-0.755535) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006838 / 0.011353 (-0.004515) | 0.003973 / 0.011008 (-0.007036) | 0.065217 / 0.038508 (0.026709) | 0.068357 / 0.023109 (0.045248) | 0.407960 / 0.275898 (0.132062) | 0.437794 / 0.323480 (0.114314) | 0.005398 / 0.007986 (-0.002587) | 0.003360 / 0.004328 (-0.000969) | 0.065503 / 0.004250 (0.061253) | 0.055676 / 0.037052 (0.018623) | 0.411381 / 0.258489 (0.152892) | 0.446902 / 0.293841 (0.153061) | 0.032156 / 0.128546 (-0.096390) | 0.008702 / 0.075646 (-0.066944) | 0.072295 / 0.419271 (-0.346976) | 0.047722 / 0.043533 (0.004189) | 0.406125 / 0.255139 (0.150986) | 0.428359 / 0.283200 (0.145160) | 0.021901 / 0.141683 (-0.119782) | 1.464186 / 1.452155 (0.012032) | 1.532809 / 1.492716 (0.040093) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.218505 / 0.018006 (0.200499) | 0.447450 / 0.000490 (0.446961) | 0.006509 / 0.000200 (0.006309) | 0.000099 / 0.000054 (0.000045) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031789 / 0.037411 (-0.005622) | 0.091100 / 0.014526 (0.076574) | 0.102812 / 0.176557 (-0.073745) | 0.155988 / 0.737135 (-0.581147) | 0.103983 / 0.296338 (-0.192355) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.436431 / 0.215209 (0.221222) | 4.336072 / 2.077655 (2.258417) | 2.344613 / 1.504120 (0.840493) | 2.173513 / 1.541195 (0.632319) | 2.313134 / 1.468490 (0.844644) | 0.493651 / 4.584777 (-4.091126) | 3.657541 / 3.745712 (-0.088171) | 3.289933 / 5.269862 (-1.979928) | 2.040271 / 4.565676 (-2.525406) | 0.058092 / 0.424275 (-0.366183) | 0.007348 / 0.007607 (-0.000259) | 0.507506 / 0.226044 (0.281462) | 5.093477 / 2.268929 (2.824548) | 2.770579 / 55.444624 (-52.674046) | 2.449507 / 6.876477 (-4.426970) | 2.645470 / 2.142072 (0.503397) | 0.590799 / 4.805227 (-4.214429) | 0.133411 / 6.500664 (-6.367253) | 0.059507 / 0.075469 (-0.015962) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.381148 / 1.841788 (-0.460639) | 19.188716 / 8.074308 (11.114408) | 14.709111 / 10.191392 (4.517719) | 0.191104 / 0.680424 (-0.489320) | 0.019862 / 0.534201 (-0.514339) | 0.395380 / 0.579283 (-0.183903) | 0.424757 / 0.434364 (-0.009607) | 0.468810 / 0.540337 (-0.071527) | 0.687058 / 1.386936 (-0.699878) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#407169e1ea91ae31f79ff29c4115b04a461279ab \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008872 / 0.011353 (-0.002481) | 0.004824 / 0.011008 (-0.006184) | 0.097012 / 0.038508 (0.058504) | 0.074728 / 0.023109 (0.051619) | 0.400604 / 0.275898 (0.124706) | 0.434316 / 0.323480 (0.110836) | 0.006025 / 0.007986 (-0.001961) | 0.004153 / 0.004328 (-0.000176) | 0.074093 / 0.004250 (0.069842) | 0.057239 / 0.037052 (0.020187) | 0.420611 / 0.258489 (0.162122) | 0.457779 / 0.293841 (0.163938) | 0.047610 / 0.128546 (-0.080936) | 0.014577 / 0.075646 (-0.061069) | 0.414351 / 0.419271 (-0.004921) | 0.063072 / 0.043533 (0.019539) | 0.426141 / 0.255139 (0.171002) | 0.429844 / 0.283200 (0.146644) | 0.034754 / 0.141683 (-0.106929) | 1.620946 / 1.452155 (0.168792) | 1.725831 / 1.492716 (0.233115) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.304712 / 0.018006 (0.286706) | 0.646924 / 0.000490 (0.646434) | 0.014486 / 0.000200 (0.014286) | 0.000626 / 0.000054 (0.000572) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034935 / 0.037411 (-0.002477) | 0.085788 / 0.014526 (0.071262) | 0.107749 / 0.176557 (-0.068807) | 0.170924 / 0.737135 (-0.566211) | 0.134985 / 0.296338 (-0.161354) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.602913 / 0.215209 (0.387704) | 6.041700 / 2.077655 (3.964045) | 2.539970 / 1.504120 (1.035850) | 2.184166 / 1.541195 (0.642972) | 2.241783 / 1.468490 (0.773293) | 0.864601 / 4.584777 (-3.720176) | 5.246955 / 3.745712 (1.501243) | 4.850458 / 5.269862 (-0.419404) | 3.101497 / 4.565676 (-1.464179) | 0.098591 / 0.424275 (-0.325684) | 0.008902 / 0.007607 (0.001295) | 0.732278 / 0.226044 (0.506234) | 7.163557 / 2.268929 (4.894629) | 3.226444 / 55.444624 (-52.218180) | 2.578737 / 6.876477 (-4.297740) | 2.850212 / 2.142072 (0.708140) | 1.026390 / 4.805227 (-3.778837) | 0.217077 / 6.500664 (-6.283587) | 0.080344 / 0.075469 (0.004875) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.687488 / 1.841788 (-0.154300) | 24.686337 / 8.074308 (16.612029) | 21.315989 / 10.191392 (11.124597) | 0.226176 / 0.680424 (-0.454248) | 0.035774 / 0.534201 (-0.498427) | 0.477807 / 0.579283 (-0.101476) | 0.636305 / 0.434364 (0.201941) | 0.553341 / 0.540337 (0.013003) | 0.797267 / 1.386936 (-0.589669) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008955 / 0.011353 (-0.002398) | 0.006099 / 0.011008 (-0.004909) | 0.086306 / 0.038508 (0.047798) | 0.090783 / 0.023109 (0.067674) | 0.554802 / 0.275898 (0.278904) | 0.598778 / 0.323480 (0.275299) | 0.008656 / 0.007986 (0.000670) | 0.004487 / 0.004328 (0.000159) | 0.084194 / 0.004250 (0.079943) | 0.076048 / 0.037052 (0.038996) | 0.533212 / 0.258489 (0.274723) | 0.584029 / 0.293841 (0.290188) | 0.051913 / 0.128546 (-0.076634) | 0.014253 / 0.075646 (-0.061393) | 0.100500 / 0.419271 (-0.318772) | 0.061092 / 0.043533 (0.017560) | 0.516955 / 0.255139 (0.261816) | 0.562754 / 0.283200 (0.279554) | 0.036673 / 0.141683 (-0.105010) | 1.853655 / 1.452155 (0.401501) | 1.968358 / 1.492716 (0.475642) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.308258 / 0.018006 (0.290252) | 0.630492 / 0.000490 (0.630002) | 0.010575 / 0.000200 (0.010375) | 0.000271 / 0.000054 (0.000217) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034762 / 0.037411 (-0.002649) | 0.107314 / 0.014526 (0.092788) | 0.132160 / 0.176557 (-0.044396) | 0.178737 / 0.737135 (-0.558398) | 0.125988 / 0.296338 (-0.170351) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.730738 / 0.215209 (0.515528) | 7.240393 / 2.077655 (5.162738) | 3.557665 / 1.504120 (2.053545) | 3.541425 / 1.541195 (2.000230) | 3.103849 / 1.468490 (1.635359) | 0.926843 / 4.584777 (-3.657934) | 5.818264 / 3.745712 (2.072552) | 5.012984 / 5.269862 (-0.256878) | 3.286085 / 4.565676 (-1.279591) | 0.104879 / 0.424275 (-0.319396) | 0.009010 / 0.007607 (0.001403) | 0.806145 / 0.226044 (0.580101) | 8.263655 / 2.268929 (5.994727) | 4.108932 / 55.444624 (-51.335693) | 3.454613 / 6.876477 (-3.421864) | 3.629045 / 2.142072 (1.486973) | 1.062325 / 4.805227 (-3.742902) | 0.220482 / 6.500664 (-6.280182) | 0.081440 / 0.075469 (0.005970) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.665587 / 1.841788 (-0.176201) | 23.695299 / 8.074308 (15.620991) | 22.917493 / 10.191392 (12.726101) | 0.259033 / 0.680424 (-0.421391) | 0.040118 / 0.534201 (-0.494083) | 0.487329 / 0.579283 (-0.091954) | 0.607482 / 0.434364 (0.173118) | 0.568383 / 0.540337 (0.028045) | 0.824486 / 1.386936 (-0.562450) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#53592bb8f635a1d6ea3e77acc290efdfb28fcbd7 \"CML watermark\")\n", "CI failures are unrelated", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007095 / 0.011353 (-0.004258) | 0.004260 / 0.011008 (-0.006748) | 0.084729 / 0.038508 (0.046221) | 0.076498 / 0.023109 (0.053389) | 0.325981 / 0.275898 (0.050083) | 0.357140 / 0.323480 (0.033661) | 0.004325 / 0.007986 (-0.003660) | 0.003632 / 0.004328 (-0.000696) | 0.065075 / 0.004250 (0.060824) | 0.059058 / 0.037052 (0.022006) | 0.331895 / 0.258489 (0.073406) | 0.370782 / 0.293841 (0.076941) | 0.031886 / 0.128546 (-0.096660) | 0.008782 / 0.075646 (-0.066864) | 0.288159 / 0.419271 (-0.131113) | 0.053012 / 0.043533 (0.009479) | 0.319992 / 0.255139 (0.064853) | 0.347061 / 0.283200 (0.063861) | 0.026365 / 0.141683 (-0.115317) | 1.486112 / 1.452155 (0.033958) | 1.570150 / 1.492716 (0.077434) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.277155 / 0.018006 (0.259149) | 0.573507 / 0.000490 (0.573017) | 0.010122 / 0.000200 (0.009922) | 0.000322 / 0.000054 (0.000268) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029076 / 0.037411 (-0.008335) | 0.082517 / 0.014526 (0.067991) | 0.100710 / 0.176557 (-0.075847) | 0.154529 / 0.737135 (-0.582606) | 0.099531 / 0.296338 (-0.196807) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.382058 / 0.215209 (0.166849) | 3.803307 / 2.077655 (1.725652) | 1.834107 / 1.504120 (0.329987) | 1.665703 / 1.541195 (0.124508) | 1.739520 / 1.468490 (0.271030) | 0.490544 / 4.584777 (-4.094233) | 3.577874 / 3.745712 (-0.167838) | 3.327631 / 5.269862 (-1.942231) | 2.056634 / 4.565676 (-2.509043) | 0.057871 / 0.424275 (-0.366404) | 0.007326 / 0.007607 (-0.000281) | 0.453993 / 0.226044 (0.227949) | 4.549179 / 2.268929 (2.280250) | 2.320304 / 55.444624 (-53.124321) | 1.966082 / 6.876477 (-4.910395) | 2.189979 / 2.142072 (0.047907) | 0.586678 / 4.805227 (-4.218549) | 0.134919 / 6.500664 (-6.365745) | 0.061649 / 0.075469 (-0.013820) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.286228 / 1.841788 (-0.555560) | 19.409674 / 8.074308 (11.335366) | 14.290463 / 10.191392 (4.099071) | 0.165766 / 0.680424 (-0.514658) | 0.018200 / 0.534201 (-0.516001) | 0.390526 / 0.579283 (-0.188757) | 0.410953 / 0.434364 (-0.023411) | 0.455921 / 0.540337 (-0.084416) | 0.642271 / 1.386936 (-0.744665) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007288 / 0.011353 (-0.004064) | 0.004348 / 0.011008 (-0.006660) | 0.065935 / 0.038508 (0.027427) | 0.087327 / 0.023109 (0.064218) | 0.413461 / 0.275898 (0.137563) | 0.458904 / 0.323480 (0.135424) | 0.005996 / 0.007986 (-0.001990) | 0.003648 / 0.004328 (-0.000680) | 0.066578 / 0.004250 (0.062328) | 0.062072 / 0.037052 (0.025020) | 0.418469 / 0.258489 (0.159980) | 0.468960 / 0.293841 (0.175119) | 0.032616 / 0.128546 (-0.095930) | 0.008961 / 0.075646 (-0.066686) | 0.072537 / 0.419271 (-0.346734) | 0.048302 / 0.043533 (0.004769) | 0.411845 / 0.255139 (0.156706) | 0.441730 / 0.283200 (0.158530) | 0.025038 / 0.141683 (-0.116645) | 1.519402 / 1.452155 (0.067248) | 1.601791 / 1.492716 (0.109074) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.322494 / 0.018006 (0.304488) | 0.570210 / 0.000490 (0.569720) | 0.025815 / 0.000200 (0.025615) | 0.000166 / 0.000054 (0.000111) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034657 / 0.037411 (-0.002754) | 0.096024 / 0.014526 (0.081498) | 0.109134 / 0.176557 (-0.067422) | 0.162170 / 0.737135 (-0.574965) | 0.110472 / 0.296338 (-0.185866) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.439032 / 0.215209 (0.223823) | 4.385768 / 2.077655 (2.308113) | 2.343261 / 1.504120 (0.839142) | 2.157926 / 1.541195 (0.616731) | 2.299193 / 1.468490 (0.830703) | 0.498961 / 4.584777 (-4.085816) | 3.651909 / 3.745712 (-0.093803) | 3.387587 / 5.269862 (-1.882275) | 2.144553 / 4.565676 (-2.421123) | 0.058242 / 0.424275 (-0.366033) | 0.007416 / 0.007607 (-0.000191) | 0.512714 / 0.226044 (0.286670) | 5.138569 / 2.268929 (2.869641) | 2.778683 / 55.444624 (-52.665941) | 2.532990 / 6.876477 (-4.343487) | 2.782211 / 2.142072 (0.640139) | 0.591881 / 4.805227 (-4.213346) | 0.135005 / 6.500664 (-6.365660) | 0.060965 / 0.075469 (-0.014504) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.356311 / 1.841788 (-0.485477) | 20.029994 / 8.074308 (11.955686) | 14.666570 / 10.191392 (4.475178) | 0.164363 / 0.680424 (-0.516061) | 0.020685 / 0.534201 (-0.513516) | 0.396020 / 0.579283 (-0.183263) | 0.429407 / 0.434364 (-0.004957) | 0.476924 / 0.540337 (-0.063413) | 0.693389 / 1.386936 (-0.693547) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#292d627e398e30a538a616395f3b5ce4e89bb1e8 \"CML watermark\")\n" ]
2023-10-12T14:42:40
2023-10-12T16:37:55
2023-10-12T16:28:57
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6300", "html_url": "https://github.com/huggingface/datasets/pull/6300", "diff_url": "https://github.com/huggingface/datasets/pull/6300.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6300.patch", "merged_at": "2023-10-12T16:28:57" }
fix #6299 fix #6202
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6300/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6300/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6299
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6299/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6299/comments
https://api.github.com/repos/huggingface/datasets/issues/6299/events
https://github.com/huggingface/datasets/issues/6299
1,939,649,238
I_kwDODunzps5znLLW
6,299
Support for newer versions of JAX
{ "login": "ddrous", "id": 25456859, "node_id": "MDQ6VXNlcjI1NDU2ODU5", "avatar_url": "https://avatars.githubusercontent.com/u/25456859?v=4", "gravatar_id": "", "url": "https://api.github.com/users/ddrous", "html_url": "https://github.com/ddrous", "followers_url": "https://api.github.com/users/ddrous/followers", "following_url": "https://api.github.com/users/ddrous/following{/other_user}", "gists_url": "https://api.github.com/users/ddrous/gists{/gist_id}", "starred_url": "https://api.github.com/users/ddrous/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ddrous/subscriptions", "organizations_url": "https://api.github.com/users/ddrous/orgs", "repos_url": "https://api.github.com/users/ddrous/repos", "events_url": "https://api.github.com/users/ddrous/events{/privacy}", "received_events_url": "https://api.github.com/users/ddrous/received_events", "type": "User", "site_admin": false }
[ { "id": 1935892871, "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement", "name": "enhancement", "color": "a2eeef", "default": true, "description": "New feature or request" } ]
closed
false
null
[]
[]
2023-10-12T10:03:46
2023-10-12T16:28:59
2023-10-12T16:28:59
NONE
null
null
null
### Feature request Hi, I like your idea of adapting the datasets library to be usable with JAX. Thank you for that. However, in your [setup.py](https://github.com/huggingface/datasets/blob/main/setup.py), you enforce old versions of JAX <= 0.3... It is very cumbersome ! What is the rationale for such a limitation ? Can you remove it please ? Thanks, ### Motivation This library is unusable with new versions of JAX ? ### Your contribution Yes.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6299/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6299/timeline
null
completed
false