|
import datasets |
|
from datasets.features import ClassLabel, Features, Image |
|
import copy |
|
from dataclasses import dataclass, field |
|
from typing import ClassVar, Dict |
|
from datasets import TaskTemplate, ImageClassification |
|
|
|
_DESCRIPTION = "none" |
|
_NAMES = ["non-sarcastic", "sarcastic"] |
|
_HOMEPAGE = "https://github.com/headacheboy/data-of-multimodal-sarcasm-detection" |
|
_CITATION = "none" |
|
_LICENSE = "none" |
|
_BASE_URL = "data/images.tar" |
|
_METADATA_URLS = {"train": "data/text/train.txt", |
|
"test": "data/text/test2.txt", |
|
"valid": "data/text/valid2.txt"} |
|
_IMAGES_DIR = "images/" |
|
|
|
|
|
@dataclass(frozen=True) |
|
class ImageTextClassification(TaskTemplate): |
|
task: str = field(default="image-text-classification", metadata={"include_in_asdict_even_if_is_default": True}) |
|
input_schema: ClassVar[Features] = Features({"image": Image()}) |
|
text_schema: ClassVar[Features] = Features({"text": datasets.Value("string")}) |
|
label_schema: ClassVar[Features] = Features({"labels": ClassLabel}) |
|
image_column: str = "image" |
|
text_column: str = "text" |
|
label_column: str = "labels" |
|
|
|
def align_with_features(self, features): |
|
if self.label_column not in features: |
|
raise ValueError(f"Column {self.label_column} is not present in features.") |
|
if not isinstance(features[self.label_column], ClassLabel): |
|
raise ValueError(f"Column {self.label_column} is not a ClassLabel.") |
|
task_template = copy.deepcopy(self) |
|
label_schema = self.label_schema.copy() |
|
label_schema["labels"] = features[self.label_column] |
|
task_template.__dict__["label_schema"] = label_schema |
|
return task_template |
|
|
|
@property |
|
def column_mapping(self) -> Dict[str, str]: |
|
return { |
|
self.image_column: "image", |
|
self.text_column: "text", |
|
self.label_column: "labels", |
|
} |
|
|
|
|
|
class MultimodalSarcasmDetection(datasets.GeneratorBasedBuilder): |
|
"""MultimodalSarcasmDetection Images dataset""" |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"image": datasets.Image(), |
|
"text": datasets.Value("string"), |
|
"label": datasets.ClassLabel(names=_NAMES), |
|
} |
|
), |
|
supervised_keys=(("image", "text"), "label"), |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
license=_LICENSE, |
|
task_templates=[ImageTextClassification(image_column="image", text_column="text", label_column="label")], |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
archive_path = dl_manager.download(_BASE_URL) |
|
split_metadata_paths = dl_manager.download(_METADATA_URLS) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"images": dl_manager.iter_archive(archive_path), |
|
"metadata_path": split_metadata_paths["train"], |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"images": dl_manager.iter_archive(archive_path), |
|
"metadata_path": split_metadata_paths["test"], |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"images": dl_manager.iter_archive(archive_path), |
|
"metadata_path": split_metadata_paths["valid"], |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, images, metadata_path): |
|
"""Generate images and labels for splits.""" |
|
lines = {} |
|
files_to_keep = set() |
|
with open(metadata_path, encoding="utf-8") as f: |
|
for line in f: |
|
line = line.strip() |
|
if line: |
|
line = eval(line) |
|
lines[line[0]] = line[1:] |
|
files_to_keep.add(line[0]) |
|
for file_path, file_obj in images: |
|
if file_path.startswith(_IMAGES_DIR): |
|
image_id = file_path[len(_IMAGES_DIR): -len(".jpg")] |
|
if image_id in files_to_keep: |
|
line = lines[image_id] |
|
yield file_path, { |
|
"image": {"path": file_path, "bytes": file_obj.read()}, |
|
"text": line[0], |
|
"label": line[-1] |
|
} |
|
|