import datasets from datasets.features import ClassLabel, Features, Image import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from datasets import TaskTemplate, ImageClassification _DESCRIPTION = "none" _NAMES = ["non-sarcastic", "sarcastic"] _HOMEPAGE = "https://github.com/headacheboy/data-of-multimodal-sarcasm-detection" _CITATION = "none" _LICENSE = "none" _BASE_URL = "data/images.tar" _METADATA_URLS = {"train": "data/text/train.txt", "test": "data/text/test2.txt", "valid": "data/text/valid2.txt"} _IMAGES_DIR = "images/" @dataclass(frozen=True) class ImageTextClassification(TaskTemplate): task: str = field(default="image-text-classification", metadata={"include_in_asdict_even_if_is_default": True}) input_schema: ClassVar[Features] = Features({"image": Image()}) text_schema: ClassVar[Features] = Features({"text": datasets.Value("string")}) label_schema: ClassVar[Features] = Features({"labels": ClassLabel}) image_column: str = "image" text_column: str = "text" label_column: str = "labels" def align_with_features(self, features): if self.label_column not in features: raise ValueError(f"Column {self.label_column} is not present in features.") if not isinstance(features[self.label_column], ClassLabel): raise ValueError(f"Column {self.label_column} is not a ClassLabel.") task_template = copy.deepcopy(self) label_schema = self.label_schema.copy() label_schema["labels"] = features[self.label_column] task_template.__dict__["label_schema"] = label_schema return task_template @property def column_mapping(self) -> Dict[str, str]: return { self.image_column: "image", self.text_column: "text", self.label_column: "labels", } class MultimodalSarcasmDetection(datasets.GeneratorBasedBuilder): """MultimodalSarcasmDetection Images dataset""" def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "image": datasets.Image(), "text": datasets.Value("string"), "label": datasets.ClassLabel(names=_NAMES), } ), supervised_keys=(("image", "text"), "label"), homepage=_HOMEPAGE, citation=_CITATION, license=_LICENSE, task_templates=[ImageTextClassification(image_column="image", text_column="text", label_column="label")], ) def _split_generators(self, dl_manager): archive_path = dl_manager.download(_BASE_URL) split_metadata_paths = dl_manager.download(_METADATA_URLS) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "images": dl_manager.iter_archive(archive_path), "metadata_path": split_metadata_paths["train"], }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "images": dl_manager.iter_archive(archive_path), "metadata_path": split_metadata_paths["test"], }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "images": dl_manager.iter_archive(archive_path), "metadata_path": split_metadata_paths["valid"], }, ), ] def _generate_examples(self, images, metadata_path): """Generate images and labels for splits.""" lines = {} files_to_keep = set() with open(metadata_path, encoding="utf-8") as f: for line in f: line = line.strip() if line: line = eval(line) lines[line[0]] = line[1:] files_to_keep.add(line[0]) for file_path, file_obj in images: if file_path.startswith(_IMAGES_DIR): image_id = file_path[len(_IMAGES_DIR): -len(".jpg")] if image_id in files_to_keep: line = lines[image_id] yield file_path, { "image": {"path": file_path, "bytes": file_obj.read()}, "text": line[0], "label": line[-1] }