File size: 3,036 Bytes
93b0f14
 
 
 
 
 
 
 
 
 
 
59fb28d
 
 
055ba41
 
 
 
 
93b0f14
 
 
 
 
59fb28d
 
055ba41
 
84097d0
 
 
 
 
 
 
 
93b0f14
84097d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
---
dataset_info:
  features:
  - name: seq
    dtype: string
  - name: label
    dtype: int64
  splits:
  - name: train
    num_bytes: 88951983
    num_examples: 283057
  - name: valid
    num_bytes: 19213838
    num_examples: 62973
  - name: test
    num_bytes: 22317993
    num_examples: 73205
  download_size: 127753697
  dataset_size: 130483814
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: valid
    path: data/valid-*
  - split: test
    path: data/test-*
license: apache-2.0
task_categories:
- text-classification
tags:
- chemistry
- biology
size_categories:
- 100K<n<1M
---


# Dataset Card for Temperature Stability Dataset

### Dataset Summary

The accurate prediction of protein thermal stability has far-reaching implications in both academic and industrial spheres. This task primarily aims to predict a protein’s capacity to preserve its structural stability under a temperature condition of 65 degrees Celsius. 

## Dataset Structure

### Data Instances
For each instance, there is a string representing the protein sequence and an integer label indicating whether the protein can maintain its structural stability at a temperature of 65 degrees Celsius. See the [temperature stability dataset viewer](https://huggingface.co./datasets/Bo1015/temperature_stability/viewer) to explore more examples.

```
{'seq':'MEHVIDNFDNIDKCLKCGKPIKVVKLKYIKKKIENIPNSHLINFKYCSKCKRENVIENL'
'label':1}
```

The average  for the `seq` and the `label` are provided below:

| Feature    | Mean Count |
| ---------- | ---------------- |
| seq    | 300      |


### Data Fields

- `seq`: a string containing the protein sequence
- `label`: an integer label indicating the structural stability of each sequence.

### Data Splits

The temperature stability dataset has 3 splits: _train_, _valid_, and _test_. Below are the statistics of the dataset.

| Dataset Split | Number of Instances in Split                |
| ------------- | ------------------------------------------- |
| Train         | 283,057                            |
| Valid         | 62,973                              |
| Test          | 73,205                                      |

### Source Data

#### Initial Data Collection and Normalization

We adapted the dataset strategy from [TemStaPro](https://academic.oup.com/bioinformatics/article/40/4/btae157/7632735).

### Licensing Information

The dataset is released under the [Apache-2.0 License](http://www.apache.org/licenses/LICENSE-2.0). 

### Citation
If you find our work useful, please consider citing the following paper:

```
@misc{chen2024xtrimopglm,
  title={xTrimoPGLM: unified 100B-scale pre-trained transformer for deciphering the language of protein},
  author={Chen, Bo and Cheng, Xingyi and Li, Pan and Geng, Yangli-ao and Gong, Jing and Li, Shen and Bei, Zhilei and Tan, Xu and Wang, Boyan and Zeng, Xin and others},
  year={2024},
  eprint={2401.06199},
  archivePrefix={arXiv},
  primaryClass={cs.CL},
  note={arXiv preprint arXiv:2401.06199}
}
```