File size: 10,203 Bytes
f4731fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
<p align="center">
  <img src="fairseq_logo.png" width="150">
  <br />
  <br />
  <a href="https://github.com/pytorch/fairseq/blob/master/LICENSE"><img alt="MIT License" src="https://img.shields.io/badge/license-MIT-blue.svg" /></a>
  <a href="https://github.com/pytorch/fairseq/releases"><img alt="Latest Release" src="https://img.shields.io/github/release/pytorch/fairseq.svg" /></a>
  <a href="https://github.com/pytorch/fairseq/actions?query=workflow:build"><img alt="Build Status" src="https://github.com/pytorch/fairseq/workflows/build/badge.svg" /></a>
  <a href="https://fairseq.readthedocs.io/en/latest/?badge=latest"><img alt="Documentation Status" src="https://readthedocs.org/projects/fairseq/badge/?version=latest" /></a>
</p>

--------------------------------------------------------------------------------

Fairseq(-py) is a sequence modeling toolkit that allows researchers and
developers to train custom models for translation, summarization, language
modeling and other text generation tasks.

### What's New:

- April 2020: [Initial model parallel support and 11B parameters unidirectional LM released](examples/megatron_11b/README.md)
- March 2020: [Byte-level BPE code released](examples/byte_level_bpe/README.md)
- February 2020: [mBART model and code released](examples/mbart/README.md)
- February 2020: [Added tutorial for back-translation](https://github.com/pytorch/fairseq/tree/master/examples/backtranslation#training-your-own-model-wmt18-english-german)
- December 2019: [fairseq 0.9.0 released](https://github.com/pytorch/fairseq/releases/tag/v0.9.0)
- November 2019: [VizSeq released (a visual analysis toolkit for evaluating fairseq models)](https://facebookresearch.github.io/vizseq/docs/getting_started/fairseq_example)
- November 2019: [CamemBERT model and code released](examples/camembert/README.md)
- November 2019: [BART model and code released](examples/bart/README.md)
- November 2019: [XLM-R models and code released](examples/xlmr/README.md)
- September 2019: [Nonautoregressive translation code released](examples/nonautoregressive_translation/README.md)
- August 2019: [WMT'19 models released](examples/wmt19/README.md)
- July 2019: fairseq relicensed under MIT license
- July 2019: [RoBERTa models and code released](examples/roberta/README.md)
- June 2019: [wav2vec models and code released](examples/wav2vec/README.md)

### Features:

Fairseq provides reference implementations of various sequence-to-sequence models, including:
- **Convolutional Neural Networks (CNN)**
  - [Language Modeling with Gated Convolutional Networks (Dauphin et al., 2017)](examples/language_model/conv_lm/README.md)
  - [Convolutional Sequence to Sequence Learning (Gehring et al., 2017)](examples/conv_seq2seq/README.md)
  - [Classical Structured Prediction Losses for Sequence to Sequence Learning (Edunov et al., 2018)](https://github.com/pytorch/fairseq/tree/classic_seqlevel)
  - [Hierarchical Neural Story Generation (Fan et al., 2018)](examples/stories/README.md)
  - [wav2vec: Unsupervised Pre-training for Speech Recognition (Schneider et al., 2019)](examples/wav2vec/README.md)
- **LightConv and DynamicConv models**
  - [Pay Less Attention with Lightweight and Dynamic Convolutions (Wu et al., 2019)](examples/pay_less_attention_paper/README.md)
- **Long Short-Term Memory (LSTM) networks**
  - Effective Approaches to Attention-based Neural Machine Translation (Luong et al., 2015)
- **Transformer (self-attention) networks**
  - Attention Is All You Need (Vaswani et al., 2017)
  - [Scaling Neural Machine Translation (Ott et al., 2018)](examples/scaling_nmt/README.md)
  - [Understanding Back-Translation at Scale (Edunov et al., 2018)](examples/backtranslation/README.md)
  - [Adaptive Input Representations for Neural Language Modeling (Baevski and Auli, 2018)](examples/language_model/transformer_lm/README.md)
  - [Mixture Models for Diverse Machine Translation: Tricks of the Trade (Shen et al., 2019)](examples/translation_moe/README.md)
  - [RoBERTa: A Robustly Optimized BERT Pretraining Approach (Liu et al., 2019)](examples/roberta/README.md)
  - [Facebook FAIR's WMT19 News Translation Task Submission (Ng et al., 2019)](examples/wmt19/README.md)
  - [Jointly Learning to Align and Translate with Transformer Models (Garg et al., 2019)](examples/joint_alignment_translation/README.md )
  - [Multilingual Denoising Pre-training for Neural Machine Translation (Liu et at., 2020)](examples/mbart/README.md)
  - [Neural Machine Translation with Byte-Level Subwords (Wang et al., 2020)](examples/byte_level_bpe/README.md)
- **Non-autoregressive Transformers**
  - Non-Autoregressive Neural Machine Translation (Gu et al., 2017)
  - Deterministic Non-Autoregressive Neural Sequence Modeling by Iterative Refinement (Lee et al. 2018)
  - Insertion Transformer: Flexible Sequence Generation via Insertion Operations (Stern et al. 2019)
  - Mask-Predict: Parallel Decoding of Conditional Masked Language Models (Ghazvininejad et al., 2019)
  - [Levenshtein Transformer (Gu et al., 2019)](examples/nonautoregressive_translation/README.md)


**Additionally:**
- multi-GPU (distributed) training on one machine or across multiple machines
- fast generation on both CPU and GPU with multiple search algorithms implemented:
  - beam search
  - Diverse Beam Search ([Vijayakumar et al., 2016](https://arxiv.org/abs/1610.02424))
  - sampling (unconstrained, top-k and top-p/nucleus)
- large mini-batch training even on a single GPU via delayed updates
- mixed precision training (trains faster with less GPU memory on [NVIDIA tensor cores](https://developer.nvidia.com/tensor-cores))
- extensible: easily register new models, criterions, tasks, optimizers and learning rate schedulers

We also provide [pre-trained models for translation and language modeling](#pre-trained-models-and-examples)
with a convenient `torch.hub` interface:
```python
en2de = torch.hub.load('pytorch/fairseq', 'transformer.wmt19.en-de.single_model')
en2de.translate('Hello world', beam=5)
# 'Hallo Welt'
```
See the PyTorch Hub tutorials for [translation](https://pytorch.org/hub/pytorch_fairseq_translation/)
and [RoBERTa](https://pytorch.org/hub/pytorch_fairseq_roberta/) for more examples.

![Model](fairseq.gif)

# Requirements and Installation

* [PyTorch](http://pytorch.org/) version >= 1.4.0
* Python version >= 3.6
* For training new models, you'll also need an NVIDIA GPU and [NCCL](https://github.com/NVIDIA/nccl)
* **For faster training** install NVIDIA's [apex](https://github.com/NVIDIA/apex) library:
```bash
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" --global-option="--deprecated_fused_adam" --global-option="--xentropy" --global-option="--fast_multihead_attn" ./
```

To install fairseq:
```bash
pip install fairseq
```

On MacOS:
```bash
CFLAGS="-stdlib=libc++" pip install fairseq
```

If you use Docker make sure to increase the shared memory size either with
`--ipc=host` or `--shm-size` as command line options to `nvidia-docker run`.

**Installing from source**

To install fairseq from source and develop locally:
```bash
git clone https://github.com/pytorch/fairseq
cd fairseq
pip install --editable .
```

# Getting Started

The [full documentation](https://fairseq.readthedocs.io/) contains instructions
for getting started, training new models and extending fairseq with new model
types and tasks.

# Pre-trained models and examples

We provide pre-trained models and pre-processed, binarized test sets for several tasks listed below,
as well as example training and evaluation commands.

- [Translation](examples/translation/README.md): convolutional and transformer models are available
- [Language Modeling](examples/language_model/README.md): convolutional and transformer models are available
- [wav2vec](examples/wav2vec/README.md): wav2vec large model is available

We also have more detailed READMEs to reproduce results from specific papers:
- [Neural Machine Translation with Byte-Level Subwords (Wang et al., 2020)](examples/byte_level_bpe/README.md)
- [Jointly Learning to Align and Translate with Transformer Models (Garg et al., 2019)](examples/joint_alignment_translation/README.md )
- [Levenshtein Transformer (Gu et al., 2019)](examples/nonautoregressive_translation/README.md)
- [Facebook FAIR's WMT19 News Translation Task Submission (Ng et al., 2019)](examples/wmt19/README.md)
- [RoBERTa: A Robustly Optimized BERT Pretraining Approach (Liu et al., 2019)](examples/roberta/README.md)
- [wav2vec: Unsupervised Pre-training for Speech Recognition (Schneider et al., 2019)](examples/wav2vec/README.md)
- [Mixture Models for Diverse Machine Translation: Tricks of the Trade (Shen et al., 2019)](examples/translation_moe/README.md)
- [Pay Less Attention with Lightweight and Dynamic Convolutions (Wu et al., 2019)](examples/pay_less_attention_paper/README.md)
- [Understanding Back-Translation at Scale (Edunov et al., 2018)](examples/backtranslation/README.md)
- [Classical Structured Prediction Losses for Sequence to Sequence Learning (Edunov et al., 2018)](https://github.com/pytorch/fairseq/tree/classic_seqlevel)
- [Hierarchical Neural Story Generation (Fan et al., 2018)](examples/stories/README.md)
- [Scaling Neural Machine Translation (Ott et al., 2018)](examples/scaling_nmt/README.md)
- [Convolutional Sequence to Sequence Learning (Gehring et al., 2017)](examples/conv_seq2seq/README.md)
- [Language Modeling with Gated Convolutional Networks (Dauphin et al., 2017)](examples/language_model/conv_lm/README.md)

# Join the fairseq community

* Facebook page: https://www.facebook.com/groups/fairseq.users
* Google group: https://groups.google.com/forum/#!forum/fairseq-users

# License
fairseq(-py) is MIT-licensed.
The license applies to the pre-trained models as well.

# Citation

Please cite as:

```bibtex
@inproceedings{ott2019fairseq,
  title = {fairseq: A Fast, Extensible Toolkit for Sequence Modeling},
  author = {Myle Ott and Sergey Edunov and Alexei Baevski and Angela Fan and Sam Gross and Nathan Ng and David Grangier and Michael Auli},
  booktitle = {Proceedings of NAACL-HLT 2019: Demonstrations},
  year = {2019},
}
```