shenyutong commited on
Commit
f4731fb
·
1 Parent(s): d649385
Files changed (2) hide show
  1. README.md +173 -0
  2. wmt14_en2de_cased_bin.zip +3 -0
README.md ADDED
@@ -0,0 +1,173 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <p align="center">
2
+ <img src="fairseq_logo.png" width="150">
3
+ <br />
4
+ <br />
5
+ <a href="https://github.com/pytorch/fairseq/blob/master/LICENSE"><img alt="MIT License" src="https://img.shields.io/badge/license-MIT-blue.svg" /></a>
6
+ <a href="https://github.com/pytorch/fairseq/releases"><img alt="Latest Release" src="https://img.shields.io/github/release/pytorch/fairseq.svg" /></a>
7
+ <a href="https://github.com/pytorch/fairseq/actions?query=workflow:build"><img alt="Build Status" src="https://github.com/pytorch/fairseq/workflows/build/badge.svg" /></a>
8
+ <a href="https://fairseq.readthedocs.io/en/latest/?badge=latest"><img alt="Documentation Status" src="https://readthedocs.org/projects/fairseq/badge/?version=latest" /></a>
9
+ </p>
10
+
11
+ --------------------------------------------------------------------------------
12
+
13
+ Fairseq(-py) is a sequence modeling toolkit that allows researchers and
14
+ developers to train custom models for translation, summarization, language
15
+ modeling and other text generation tasks.
16
+
17
+ ### What's New:
18
+
19
+ - April 2020: [Initial model parallel support and 11B parameters unidirectional LM released](examples/megatron_11b/README.md)
20
+ - March 2020: [Byte-level BPE code released](examples/byte_level_bpe/README.md)
21
+ - February 2020: [mBART model and code released](examples/mbart/README.md)
22
+ - February 2020: [Added tutorial for back-translation](https://github.com/pytorch/fairseq/tree/master/examples/backtranslation#training-your-own-model-wmt18-english-german)
23
+ - December 2019: [fairseq 0.9.0 released](https://github.com/pytorch/fairseq/releases/tag/v0.9.0)
24
+ - November 2019: [VizSeq released (a visual analysis toolkit for evaluating fairseq models)](https://facebookresearch.github.io/vizseq/docs/getting_started/fairseq_example)
25
+ - November 2019: [CamemBERT model and code released](examples/camembert/README.md)
26
+ - November 2019: [BART model and code released](examples/bart/README.md)
27
+ - November 2019: [XLM-R models and code released](examples/xlmr/README.md)
28
+ - September 2019: [Nonautoregressive translation code released](examples/nonautoregressive_translation/README.md)
29
+ - August 2019: [WMT'19 models released](examples/wmt19/README.md)
30
+ - July 2019: fairseq relicensed under MIT license
31
+ - July 2019: [RoBERTa models and code released](examples/roberta/README.md)
32
+ - June 2019: [wav2vec models and code released](examples/wav2vec/README.md)
33
+
34
+ ### Features:
35
+
36
+ Fairseq provides reference implementations of various sequence-to-sequence models, including:
37
+ - **Convolutional Neural Networks (CNN)**
38
+ - [Language Modeling with Gated Convolutional Networks (Dauphin et al., 2017)](examples/language_model/conv_lm/README.md)
39
+ - [Convolutional Sequence to Sequence Learning (Gehring et al., 2017)](examples/conv_seq2seq/README.md)
40
+ - [Classical Structured Prediction Losses for Sequence to Sequence Learning (Edunov et al., 2018)](https://github.com/pytorch/fairseq/tree/classic_seqlevel)
41
+ - [Hierarchical Neural Story Generation (Fan et al., 2018)](examples/stories/README.md)
42
+ - [wav2vec: Unsupervised Pre-training for Speech Recognition (Schneider et al., 2019)](examples/wav2vec/README.md)
43
+ - **LightConv and DynamicConv models**
44
+ - [Pay Less Attention with Lightweight and Dynamic Convolutions (Wu et al., 2019)](examples/pay_less_attention_paper/README.md)
45
+ - **Long Short-Term Memory (LSTM) networks**
46
+ - Effective Approaches to Attention-based Neural Machine Translation (Luong et al., 2015)
47
+ - **Transformer (self-attention) networks**
48
+ - Attention Is All You Need (Vaswani et al., 2017)
49
+ - [Scaling Neural Machine Translation (Ott et al., 2018)](examples/scaling_nmt/README.md)
50
+ - [Understanding Back-Translation at Scale (Edunov et al., 2018)](examples/backtranslation/README.md)
51
+ - [Adaptive Input Representations for Neural Language Modeling (Baevski and Auli, 2018)](examples/language_model/transformer_lm/README.md)
52
+ - [Mixture Models for Diverse Machine Translation: Tricks of the Trade (Shen et al., 2019)](examples/translation_moe/README.md)
53
+ - [RoBERTa: A Robustly Optimized BERT Pretraining Approach (Liu et al., 2019)](examples/roberta/README.md)
54
+ - [Facebook FAIR's WMT19 News Translation Task Submission (Ng et al., 2019)](examples/wmt19/README.md)
55
+ - [Jointly Learning to Align and Translate with Transformer Models (Garg et al., 2019)](examples/joint_alignment_translation/README.md )
56
+ - [Multilingual Denoising Pre-training for Neural Machine Translation (Liu et at., 2020)](examples/mbart/README.md)
57
+ - [Neural Machine Translation with Byte-Level Subwords (Wang et al., 2020)](examples/byte_level_bpe/README.md)
58
+ - **Non-autoregressive Transformers**
59
+ - Non-Autoregressive Neural Machine Translation (Gu et al., 2017)
60
+ - Deterministic Non-Autoregressive Neural Sequence Modeling by Iterative Refinement (Lee et al. 2018)
61
+ - Insertion Transformer: Flexible Sequence Generation via Insertion Operations (Stern et al. 2019)
62
+ - Mask-Predict: Parallel Decoding of Conditional Masked Language Models (Ghazvininejad et al., 2019)
63
+ - [Levenshtein Transformer (Gu et al., 2019)](examples/nonautoregressive_translation/README.md)
64
+
65
+
66
+ **Additionally:**
67
+ - multi-GPU (distributed) training on one machine or across multiple machines
68
+ - fast generation on both CPU and GPU with multiple search algorithms implemented:
69
+ - beam search
70
+ - Diverse Beam Search ([Vijayakumar et al., 2016](https://arxiv.org/abs/1610.02424))
71
+ - sampling (unconstrained, top-k and top-p/nucleus)
72
+ - large mini-batch training even on a single GPU via delayed updates
73
+ - mixed precision training (trains faster with less GPU memory on [NVIDIA tensor cores](https://developer.nvidia.com/tensor-cores))
74
+ - extensible: easily register new models, criterions, tasks, optimizers and learning rate schedulers
75
+
76
+ We also provide [pre-trained models for translation and language modeling](#pre-trained-models-and-examples)
77
+ with a convenient `torch.hub` interface:
78
+ ```python
79
+ en2de = torch.hub.load('pytorch/fairseq', 'transformer.wmt19.en-de.single_model')
80
+ en2de.translate('Hello world', beam=5)
81
+ # 'Hallo Welt'
82
+ ```
83
+ See the PyTorch Hub tutorials for [translation](https://pytorch.org/hub/pytorch_fairseq_translation/)
84
+ and [RoBERTa](https://pytorch.org/hub/pytorch_fairseq_roberta/) for more examples.
85
+
86
+ ![Model](fairseq.gif)
87
+
88
+ # Requirements and Installation
89
+
90
+ * [PyTorch](http://pytorch.org/) version >= 1.4.0
91
+ * Python version >= 3.6
92
+ * For training new models, you'll also need an NVIDIA GPU and [NCCL](https://github.com/NVIDIA/nccl)
93
+ * **For faster training** install NVIDIA's [apex](https://github.com/NVIDIA/apex) library:
94
+ ```bash
95
+ git clone https://github.com/NVIDIA/apex
96
+ cd apex
97
+ pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" --global-option="--deprecated_fused_adam" --global-option="--xentropy" --global-option="--fast_multihead_attn" ./
98
+ ```
99
+
100
+ To install fairseq:
101
+ ```bash
102
+ pip install fairseq
103
+ ```
104
+
105
+ On MacOS:
106
+ ```bash
107
+ CFLAGS="-stdlib=libc++" pip install fairseq
108
+ ```
109
+
110
+ If you use Docker make sure to increase the shared memory size either with
111
+ `--ipc=host` or `--shm-size` as command line options to `nvidia-docker run`.
112
+
113
+ **Installing from source**
114
+
115
+ To install fairseq from source and develop locally:
116
+ ```bash
117
+ git clone https://github.com/pytorch/fairseq
118
+ cd fairseq
119
+ pip install --editable .
120
+ ```
121
+
122
+ # Getting Started
123
+
124
+ The [full documentation](https://fairseq.readthedocs.io/) contains instructions
125
+ for getting started, training new models and extending fairseq with new model
126
+ types and tasks.
127
+
128
+ # Pre-trained models and examples
129
+
130
+ We provide pre-trained models and pre-processed, binarized test sets for several tasks listed below,
131
+ as well as example training and evaluation commands.
132
+
133
+ - [Translation](examples/translation/README.md): convolutional and transformer models are available
134
+ - [Language Modeling](examples/language_model/README.md): convolutional and transformer models are available
135
+ - [wav2vec](examples/wav2vec/README.md): wav2vec large model is available
136
+
137
+ We also have more detailed READMEs to reproduce results from specific papers:
138
+ - [Neural Machine Translation with Byte-Level Subwords (Wang et al., 2020)](examples/byte_level_bpe/README.md)
139
+ - [Jointly Learning to Align and Translate with Transformer Models (Garg et al., 2019)](examples/joint_alignment_translation/README.md )
140
+ - [Levenshtein Transformer (Gu et al., 2019)](examples/nonautoregressive_translation/README.md)
141
+ - [Facebook FAIR's WMT19 News Translation Task Submission (Ng et al., 2019)](examples/wmt19/README.md)
142
+ - [RoBERTa: A Robustly Optimized BERT Pretraining Approach (Liu et al., 2019)](examples/roberta/README.md)
143
+ - [wav2vec: Unsupervised Pre-training for Speech Recognition (Schneider et al., 2019)](examples/wav2vec/README.md)
144
+ - [Mixture Models for Diverse Machine Translation: Tricks of the Trade (Shen et al., 2019)](examples/translation_moe/README.md)
145
+ - [Pay Less Attention with Lightweight and Dynamic Convolutions (Wu et al., 2019)](examples/pay_less_attention_paper/README.md)
146
+ - [Understanding Back-Translation at Scale (Edunov et al., 2018)](examples/backtranslation/README.md)
147
+ - [Classical Structured Prediction Losses for Sequence to Sequence Learning (Edunov et al., 2018)](https://github.com/pytorch/fairseq/tree/classic_seqlevel)
148
+ - [Hierarchical Neural Story Generation (Fan et al., 2018)](examples/stories/README.md)
149
+ - [Scaling Neural Machine Translation (Ott et al., 2018)](examples/scaling_nmt/README.md)
150
+ - [Convolutional Sequence to Sequence Learning (Gehring et al., 2017)](examples/conv_seq2seq/README.md)
151
+ - [Language Modeling with Gated Convolutional Networks (Dauphin et al., 2017)](examples/language_model/conv_lm/README.md)
152
+
153
+ # Join the fairseq community
154
+
155
+ * Facebook page: https://www.facebook.com/groups/fairseq.users
156
+ * Google group: https://groups.google.com/forum/#!forum/fairseq-users
157
+
158
+ # License
159
+ fairseq(-py) is MIT-licensed.
160
+ The license applies to the pre-trained models as well.
161
+
162
+ # Citation
163
+
164
+ Please cite as:
165
+
166
+ ```bibtex
167
+ @inproceedings{ott2019fairseq,
168
+ title = {fairseq: A Fast, Extensible Toolkit for Sequence Modeling},
169
+ author = {Myle Ott and Sergey Edunov and Alexei Baevski and Angela Fan and Sam Gross and Nathan Ng and David Grangier and Michael Auli},
170
+ booktitle = {Proceedings of NAACL-HLT 2019: Demonstrations},
171
+ year = {2019},
172
+ }
173
+ ```
wmt14_en2de_cased_bin.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d87efa981eddd1fbc5fc255e5d86740f64fcb5972f001b1ea04eb2a4c0bfc018
3
+ size 707756912