|
## Overview |
|
Original dataset is available on the HuggingFace Hub [here](https://huggingface.co./datasets/scitail). |
|
|
|
|
|
## Dataset curation |
|
This is the same as the `snli_format` split of the SciTail dataset available on the HuggingFace Hub (i.e., same data, same splits, etc). |
|
The only differences are the following: |
|
|
|
- selecting only the columns `["sentence1", "sentence2", "gold_label", "label"]` |
|
- renaming columns with the following mapping `{"sentence1": "premise", "sentence2": "hypothesis"}` |
|
- creating a new column "label" from "gold_label" with the following mapping `{"entailment": "entailment", "neutral": "not_entailment"}` |
|
- encoding labels with the following mapping `{"not_entailment": 0, "entailment": 1}` |
|
|
|
Note that there are 10 overlapping instances (as found by merging on columns "label", "premise", and "hypothesis") between |
|
`train` and `test` splits. |
|
|
|
|
|
## Code to create the dataset |
|
```python |
|
from datasets import Features, Value, ClassLabel, Dataset, DatasetDict, load_dataset |
|
|
|
# load datasets from the Hub |
|
dd = load_dataset("scitail", "snli_format") |
|
|
|
ds = {} |
|
for name, df_ in dd.items(): |
|
df = df_.to_pandas() |
|
|
|
# select important columns |
|
df = df[["sentence1", "sentence2", "gold_label"]] |
|
|
|
# rename columns |
|
df = df.rename(columns={"sentence1": "premise", "sentence2": "hypothesis"}) |
|
|
|
# encode labels |
|
df["label"] = df["gold_label"].map({"entailment": "entailment", "neutral": "not_entailment"}) |
|
df["label"] = df["label"].map({"not_entailment": 0, "entailment": 1}) |
|
|
|
# cast to dataset |
|
features = Features({ |
|
"premise": Value(dtype="string", id=None), |
|
"hypothesis": Value(dtype="string", id=None), |
|
"label": ClassLabel(num_classes=2, names=["not_entailment", "entailment"]), |
|
}) |
|
ds[name] = Dataset.from_pandas(df, features=features) |
|
|
|
dataset = DatasetDict(ds) |
|
dataset.push_to_hub("scitail", token="<token>") |
|
|
|
# check overlap between splits |
|
from itertools import combinations |
|
for i, j in combinations(dataset.keys(), 2): |
|
print( |
|
f"{i} - {j}: ", |
|
pd.merge( |
|
dataset[i].to_pandas(), |
|
dataset[j].to_pandas(), |
|
on=["label", "premise", "hypothesis"], |
|
how="inner", |
|
).shape[0], |
|
) |
|
#> train - test: 10 |
|
#> train - validation: 0 |
|
#> test - validation: 0 |
|
``` |