text
stringlengths
107
2.17M
From mathcomp Require Import ssreflect ssrbool ssrfun. From LemmaOverloading Require Import heaps rels stmod stsep stlog. Set Implicit Arguments. Unset Strict Implicit. Unset Printing Implicit Defensive. Structure tagged_heap := Tag {untag :> heap}. Definition right_tag := Tag. Definition left_tag := right_tag. Canonical Structure found_tag i := left_tag i. Definition update_axiom k r (h : tagged_heap) := untag h = k :+ r. Structure update (k r : heap) := Update {heap_of :> tagged_heap; _ : update_axiom k r heap_of}. Lemma updateE r k (f : update k r) : untag f = k :+ r. Proof. (* Goal: @eq heap (untag (@heap_of k r f)) (union2 k r) *) by case: f=>[[j]] /=; rewrite /update_axiom /= => ->. Qed. Lemma found_pf k : update_axiom k empty (found_tag k). Proof. (* Goal: update_axiom k empty (found_tag k) *) by rewrite /update_axiom unh0. Qed. Canonical Structure found_struct k := Update (found_pf k). Lemma left_pf h r (f : forall k, update k r) k : update_axiom k (r :+ h) (left_tag (f k :+ h)). Proof. (* Goal: update_axiom k (union2 r h) (left_tag (union2 (untag (@heap_of k r (f k))) h)) *) by rewrite updateE /update_axiom /= unA. Qed. Canonical Structure left_struct h r (f : forall k, update k r) k := Update (left_pf h f k). Lemma right_pf h r (f : forall k, update k r) k : update_axiom k (h :+ r) (right_tag (h :+ f k)). Proof. (* Goal: update_axiom k (union2 h r) (right_tag (union2 h (untag (@heap_of k r (f k))))) *) by rewrite updateE /update_axiom /= unCA. Qed. Canonical Structure right_struct h r (f : forall k, update k r) k := Update (right_pf h f k). Notation cont A := (ans A -> heap -> Prop). Section EvalDoR. Variables (A B : Type). Lemma val_doR (s : spec A) i j (f : forall k, update k j) (r : cont A) : s.1 i -> Lemma try_doR (s : spec A) s1 s2 i j (f : forall k, update k j) (r : cont B) : s.1 i -> Lemma bnd_doR (s : spec A) s2 i j (f : forall k, update k j) (r : cont B) : s.1 i -> End EvalDoR. Definition val_retR := val_ret. Definition try_retR := try_ret. Definition bnd_retR := bnd_ret. Section EvalReadR. Variables (A B : Type). Lemma val_readR v x i (f : update (x :-> v) i) (r : cont A) : (def f -> r (Val v) f) -> verify (read_s A x) f r. Proof. (* Goal: forall _ : forall _ : is_true (def (untag (@heap_of (@pts A x v) i f))), r (@Val A v) (untag (@heap_of (@pts A x v) i f)), @verify' A (@fr A (read_s A x)) (untag (@heap_of (@pts A x v) i f)) r *) by rewrite updateE; apply: val_read. Qed. Lemma try_readR s1 s2 v x i (f : update (x :-> v) i) (r : cont B) : verify (s1 v) f r -> verify (try_s (read_s A x) s1 s2) f r. Proof. (* Goal: forall _ : @verify' B (@fr B (s1 v)) (untag (@heap_of (@pts A x v) i f)) r, @verify' B (@fr B (@try_s A B (read_s A x) s1 s2)) (untag (@heap_of (@pts A x v) i f)) r *) by rewrite updateE; apply: try_read. Qed. Lemma bnd_readR s v x i (f : update (x :-> v) i) (r : cont B) : verify (s v) f r -> verify (bind_s (read_s A x) s) f r. Proof. (* Goal: forall _ : @verify' B (@fr B (s v)) (untag (@heap_of (@pts A x v) i f)) r, @verify' B (@fr B (@bind_s A B (read_s A x) s)) (untag (@heap_of (@pts A x v) i f)) r *) by rewrite updateE; apply: bnd_read. Qed. End EvalReadR. Section EvalWriteR. Variables (A B C : Type). Lemma val_writeR (v : A) (w : B) x i (f : forall k, update k i) (r : cont unit) : (def (f (x :-> v)) -> r (Val tt) (f (x :-> v))) -> verify (write_s x v) (f (x :-> w)) r. Proof. (* Goal: forall _ : forall _ : is_true (def (untag (@heap_of (@pts A x v) i (f (@pts A x v))))), r (@Val unit tt) (untag (@heap_of (@pts A x v) i (f (@pts A x v)))), @verify' unit (@fr unit (@write_s A x v)) (untag (@heap_of (@pts B x w) i (f (@pts B x w)))) r *) by rewrite !updateE; apply: val_write. Qed. Lemma try_writeR s1 s2 (v : A) (w : C) x i (f : forall k, update k i) (r : cont B) : verify (s1 tt) (f (x :-> v)) r -> verify (try_s (write_s x v) s1 s2) (f (x :-> w)) r. Proof. (* Goal: forall _ : @verify' B (@fr B (s1 tt)) (untag (@heap_of (@pts A x v) i (f (@pts A x v)))) r, @verify' B (@fr B (@try_s unit B (@write_s A x v) s1 s2)) (untag (@heap_of (@pts C x w) i (f (@pts C x w)))) r *) rewrite !updateE; apply: try_write. Qed. Lemma bnd_writeR s (v : A) (w : C) x i (f : forall k, update k i) (r : cont B) : verify (s tt) (f (x :-> v)) r -> verify (bind_s (write_s x v) s) (f (x :-> w)) r. Proof. (* Goal: forall _ : @verify' B (@fr B (s tt)) (untag (@heap_of (@pts A x v) i (f (@pts A x v)))) r, @verify' B (@fr B (@bind_s unit B (@write_s A x v) s)) (untag (@heap_of (@pts C x w) i (f (@pts C x w)))) r *) by rewrite !updateE; apply: bnd_write. Qed. End EvalWriteR. Definition val_allocR := val_alloc. Definition try_allocR := try_alloc. Definition bnd_allocR := bnd_alloc. Definition val_allocbR := val_allocb. Definition try_allocbR := try_allocb. Definition bnd_allocbR := bnd_allocb. Section EvalDeallocR. Variables (A B : Type). Lemma val_deallocR (v : A) x i (f : forall k, update k i) (r : cont unit) : (def (f empty) -> r (Val tt) (f empty)) -> verify (dealloc_s x) (f (x :-> v)) r. Proof. (* Goal: forall _ : forall _ : is_true (def (untag (@heap_of empty i (f empty)))), r (@Val unit tt) (untag (@heap_of empty i (f empty))), @verify' unit (@fr unit (dealloc_s x)) (untag (@heap_of (@pts A x v) i (f (@pts A x v)))) r *) by rewrite !updateE un0h; apply: val_dealloc. Qed. Lemma try_deallocR s1 s2 (v : B) x i (f : forall k, update k i) (r : cont A) : verify (s1 tt) (f empty) r -> verify (try_s (dealloc_s x) s1 s2) (f (x :-> v)) r. Proof. (* Goal: forall _ : @verify' A (@fr A (s1 tt)) (untag (@heap_of empty i (f empty))) r, @verify' A (@fr A (@try_s unit A (dealloc_s x) s1 s2)) (untag (@heap_of (@pts B x v) i (f (@pts B x v)))) r *) by rewrite !updateE un0h; apply: try_dealloc. Qed. Lemma bnd_deallocR s (v : B) x i (f : forall k, update k i) (r : cont A) : verify (s tt) (f empty) r -> verify (bind_s (dealloc_s x) s) (f (x :-> v)) r. Proof. (* Goal: forall _ : @verify' A (@fr A (s tt)) (untag (@heap_of empty i (f empty))) r, @verify' A (@fr A (@bind_s unit A (dealloc_s x) s)) (untag (@heap_of (@pts B x v) i (f (@pts B x v)))) r *) by rewrite !updateE un0h; apply: bnd_dealloc. Qed. End EvalDeallocR. Definition val_throwR := val_throw. Definition try_throwR := try_throw. Definition bnd_throwR := bnd_throw. Section EvalGhostR. Variables (A B C : Type) (t : C) (p : C -> Pred heap) (q : C -> post A). Variables (s1 : A -> spec B) (s2 : exn -> spec B) (i j : heap). Variables (f : forall k, update k j) (P : Pred heap). Lemma val_ghR (r : cont A) : let: s := (fun i => exists x, i \In p x, fun y i m => forall x, i \In p x -> q x y i m) in (forall x m, q t (Val x) i m -> def (f m) -> r (Val x) (f m)) -> (forall e m, q t (Exn e) i m -> def (f m) -> r (Exn e) (f m)) -> i \In p t -> verify s (f i) r. Lemma val_gh1R (r : cont A) : let: Q := fun y i m => forall x, i \In p x -> q x y i m in (i \In p t -> P i) -> (forall x m, q t (Val x) i m -> def (f m) -> r (Val x) (f m)) -> (forall e m, q t (Exn e) i m -> def (f m) -> r (Exn e) (f m)) -> i \In p t -> verify (P, Q) (f i) r. Lemma try_ghR (r : cont B) : let: s := (fun i => exists x, i \In p x, fun y i m => forall x, i \In p x -> q x y i m) in (forall x m, q t (Val x) i m -> verify (s1 x) (f m) r) -> (forall e m, q t (Exn e) i m -> verify (s2 e) (f m) r) -> i \In p t -> verify (try_s s s1 s2) (f i) r. Lemma try_gh1R (r : cont B) : let: Q := fun y i m => forall x, i \In p x -> q x y i m in (i \In p t -> P i) -> (forall x m, q t (Val x) i m -> verify (s1 x) (f m) r) -> (forall e m, q t (Exn e) i m -> verify (s2 e) (f m) r) -> i \In p t -> verify (try_s (P, Q) s1 s2) (f i) r. Lemma bnd_ghR (r : cont B) : let: s := (fun i => exists x, i \In p x, fun y i m => forall x, i \In p x -> q x y i m) in (forall x m, q t (Val x) i m -> verify (s1 x) (f m) r) -> (forall e m, q t (Exn e) i m -> def (f m) -> r (Exn e) (f m)) -> i \In p t -> verify (bind_s s s1) (f i) r. Lemma bnd_gh1R (r : cont B) : let: Q := fun y i m => forall x, i \In p x -> q x y i m in (i \In p t -> P i) -> (forall x m, q t (Val x) i m -> verify (s1 x) (f m) r) -> (forall e m, q t (Exn e) i m -> def (f m) -> r (Exn e) (f m)) -> i \In p t -> verify (bind_s (P, Q) s1) (f i) r. End EvalGhostR. Structure val_form A i r (p : Prop):= ValForm {val_pivot :> spec A; _ : p -> verify val_pivot i r}. Structure bnd_form A B i (s : A -> spec B) r (p : Prop) := BndForm {bnd_pivot :> spec A; _ : p -> verify (bind_s bnd_pivot s) i r}. Structure try_form A B i (s1 : A -> spec B) (s2 : exn -> spec B) r (p : Prop) := TryForm {try_pivot :> spec A; _ : p -> verify (try_s try_pivot s1 s2) i r}. Definition hstep A i (r : cont A) p (e : val_form i r p) : p -> verify e i r := let: ValForm _ pf := e in pf. Definition hstep_bnd A B i (s : A -> spec B) r p (e : bnd_form i s r p) : p -> verify (bind_s e s) i r := let: BndForm _ pf := e in pf. Canonical Structure bnd_case_form A B i (s : A -> spec B) r p (e : bnd_form i s r p) := ValForm (hstep_bnd e). Lemma try_case_pf A B i (s1 : A -> spec B) (s2 : exn -> spec B) r p (e : try_form i s1 s2 r p) : p -> verify (try_s e s1 s2) i r. Proof. (* Goal: forall _ : p, @verify' B (@fr B (@try_s A B (@try_pivot A B i s1 s2 r p e) s1 s2)) i r *) by case:e=>[?]; apply. Qed. Canonical Structure val_ret_form A v i r := ValForm (@val_retR A v i r). Canonical Structure bnd_ret_form A B s v i r := BndForm (@bnd_retR A B s v i r). Canonical Structure try_ret_form A B s1 s2 v i r := TryForm (@try_retR A B s1 s2 v i r). Canonical Structure val_read_form A v x r j f := ValForm (@val_readR A v x j f r). Canonical Structure bnd_read_form A B s v x r j f := BndForm (@bnd_readR A B s v x j f r). Canonical Structure try_read_form A B s1 s2 v x r j f := TryForm (@try_readR A B s1 s2 v x j f r). Canonical Structure val_write_form A B v w x r j f := ValForm (@val_writeR A B v w x j f r). Canonical Structure bnd_write_form A B C s v w x r j f := BndForm (@bnd_writeR A B C s v w x j f r). Canonical Structure try_write_form A B C s1 s2 v w x r j f := TryForm (@try_writeR A B C s1 s2 v w x j f r). Canonical Structure val_alloc_form A v i r := ValForm (@val_allocR A v i r). Canonical Structure bnd_alloc_form A B s v i r := BndForm (@bnd_allocR A B s v i r). Canonical Structure try_alloc_form A B s1 s2 v i r := TryForm (@try_allocR A B s1 s2 v i r). Canonical Structure val_allocb_form A v n i r := ValForm (@val_allocbR A v n i r). Canonical Structure bnd_allocb_form A B s v n i r := BndForm (@bnd_allocbR A B s v n i r). Canonical Structure try_allocb_form A B s1 s2 v n i r := TryForm (@try_allocbR A B s1 s2 v n i r). Canonical Structure val_dealloc_form A v x r j f := ValForm (@val_deallocR A v x j f r). Canonical Structure bnd_dealloc_form A B s v x r j f := BndForm (@bnd_deallocR A B s v x j f r). Canonical Structure try_dealloc_form A B s1 s2 v x r j f := TryForm (@try_deallocR A B s1 s2 v x j f r). Ltac vauto := (do ?econstructor=>//). Example ex_read x : verify (bind_s (write_s x 4) (fun _=> read_s _ x)) (x :-> 0) (fun r _ => r = Val 4). by do 2! [apply: hstep]. Abort. Example ex_val_do (s : spec nat) (r : cont nat) (x y : ptr) : s.1 (y:->2) -> (forall x' m, s.2 (Val x') (y:->2) m -> def (x:->1:+m) -> r (Val x') (x:->1:+m)) -> (forall e m, s.2 (Exn e) (y:->2) m -> def (x:->1:+m) -> r (Exn e) (x:->1:+m)) -> verify s (x:->1 :+ y:->2) r. move=>H1 H2 H3. apply: (val_doR _ (i:=y:->2))=>//=. Abort. Example ex_bwd i x1 x2 (e : unit -> spec nat) q: verify (e tt) (i :+ (x1 :-> 1 :+ x2 :-> 4)) q -> verify (bind_s (write_s x2 4) e) (i :+ (x1 :-> 1 :+ x2 :-> 2)) q. by move=>H; apply: bnd_writeR. Abort. Example ex_fwd i x1 x2 (e : unit -> spec nat) q: verify (e tt) (i :+ (x1 :-> 1 :+ x2 :-> 4)) q -> verify (bind_s (write_s x2 4) e) (i :+ (x1 :-> 1 :+ x2 :-> 2)) q. move=>H. apply: (bnd_writeR (x:=x2) H). Abort.
Require Import syntax. Require Import utils. Inductive FV (z : vari) : tm -> Prop := | FV_abs : forall e : tm, FV z e -> forall v : vari, z <> v -> forall t : ty, FV z (abs v t e) | FV_fix : forall e : tm, FV z e -> forall v : vari, z <> v -> forall t : ty, FV z (Fix v t e) | FV_appl1 : forall e_1 e_2 : tm, FV z e_1 -> FV z (appl e_1 e_2) | FV_appl2 : forall e_1 e_2 : tm, FV z e_2 -> FV z (appl e_1 e_2) | FV_cond1 : forall e_1 e_2 e_3 : tm, FV z e_1 -> FV z (cond e_1 e_2 e_3) | FV_cond2 : forall e_1 e_2 e_3 : tm, FV z e_2 -> FV z (cond e_1 e_2 e_3) | FV_cond3 : forall e_1 e_2 e_3 : tm, FV z e_3 -> FV z (cond e_1 e_2 e_3) | FV_var : forall v : vari, z = v -> FV z (var v) | FV_succ : forall e : tm, FV z e -> FV z (succ e) | FV_prd : forall e : tm, FV z e -> FV z (prd e) | FV_is_o : forall e : tm, FV z e -> FV z (is_o e) | FV_closa : forall (v : vari) (t : ty) (e e_1 : tm), FV z e_1 -> FV z (clos e v t e_1) | FV_closb : forall (v : vari) (t : ty) (e e_1 : tm), FV z e -> z <> v -> FV z (clos e v t e_1). Goal forall (x v : vari) (t : ty) (e : tm), ~ FV x (abs v t e) -> x = v \/ ~ FV x e. intros. specialize (Xmidvar x v); simple induction 1; intro A. left; assumption. right; red in |- *; intro; apply H; apply FV_abs; assumption. Save notFV_abs. Goal forall (v : vari) (e1 e2 : tm), ~ FV v (appl e1 e2) -> ~ FV v e1 /\ ~ FV v e2. intros v e1 e2 N. split. red in |- *; intro; apply N; apply FV_appl1; assumption. red in |- *; intro; apply N; apply FV_appl2; assumption. Save notFV_appl. Goal forall (v : vari) (e1 e2 e3 : tm), ~ FV v (cond e1 e2 e3) -> ~ FV v e1 /\ ~ FV v e2 /\ ~ FV v e3. intros v e1 e2 e3 N. split. red in |- *; intro; apply N; apply FV_cond1; assumption. split. red in |- *; intro; apply N; apply FV_cond2; assumption. red in |- *; intro; apply N; apply FV_cond3; assumption. Save notFV_cond. Goal forall v x : vari, ~ FV v (var x) -> v <> x. intros v x N. red in |- *; intro; apply N; apply FV_var; assumption. Save notFV_var. Goal forall (v : vari) (e : tm), ~ FV v (succ e) -> ~ FV v e. intros v e N. red in |- *; intro; apply N; apply FV_succ; assumption. Save notFV_succ. Goal forall (v : vari) (e : tm), ~ FV v (prd e) -> ~ FV v e. intros v e N. red in |- *; intro; apply N; apply FV_prd; assumption. Save notFV_prd. Goal forall (v : vari) (e : tm), ~ FV v (is_o e) -> ~ FV v e. intros v e N. red in |- *; intro; apply N; apply FV_is_o; assumption. Save notFV_is_o. Goal forall (x v : vari) (t : ty) (e : tm), ~ FV x (Fix v t e) -> x = v \/ ~ FV x e. intros. specialize (Xmidvar x v); simple induction 1; intro A. left; assumption. right; red in |- *; intro; apply H; apply FV_fix; assumption. Save notFV_fix. Goal forall (x v : vari) (t : ty) (e a : tm), ~ FV x (clos e v t a) -> ~ FV x a /\ (x = v \/ ~ FV x e). intros. split. red in |- *; intro; apply H; apply FV_closa; assumption. specialize (Xmidvar x v); simple induction 1; intro A. left; assumption. right; red in |- *; intro; apply H; apply FV_closb; assumption. Save notFV_clos. Definition fv (v : vari) (e : tm) := match e return Prop with | o => False | ttt => False | fff => False | abs y s e => FV v e /\ v <> y | appl e1 e2 => FV v e1 \/ FV v e2 | cond e1 e2 e3 => FV v e1 \/ FV v e2 \/ FV v e3 | var y => v = y | succ n => FV v n | prd n => FV v n | is_o n => FV v n | Fix y s e => FV v e /\ v <> y | clos e y s e1 => FV v e1 \/ FV v e /\ v <> y end. Goal forall (v : vari) (e : tm), FV v e -> fv v e. simple induction 1; simpl in |- *; intros. split; assumption. split; assumption. left; assumption. right; assumption. left; assumption. right; left; assumption. right; right; assumption. assumption. assumption. assumption. assumption. left; assumption. right; split; assumption. Save FV_fv. Goal forall v : vari, ~ FV v o. intro v; red in |- *; intro F. change (fv v o) in |- *. apply FV_fv; assumption. Save inv_FV_o. Goal forall v : vari, ~ FV v ttt. intro v; red in |- *; intro F. change (fv v ttt) in |- *. apply FV_fv; assumption. Save inv_FV_ttt. Goal forall v : vari, ~ FV v fff. intro v; red in |- *; intro F. change (fv v fff) in |- *. apply FV_fv; assumption. Save inv_FV_fff. Goal forall (v x : vari) (t : ty) (e : tm), FV v (abs x t e) -> FV v e /\ v <> x. intros v x t e F. change (fv v (abs x t e)) in |- *. apply FV_fv; assumption. Save inv_FV_abs. Goal forall (v x : vari) (t : ty) (e : tm), FV v (Fix x t e) -> FV v e /\ v <> x. intros v x t e F. change (fv v (Fix x t e)) in |- *. apply FV_fv; assumption. Save inv_FV_fix. Goal forall (v : vari) (e1 e2 : tm), FV v (appl e1 e2) -> FV v e1 \/ FV v e2. intros v e1 e2 F. change (fv v (appl e1 e2)) in |- *. apply FV_fv; assumption. Save inv_FV_appl. Goal forall (v : vari) (e1 e2 e3 : tm), FV v (cond e1 e2 e3) -> FV v e1 \/ FV v e2 \/ FV v e3. intros v e1 e2 e3 F. change (fv v (cond e1 e2 e3)) in |- *. apply FV_fv; assumption. Save inv_FV_cond. Goal forall v x : vari, FV v (var x) -> v = x. intros v x F. change (fv v (var x)) in |- *. apply FV_fv; assumption. Save inv_FV_var. Goal forall (v : vari) (e : tm), FV v (succ e) -> FV v e. intros v e F. change (fv v (succ e)) in |- *. apply FV_fv; assumption. Save inv_FV_succ. Goal forall (v : vari) (e : tm), FV v (prd e) -> FV v e. intros v e F. change (fv v (prd e)) in |- *. apply FV_fv; assumption. Save inv_FV_prd. Goal forall (v : vari) (e : tm), FV v (is_o e) -> FV v e. intros v e F. change (fv v (is_o e)) in |- *. apply FV_fv; assumption. Save inv_FV_is_o. Goal forall (v x : vari) (t : ty) (e a : tm), FV v (clos e x t a) -> FV v a \/ FV v e /\ v <> x. intros v x t e a F. change (fv v (clos e x t a)) in |- *. apply FV_fv; assumption. Save inv_FV_clos.
Require Export GeoCoq.Elements.OriginalProofs.lemma_sameside2. Require Export GeoCoq.Elements.OriginalProofs.lemma_10_12. Require Export GeoCoq.Elements.OriginalProofs.proposition_07. Section Euclid. Context `{Ax:euclidean_neutral_ruler_compass}. Lemma lemma_erectedperpendicularunique : forall A B C E, Per A B C -> Per A B E -> OS C E A B -> Out B C E. Proof. (* Goal: forall (A B C E : @Point Ax0) (_ : @Per Ax0 A B C) (_ : @Per Ax0 A B E) (_ : @OS Ax0 C E A B), @Out Ax0 B C E *) intros. (* Goal: @Out Ax0 B C E *) let Tf:=fresh in assert (Tf:exists D, (BetS A B D /\ Cong A B D B /\ Cong A C D C /\ neq B C)) by (conclude_def Per );destruct Tf as [D];spliter. (* Goal: @Out Ax0 B C E *) assert (neq B E) by (conclude_def Per ). (* Goal: @Out Ax0 B C E *) rename_H H;let Tf:=fresh in assert (Tf:exists H, (Out B E H /\ Cong B H B C)) by (conclude lemma_layoff);destruct Tf as [H];spliter. (* Goal: @Out Ax0 B C E *) assert (eq B B) by (conclude cn_equalityreflexive). (* Goal: @Out Ax0 B C E *) assert (Col A B B) by (conclude_def Col ). (* Goal: @Out Ax0 B C E *) assert (OS C H A B) by (conclude lemma_sameside2). (* Goal: @Out Ax0 B C E *) assert (Per A B H) by (conclude lemma_8_3). (* Goal: @Out Ax0 B C E *) assert (Cong B C B H) by (conclude lemma_congruencesymmetric). (* Goal: @Out Ax0 B C E *) assert (Cong A C A H) by (conclude lemma_10_12). (* Goal: @Out Ax0 B C E *) assert (Cong C A H A) by (forward_using lemma_congruenceflip). (* Goal: @Out Ax0 B C E *) assert (Cong C B H B) by (forward_using lemma_congruenceflip). (* Goal: @Out Ax0 B C E *) assert (~ eq A B). (* Goal: @Out Ax0 B C E *) (* Goal: not (@eq Ax0 A B) *) { (* Goal: not (@eq Ax0 A B) *) intro. (* Goal: False *) assert (Col A B C) by (conclude_def Col ). (* Goal: False *) assert (nCol A B C) by (conclude lemma_rightangleNC). (* Goal: False *) contradict. (* BG Goal: @Out Ax0 B C E *) } (* Goal: @Out Ax0 B C E *) assert (eq C H) by (conclude proposition_07). (* Goal: @Out Ax0 B C E *) assert (Out B E C) by (conclude cn_equalitysub). (* Goal: @Out Ax0 B C E *) assert (Out B C E) by (conclude lemma_ray5). (* Goal: @Out Ax0 B C E *) close. Qed. End Euclid.
Require Export GeoCoq.Elements.OriginalProofs.lemma_extension. Require Export GeoCoq.Elements.OriginalProofs.lemma_lessthancongruence2. Section Euclid. Context `{Ax:euclidean_neutral_ruler_compass}. Lemma lemma_TTflip2 : forall A B C D E F G H, TT A B C D E F G H -> TT A B C D H G F E. Proof. (* Goal: forall (A B C D E F G H : @Point Ax0) (_ : @TT Ax0 A B C D E F G H), @TT Ax0 A B C D H G F E *) intros. (* Goal: @TT Ax0 A B C D H G F E *) let Tf:=fresh in assert (Tf:exists J, (BetS E F J /\ Cong F J G H /\ TG A B C D E J)) by (conclude_def TT );destruct Tf as [J];spliter. (* Goal: @TT Ax0 A B C D H G F E *) let Tf:=fresh in assert (Tf:exists K, (BetS A B K /\ Cong B K C D /\ Lt E J A K)) by (conclude_def TG );destruct Tf as [K];spliter. (* Goal: @TT Ax0 A B C D H G F E *) assert (neq F J) by (forward_using lemma_betweennotequal). (* Goal: @TT Ax0 A B C D H G F E *) assert (neq G H) by (conclude axiom_nocollapse). (* Goal: @TT Ax0 A B C D H G F E *) assert (neq H G) by (conclude lemma_inequalitysymmetric). (* Goal: @TT Ax0 A B C D H G F E *) assert (neq E F) by (forward_using lemma_betweennotequal). (* Goal: @TT Ax0 A B C D H G F E *) assert (neq F E) by (conclude lemma_inequalitysymmetric). (* Goal: @TT Ax0 A B C D H G F E *) let Tf:=fresh in assert (Tf:exists L, (BetS H G L /\ Cong G L F E)) by (conclude lemma_extension);destruct Tf as [L];spliter. (* Goal: @TT Ax0 A B C D H G F E *) assert (Cong L G E F) by (forward_using lemma_congruenceflip). (* Goal: @TT Ax0 A B C D H G F E *) assert (Cong G H F J) by (conclude lemma_congruencesymmetric). (* Goal: @TT Ax0 A B C D H G F E *) assert (BetS L G H) by (conclude axiom_betweennesssymmetry). (* Goal: @TT Ax0 A B C D H G F E *) assert (Cong L H E J) by (conclude cn_sumofparts). (* Goal: @TT Ax0 A B C D H G F E *) assert (Cong H L L H) by (conclude cn_equalityreverse). (* Goal: @TT Ax0 A B C D H G F E *) assert (Cong H L E J) by (conclude lemma_congruencetransitive). (* Goal: @TT Ax0 A B C D H G F E *) assert (Cong E J H L) by (conclude lemma_congruencesymmetric). (* Goal: @TT Ax0 A B C D H G F E *) assert (Lt H L A K) by (conclude lemma_lessthancongruence2). (* Goal: @TT Ax0 A B C D H G F E *) assert (TG A B C D H L) by (conclude_def TG ). (* Goal: @TT Ax0 A B C D H G F E *) assert (TT A B C D H G F E) by (conclude_def TT ). (* Goal: @TT Ax0 A B C D H G F E *) close. Qed. End Euclid.
Require Export GeoCoq.Elements.OriginalProofs.proposition_31. Require Export GeoCoq.Elements.OriginalProofs.lemma_crossbar2. Require Export GeoCoq.Elements.OriginalProofs.lemma_supplementinequality. Require Export GeoCoq.Elements.OriginalProofs.lemma_angletrichotomy2. Require Export GeoCoq.Elements.OriginalProofs.lemma_supplementsymmetric. Section Euclid. Context `{Ax:euclidean_euclidean}. Lemma proposition_29 : forall A B C D E G H, Par A B C D -> BetS A G B -> BetS C H D -> BetS E G H -> TS A G H D -> CongA A G H G H D /\ CongA E G B G H D /\ RT B G H G H D. Proof. (* Goal: forall (A B C D E G H : @Point Ax0) (_ : @Par Ax0 A B C D) (_ : @BetS Ax0 A G B) (_ : @BetS Ax0 C H D) (_ : @BetS Ax0 E G H) (_ : @TS Ax0 A G H D), and (@CongA Ax0 A G H G H D) (and (@CongA Ax0 E G B G H D) (@RT Ax0 B G H G H D)) *) intros. (* Goal: and (@CongA Ax0 A G H G H D) (and (@CongA Ax0 E G B G H D) (@RT Ax0 B G H G H D)) *) assert (Col C H D) by (conclude_def Col ). (* Goal: and (@CongA Ax0 A G H G H D) (and (@CongA Ax0 E G B G H D) (@RT Ax0 B G H G H D)) *) assert (neq G H) by (forward_using lemma_betweennotequal). (* Goal: and (@CongA Ax0 A G H G H D) (and (@CongA Ax0 E G B G H D) (@RT Ax0 B G H G H D)) *) assert (neq A B) by (forward_using lemma_betweennotequal). (* Goal: and (@CongA Ax0 A G H G H D) (and (@CongA Ax0 E G B G H D) (@RT Ax0 B G H G H D)) *) assert (neq C D) by (forward_using lemma_betweennotequal). (* Goal: and (@CongA Ax0 A G H G H D) (and (@CongA Ax0 E G B G H D) (@RT Ax0 B G H G H D)) *) let Tf:=fresh in assert (Tf:exists R, (BetS A R D /\ Col G H R /\ nCol G H A)) by (conclude_def TS );destruct Tf as [R];spliter. (* Goal: and (@CongA Ax0 A G H G H D) (and (@CongA Ax0 E G B G H D) (@RT Ax0 B G H G H D)) *) assert (TS D G H A) by (conclude lemma_oppositesidesymmetric). (* Goal: and (@CongA Ax0 A G H G H D) (and (@CongA Ax0 E G B G H D) (@RT Ax0 B G H G H D)) *) assert (nCol G H D) by (conclude_def TS ). (* Goal: and (@CongA Ax0 A G H G H D) (and (@CongA Ax0 E G B G H D) (@RT Ax0 B G H G H D)) *) assert (nCol D H G) by (forward_using lemma_NCorder). (* Goal: and (@CongA Ax0 A G H G H D) (and (@CongA Ax0 E G B G H D) (@RT Ax0 B G H G H D)) *) assert (Col D H C) by (forward_using lemma_collinearorder). (* Goal: and (@CongA Ax0 A G H G H D) (and (@CongA Ax0 E G B G H D) (@RT Ax0 B G H G H D)) *) assert (eq H H) by (conclude cn_equalityreflexive). (* Goal: and (@CongA Ax0 A G H G H D) (and (@CongA Ax0 E G B G H D) (@RT Ax0 B G H G H D)) *) assert (Col D H H) by (conclude_def Col ). (* Goal: and (@CongA Ax0 A G H G H D) (and (@CongA Ax0 E G B G H D) (@RT Ax0 B G H G H D)) *) assert (neq C H) by (forward_using lemma_betweennotequal). (* Goal: and (@CongA Ax0 A G H G H D) (and (@CongA Ax0 E G B G H D) (@RT Ax0 B G H G H D)) *) assert (nCol C H G) by (conclude lemma_NChelper). (* Goal: and (@CongA Ax0 A G H G H D) (and (@CongA Ax0 E G B G H D) (@RT Ax0 B G H G H D)) *) assert (eq C C) by (conclude cn_equalityreflexive). (* Goal: and (@CongA Ax0 A G H G H D) (and (@CongA Ax0 E G B G H D) (@RT Ax0 B G H G H D)) *) assert (Col C H C) by (conclude_def Col ). (* Goal: and (@CongA Ax0 A G H G H D) (and (@CongA Ax0 E G B G H D) (@RT Ax0 B G H G H D)) *) assert (neq C D) by (forward_using lemma_betweennotequal). (* Goal: and (@CongA Ax0 A G H G H D) (and (@CongA Ax0 E G B G H D) (@RT Ax0 B G H G H D)) *) assert (nCol C D G) by (conclude lemma_NChelper). (* Goal: and (@CongA Ax0 A G H G H D) (and (@CongA Ax0 E G B G H D) (@RT Ax0 B G H G H D)) *) let Tf:=fresh in assert (Tf:exists P Q S, (BetS P G Q /\ CongA Q G H G H C /\ CongA Q G H C H G /\ CongA H G Q C H G /\ CongA P G H G H D /\ CongA P G H D H G /\ CongA H G P D H G /\ Par P Q C D /\ Cong P G H D /\ Cong G Q C H /\ Cong G S S H /\ Cong P S S D /\ Cong C S S Q /\ BetS P S D /\ BetS C S Q /\ BetS G S H)) by (conclude proposition_31);destruct Tf as [P[Q[S]]];spliter. (* Goal: and (@CongA Ax0 A G H G H D) (and (@CongA Ax0 E G B G H D) (@RT Ax0 B G H G H D)) *) assert (~ Meet A B C D) by (conclude_def Par ). (* Goal: and (@CongA Ax0 A G H G H D) (and (@CongA Ax0 E G B G H D) (@RT Ax0 B G H G H D)) *) assert (eq P P) by (conclude cn_equalityreflexive). (* Goal: and (@CongA Ax0 A G H G H D) (and (@CongA Ax0 E G B G H D) (@RT Ax0 B G H G H D)) *) assert (neq P G) by (forward_using lemma_betweennotequal). (* Goal: and (@CongA Ax0 A G H G H D) (and (@CongA Ax0 E G B G H D) (@RT Ax0 B G H G H D)) *) assert (neq G P) by (conclude lemma_inequalitysymmetric). (* Goal: and (@CongA Ax0 A G H G H D) (and (@CongA Ax0 E G B G H D) (@RT Ax0 B G H G H D)) *) assert (Out G P P) by (conclude lemma_ray4). (* Goal: and (@CongA Ax0 A G H G H D) (and (@CongA Ax0 E G B G H D) (@RT Ax0 B G H G H D)) *) assert (Col G S H) by (conclude_def Col ). (* Goal: and (@CongA Ax0 A G H G H D) (and (@CongA Ax0 E G B G H D) (@RT Ax0 B G H G H D)) *) assert (Col G H S) by (forward_using lemma_collinearorder). (* Goal: and (@CongA Ax0 A G H G H D) (and (@CongA Ax0 E G B G H D) (@RT Ax0 B G H G H D)) *) assert (CongA G H D P G H) by (conclude lemma_equalanglessymmetric). (* Goal: and (@CongA Ax0 A G H G H D) (and (@CongA Ax0 E G B G H D) (@RT Ax0 B G H G H D)) *) assert (nCol P G H) by (conclude lemma_equalanglesNC). (* Goal: and (@CongA Ax0 A G H G H D) (and (@CongA Ax0 E G B G H D) (@RT Ax0 B G H G H D)) *) assert (nCol G H P) by (forward_using lemma_NCorder). (* Goal: and (@CongA Ax0 A G H G H D) (and (@CongA Ax0 E G B G H D) (@RT Ax0 B G H G H D)) *) assert (OS A P G H) by (conclude_def OS ). (* Goal: and (@CongA Ax0 A G H G H D) (and (@CongA Ax0 E G B G H D) (@RT Ax0 B G H G H D)) *) assert (eq H H) by (conclude cn_equalityreflexive). (* Goal: and (@CongA Ax0 A G H G H D) (and (@CongA Ax0 E G B G H D) (@RT Ax0 B G H G H D)) *) assert (neq G H) by (forward_using lemma_betweennotequal). (* Goal: and (@CongA Ax0 A G H G H D) (and (@CongA Ax0 E G B G H D) (@RT Ax0 B G H G H D)) *) assert (Out G H H) by (conclude lemma_ray4). (* Goal: and (@CongA Ax0 A G H G H D) (and (@CongA Ax0 E G B G H D) (@RT Ax0 B G H G H D)) *) assert (~ LtA H G A H G P). (* Goal: and (@CongA Ax0 A G H G H D) (and (@CongA Ax0 E G B G H D) (@RT Ax0 B G H G H D)) *) (* Goal: not (@LtA Ax0 H G A H G P) *) { (* Goal: not (@LtA Ax0 H G A H G P) *) intro. (* Goal: False *) let Tf:=fresh in assert (Tf:exists M, (BetS P M H /\ Out G A M)) by (conclude lemma_crossbar2);destruct Tf as [M];spliter. (* Goal: False *) assert (Cong G S H S) by (forward_using lemma_congruenceflip). (* Goal: False *) assert (Cong S P S D) by (forward_using lemma_congruenceflip). (* Goal: False *) let Tf:=fresh in assert (Tf:exists K, (BetS G M K /\ BetS D H K)) by (conclude postulate_Euclid5);destruct Tf as [K];spliter. (* Goal: False *) assert (Col G A M) by (conclude lemma_rayimpliescollinear). (* Goal: False *) assert (Col G M K) by (conclude_def Col ). (* Goal: False *) assert (Col M G A) by (forward_using lemma_collinearorder). (* Goal: False *) assert (Col M G K) by (forward_using lemma_collinearorder). (* Goal: False *) assert (neq G M) by (conclude lemma_raystrict). (* Goal: False *) assert (neq M G) by (conclude lemma_inequalitysymmetric). (* Goal: False *) assert (Col G A K) by (conclude lemma_collinear4). (* Goal: False *) assert (Col A G B) by (conclude_def Col ). (* Goal: False *) assert (Col A G K) by (forward_using lemma_collinearorder). (* Goal: False *) assert (Col G A B) by (forward_using lemma_collinearorder). (* Goal: False *) assert (Col G A K) by (forward_using lemma_collinearorder). (* Goal: False *) assert (neq A G) by (forward_using lemma_betweennotequal). (* Goal: False *) assert (neq G A) by (conclude lemma_inequalitysymmetric). (* Goal: False *) assert (Col A B K) by (conclude lemma_collinear4). (* Goal: False *) assert (Col H D K) by (conclude_def Col ). (* Goal: False *) assert (Col H D C) by (forward_using lemma_collinearorder). (* Goal: False *) assert (neq H D) by (forward_using lemma_betweennotequal). (* Goal: False *) assert (Col D K C) by (conclude lemma_collinear4). (* Goal: False *) assert (Col C D K) by (forward_using lemma_collinearorder). (* Goal: False *) assert (Meet A B C D) by (conclude_def Meet ). (* Goal: False *) contradict. (* BG Goal: and (@CongA Ax0 A G H G H D) (and (@CongA Ax0 E G B G H D) (@RT Ax0 B G H G H D)) *) } (* Goal: and (@CongA Ax0 A G H G H D) (and (@CongA Ax0 E G B G H D) (@RT Ax0 B G H G H D)) *) assert (~ LtA H G P H G A). (* Goal: and (@CongA Ax0 A G H G H D) (and (@CongA Ax0 E G B G H D) (@RT Ax0 B G H G H D)) *) (* Goal: not (@LtA Ax0 H G P H G A) *) { (* Goal: not (@LtA Ax0 H G P H G A) *) intro. (* Goal: False *) assert (nCol P G H) by (forward_using lemma_NCorder). (* Goal: False *) assert (CongA P G H H G P) by (conclude lemma_ABCequalsCBA). (* Goal: False *) assert (LtA P G H H G A) by (conclude lemma_angleorderrespectscongruence2). (* Goal: False *) assert (~ Col H G A). (* Goal: False *) (* Goal: not (@Col Ax0 H G A) *) { (* Goal: not (@Col Ax0 H G A) *) intro. (* Goal: False *) assert (Col G H A) by (forward_using lemma_collinearorder). (* Goal: False *) contradict. (* BG Goal: and (@CongA Ax0 A G H G H D) (and (@CongA Ax0 E G B G H D) (@RT Ax0 B G H G H D)) *) (* BG Goal: False *) } (* Goal: False *) assert (CongA H G A A G H) by (conclude lemma_ABCequalsCBA). (* Goal: False *) assert (CongA A G H H G A) by (conclude lemma_equalanglessymmetric). (* Goal: False *) assert (LtA P G H A G H) by (conclude lemma_angleorderrespectscongruence). (* Goal: False *) assert (eq H H) by (conclude cn_equalityreflexive). (* Goal: False *) assert (Out G H H) by (conclude lemma_ray4). (* Goal: False *) assert (Supp P G H H Q) by (conclude_def Supp ). (* Goal: False *) assert (BetS D H C) by (conclude axiom_betweennesssymmetry). (* Goal: False *) assert (eq G G) by (conclude cn_equalityreflexive). (* Goal: False *) assert (neq H G) by (conclude lemma_inequalitysymmetric). (* Goal: False *) assert (Out H G G) by (conclude lemma_ray4). (* Goal: False *) assert (Supp D H G G C) by (conclude_def Supp ). (* Goal: False *) assert (CongA G H D D H G) by (conclude lemma_ABCequalsCBA). (* Goal: False *) assert (CongA P G H D H G) by (conclude lemma_equalanglestransitive). (* Goal: False *) assert (CongA H G Q G H C) by (conclude lemma_supplements). (* Goal: False *) assert (Supp A G H H B) by (conclude_def Supp ). (* Goal: False *) assert (LtA H G B H G Q) by (conclude lemma_supplementinequality). (* Goal: False *) assert (BetS B G A) by (conclude axiom_betweennesssymmetry). (* Goal: False *) assert (eq G G) by (conclude cn_equalityreflexive). (* Goal: False *) assert (Col G H G) by (conclude_def Col ). (* Goal: False *) assert (~ Col G H B). (* Goal: False *) (* Goal: not (@Col Ax0 G H B) *) { (* Goal: not (@Col Ax0 G H B) *) intro. (* Goal: False *) assert (Col A G B) by (conclude_def Col ). (* Goal: False *) assert (Col B G A) by (forward_using lemma_collinearorder). (* Goal: False *) assert (Col B G H) by (forward_using lemma_collinearorder). (* Goal: False *) assert (neq G B) by (forward_using lemma_betweennotequal). (* Goal: False *) assert (neq B G) by (conclude lemma_inequalitysymmetric). (* Goal: False *) assert (Col G A H) by (conclude lemma_collinear4). (* Goal: False *) assert (Col H G A) by (forward_using lemma_collinearorder). (* Goal: False *) contradict. (* BG Goal: and (@CongA Ax0 A G H G H D) (and (@CongA Ax0 E G B G H D) (@RT Ax0 B G H G H D)) *) (* BG Goal: False *) } (* Goal: False *) assert (TS B G H A) by (conclude_def TS ). (* Goal: False *) assert (TS A G H B) by (conclude lemma_oppositesidesymmetric). (* Goal: False *) assert (OS A P G H) by (conclude_def OS ). (* Goal: False *) assert (OS P A G H) by (forward_using lemma_samesidesymmetric). (* Goal: False *) assert (TS P G H B) by (conclude lemma_planeseparation). (* Goal: False *) let Tf:=fresh in assert (Tf:exists L, (BetS P L B /\ Col G H L /\ nCol G H P)) by (conclude_def TS );destruct Tf as [L];spliter. (* Goal: False *) assert (BetS B L P) by (conclude axiom_betweennesssymmetry). (* Goal: False *) assert (CongA G H C H G Q) by (conclude lemma_equalanglessymmetric). (* Goal: False *) assert (nCol H G Q) by (conclude lemma_equalanglesNC). (* Goal: False *) assert (~ Col G H Q). (* Goal: False *) (* Goal: not (@Col Ax0 G H Q) *) { (* Goal: not (@Col Ax0 G H Q) *) intro. (* Goal: False *) assert (Col H G Q) by (forward_using lemma_collinearorder). (* Goal: False *) contradict. (* BG Goal: and (@CongA Ax0 A G H G H D) (and (@CongA Ax0 E G B G H D) (@RT Ax0 B G H G H D)) *) (* BG Goal: False *) } (* Goal: False *) assert (BetS Q G P) by (conclude axiom_betweennesssymmetry). (* Goal: False *) assert (OS B Q G H) by (conclude_def OS ). (* Goal: False *) assert (eq Q Q) by (conclude cn_equalityreflexive). (* Goal: False *) assert (neq Q G) by (forward_using lemma_betweennotequal). (* Goal: False *) assert (neq G Q) by (conclude lemma_inequalitysymmetric). (* Goal: False *) assert (Out G Q Q) by (conclude lemma_ray4). (* Goal: False *) let Tf:=fresh in assert (Tf:exists M, (BetS Q M H /\ Out G B M)) by (conclude lemma_crossbar2);destruct Tf as [M];spliter. (* Goal: False *) assert (Cong G S H S) by (forward_using lemma_congruenceflip). (* Goal: False *) assert (BetS Q S C) by (conclude axiom_betweennesssymmetry). (* Goal: False *) assert (Cong S Q C S) by (conclude lemma_congruencesymmetric). (* Goal: False *) assert (Cong S Q S C) by (forward_using lemma_congruenceflip). (* Goal: False *) assert (nCol G H C) by (forward_using lemma_NCorder). (* Goal: False *) let Tf:=fresh in assert (Tf:exists K, (BetS G M K /\ BetS C H K)) by (conclude postulate_Euclid5);destruct Tf as [K];spliter. (* Goal: False *) assert (Col G B M) by (conclude lemma_rayimpliescollinear). (* Goal: False *) assert (Col G M K) by (conclude_def Col ). (* Goal: False *) assert (Col M G B) by (forward_using lemma_collinearorder). (* Goal: False *) assert (Col M G K) by (forward_using lemma_collinearorder). (* Goal: False *) assert (neq G M) by (conclude lemma_raystrict). (* Goal: False *) assert (neq M G) by (conclude lemma_inequalitysymmetric). (* Goal: False *) assert (Col G B K) by (conclude lemma_collinear4). (* Goal: False *) assert (Col B G A) by (conclude_def Col ). (* Goal: False *) assert (Col B G K) by (forward_using lemma_collinearorder). (* Goal: False *) assert (Col G B A) by (forward_using lemma_collinearorder). (* Goal: False *) assert (Col G B K) by (forward_using lemma_collinearorder). (* Goal: False *) assert (neq B G) by (forward_using lemma_betweennotequal). (* Goal: False *) assert (neq G B) by (conclude lemma_inequalitysymmetric). (* Goal: False *) assert (Col B A K) by (conclude lemma_collinear4). (* Goal: False *) assert (Col A B K) by (forward_using lemma_collinearorder). (* Goal: False *) assert (Col H C K) by (conclude_def Col ). (* Goal: False *) assert (Col H C D) by (forward_using lemma_collinearorder). (* Goal: False *) assert (neq H C) by (forward_using lemma_betweennotequal). (* Goal: False *) assert (Col C K D) by (conclude lemma_collinear4). (* Goal: False *) assert (Col C D K) by (forward_using lemma_collinearorder). (* Goal: False *) assert (Meet A B C D) by (conclude_def Meet ). (* Goal: False *) contradict. (* BG Goal: and (@CongA Ax0 A G H G H D) (and (@CongA Ax0 E G B G H D) (@RT Ax0 B G H G H D)) *) } (* Goal: and (@CongA Ax0 A G H G H D) (and (@CongA Ax0 E G B G H D) (@RT Ax0 B G H G H D)) *) assert (~ Col H G P). (* Goal: and (@CongA Ax0 A G H G H D) (and (@CongA Ax0 E G B G H D) (@RT Ax0 B G H G H D)) *) (* Goal: not (@Col Ax0 H G P) *) { (* Goal: not (@Col Ax0 H G P) *) intro. (* Goal: False *) assert (Col G H P) by (forward_using lemma_collinearorder). (* Goal: False *) contradict. (* BG Goal: and (@CongA Ax0 A G H G H D) (and (@CongA Ax0 E G B G H D) (@RT Ax0 B G H G H D)) *) } (* Goal: and (@CongA Ax0 A G H G H D) (and (@CongA Ax0 E G B G H D) (@RT Ax0 B G H G H D)) *) assert (~ Col H G A). (* Goal: and (@CongA Ax0 A G H G H D) (and (@CongA Ax0 E G B G H D) (@RT Ax0 B G H G H D)) *) (* Goal: not (@Col Ax0 H G A) *) { (* Goal: not (@Col Ax0 H G A) *) intro. (* Goal: False *) assert (Col G H A) by (forward_using lemma_collinearorder). (* Goal: False *) assert (nCol G H A) by (conclude_def TS ). (* Goal: False *) contradict. (* BG Goal: and (@CongA Ax0 A G H G H D) (and (@CongA Ax0 E G B G H D) (@RT Ax0 B G H G H D)) *) } (* Goal: and (@CongA Ax0 A G H G H D) (and (@CongA Ax0 E G B G H D) (@RT Ax0 B G H G H D)) *) assert (~ ~ CongA H G A H G P). (* Goal: and (@CongA Ax0 A G H G H D) (and (@CongA Ax0 E G B G H D) (@RT Ax0 B G H G H D)) *) (* Goal: not (not (@CongA Ax0 H G A H G P)) *) { (* Goal: not (not (@CongA Ax0 H G A H G P)) *) intro. (* Goal: False *) assert (LtA H G A H G P) by (conclude lemma_angletrichotomy2). (* Goal: False *) contradict. (* BG Goal: and (@CongA Ax0 A G H G H D) (and (@CongA Ax0 E G B G H D) (@RT Ax0 B G H G H D)) *) } (* Goal: and (@CongA Ax0 A G H G H D) (and (@CongA Ax0 E G B G H D) (@RT Ax0 B G H G H D)) *) assert (CongA H G P P G H) by (conclude lemma_ABCequalsCBA). (* Goal: and (@CongA Ax0 A G H G H D) (and (@CongA Ax0 E G B G H D) (@RT Ax0 B G H G H D)) *) assert (CongA H G P G H D) by (conclude lemma_equalanglestransitive). (* Goal: and (@CongA Ax0 A G H G H D) (and (@CongA Ax0 E G B G H D) (@RT Ax0 B G H G H D)) *) assert (CongA G H D D H G) by (conclude lemma_ABCequalsCBA). (* Goal: and (@CongA Ax0 A G H G H D) (and (@CongA Ax0 E G B G H D) (@RT Ax0 B G H G H D)) *) assert (CongA H G P D H G) by (conclude lemma_equalanglestransitive). (* Goal: and (@CongA Ax0 A G H G H D) (and (@CongA Ax0 E G B G H D) (@RT Ax0 B G H G H D)) *) assert (CongA H G A D H G) by (conclude lemma_equalanglestransitive). (* Goal: and (@CongA Ax0 A G H G H D) (and (@CongA Ax0 E G B G H D) (@RT Ax0 B G H G H D)) *) assert (~ Col A G H). (* Goal: and (@CongA Ax0 A G H G H D) (and (@CongA Ax0 E G B G H D) (@RT Ax0 B G H G H D)) *) (* Goal: not (@Col Ax0 A G H) *) { (* Goal: not (@Col Ax0 A G H) *) intro. (* Goal: False *) assert (Col G H A) by (forward_using lemma_collinearorder). (* Goal: False *) contradict. (* BG Goal: and (@CongA Ax0 A G H G H D) (and (@CongA Ax0 E G B G H D) (@RT Ax0 B G H G H D)) *) } (* Goal: and (@CongA Ax0 A G H G H D) (and (@CongA Ax0 E G B G H D) (@RT Ax0 B G H G H D)) *) assert (CongA A G H H G A) by (conclude lemma_ABCequalsCBA). (* Goal: and (@CongA Ax0 A G H G H D) (and (@CongA Ax0 E G B G H D) (@RT Ax0 B G H G H D)) *) assert (CongA A G H D H G) by (conclude lemma_equalanglestransitive). (* Goal: and (@CongA Ax0 A G H G H D) (and (@CongA Ax0 E G B G H D) (@RT Ax0 B G H G H D)) *) assert (nCol D H G) by (conclude lemma_equalanglesNC). (* Goal: and (@CongA Ax0 A G H G H D) (and (@CongA Ax0 E G B G H D) (@RT Ax0 B G H G H D)) *) assert (CongA D H G G H D) by (conclude lemma_ABCequalsCBA). (* Goal: and (@CongA Ax0 A G H G H D) (and (@CongA Ax0 E G B G H D) (@RT Ax0 B G H G H D)) *) assert (CongA A G H G H D) by (conclude lemma_equalanglestransitive). (* Goal: and (@CongA Ax0 A G H G H D) (and (@CongA Ax0 E G B G H D) (@RT Ax0 B G H G H D)) *) assert (BetS H G E) by (conclude axiom_betweennesssymmetry). (* Goal: and (@CongA Ax0 A G H G H D) (and (@CongA Ax0 E G B G H D) (@RT Ax0 B G H G H D)) *) assert (CongA A G H E G B) by (conclude proposition_15a). (* Goal: and (@CongA Ax0 A G H G H D) (and (@CongA Ax0 E G B G H D) (@RT Ax0 B G H G H D)) *) assert (CongA E G B A G H) by (conclude lemma_equalanglessymmetric). (* Goal: and (@CongA Ax0 A G H G H D) (and (@CongA Ax0 E G B G H D) (@RT Ax0 B G H G H D)) *) assert (CongA E G B G H D) by (conclude lemma_equalanglestransitive). (* Goal: and (@CongA Ax0 A G H G H D) (and (@CongA Ax0 E G B G H D) (@RT Ax0 B G H G H D)) *) assert (eq H H) by (conclude cn_equalityreflexive). (* Goal: and (@CongA Ax0 A G H G H D) (and (@CongA Ax0 E G B G H D) (@RT Ax0 B G H G H D)) *) assert (Out G H H) by (conclude lemma_ray4). (* Goal: and (@CongA Ax0 A G H G H D) (and (@CongA Ax0 E G B G H D) (@RT Ax0 B G H G H D)) *) assert (Supp A G H H B) by (conclude_def Supp ). (* Goal: and (@CongA Ax0 A G H G H D) (and (@CongA Ax0 E G B G H D) (@RT Ax0 B G H G H D)) *) assert (~ Col B G H). (* Goal: and (@CongA Ax0 A G H G H D) (and (@CongA Ax0 E G B G H D) (@RT Ax0 B G H G H D)) *) (* Goal: not (@Col Ax0 B G H) *) { (* Goal: not (@Col Ax0 B G H) *) intro. (* Goal: False *) assert (Col A G B) by (conclude_def Col ). (* Goal: False *) assert (Col B G A) by (forward_using lemma_collinearorder). (* Goal: False *) assert (neq G B) by (forward_using lemma_betweennotequal). (* Goal: False *) assert (neq B G) by (conclude lemma_inequalitysymmetric). (* Goal: False *) assert (Col G H A) by (conclude lemma_collinear4). (* Goal: False *) assert (Col A G H) by (forward_using lemma_collinearorder). (* Goal: False *) contradict. (* BG Goal: and (@CongA Ax0 A G H G H D) (and (@CongA Ax0 E G B G H D) (@RT Ax0 B G H G H D)) *) } (* Goal: and (@CongA Ax0 A G H G H D) (and (@CongA Ax0 E G B G H D) (@RT Ax0 B G H G H D)) *) assert (CongA B G H B G H) by (conclude lemma_equalanglesreflexive). (* Goal: and (@CongA Ax0 A G H G H D) (and (@CongA Ax0 E G B G H D) (@RT Ax0 B G H G H D)) *) assert (CongA G H D A G H) by (conclude lemma_equalanglessymmetric). (* Goal: and (@CongA Ax0 A G H G H D) (and (@CongA Ax0 E G B G H D) (@RT Ax0 B G H G H D)) *) assert (CongA A G H H G A) by (conclude lemma_ABCequalsCBA). (* Goal: and (@CongA Ax0 A G H G H D) (and (@CongA Ax0 E G B G H D) (@RT Ax0 B G H G H D)) *) assert (CongA G H D H G A) by (conclude lemma_equalanglestransitive). (* Goal: and (@CongA Ax0 A G H G H D) (and (@CongA Ax0 E G B G H D) (@RT Ax0 B G H G H D)) *) assert (Supp B G H H A) by (conclude lemma_supplementsymmetric). (* Goal: and (@CongA Ax0 A G H G H D) (and (@CongA Ax0 E G B G H D) (@RT Ax0 B G H G H D)) *) assert (RT B G H G H D) by (conclude_def RT ). (* Goal: and (@CongA Ax0 A G H G H D) (and (@CongA Ax0 E G B G H D) (@RT Ax0 B G H G H D)) *) close. Qed. End Euclid.
Set Automatic Coercions Import. Set Implicit Arguments. Unset Strict Implicit. Require Export Z_group_facts. Section Zup1. Variable R : RING. Hint Resolve Z_to_group_nat_eq_pos: algebra. Hint Resolve Z_to_group_nat_unit: algebra. Hint Resolve Zl1: algebra. Hint Resolve Zl2: algebra. Lemma nat_to_group_mult : forall n m : nat, Equal (nat_to_group (ring_unit R) (n * m)) (ring_mult (nat_to_group (ring_unit R) n) (nat_to_group (ring_unit R) m)). Proof. (* Goal: forall n m : nat, @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@nat_to_group (abelian_group_group (ring_group R)) (ring_unit R) (Init.Nat.mul n m)) (@ring_mult R (@nat_to_group (abelian_group_group (ring_group R)) (ring_unit R) n) (@nat_to_group (abelian_group_group (ring_group R)) (ring_unit R) m)) *) simple induction n; simpl in |- *. (* Goal: forall (n : nat) (_ : forall m : nat, @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@nat_to_group (abelian_group_group (ring_group R)) (ring_unit R) (Init.Nat.mul n m)) (@ring_mult R (@nat_to_group (abelian_group_group (ring_group R)) (ring_unit R) n) (@nat_to_group (abelian_group_group (ring_group R)) (ring_unit R) m))) (m : nat), @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@nat_to_group (abelian_group_group (ring_group R)) (ring_unit R) (Init.Nat.add m (Init.Nat.mul n m))) (@ring_mult R (sgroup_law (monoid_sgroup (group_monoid (abelian_group_group (ring_group R)))) (@nat_to_group (abelian_group_group (ring_group R)) (ring_unit R) n) (ring_unit R)) (@nat_to_group (abelian_group_group (ring_group R)) (ring_unit R) m)) *) (* Goal: forall m : nat, @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@monoid_unit (monoid_sgroup (group_monoid (abelian_group_group (ring_group R)))) (monoid_on_def (group_monoid (abelian_group_group (ring_group R))))) (@ring_mult R (@monoid_unit (monoid_sgroup (group_monoid (abelian_group_group (ring_group R)))) (monoid_on_def (group_monoid (abelian_group_group (ring_group R))))) (@nat_to_group (abelian_group_group (ring_group R)) (ring_unit R) m)) *) auto with algebra. (* Goal: forall (n : nat) (_ : forall m : nat, @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@nat_to_group (abelian_group_group (ring_group R)) (ring_unit R) (Init.Nat.mul n m)) (@ring_mult R (@nat_to_group (abelian_group_group (ring_group R)) (ring_unit R) n) (@nat_to_group (abelian_group_group (ring_group R)) (ring_unit R) m))) (m : nat), @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@nat_to_group (abelian_group_group (ring_group R)) (ring_unit R) (Init.Nat.add m (Init.Nat.mul n m))) (@ring_mult R (sgroup_law (monoid_sgroup (group_monoid (abelian_group_group (ring_group R)))) (@nat_to_group (abelian_group_group (ring_group R)) (ring_unit R) n) (ring_unit R)) (@nat_to_group (abelian_group_group (ring_group R)) (ring_unit R) m)) *) intros n0 H' m; try assumption. (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@nat_to_group (abelian_group_group (ring_group R)) (ring_unit R) (Init.Nat.add m (Init.Nat.mul n0 m))) (@ring_mult R (sgroup_law (monoid_sgroup (group_monoid (abelian_group_group (ring_group R)))) (@nat_to_group (abelian_group_group (ring_group R)) (ring_unit R) n0) (ring_unit R)) (@nat_to_group (abelian_group_group (ring_group R)) (ring_unit R) m)) *) apply Trans with (sgroup_law R (nat_to_group (ring_unit R) m) (nat_to_group (ring_unit R) (n0 * m))); auto with algebra. (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (sgroup_law (monoid_sgroup (group_monoid (abelian_group_group (ring_group R)))) (@nat_to_group (abelian_group_group (ring_group R)) (ring_unit R) m) (@nat_to_group (abelian_group_group (ring_group R)) (ring_unit R) (Init.Nat.mul n0 m))) (@ring_mult R (sgroup_law (monoid_sgroup (group_monoid (abelian_group_group (ring_group R)))) (@nat_to_group (abelian_group_group (ring_group R)) (ring_unit R) n0) (ring_unit R)) (@nat_to_group (abelian_group_group (ring_group R)) (ring_unit R) m)) *) apply Trans with (sgroup_law R (ring_mult (nat_to_group (ring_unit R) n0) (nat_to_group (ring_unit R) m)) (ring_mult (ring_unit R) (nat_to_group (ring_unit R) m))); auto with algebra. (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (sgroup_law (monoid_sgroup (group_monoid (abelian_group_group (ring_group R)))) (@nat_to_group (abelian_group_group (ring_group R)) (ring_unit R) m) (@nat_to_group (abelian_group_group (ring_group R)) (ring_unit R) (Init.Nat.mul n0 m))) (sgroup_law (monoid_sgroup (group_monoid (abelian_group_group (ring_group R)))) (@ring_mult R (@nat_to_group (abelian_group_group (ring_group R)) (ring_unit R) n0) (@nat_to_group (abelian_group_group (ring_group R)) (ring_unit R) m)) (@ring_mult R (ring_unit R) (@nat_to_group (abelian_group_group (ring_group R)) (ring_unit R) m))) *) apply Trans with (sgroup_law R (ring_mult (nat_to_group (ring_unit R) n0) (nat_to_group (ring_unit R) m)) (nat_to_group (ring_unit R) m)); auto with algebra. (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (sgroup_law (monoid_sgroup (group_monoid (abelian_group_group (ring_group R)))) (@nat_to_group (abelian_group_group (ring_group R)) (ring_unit R) m) (@nat_to_group (abelian_group_group (ring_group R)) (ring_unit R) (Init.Nat.mul n0 m))) (sgroup_law (monoid_sgroup (group_monoid (abelian_group_group (ring_group R)))) (@ring_mult R (@nat_to_group (abelian_group_group (ring_group R)) (ring_unit R) n0) (@nat_to_group (abelian_group_group (ring_group R)) (ring_unit R) m)) (@nat_to_group (abelian_group_group (ring_group R)) (ring_unit R) m)) *) apply Trans with (sgroup_law R (nat_to_group (ring_unit R) m) (ring_mult (nat_to_group (ring_unit R) n0) (nat_to_group (ring_unit R) m))); auto with algebra. Qed. Hint Resolve nat_to_group_mult: algebra. Hint Resolve Zl3: algebra. Definition Z_to_ring : Hom (ZZ:RING) R. Proof. (* Goal: Carrier (@Hom RING (cring_ring (idomain_ring ZZ) : Ob RING) R) *) apply (BUILD_HOM_RING (Ring1:=ZZ:RING) (Ring2:=R) (ff:=Z_to_group (ring_unit R))). (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Ap (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))))) (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@sgroup_map (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ)))))) (monoid_sgroup (group_monoid (abelian_group_group (ring_group R)))) (@monoid_sgroup_hom (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))) (group_monoid (abelian_group_group (ring_group R))) (@Z_to_group (abelian_group_group (ring_group R)) (ring_unit R)))) (ring_unit (cring_ring (idomain_ring ZZ)))) (ring_unit R) *) (* Goal: forall x y : Carrier (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))))), @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Ap (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))))) (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@sgroup_map (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ)))))) (monoid_sgroup (group_monoid (abelian_group_group (ring_group R)))) (@monoid_sgroup_hom (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))) (group_monoid (abelian_group_group (ring_group R))) (@Z_to_group (abelian_group_group (ring_group R)) (ring_unit R)))) (@ring_mult (cring_ring (idomain_ring ZZ)) x y)) (@ring_mult R (@Ap (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))))) (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@sgroup_map (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ)))))) (monoid_sgroup (group_monoid (abelian_group_group (ring_group R)))) (@monoid_sgroup_hom (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))) (group_monoid (abelian_group_group (ring_group R))) (@Z_to_group (abelian_group_group (ring_group R)) (ring_unit R)))) x) (@Ap (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))))) (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@sgroup_map (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ)))))) (monoid_sgroup (group_monoid (abelian_group_group (ring_group R)))) (@monoid_sgroup_hom (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))) (group_monoid (abelian_group_group (ring_group R))) (@Z_to_group (abelian_group_group (ring_group R)) (ring_unit R)))) y)) *) (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Ap (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))))) (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@sgroup_map (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ)))))) (monoid_sgroup (group_monoid (abelian_group_group (ring_group R)))) (@monoid_sgroup_hom (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))) (group_monoid (abelian_group_group (ring_group R))) (@Z_to_group (abelian_group_group (ring_group R)) (ring_unit R)))) (@monoid_unit (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ)))))) (monoid_on_def (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ)))))))) (@monoid_unit (monoid_sgroup (group_monoid (abelian_group_group (ring_group R)))) (monoid_on_def (group_monoid (abelian_group_group (ring_group R))))) *) (* Goal: forall x y : Carrier (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))))), @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Ap (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))))) (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@sgroup_map (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ)))))) (monoid_sgroup (group_monoid (abelian_group_group (ring_group R)))) (@monoid_sgroup_hom (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))) (group_monoid (abelian_group_group (ring_group R))) (@Z_to_group (abelian_group_group (ring_group R)) (ring_unit R)))) (sgroup_law (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ)))))) x y)) (sgroup_law (monoid_sgroup (group_monoid (abelian_group_group (ring_group R)))) (@Ap (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))))) (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@sgroup_map (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ)))))) (monoid_sgroup (group_monoid (abelian_group_group (ring_group R)))) (@monoid_sgroup_hom (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))) (group_monoid (abelian_group_group (ring_group R))) (@Z_to_group (abelian_group_group (ring_group R)) (ring_unit R)))) x) (@Ap (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))))) (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@sgroup_map (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ)))))) (monoid_sgroup (group_monoid (abelian_group_group (ring_group R)))) (@monoid_sgroup_hom (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))) (group_monoid (abelian_group_group (ring_group R))) (@Z_to_group (abelian_group_group (ring_group R)) (ring_unit R)))) y)) *) (* Goal: forall (x y : Carrier (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ)))))))) (_ : @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))))) x y), @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Ap (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))))) (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@sgroup_map (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ)))))) (monoid_sgroup (group_monoid (abelian_group_group (ring_group R)))) (@monoid_sgroup_hom (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))) (group_monoid (abelian_group_group (ring_group R))) (@Z_to_group (abelian_group_group (ring_group R)) (ring_unit R)))) x) (@Ap (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))))) (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@sgroup_map (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ)))))) (monoid_sgroup (group_monoid (abelian_group_group (ring_group R)))) (@monoid_sgroup_hom (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))) (group_monoid (abelian_group_group (ring_group R))) (@Z_to_group (abelian_group_group (ring_group R)) (ring_unit R)))) y) *) auto with algebra. (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Ap (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))))) (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@sgroup_map (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ)))))) (monoid_sgroup (group_monoid (abelian_group_group (ring_group R)))) (@monoid_sgroup_hom (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))) (group_monoid (abelian_group_group (ring_group R))) (@Z_to_group (abelian_group_group (ring_group R)) (ring_unit R)))) (ring_unit (cring_ring (idomain_ring ZZ)))) (ring_unit R) *) (* Goal: forall x y : Carrier (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))))), @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Ap (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))))) (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@sgroup_map (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ)))))) (monoid_sgroup (group_monoid (abelian_group_group (ring_group R)))) (@monoid_sgroup_hom (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))) (group_monoid (abelian_group_group (ring_group R))) (@Z_to_group (abelian_group_group (ring_group R)) (ring_unit R)))) (@ring_mult (cring_ring (idomain_ring ZZ)) x y)) (@ring_mult R (@Ap (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))))) (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@sgroup_map (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ)))))) (monoid_sgroup (group_monoid (abelian_group_group (ring_group R)))) (@monoid_sgroup_hom (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))) (group_monoid (abelian_group_group (ring_group R))) (@Z_to_group (abelian_group_group (ring_group R)) (ring_unit R)))) x) (@Ap (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))))) (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@sgroup_map (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ)))))) (monoid_sgroup (group_monoid (abelian_group_group (ring_group R)))) (@monoid_sgroup_hom (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))) (group_monoid (abelian_group_group (ring_group R))) (@Z_to_group (abelian_group_group (ring_group R)) (ring_unit R)))) y)) *) (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Ap (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))))) (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@sgroup_map (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ)))))) (monoid_sgroup (group_monoid (abelian_group_group (ring_group R)))) (@monoid_sgroup_hom (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))) (group_monoid (abelian_group_group (ring_group R))) (@Z_to_group (abelian_group_group (ring_group R)) (ring_unit R)))) (@monoid_unit (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ)))))) (monoid_on_def (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ)))))))) (@monoid_unit (monoid_sgroup (group_monoid (abelian_group_group (ring_group R)))) (monoid_on_def (group_monoid (abelian_group_group (ring_group R))))) *) (* Goal: forall x y : Carrier (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))))), @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Ap (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))))) (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@sgroup_map (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ)))))) (monoid_sgroup (group_monoid (abelian_group_group (ring_group R)))) (@monoid_sgroup_hom (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))) (group_monoid (abelian_group_group (ring_group R))) (@Z_to_group (abelian_group_group (ring_group R)) (ring_unit R)))) (sgroup_law (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ)))))) x y)) (sgroup_law (monoid_sgroup (group_monoid (abelian_group_group (ring_group R)))) (@Ap (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))))) (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@sgroup_map (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ)))))) (monoid_sgroup (group_monoid (abelian_group_group (ring_group R)))) (@monoid_sgroup_hom (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))) (group_monoid (abelian_group_group (ring_group R))) (@Z_to_group (abelian_group_group (ring_group R)) (ring_unit R)))) x) (@Ap (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))))) (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@sgroup_map (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ)))))) (monoid_sgroup (group_monoid (abelian_group_group (ring_group R)))) (@monoid_sgroup_hom (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))) (group_monoid (abelian_group_group (ring_group R))) (@Z_to_group (abelian_group_group (ring_group R)) (ring_unit R)))) y)) *) auto with algebra. (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Ap (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))))) (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@sgroup_map (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ)))))) (monoid_sgroup (group_monoid (abelian_group_group (ring_group R)))) (@monoid_sgroup_hom (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))) (group_monoid (abelian_group_group (ring_group R))) (@Z_to_group (abelian_group_group (ring_group R)) (ring_unit R)))) (ring_unit (cring_ring (idomain_ring ZZ)))) (ring_unit R) *) (* Goal: forall x y : Carrier (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))))), @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Ap (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))))) (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@sgroup_map (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ)))))) (monoid_sgroup (group_monoid (abelian_group_group (ring_group R)))) (@monoid_sgroup_hom (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))) (group_monoid (abelian_group_group (ring_group R))) (@Z_to_group (abelian_group_group (ring_group R)) (ring_unit R)))) (@ring_mult (cring_ring (idomain_ring ZZ)) x y)) (@ring_mult R (@Ap (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))))) (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@sgroup_map (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ)))))) (monoid_sgroup (group_monoid (abelian_group_group (ring_group R)))) (@monoid_sgroup_hom (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))) (group_monoid (abelian_group_group (ring_group R))) (@Z_to_group (abelian_group_group (ring_group R)) (ring_unit R)))) x) (@Ap (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))))) (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@sgroup_map (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ)))))) (monoid_sgroup (group_monoid (abelian_group_group (ring_group R)))) (@monoid_sgroup_hom (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))) (group_monoid (abelian_group_group (ring_group R))) (@Z_to_group (abelian_group_group (ring_group R)) (ring_unit R)))) y)) *) (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Ap (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))))) (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@sgroup_map (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ)))))) (monoid_sgroup (group_monoid (abelian_group_group (ring_group R)))) (@monoid_sgroup_hom (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))) (group_monoid (abelian_group_group (ring_group R))) (@Z_to_group (abelian_group_group (ring_group R)) (ring_unit R)))) (@monoid_unit (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ)))))) (monoid_on_def (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ)))))))) (@monoid_unit (monoid_sgroup (group_monoid (abelian_group_group (ring_group R)))) (monoid_on_def (group_monoid (abelian_group_group (ring_group R))))) *) auto with algebra. (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Ap (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))))) (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@sgroup_map (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ)))))) (monoid_sgroup (group_monoid (abelian_group_group (ring_group R)))) (@monoid_sgroup_hom (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))) (group_monoid (abelian_group_group (ring_group R))) (@Z_to_group (abelian_group_group (ring_group R)) (ring_unit R)))) (ring_unit (cring_ring (idomain_ring ZZ)))) (ring_unit R) *) (* Goal: forall x y : Carrier (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))))), @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Ap (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))))) (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@sgroup_map (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ)))))) (monoid_sgroup (group_monoid (abelian_group_group (ring_group R)))) (@monoid_sgroup_hom (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))) (group_monoid (abelian_group_group (ring_group R))) (@Z_to_group (abelian_group_group (ring_group R)) (ring_unit R)))) (@ring_mult (cring_ring (idomain_ring ZZ)) x y)) (@ring_mult R (@Ap (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))))) (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@sgroup_map (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ)))))) (monoid_sgroup (group_monoid (abelian_group_group (ring_group R)))) (@monoid_sgroup_hom (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))) (group_monoid (abelian_group_group (ring_group R))) (@Z_to_group (abelian_group_group (ring_group R)) (ring_unit R)))) x) (@Ap (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))))) (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@sgroup_map (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ)))))) (monoid_sgroup (group_monoid (abelian_group_group (ring_group R)))) (@monoid_sgroup_hom (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))) (group_monoid (abelian_group_group (ring_group R))) (@Z_to_group (abelian_group_group (ring_group R)) (ring_unit R)))) y)) *) simpl in |- *. (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Ap (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))))) (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@sgroup_map (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ)))))) (monoid_sgroup (group_monoid (abelian_group_group (ring_group R)))) (@monoid_sgroup_hom (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))) (group_monoid (abelian_group_group (ring_group R))) (@Z_to_group (abelian_group_group (ring_group R)) (ring_unit R)))) (ring_unit (cring_ring (idomain_ring ZZ)))) (ring_unit R) *) (* Goal: forall x y : Z, @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Z_to_group_fun (abelian_group_group (ring_group R)) (ring_unit R) (@ring_mult Zr_aux x y)) (@ring_mult R (@Z_to_group_fun (abelian_group_group (ring_group R)) (ring_unit R) x) (@Z_to_group_fun (abelian_group_group (ring_group R)) (ring_unit R) y)) *) intros x y; try assumption. (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Ap (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))))) (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@sgroup_map (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ)))))) (monoid_sgroup (group_monoid (abelian_group_group (ring_group R)))) (@monoid_sgroup_hom (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))) (group_monoid (abelian_group_group (ring_group R))) (@Z_to_group (abelian_group_group (ring_group R)) (ring_unit R)))) (ring_unit (cring_ring (idomain_ring ZZ)))) (ring_unit R) *) (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Z_to_group_fun (abelian_group_group (ring_group R)) (ring_unit R) (@ring_mult Zr_aux x y)) (@ring_mult R (@Z_to_group_fun (abelian_group_group (ring_group R)) (ring_unit R) x) (@Z_to_group_fun (abelian_group_group (ring_group R)) (ring_unit R) y)) *) apply Trans with (Z_to_group_nat_fun (ring_unit R) (ring_mult (x:ZZ) y)); auto with algebra. (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Ap (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))))) (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@sgroup_map (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ)))))) (monoid_sgroup (group_monoid (abelian_group_group (ring_group R)))) (@monoid_sgroup_hom (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))) (group_monoid (abelian_group_group (ring_group R))) (@Z_to_group (abelian_group_group (ring_group R)) (ring_unit R)))) (ring_unit (cring_ring (idomain_ring ZZ)))) (ring_unit R) *) (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (@ring_mult (cring_ring (idomain_ring ZZ)) x y)) (@ring_mult R (@Z_to_group_fun (abelian_group_group (ring_group R)) (ring_unit R) x) (@Z_to_group_fun (abelian_group_group (ring_group R)) (ring_unit R) y)) *) apply Trans with (ring_mult (Z_to_group_nat_fun (ring_unit R) x) (Z_to_group_nat_fun (ring_unit R) y)); auto with algebra. (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Ap (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))))) (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@sgroup_map (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ)))))) (monoid_sgroup (group_monoid (abelian_group_group (ring_group R)))) (@monoid_sgroup_hom (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))) (group_monoid (abelian_group_group (ring_group R))) (@Z_to_group (abelian_group_group (ring_group R)) (ring_unit R)))) (ring_unit (cring_ring (idomain_ring ZZ)))) (ring_unit R) *) (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (@ring_mult (cring_ring (idomain_ring ZZ)) x y)) (@ring_mult R (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) x) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) y)) *) elim x; simpl in |- *; unfold ring_mult at 1 in |- *; simpl in |- *; intros. (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Ap (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))))) (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@sgroup_map (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ)))))) (monoid_sgroup (group_monoid (abelian_group_group (ring_group R)))) (@monoid_sgroup_hom (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))) (group_monoid (abelian_group_group (ring_group R))) (@Z_to_group (abelian_group_group (ring_group R)) (ring_unit R)))) (ring_unit (cring_ring (idomain_ring ZZ)))) (ring_unit R) *) (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) match y with | Z0 => Z0 | Zpos y' => Zneg (Pos.mul p y') | Zneg y' => Zpos (Pos.mul p y') end) (@ring_mult R (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zneg p)) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) y)) *) (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) match y with | Z0 => Z0 | Zpos y' => Zpos (Pos.mul p y') | Zneg y' => Zneg (Pos.mul p y') end) (@ring_mult R (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zpos p)) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) y)) *) (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) Z0) (@ring_mult R (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) Z0) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) y)) *) apply Trans with (ring_mult (monoid_unit R) (Z_to_group_nat_fun (ring_unit R) y)); auto with algebra. (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Ap (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))))) (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@sgroup_map (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ)))))) (monoid_sgroup (group_monoid (abelian_group_group (ring_group R)))) (@monoid_sgroup_hom (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))) (group_monoid (abelian_group_group (ring_group R))) (@Z_to_group (abelian_group_group (ring_group R)) (ring_unit R)))) (ring_unit (cring_ring (idomain_ring ZZ)))) (ring_unit R) *) (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) match y with | Z0 => Z0 | Zpos y' => Zneg (Pos.mul p y') | Zneg y' => Zpos (Pos.mul p y') end) (@ring_mult R (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zneg p)) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) y)) *) (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) match y with | Z0 => Z0 | Zpos y' => Zpos (Pos.mul p y') | Zneg y' => Zneg (Pos.mul p y') end) (@ring_mult R (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zpos p)) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) y)) *) (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) Z0) (@ring_mult R (@monoid_unit (monoid_sgroup (group_monoid (abelian_group_group (ring_group R)))) (monoid_on_def (group_monoid (abelian_group_group (ring_group R))))) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) y)) *) apply Trans with (monoid_unit R); auto with algebra. (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Ap (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))))) (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@sgroup_map (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ)))))) (monoid_sgroup (group_monoid (abelian_group_group (ring_group R)))) (@monoid_sgroup_hom (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))) (group_monoid (abelian_group_group (ring_group R))) (@Z_to_group (abelian_group_group (ring_group R)) (ring_unit R)))) (ring_unit (cring_ring (idomain_ring ZZ)))) (ring_unit R) *) (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) match y with | Z0 => Z0 | Zpos y' => Zneg (Pos.mul p y') | Zneg y' => Zpos (Pos.mul p y') end) (@ring_mult R (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zneg p)) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) y)) *) (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) match y with | Z0 => Z0 | Zpos y' => Zpos (Pos.mul p y') | Zneg y' => Zneg (Pos.mul p y') end) (@ring_mult R (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zpos p)) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) y)) *) elim y; simpl in |- *; intros. (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Ap (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))))) (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@sgroup_map (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ)))))) (monoid_sgroup (group_monoid (abelian_group_group (ring_group R)))) (@monoid_sgroup_hom (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))) (group_monoid (abelian_group_group (ring_group R))) (@Z_to_group (abelian_group_group (ring_group R)) (ring_unit R)))) (ring_unit (cring_ring (idomain_ring ZZ)))) (ring_unit R) *) (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) match y with | Z0 => Z0 | Zpos y' => Zneg (Pos.mul p y') | Zneg y' => Zpos (Pos.mul p y') end) (@ring_mult R (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zneg p)) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) y)) *) (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zneg (Pos.mul p p0))) (@ring_mult R (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zpos p)) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zneg p0))) *) (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zpos (Pos.mul p p0))) (@ring_mult R (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zpos p)) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zpos p0))) *) (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) Z0) (@ring_mult R (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zpos p)) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) Z0)) *) apply Trans with (monoid_unit R); auto with algebra. (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Ap (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))))) (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@sgroup_map (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ)))))) (monoid_sgroup (group_monoid (abelian_group_group (ring_group R)))) (@monoid_sgroup_hom (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))) (group_monoid (abelian_group_group (ring_group R))) (@Z_to_group (abelian_group_group (ring_group R)) (ring_unit R)))) (ring_unit (cring_ring (idomain_ring ZZ)))) (ring_unit R) *) (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) match y with | Z0 => Z0 | Zpos y' => Zneg (Pos.mul p y') | Zneg y' => Zpos (Pos.mul p y') end) (@ring_mult R (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zneg p)) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) y)) *) (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zneg (Pos.mul p p0))) (@ring_mult R (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zpos p)) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zneg p0))) *) (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zpos (Pos.mul p p0))) (@ring_mult R (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zpos p)) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zpos p0))) *) (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@monoid_unit (monoid_sgroup (group_monoid (abelian_group_group (ring_group R)))) (monoid_on_def (group_monoid (abelian_group_group (ring_group R))))) (@ring_mult R (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zpos p)) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) Z0)) *) apply Trans with (ring_mult (Z_to_group_nat_fun (ring_unit R) (Zpos p)) (monoid_unit R)); auto with algebra. (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Ap (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))))) (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@sgroup_map (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ)))))) (monoid_sgroup (group_monoid (abelian_group_group (ring_group R)))) (@monoid_sgroup_hom (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))) (group_monoid (abelian_group_group (ring_group R))) (@Z_to_group (abelian_group_group (ring_group R)) (ring_unit R)))) (ring_unit (cring_ring (idomain_ring ZZ)))) (ring_unit R) *) (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) match y with | Z0 => Z0 | Zpos y' => Zneg (Pos.mul p y') | Zneg y' => Zpos (Pos.mul p y') end) (@ring_mult R (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zneg p)) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) y)) *) (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zneg (Pos.mul p p0))) (@ring_mult R (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zpos p)) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zneg p0))) *) (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zpos (Pos.mul p p0))) (@ring_mult R (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zpos p)) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zpos p0))) *) apply Trans with (nat_to_group (ring_unit R) (nat_of_P (pos_abs (ax3 ((fun (x : positive) (_ : positive -> positive) (y : positive) => (x * y)%positive) p (fun y : positive => y) p0))))); auto with algebra. (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Ap (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))))) (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@sgroup_map (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ)))))) (monoid_sgroup (group_monoid (abelian_group_group (ring_group R)))) (@monoid_sgroup_hom (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))) (group_monoid (abelian_group_group (ring_group R))) (@Z_to_group (abelian_group_group (ring_group R)) (ring_unit R)))) (ring_unit (cring_ring (idomain_ring ZZ)))) (ring_unit R) *) (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) match y with | Z0 => Z0 | Zpos y' => Zneg (Pos.mul p y') | Zneg y' => Zpos (Pos.mul p y') end) (@ring_mult R (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zneg p)) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) y)) *) (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zneg (Pos.mul p p0))) (@ring_mult R (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zpos p)) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zneg p0))) *) (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@nat_to_group (abelian_group_group (ring_group R)) (ring_unit R) (Pos.to_nat (@pos_abs (Zpos (Pos.mul p p0)) (ax3 (Pos.mul p p0))))) (@ring_mult R (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zpos p)) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zpos p0))) *) simpl in |- *. (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Ap (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))))) (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@sgroup_map (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ)))))) (monoid_sgroup (group_monoid (abelian_group_group (ring_group R)))) (@monoid_sgroup_hom (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))) (group_monoid (abelian_group_group (ring_group R))) (@Z_to_group (abelian_group_group (ring_group R)) (ring_unit R)))) (ring_unit (cring_ring (idomain_ring ZZ)))) (ring_unit R) *) (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) match y with | Z0 => Z0 | Zpos y' => Zneg (Pos.mul p y') | Zneg y' => Zpos (Pos.mul p y') end) (@ring_mult R (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zneg p)) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) y)) *) (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zneg (Pos.mul p p0))) (@ring_mult R (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zpos p)) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zneg p0))) *) (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@nat_to_group (abelian_group_group (ring_group R)) (ring_unit R) (Pos.to_nat (Pos.mul p p0))) (@ring_mult R (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zpos p)) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zpos p0))) *) rewrite (fun (x y : positive) (_ : positive -> positive) => nat_of_P_mult_morphism x y). (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Ap (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))))) (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@sgroup_map (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ)))))) (monoid_sgroup (group_monoid (abelian_group_group (ring_group R)))) (@monoid_sgroup_hom (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))) (group_monoid (abelian_group_group (ring_group R))) (@Z_to_group (abelian_group_group (ring_group R)) (ring_unit R)))) (ring_unit (cring_ring (idomain_ring ZZ)))) (ring_unit R) *) (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) match y with | Z0 => Z0 | Zpos y' => Zneg (Pos.mul p y') | Zneg y' => Zpos (Pos.mul p y') end) (@ring_mult R (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zneg p)) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) y)) *) (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zneg (Pos.mul p p0))) (@ring_mult R (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zpos p)) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zneg p0))) *) (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@nat_to_group (abelian_group_group (ring_group R)) (ring_unit R) (Init.Nat.mul (Pos.to_nat p) (Pos.to_nat p0))) (@ring_mult R (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zpos p)) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zpos p0))) *) apply Trans with (ring_mult (nat_to_group (ring_unit R) (nat_of_P (pos_abs (ax3 p)))) (nat_to_group (ring_unit R) (nat_of_P (pos_abs (ax3 p0))))); auto with algebra. (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Ap (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))))) (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@sgroup_map (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ)))))) (monoid_sgroup (group_monoid (abelian_group_group (ring_group R)))) (@monoid_sgroup_hom (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))) (group_monoid (abelian_group_group (ring_group R))) (@Z_to_group (abelian_group_group (ring_group R)) (ring_unit R)))) (ring_unit (cring_ring (idomain_ring ZZ)))) (ring_unit R) *) (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) match y with | Z0 => Z0 | Zpos y' => Zneg (Pos.mul p y') | Zneg y' => Zpos (Pos.mul p y') end) (@ring_mult R (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zneg p)) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) y)) *) (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zneg (Pos.mul p p0))) (@ring_mult R (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zpos p)) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zneg p0))) *) apply Trans with (group_inverse R (nat_to_group (ring_unit R) (nat_of_P (pos_abs (ax3 ((fun (x : positive) (_ : positive -> positive) (y : positive) => (x * y)%positive) p (fun y : positive => y) p0)))))); auto with algebra. (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Ap (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))))) (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@sgroup_map (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ)))))) (monoid_sgroup (group_monoid (abelian_group_group (ring_group R)))) (@monoid_sgroup_hom (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))) (group_monoid (abelian_group_group (ring_group R))) (@Z_to_group (abelian_group_group (ring_group R)) (ring_unit R)))) (ring_unit (cring_ring (idomain_ring ZZ)))) (ring_unit R) *) (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) match y with | Z0 => Z0 | Zpos y' => Zneg (Pos.mul p y') | Zneg y' => Zpos (Pos.mul p y') end) (@ring_mult R (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zneg p)) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) y)) *) (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (group_inverse (abelian_group_group (ring_group R)) (@nat_to_group (abelian_group_group (ring_group R)) (ring_unit R) (Pos.to_nat (@pos_abs (Zpos (Pos.mul p p0)) (ax3 (Pos.mul p p0)))))) (@ring_mult R (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zpos p)) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zneg p0))) *) simpl in |- *. (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Ap (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))))) (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@sgroup_map (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ)))))) (monoid_sgroup (group_monoid (abelian_group_group (ring_group R)))) (@monoid_sgroup_hom (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))) (group_monoid (abelian_group_group (ring_group R))) (@Z_to_group (abelian_group_group (ring_group R)) (ring_unit R)))) (ring_unit (cring_ring (idomain_ring ZZ)))) (ring_unit R) *) (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) match y with | Z0 => Z0 | Zpos y' => Zneg (Pos.mul p y') | Zneg y' => Zpos (Pos.mul p y') end) (@ring_mult R (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zneg p)) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) y)) *) (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (group_inverse (abelian_group_group (ring_group R)) (@nat_to_group (abelian_group_group (ring_group R)) (ring_unit R) (Pos.to_nat (Pos.mul p p0)))) (@ring_mult R (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zpos p)) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zneg p0))) *) rewrite (fun (x y : positive) (_ : positive -> positive) => nat_of_P_mult_morphism x y). (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Ap (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))))) (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@sgroup_map (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ)))))) (monoid_sgroup (group_monoid (abelian_group_group (ring_group R)))) (@monoid_sgroup_hom (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))) (group_monoid (abelian_group_group (ring_group R))) (@Z_to_group (abelian_group_group (ring_group R)) (ring_unit R)))) (ring_unit (cring_ring (idomain_ring ZZ)))) (ring_unit R) *) (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) match y with | Z0 => Z0 | Zpos y' => Zneg (Pos.mul p y') | Zneg y' => Zpos (Pos.mul p y') end) (@ring_mult R (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zneg p)) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) y)) *) (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (group_inverse (abelian_group_group (ring_group R)) (@nat_to_group (abelian_group_group (ring_group R)) (ring_unit R) (Init.Nat.mul (Pos.to_nat p) (Pos.to_nat p0)))) (@ring_mult R (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zpos p)) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zneg p0))) *) apply Trans with (ring_mult (nat_to_group (ring_unit R) (nat_of_P (pos_abs (ax3 p)))) (group_inverse R (nat_to_group (ring_unit R) (nat_of_P (pos_abs (ax3 p0)))))); auto with algebra. (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Ap (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))))) (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@sgroup_map (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ)))))) (monoid_sgroup (group_monoid (abelian_group_group (ring_group R)))) (@monoid_sgroup_hom (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))) (group_monoid (abelian_group_group (ring_group R))) (@Z_to_group (abelian_group_group (ring_group R)) (ring_unit R)))) (ring_unit (cring_ring (idomain_ring ZZ)))) (ring_unit R) *) (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) match y with | Z0 => Z0 | Zpos y' => Zneg (Pos.mul p y') | Zneg y' => Zpos (Pos.mul p y') end) (@ring_mult R (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zneg p)) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) y)) *) (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (group_inverse (abelian_group_group (ring_group R)) (@nat_to_group (abelian_group_group (ring_group R)) (ring_unit R) (Init.Nat.mul (Pos.to_nat p) (Pos.to_nat p0)))) (@ring_mult R (@nat_to_group (abelian_group_group (ring_group R)) (ring_unit R) (Pos.to_nat (@pos_abs (Zpos p) (ax3 p)))) (group_inverse (abelian_group_group (ring_group R)) (@nat_to_group (abelian_group_group (ring_group R)) (ring_unit R) (Pos.to_nat (@pos_abs (Zpos p0) (ax3 p0)))))) *) simpl in |- *. (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Ap (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))))) (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@sgroup_map (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ)))))) (monoid_sgroup (group_monoid (abelian_group_group (ring_group R)))) (@monoid_sgroup_hom (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))) (group_monoid (abelian_group_group (ring_group R))) (@Z_to_group (abelian_group_group (ring_group R)) (ring_unit R)))) (ring_unit (cring_ring (idomain_ring ZZ)))) (ring_unit R) *) (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) match y with | Z0 => Z0 | Zpos y' => Zneg (Pos.mul p y') | Zneg y' => Zpos (Pos.mul p y') end) (@ring_mult R (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zneg p)) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) y)) *) (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (group_inverse (abelian_group_group (ring_group R)) (@nat_to_group (abelian_group_group (ring_group R)) (ring_unit R) (Init.Nat.mul (Pos.to_nat p) (Pos.to_nat p0)))) (@ring_mult R (@nat_to_group (abelian_group_group (ring_group R)) (ring_unit R) (Pos.to_nat p)) (group_inverse (abelian_group_group (ring_group R)) (@nat_to_group (abelian_group_group (ring_group R)) (ring_unit R) (Pos.to_nat p0)))) *) apply Trans with (group_inverse R (ring_mult (nat_to_group (ring_unit R) (nat_of_P p)) (nat_to_group (ring_unit R) (nat_of_P p0)))); auto with algebra. (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Ap (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))))) (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@sgroup_map (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ)))))) (monoid_sgroup (group_monoid (abelian_group_group (ring_group R)))) (@monoid_sgroup_hom (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))) (group_monoid (abelian_group_group (ring_group R))) (@Z_to_group (abelian_group_group (ring_group R)) (ring_unit R)))) (ring_unit (cring_ring (idomain_ring ZZ)))) (ring_unit R) *) (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) match y with | Z0 => Z0 | Zpos y' => Zneg (Pos.mul p y') | Zneg y' => Zpos (Pos.mul p y') end) (@ring_mult R (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zneg p)) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) y)) *) elim y; simpl in |- *; intros. (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Ap (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))))) (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@sgroup_map (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ)))))) (monoid_sgroup (group_monoid (abelian_group_group (ring_group R)))) (@monoid_sgroup_hom (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))) (group_monoid (abelian_group_group (ring_group R))) (@Z_to_group (abelian_group_group (ring_group R)) (ring_unit R)))) (ring_unit (cring_ring (idomain_ring ZZ)))) (ring_unit R) *) (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zpos (Pos.mul p p0))) (@ring_mult R (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zneg p)) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zneg p0))) *) (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zneg (Pos.mul p p0))) (@ring_mult R (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zneg p)) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zpos p0))) *) (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) Z0) (@ring_mult R (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zneg p)) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) Z0)) *) apply Trans with (monoid_unit R); auto with algebra. (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Ap (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))))) (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@sgroup_map (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ)))))) (monoid_sgroup (group_monoid (abelian_group_group (ring_group R)))) (@monoid_sgroup_hom (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))) (group_monoid (abelian_group_group (ring_group R))) (@Z_to_group (abelian_group_group (ring_group R)) (ring_unit R)))) (ring_unit (cring_ring (idomain_ring ZZ)))) (ring_unit R) *) (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zpos (Pos.mul p p0))) (@ring_mult R (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zneg p)) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zneg p0))) *) (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zneg (Pos.mul p p0))) (@ring_mult R (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zneg p)) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zpos p0))) *) (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@monoid_unit (monoid_sgroup (group_monoid (abelian_group_group (ring_group R)))) (monoid_on_def (group_monoid (abelian_group_group (ring_group R))))) (@ring_mult R (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zneg p)) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) Z0)) *) apply Trans with (ring_mult (Z_to_group_nat_fun (ring_unit R) (Zneg p)) (monoid_unit R)); auto with algebra. (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Ap (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))))) (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@sgroup_map (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ)))))) (monoid_sgroup (group_monoid (abelian_group_group (ring_group R)))) (@monoid_sgroup_hom (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))) (group_monoid (abelian_group_group (ring_group R))) (@Z_to_group (abelian_group_group (ring_group R)) (ring_unit R)))) (ring_unit (cring_ring (idomain_ring ZZ)))) (ring_unit R) *) (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zpos (Pos.mul p p0))) (@ring_mult R (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zneg p)) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zneg p0))) *) (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zneg (Pos.mul p p0))) (@ring_mult R (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zneg p)) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zpos p0))) *) apply Trans with (group_inverse R (nat_to_group (ring_unit R) (nat_of_P (pos_abs (ax3 ((fun (x : positive) (_ : positive -> positive) (y : positive) => (x * y)%positive) p (fun y : positive => y) p0)))))); auto with algebra. (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Ap (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))))) (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@sgroup_map (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ)))))) (monoid_sgroup (group_monoid (abelian_group_group (ring_group R)))) (@monoid_sgroup_hom (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))) (group_monoid (abelian_group_group (ring_group R))) (@Z_to_group (abelian_group_group (ring_group R)) (ring_unit R)))) (ring_unit (cring_ring (idomain_ring ZZ)))) (ring_unit R) *) (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zpos (Pos.mul p p0))) (@ring_mult R (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zneg p)) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zneg p0))) *) (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (group_inverse (abelian_group_group (ring_group R)) (@nat_to_group (abelian_group_group (ring_group R)) (ring_unit R) (Pos.to_nat (@pos_abs (Zpos (Pos.mul p p0)) (ax3 (Pos.mul p p0)))))) (@ring_mult R (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zneg p)) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zpos p0))) *) simpl in |- *. (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Ap (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))))) (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@sgroup_map (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ)))))) (monoid_sgroup (group_monoid (abelian_group_group (ring_group R)))) (@monoid_sgroup_hom (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))) (group_monoid (abelian_group_group (ring_group R))) (@Z_to_group (abelian_group_group (ring_group R)) (ring_unit R)))) (ring_unit (cring_ring (idomain_ring ZZ)))) (ring_unit R) *) (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zpos (Pos.mul p p0))) (@ring_mult R (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zneg p)) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zneg p0))) *) (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (group_inverse (abelian_group_group (ring_group R)) (@nat_to_group (abelian_group_group (ring_group R)) (ring_unit R) (Pos.to_nat (Pos.mul p p0)))) (@ring_mult R (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zneg p)) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zpos p0))) *) rewrite (fun (x y : positive) (_ : positive -> positive) => nat_of_P_mult_morphism x y). (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Ap (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))))) (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@sgroup_map (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ)))))) (monoid_sgroup (group_monoid (abelian_group_group (ring_group R)))) (@monoid_sgroup_hom (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))) (group_monoid (abelian_group_group (ring_group R))) (@Z_to_group (abelian_group_group (ring_group R)) (ring_unit R)))) (ring_unit (cring_ring (idomain_ring ZZ)))) (ring_unit R) *) (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zpos (Pos.mul p p0))) (@ring_mult R (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zneg p)) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zneg p0))) *) (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (group_inverse (abelian_group_group (ring_group R)) (@nat_to_group (abelian_group_group (ring_group R)) (ring_unit R) (Init.Nat.mul (Pos.to_nat p) (Pos.to_nat p0)))) (@ring_mult R (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zneg p)) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zpos p0))) *) apply Trans with (ring_mult (group_inverse R (nat_to_group (ring_unit R) (nat_of_P (pos_abs (ax3 p))))) (nat_to_group (ring_unit R) (nat_of_P (pos_abs (ax3 p0))))); auto with algebra. (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Ap (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))))) (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@sgroup_map (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ)))))) (monoid_sgroup (group_monoid (abelian_group_group (ring_group R)))) (@monoid_sgroup_hom (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))) (group_monoid (abelian_group_group (ring_group R))) (@Z_to_group (abelian_group_group (ring_group R)) (ring_unit R)))) (ring_unit (cring_ring (idomain_ring ZZ)))) (ring_unit R) *) (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zpos (Pos.mul p p0))) (@ring_mult R (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zneg p)) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zneg p0))) *) (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (group_inverse (abelian_group_group (ring_group R)) (@nat_to_group (abelian_group_group (ring_group R)) (ring_unit R) (Init.Nat.mul (Pos.to_nat p) (Pos.to_nat p0)))) (@ring_mult R (group_inverse (abelian_group_group (ring_group R)) (@nat_to_group (abelian_group_group (ring_group R)) (ring_unit R) (Pos.to_nat (@pos_abs (Zpos p) (ax3 p))))) (@nat_to_group (abelian_group_group (ring_group R)) (ring_unit R) (Pos.to_nat (@pos_abs (Zpos p0) (ax3 p0))))) *) simpl in |- *. (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Ap (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))))) (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@sgroup_map (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ)))))) (monoid_sgroup (group_monoid (abelian_group_group (ring_group R)))) (@monoid_sgroup_hom (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))) (group_monoid (abelian_group_group (ring_group R))) (@Z_to_group (abelian_group_group (ring_group R)) (ring_unit R)))) (ring_unit (cring_ring (idomain_ring ZZ)))) (ring_unit R) *) (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zpos (Pos.mul p p0))) (@ring_mult R (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zneg p)) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zneg p0))) *) (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (group_inverse (abelian_group_group (ring_group R)) (@nat_to_group (abelian_group_group (ring_group R)) (ring_unit R) (Init.Nat.mul (Pos.to_nat p) (Pos.to_nat p0)))) (@ring_mult R (group_inverse (abelian_group_group (ring_group R)) (@nat_to_group (abelian_group_group (ring_group R)) (ring_unit R) (Pos.to_nat p))) (@nat_to_group (abelian_group_group (ring_group R)) (ring_unit R) (Pos.to_nat p0))) *) apply Trans with (group_inverse R (ring_mult (nat_to_group (ring_unit R) (nat_of_P p)) (nat_to_group (ring_unit R) (nat_of_P p0)))); auto with algebra. (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Ap (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))))) (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@sgroup_map (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ)))))) (monoid_sgroup (group_monoid (abelian_group_group (ring_group R)))) (@monoid_sgroup_hom (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))) (group_monoid (abelian_group_group (ring_group R))) (@Z_to_group (abelian_group_group (ring_group R)) (ring_unit R)))) (ring_unit (cring_ring (idomain_ring ZZ)))) (ring_unit R) *) (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zpos (Pos.mul p p0))) (@ring_mult R (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zneg p)) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zneg p0))) *) apply Trans with (nat_to_group (ring_unit R) (nat_of_P (pos_abs (ax3 ((fun (x : positive) (_ : positive -> positive) (y : positive) => (x * y)%positive) p (fun y : positive => y) p0))))); auto with algebra. (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Ap (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))))) (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@sgroup_map (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ)))))) (monoid_sgroup (group_monoid (abelian_group_group (ring_group R)))) (@monoid_sgroup_hom (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))) (group_monoid (abelian_group_group (ring_group R))) (@Z_to_group (abelian_group_group (ring_group R)) (ring_unit R)))) (ring_unit (cring_ring (idomain_ring ZZ)))) (ring_unit R) *) (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@nat_to_group (abelian_group_group (ring_group R)) (ring_unit R) (Pos.to_nat (@pos_abs (Zpos (Pos.mul p p0)) (ax3 (Pos.mul p p0))))) (@ring_mult R (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zneg p)) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zneg p0))) *) simpl in |- *. (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Ap (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))))) (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@sgroup_map (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ)))))) (monoid_sgroup (group_monoid (abelian_group_group (ring_group R)))) (@monoid_sgroup_hom (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))) (group_monoid (abelian_group_group (ring_group R))) (@Z_to_group (abelian_group_group (ring_group R)) (ring_unit R)))) (ring_unit (cring_ring (idomain_ring ZZ)))) (ring_unit R) *) (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@nat_to_group (abelian_group_group (ring_group R)) (ring_unit R) (Pos.to_nat (Pos.mul p p0))) (@ring_mult R (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zneg p)) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zneg p0))) *) rewrite (fun (x y : positive) (_ : positive -> positive) => nat_of_P_mult_morphism x y). (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Ap (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))))) (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@sgroup_map (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ)))))) (monoid_sgroup (group_monoid (abelian_group_group (ring_group R)))) (@monoid_sgroup_hom (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))) (group_monoid (abelian_group_group (ring_group R))) (@Z_to_group (abelian_group_group (ring_group R)) (ring_unit R)))) (ring_unit (cring_ring (idomain_ring ZZ)))) (ring_unit R) *) (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@nat_to_group (abelian_group_group (ring_group R)) (ring_unit R) (Init.Nat.mul (Pos.to_nat p) (Pos.to_nat p0))) (@ring_mult R (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zneg p)) (@Z_to_group_nat_fun (abelian_group_group (ring_group R)) (ring_unit R) (Zneg p0))) *) apply Trans with (ring_mult (group_inverse R (nat_to_group (ring_unit R) (nat_of_P (pos_abs (ax3 p))))) (group_inverse R (nat_to_group (ring_unit R) (nat_of_P (pos_abs (ax3 p0)))))); auto with algebra. (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Ap (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))))) (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@sgroup_map (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ)))))) (monoid_sgroup (group_monoid (abelian_group_group (ring_group R)))) (@monoid_sgroup_hom (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))) (group_monoid (abelian_group_group (ring_group R))) (@Z_to_group (abelian_group_group (ring_group R)) (ring_unit R)))) (ring_unit (cring_ring (idomain_ring ZZ)))) (ring_unit R) *) (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@nat_to_group (abelian_group_group (ring_group R)) (ring_unit R) (Init.Nat.mul (Pos.to_nat p) (Pos.to_nat p0))) (@ring_mult R (group_inverse (abelian_group_group (ring_group R)) (@nat_to_group (abelian_group_group (ring_group R)) (ring_unit R) (Pos.to_nat (@pos_abs (Zpos p) (ax3 p))))) (group_inverse (abelian_group_group (ring_group R)) (@nat_to_group (abelian_group_group (ring_group R)) (ring_unit R) (Pos.to_nat (@pos_abs (Zpos p0) (ax3 p0)))))) *) apply Trans with (ring_mult (nat_to_group (ring_unit R) (nat_of_P p)) (nat_to_group (ring_unit R) (nat_of_P p0))); auto with algebra. (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Ap (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))))) (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@sgroup_map (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ)))))) (monoid_sgroup (group_monoid (abelian_group_group (ring_group R)))) (@monoid_sgroup_hom (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))) (group_monoid (abelian_group_group (ring_group R))) (@Z_to_group (abelian_group_group (ring_group R)) (ring_unit R)))) (ring_unit (cring_ring (idomain_ring ZZ)))) (ring_unit R) *) (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@ring_mult R (@nat_to_group (abelian_group_group (ring_group R)) (ring_unit R) (Pos.to_nat p)) (@nat_to_group (abelian_group_group (ring_group R)) (ring_unit R) (Pos.to_nat p0))) (@ring_mult R (group_inverse (abelian_group_group (ring_group R)) (@nat_to_group (abelian_group_group (ring_group R)) (ring_unit R) (Pos.to_nat (@pos_abs (Zpos p) (ax3 p))))) (group_inverse (abelian_group_group (ring_group R)) (@nat_to_group (abelian_group_group (ring_group R)) (ring_unit R) (Pos.to_nat (@pos_abs (Zpos p0) (ax3 p0)))))) *) simpl in |- *. (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Ap (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))))) (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@sgroup_map (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ)))))) (monoid_sgroup (group_monoid (abelian_group_group (ring_group R)))) (@monoid_sgroup_hom (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))) (group_monoid (abelian_group_group (ring_group R))) (@Z_to_group (abelian_group_group (ring_group R)) (ring_unit R)))) (ring_unit (cring_ring (idomain_ring ZZ)))) (ring_unit R) *) (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@ring_mult R (@nat_to_group (abelian_group_group (ring_group R)) (ring_unit R) (Pos.to_nat p)) (@nat_to_group (abelian_group_group (ring_group R)) (ring_unit R) (Pos.to_nat p0))) (@ring_mult R (group_inverse (abelian_group_group (ring_group R)) (@nat_to_group (abelian_group_group (ring_group R)) (ring_unit R) (Pos.to_nat p))) (group_inverse (abelian_group_group (ring_group R)) (@nat_to_group (abelian_group_group (ring_group R)) (ring_unit R) (Pos.to_nat p0)))) *) apply Trans with (group_inverse R (ring_mult (nat_to_group (ring_unit R) (nat_of_P p)) (group_inverse R (nat_to_group (ring_unit R) (nat_of_P p0))))); auto with algebra. (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Ap (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))))) (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@sgroup_map (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ)))))) (monoid_sgroup (group_monoid (abelian_group_group (ring_group R)))) (@monoid_sgroup_hom (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))) (group_monoid (abelian_group_group (ring_group R))) (@Z_to_group (abelian_group_group (ring_group R)) (ring_unit R)))) (ring_unit (cring_ring (idomain_ring ZZ)))) (ring_unit R) *) (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@ring_mult R (@nat_to_group (abelian_group_group (ring_group R)) (ring_unit R) (Pos.to_nat p)) (@nat_to_group (abelian_group_group (ring_group R)) (ring_unit R) (Pos.to_nat p0))) (group_inverse (abelian_group_group (ring_group R)) (@ring_mult R (@nat_to_group (abelian_group_group (ring_group R)) (ring_unit R) (Pos.to_nat p)) (group_inverse (abelian_group_group (ring_group R)) (@nat_to_group (abelian_group_group (ring_group R)) (ring_unit R) (Pos.to_nat p0))))) *) apply Trans with (group_inverse R (group_inverse R (ring_mult (nat_to_group (ring_unit R) (nat_of_P p)) (nat_to_group (ring_unit R) (nat_of_P p0))))); auto with algebra. (* Goal: @Equal (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@Ap (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))))) (sgroup_set (monoid_sgroup (group_monoid (abelian_group_group (ring_group R))))) (@sgroup_map (monoid_sgroup (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ)))))) (monoid_sgroup (group_monoid (abelian_group_group (ring_group R)))) (@monoid_sgroup_hom (group_monoid (abelian_group_group (ring_group (cring_ring (idomain_ring ZZ))))) (group_monoid (abelian_group_group (ring_group R))) (@Z_to_group (abelian_group_group (ring_group R)) (ring_unit R)))) (ring_unit (cring_ring (idomain_ring ZZ)))) (ring_unit R) *) simpl in |- *; auto with algebra. Qed. End Zup1.
"\nRequire Import Ensf.\nRequire Import Words.\nRequire Import more_words.\nRequire Import Rat.\nReq(...TRUNCATED)
"\nRequire Import Ensf.\nRequire Import Words.\nRequire Import more_words.\nRequire Import Rat.\nReq(...TRUNCATED)
"Require Import Coq.Arith.Div2.\nRequire Import Coq.micromega.Lia.\nRequire Import Coq.NArith.NArith(...TRUNCATED)
"\nRequire Import Ensf.\nRequire Import Max.\nRequire Import Words.\nRequire Import fonctions.\nRequ(...TRUNCATED)
README.md exists but content is empty. Use the Edit dataset card button to edit it.
Downloads last month
34
Edit dataset card