|
# PIE Dataset Card for "argmicro" |
|
|
|
This is a [PyTorch-IE](https://github.com/ChristophAlt/pytorch-ie) wrapper for the |
|
[ArgMicro Huggingface dataset loading script](https://huggingface.co./datasets/DFKI-SLT/argmicro). |
|
|
|
## Usage |
|
|
|
```python |
|
from pie_datasets import load_dataset |
|
from pytorch_ie.documents import TextDocumentWithLabeledSpansAndBinaryRelations |
|
|
|
# load English variant |
|
dataset = load_dataset("pie/argmicro", name="en") |
|
|
|
# if required, normalize the document type (see section Document Converters below) |
|
dataset_converted = dataset.to_document_type(TextDocumentWithLabeledSpansAndBinaryRelations) |
|
assert isinstance(dataset_converted["train"][0], TextDocumentWithLabeledSpansAndBinaryRelations) |
|
|
|
# get first relation in the first document |
|
doc = dataset_converted["train"][0] |
|
print(doc.binary_relations[0]) |
|
# BinaryRelation(head=LabeledSpan(start=0, end=81, label='opp', score=1.0), tail=LabeledSpan(start=326, end=402, label='pro', score=1.0), label='reb', score=1.0) |
|
print(doc.binary_relations[0].resolve()) |
|
# ('reb', (('opp', "Yes, it's annoying and cumbersome to separate your rubbish properly all the time."), ('pro', 'We Berliners should take the chance and become pioneers in waste separation!'))) |
|
``` |
|
|
|
## Dataset Variants |
|
|
|
The dataset contains two `BuilderConfig`'s: |
|
|
|
- `de`: with the original texts collection in German |
|
- `en`: with the English-translated texts |
|
|
|
## Data Schema |
|
|
|
The document type for this dataset is `ArgMicroDocument` which defines the following data fields: |
|
|
|
- `text` (str) |
|
- `id` (str, optional) |
|
- `topic_id` (str, optional) |
|
- `metadata` (dictionary, optional) |
|
|
|
and the following annotation layers: |
|
|
|
- `stance` (annotation type: `Label`) |
|
- description: A document may contain one of these `stance` labels: `pro`, `con`, `unclear`, or no label when it is undefined (see [here](https://huggingface.co./datasets/DFKI-SLT/argmicro/blob/main/argmicro.py#L35) for reference). |
|
- `edus` (annotation type: `Span`, target: `text`) |
|
- `adus` (annotation type: `LabeledAnnotationCollection`, target: `edus`) |
|
- description: each element of `adus` may consist of several entries from `edus`, so we require `LabeledAnnotationCollection` as annotation type. This is originally indicated by `seg` edges in the data. |
|
- `LabeledAnnotationCollection` has the following fields: |
|
- `annotations` (annotation type: `Span`, target: `text`) |
|
- `label` (str, optional), values: `opp`, `pro` (see [here](https://huggingface.co./datasets/DFKI-SLT/argmicro/blob/main/argmicro.py#L36)) |
|
- `relations` (annotation type: `MultiRelation`, target: `adus`) |
|
- description: Undercut (`und`) relations originally target other relations (i.e. edges), but we let them target the `head` of the targeted relation instead. The original state can be deterministically reconstructed by taking the label into account. Furthermore, the head of additional source (`add`) relations are integrated into the head of the target relation (note that this propagates along `und` relations). We model this with `MultiRelation`s whose `head` and `tail` are of type `LabeledAnnotationCollection`. |
|
- `MultiRelation` has the following fields: |
|
- `head` (tuple, annotation type: `LabeledAnnotationCollection`, target: `adus`) |
|
- `tail` (tuple, annotation type: `LabeledAnnotationCollection`, target: `adus`) |
|
- `label` (str, optional), values: `sup`, `exa`, `reb`, `und` (see [here](https://huggingface.co./datasets/DFKI-SLT/argmicro/blob/main/argmicro.py#L37) for reference, but note that helper relations `seg` and `add` are not there anymore, see above). |
|
|
|
See [here](https://github.com/ChristophAlt/pytorch-ie/blob/main/src/pytorch_ie/annotations.py) for the annotation type definitions. |
|
|
|
## Document Converters |
|
|
|
The dataset provides document converters for the following target document types: |
|
|
|
- `pytorch_ie.documents.TextDocumentWithLabeledSpansAndBinaryRelations` |
|
- `LabeledSpans`, converted from `ArgMicroDocument`'s `adus` |
|
- labels: `opp`, `pro` |
|
- if an ADU contains multiple spans (i.e. EDUs), we take the start of the first EDU and the end of the last EDU as the boundaries of the new `LabeledSpan`. We also raise exceptions if any newly created `LabeledSpan`s overlap. |
|
- `BinraryRelations`, converted from `ArgMicroDocument`'s `relations` |
|
- labels: `sup`, `reb`, `und`, `joint`, `exa` |
|
- if the `head` or `tail` consists of multiple `adus`, then we build `BinaryRelation`s with all `head`-`tail` combinations and take the label from the original relation. Then, we build `BinaryRelations`' with label `joint` between each component that previously belongs to the same `head` or `tail`, respectively. |
|
- `metadata`, we keep the `ArgMicroDocument`'s `metadata`, but `stance` and `topic_id`. |
|
|
|
See [here](https://github.com/ChristophAlt/pytorch-ie/blob/main/src/pytorch_ie/documents.py) for the document type |
|
definitions. |
|
|
|
### Collected Statistics after Document Conversion |
|
|
|
We use the script `evaluate_documents.py` from [PyTorch-IE-Hydra-Template](https://github.com/ArneBinder/pytorch-ie-hydra-template-1) to generate these statistics. |
|
After checking out that code, the statistics and plots can be generated by the command: |
|
|
|
```commandline |
|
python src/evaluate_documents.py dataset=argmicro_base metric=METRIC |
|
``` |
|
|
|
where a `METRIC` is called according to the available metric configs in `config/metric/METRIC` (see [metrics](https://github.com/ArneBinder/pytorch-ie-hydra-template-1/tree/main/configs/metric)). |
|
|
|
This also requires to have the following dataset config in `configs/dataset/argmicro_base.yaml` of this dataset within the repo directory: |
|
|
|
```commandline |
|
_target_: src.utils.execute_pipeline |
|
input: |
|
_target_: pie_datasets.DatasetDict.load_dataset |
|
path: pie/argmicro |
|
revision: 28ef031d2a2c97be7e9ed360e1a5b20bd55b57b2 |
|
name: en |
|
``` |
|
|
|
For token based metrics, this uses `bert-base-uncased` from `transformer.AutoTokenizer` (see [AutoTokenizer](https://huggingface.co./docs/transformers/v4.37.1/en/model_doc/auto#transformers.AutoTokenizer), and [bert-based-uncased](https://huggingface.co./bert-base-uncased) to tokenize `text` in `TextDocumentWithLabeledSpansAndBinaryRelations` (see [document type](https://github.com/ChristophAlt/pytorch-ie/blob/main/src/pytorch_ie/documents.py)). |
|
|
|
#### Relation argument (outer) token distance per label |
|
|
|
The distance is measured from the first token of the first argumentative unit to the last token of the last unit, a.k.a. outer distance. |
|
|
|
We collect the following statistics: number of documents in the split (*no. doc*), no. of relations (*len*), mean of token distance (*mean*), standard deviation of the distance (*std*), minimum outer distance (*min*), and maximum outer distance (*max*). |
|
We also present histograms in the collapsible, showing the distribution of these relation distances (x-axis; and unit-counts in y-axis), accordingly. |
|
|
|
<details> |
|
<summary>Command</summary> |
|
|
|
``` |
|
python src/evaluate_documents.py dataset=argmicro_base metric=relation_argument_token_distances |
|
``` |
|
|
|
</details> |
|
|
|
| | len | max | mean | min | std | |
|
| :---- | ---: | --: | -----: | --: | -----: | |
|
| ALL | 1018 | 127 | 44.434 | 14 | 21.501 | |
|
| exa | 18 | 63 | 33.556 | 16 | 13.056 | |
|
| joint | 88 | 48 | 30.091 | 17 | 9.075 | |
|
| reb | 220 | 127 | 49.327 | 16 | 24.653 | |
|
| sup | 562 | 124 | 46.534 | 14 | 22.079 | |
|
| und | 130 | 84 | 38.292 | 17 | 12.321 | |
|
|
|
<details> |
|
<summary>Histogram (split: train, 112 documents)</summary> |
|
|
|
![rtd-label_argmicro.png](img%2Frtd-label_argmicro.png) |
|
|
|
</details> |
|
|
|
#### Span lengths (tokens) |
|
|
|
The span length is measured from the first token of the first argumentative unit to the last token of the particular unit. |
|
|
|
We collect the following statistics: number of documents in the split (*no. doc*), no. of spans (*len*), mean of number of tokens in a span (*mean*), standard deviation of the number of tokens (*std*), minimum tokens in a span (*min*), and maximum tokens in a span (*max*). |
|
We also present histograms in the collapsible, showing the distribution of these token-numbers (x-axis; and unit-counts in y-axis), accordingly. |
|
|
|
<details> |
|
<summary>Command</summary> |
|
|
|
``` |
|
python src/evaluate_documents.py dataset=argmicro_base metric=span_lengths_tokens |
|
``` |
|
|
|
</details> |
|
|
|
| statistics | train | |
|
| :--------- | -----: | |
|
| no. doc | 112 | |
|
| len | 576 | |
|
| mean | 16.365 | |
|
| std | 6.545 | |
|
| min | 4 | |
|
| max | 41 | |
|
|
|
<details> |
|
<summary>Histogram (split: train, 112 documents)</summary> |
|
|
|
![slt_argmicro.png](img%2Fslt_argmicro.png) |
|
|
|
</details> |
|
|
|
#### Token length (tokens) |
|
|
|
The token length is measured from the first token of the document to the last one. |
|
|
|
We collect the following statistics: number of documents in the split (*no. doc*), mean of document token-length (*mean*), standard deviation of the length (*std*), minimum number of tokens in a document (*min*), and maximum number of tokens in a document (*max*). |
|
We also present histograms in the collapsible, showing the distribution of these token lengths (x-axis; and unit-counts in y-axis), accordingly. |
|
|
|
<details> |
|
<summary>Command</summary> |
|
|
|
``` |
|
python src/evaluate_documents.py dataset=argmicro_base metric=count_text_tokens |
|
``` |
|
|
|
</details> |
|
|
|
| statistics | train | |
|
| :--------- | -----: | |
|
| no. doc | 112 | |
|
| mean | 84.161 | |
|
| std | 22.596 | |
|
| min | 36 | |
|
| max | 153 | |
|
|
|
<details> |
|
<summary>Histogram (split: train, 112 documents)</summary> |
|
|
|
![tl_argmicro.png](img%2Ftl_argmicro.png) |
|
|
|
</details> |
|
|