Convert dataset to Parquet

#2
by phucdev - opened
README.md CHANGED
@@ -1,206 +1,216 @@
1
  ---
2
  annotations_creators:
3
  - expert-generated
4
- language:
5
- - en
6
  language_creators:
7
  - found
 
 
8
  license:
9
  - other
10
  multilinguality:
11
  - monolingual
12
- pretty_name: FabNER is a manufacturing text dataset for Named Entity Recognition.
13
  size_categories:
14
  - 10K<n<100K
15
  source_datasets: []
16
- tags:
17
- - manufacturing
18
- - 2000-2020
19
  task_categories:
20
  - token-classification
21
  task_ids:
22
  - named-entity-recognition
 
 
 
 
23
  dataset_info:
24
- - config_name: fabner
25
- features:
26
- - name: id
27
- dtype: string
28
- - name: tokens
29
- sequence: string
30
- - name: ner_tags
31
- sequence:
32
- class_label:
33
- names:
34
- '0': O
35
- '1': B-MATE
36
- '2': I-MATE
37
- '3': E-MATE
38
- '4': S-MATE
39
- '5': B-MANP
40
- '6': I-MANP
41
- '7': E-MANP
42
- '8': S-MANP
43
- '9': B-MACEQ
44
- '10': I-MACEQ
45
- '11': E-MACEQ
46
- '12': S-MACEQ
47
- '13': B-APPL
48
- '14': I-APPL
49
- '15': E-APPL
50
- '16': S-APPL
51
- '17': B-FEAT
52
- '18': I-FEAT
53
- '19': E-FEAT
54
- '20': S-FEAT
55
- '21': B-PRO
56
- '22': I-PRO
57
- '23': E-PRO
58
- '24': S-PRO
59
- '25': B-CHAR
60
- '26': I-CHAR
61
- '27': E-CHAR
62
- '28': S-CHAR
63
- '29': B-PARA
64
- '30': I-PARA
65
- '31': E-PARA
66
- '32': S-PARA
67
- '33': B-ENAT
68
- '34': I-ENAT
69
- '35': E-ENAT
70
- '36': S-ENAT
71
- '37': B-CONPRI
72
- '38': I-CONPRI
73
- '39': E-CONPRI
74
- '40': S-CONPRI
75
- '41': B-MANS
76
- '42': I-MANS
77
- '43': E-MANS
78
- '44': S-MANS
79
- '45': B-BIOP
80
- '46': I-BIOP
81
- '47': E-BIOP
82
- '48': S-BIOP
83
- splits:
84
- - name: train
85
- num_bytes: 4394010
86
- num_examples: 9435
87
- - name: validation
88
- num_bytes: 934347
89
- num_examples: 2183
90
- - name: test
91
- num_bytes: 940136
92
- num_examples: 2064
93
- download_size: 1265830
94
- dataset_size: 6268493
95
- - config_name: fabner_bio
96
- features:
97
- - name: id
98
- dtype: string
99
- - name: tokens
100
- sequence: string
101
- - name: ner_tags
102
- sequence:
103
- class_label:
104
- names:
105
- '0': O
106
- '1': B-MATE
107
- '2': I-MATE
108
- '3': B-MANP
109
- '4': I-MANP
110
- '5': B-MACEQ
111
- '6': I-MACEQ
112
- '7': B-APPL
113
- '8': I-APPL
114
- '9': B-FEAT
115
- '10': I-FEAT
116
- '11': B-PRO
117
- '12': I-PRO
118
- '13': B-CHAR
119
- '14': I-CHAR
120
- '15': B-PARA
121
- '16': I-PARA
122
- '17': B-ENAT
123
- '18': I-ENAT
124
- '19': B-CONPRI
125
- '20': I-CONPRI
126
- '21': B-MANS
127
- '22': I-MANS
128
- '23': B-BIOP
129
- '24': I-BIOP
130
- splits:
131
- - name: train
132
- num_bytes: 4394010
133
- num_examples: 9435
134
- - name: validation
135
- num_bytes: 934347
136
- num_examples: 2183
137
- - name: test
138
- num_bytes: 940136
139
- num_examples: 2064
140
- download_size: 1258672
141
- dataset_size: 6268493
142
- - config_name: fabner_simple
143
- features:
144
- - name: id
145
- dtype: string
146
- - name: tokens
147
- sequence: string
148
- - name: ner_tags
149
- sequence:
150
- class_label:
151
- names:
152
- '0': O
153
- '1': MATE
154
- '2': MANP
155
- '3': MACEQ
156
- '4': APPL
157
- '5': FEAT
158
- '6': PRO
159
- '7': CHAR
160
- '8': PARA
161
- '9': ENAT
162
- '10': CONPRI
163
- '11': MANS
164
- '12': BIOP
165
- splits:
166
- - name: train
167
- num_bytes: 4394010
168
- num_examples: 9435
169
- - name: validation
170
- num_bytes: 934347
171
- num_examples: 2183
172
- - name: test
173
- num_bytes: 940136
174
- num_examples: 2064
175
- download_size: 1233960
176
- dataset_size: 6268493
177
- - config_name: text2tech
178
- features:
179
- - name: id
180
- dtype: string
181
- - name: tokens
182
- sequence: string
183
- - name: ner_tags
184
- sequence:
185
- class_label:
186
- names:
187
- '0': O
188
- '1': Technological System
189
- '2': Method
190
- '3': Material
191
- '4': Technical Field
192
- splits:
193
- - name: train
194
- num_bytes: 4394010
195
- num_examples: 9435
196
- - name: validation
197
- num_bytes: 934347
198
- num_examples: 2183
199
- - name: test
200
- num_bytes: 940136
201
- num_examples: 2064
202
- download_size: 1192966
203
- dataset_size: 6268493
 
 
 
 
 
 
 
 
 
 
204
  ---
205
 
206
  # Dataset Card for FabNER
 
1
  ---
2
  annotations_creators:
3
  - expert-generated
 
 
4
  language_creators:
5
  - found
6
+ language:
7
+ - en
8
  license:
9
  - other
10
  multilinguality:
11
  - monolingual
 
12
  size_categories:
13
  - 10K<n<100K
14
  source_datasets: []
 
 
 
15
  task_categories:
16
  - token-classification
17
  task_ids:
18
  - named-entity-recognition
19
+ pretty_name: FabNER is a manufacturing text dataset for Named Entity Recognition.
20
+ tags:
21
+ - manufacturing
22
+ - 2000-2020
23
  dataset_info:
24
+ - config_name: fabner
25
+ features:
26
+ - name: id
27
+ dtype: string
28
+ - name: tokens
29
+ sequence: string
30
+ - name: ner_tags
31
+ sequence:
32
+ class_label:
33
+ names:
34
+ '0': O
35
+ '1': B-MATE
36
+ '2': I-MATE
37
+ '3': E-MATE
38
+ '4': S-MATE
39
+ '5': B-MANP
40
+ '6': I-MANP
41
+ '7': E-MANP
42
+ '8': S-MANP
43
+ '9': B-MACEQ
44
+ '10': I-MACEQ
45
+ '11': E-MACEQ
46
+ '12': S-MACEQ
47
+ '13': B-APPL
48
+ '14': I-APPL
49
+ '15': E-APPL
50
+ '16': S-APPL
51
+ '17': B-FEAT
52
+ '18': I-FEAT
53
+ '19': E-FEAT
54
+ '20': S-FEAT
55
+ '21': B-PRO
56
+ '22': I-PRO
57
+ '23': E-PRO
58
+ '24': S-PRO
59
+ '25': B-CHAR
60
+ '26': I-CHAR
61
+ '27': E-CHAR
62
+ '28': S-CHAR
63
+ '29': B-PARA
64
+ '30': I-PARA
65
+ '31': E-PARA
66
+ '32': S-PARA
67
+ '33': B-ENAT
68
+ '34': I-ENAT
69
+ '35': E-ENAT
70
+ '36': S-ENAT
71
+ '37': B-CONPRI
72
+ '38': I-CONPRI
73
+ '39': E-CONPRI
74
+ '40': S-CONPRI
75
+ '41': B-MANS
76
+ '42': I-MANS
77
+ '43': E-MANS
78
+ '44': S-MANS
79
+ '45': B-BIOP
80
+ '46': I-BIOP
81
+ '47': E-BIOP
82
+ '48': S-BIOP
83
+ splits:
84
+ - name: train
85
+ num_bytes: 4394010
86
+ num_examples: 9435
87
+ - name: validation
88
+ num_bytes: 934347
89
+ num_examples: 2183
90
+ - name: test
91
+ num_bytes: 940136
92
+ num_examples: 2064
93
+ download_size: 1265830
94
+ dataset_size: 6268493
95
+ - config_name: fabner_bio
96
+ features:
97
+ - name: id
98
+ dtype: string
99
+ - name: tokens
100
+ sequence: string
101
+ - name: ner_tags
102
+ sequence:
103
+ class_label:
104
+ names:
105
+ '0': O
106
+ '1': B-MATE
107
+ '2': I-MATE
108
+ '3': B-MANP
109
+ '4': I-MANP
110
+ '5': B-MACEQ
111
+ '6': I-MACEQ
112
+ '7': B-APPL
113
+ '8': I-APPL
114
+ '9': B-FEAT
115
+ '10': I-FEAT
116
+ '11': B-PRO
117
+ '12': I-PRO
118
+ '13': B-CHAR
119
+ '14': I-CHAR
120
+ '15': B-PARA
121
+ '16': I-PARA
122
+ '17': B-ENAT
123
+ '18': I-ENAT
124
+ '19': B-CONPRI
125
+ '20': I-CONPRI
126
+ '21': B-MANS
127
+ '22': I-MANS
128
+ '23': B-BIOP
129
+ '24': I-BIOP
130
+ splits:
131
+ - name: train
132
+ num_bytes: 4394010
133
+ num_examples: 9435
134
+ - name: validation
135
+ num_bytes: 934347
136
+ num_examples: 2183
137
+ - name: test
138
+ num_bytes: 940136
139
+ num_examples: 2064
140
+ download_size: 1258672
141
+ dataset_size: 6268493
142
+ - config_name: fabner_simple
143
+ features:
144
+ - name: id
145
+ dtype: string
146
+ - name: tokens
147
+ sequence: string
148
+ - name: ner_tags
149
+ sequence:
150
+ class_label:
151
+ names:
152
+ '0': O
153
+ '1': MATE
154
+ '2': MANP
155
+ '3': MACEQ
156
+ '4': APPL
157
+ '5': FEAT
158
+ '6': PRO
159
+ '7': CHAR
160
+ '8': PARA
161
+ '9': ENAT
162
+ '10': CONPRI
163
+ '11': MANS
164
+ '12': BIOP
165
+ splits:
166
+ - name: train
167
+ num_bytes: 4394010
168
+ num_examples: 9435
169
+ - name: validation
170
+ num_bytes: 934347
171
+ num_examples: 2183
172
+ - name: test
173
+ num_bytes: 940136
174
+ num_examples: 2064
175
+ download_size: 1233960
176
+ dataset_size: 6268493
177
+ - config_name: text2tech
178
+ features:
179
+ - name: id
180
+ dtype: string
181
+ - name: tokens
182
+ sequence: string
183
+ - name: ner_tags
184
+ sequence:
185
+ class_label:
186
+ names:
187
+ '0': O
188
+ '1': Technological System
189
+ '2': Method
190
+ '3': Material
191
+ '4': Technical Field
192
+ splits:
193
+ - name: train
194
+ num_bytes: 4394010
195
+ num_examples: 9435
196
+ - name: validation
197
+ num_bytes: 934347
198
+ num_examples: 2183
199
+ - name: test
200
+ num_bytes: 940136
201
+ num_examples: 2064
202
+ download_size: 1192966
203
+ dataset_size: 6268493
204
+ configs:
205
+ - config_name: fabner
206
+ data_files:
207
+ - split: train
208
+ path: fabner/train-*
209
+ - split: validation
210
+ path: fabner/validation-*
211
+ - split: test
212
+ path: fabner/test-*
213
+ default: true
214
  ---
215
 
216
  # Dataset Card for FabNER
fabner/test-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:50f360b9192ca1ca01e9ef63e737105c7406ec2ac36227c8dbc053ab4e92bc90
3
+ size 187818
fabner/train-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bb0bd8e86ebfc1bb61c8427d3bd9d57c4060cc8d24e083386385e45ea6873cfd
3
+ size 886876
fabner/validation-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:195dacb0a60f1a301ba9df2c336f7d8e908145fdd4e5f8962e6c43106d61ac74
3
+ size 191136