Datasets:
File size: 7,361 Bytes
9e430eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
import os
import errno
import os.path as osp
from typing import List, Set, Union
import json
from pathlib import Path
from typing import List, Set, Union, Dict
import torch
from torch.utils.data import Dataset
import seaborn as sns
from pycocotools.coco import COCO
"""
load raw data
"""
def makedirs(path):
try:
os.makedirs(osp.expanduser(osp.normpath(path)))
except OSError as e:
if e.errno != errno.EEXIST and osp.isdir(path):
raise e
def files_exist(files):
return all([osp.exists(f) for f in files])
def load_scipostlayout_data(raw_dir: str, max_num_elements: int,
label_set: Union[List, Set], label2index: Dict):
def is_valid(element):
label = coco.cats[element['category_id']]['name']
if label not in set(label_set):
return False
x1, y1, width, height = element['bbox']
x2, y2 = x1 + width, y1 + height
if x1 < 0 or y1 < 0 or W < x2 or H < y2:
return False
if x2 <= x1 or y2 <= y1:
return False
return True
train_list, dev_list = None, None
# raw_dir = osp.join(Path(raw_dir), 'scipostlayout')
for split in ['train', 'dev', 'test']:
dataset = []
coco = COCO(osp.join(raw_dir, f'{split}.json'))
for img_id in sorted(coco.getImgIds()):
ann_img = coco.loadImgs(img_id)
W = float(ann_img[0]['width'])
H = float(ann_img[0]['height'])
name = ann_img[0]['file_name']
# if H < W:
# continue
elements = coco.loadAnns(coco.getAnnIds(imgIds=[img_id]))
_elements = list(filter(is_valid, elements))
filtered = len(elements) != len(_elements)
elements = _elements
N = len(elements)
if N == 0 or max_num_elements < N:
continue
bboxes = []
labels = []
for element in elements:
# bbox
x1, y1, width, height = element['bbox']
b = [x1 / W, y1 / H, width / W, height / H] # bbox format: ltwh
bboxes.append(b)
# label
label = coco.cats[element['category_id']]['name']
labels.append(label2index[label])
bboxes = torch.tensor(bboxes, dtype=torch.float)
labels = torch.tensor(labels, dtype=torch.long)
data = {
'name': name,
'bboxes': bboxes,
'labels': labels,
'canvas_size': [W, H],
'filtered': filtered,
}
dataset.append(data)
if split == 'train':
train_list = dataset
elif split == 'dev':
dev_list = dataset
else:
test_list = dataset
# shuffle train with seed
generator = torch.Generator().manual_seed(0)
indices = torch.randperm(len(train_list), generator=generator)
train_list = [train_list[i] for i in indices]
train_set = train_list
dev_set = dev_list
test_set = test_list
split_dataset = [train_set, dev_set, test_set]
return split_dataset
class LayoutDataset(Dataset):
_label2index = None
_index2label = None
_colors = None
split_file_names = ['train.pt', 'dev.pt', 'test.pt']
def __init__(self,
root: str,
data_name: str,
split: str,
max_num_elements: int,
label_set: Union[List, Set],
online_process: bool = True):
self.root = f'{root}/{data_name}/'
self.raw_dir = osp.join(self.root, 'raw')
self.max_num_elements = max_num_elements
self.label_set = label_set
self.pre_processed_dir = osp.join(
self.root, 'pre_processed_{}_{}'.format(self.max_num_elements, len(self.label_set)))
assert split in ['train', 'dev', 'test']
if files_exist(self.pre_processed_paths):
idx = self.split_file_names.index('{}.pt'.format(split))
print(f'Loading {split}...')
self.data = torch.load(self.pre_processed_paths[idx])
else:
print(f'Pre-processing and loading {split}...')
makedirs(self.pre_processed_dir)
split_dataset = self.load_raw_data()
self.save_split_dataset(split_dataset)
idx = self.split_file_names.index('{}.pt'.format(split))
self.data = torch.load(self.pre_processed_paths[idx])
self.online_process = online_process
if not self.online_process:
self.data = [self.process(item) for item in self.data]
@property
def pre_processed_paths(self):
return [
osp.join(self.pre_processed_dir, f) for f in self.split_file_names
]
@classmethod
def label2index(self, label_set):
if self._label2index is None:
self._label2index = dict()
for idx, label in enumerate(label_set):
self._label2index[label] = idx # HACK idx + 1
return self._label2index
@classmethod
def index2label(self, label_set):
if self._index2label is None:
self._index2label = dict()
for idx, label in enumerate(label_set):
self._index2label[idx] = label # HACK idx + 1
return self._index2label
@property
def colors(self):
if self._colors is None:
n_colors = len(self.label_set) + 1
colors = sns.color_palette('husl', n_colors=n_colors)
self._colors = [
tuple(map(lambda x: int(x * 255), c)) for c in colors
]
return self._colors
def save_split_dataset(self, split_dataset):
torch.save(split_dataset[0], self.pre_processed_paths[0])
torch.save(split_dataset[1], self.pre_processed_paths[1])
torch.save(split_dataset[2], self.pre_processed_paths[2])
def load_raw_data(self) -> list:
raise NotImplementedError
def process(self, data) -> dict:
raise NotImplementedError
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
if self.online_process:
sample = self.process(self.data[idx])
else:
sample = self.data[idx]
return sample
class SciPostLayoutDataset(LayoutDataset):
labels = [
'Title',
'Author Info',
'Section',
'List',
'Text',
'Caption',
'Figure',
'Table',
'Unknown'
]
def __init__(self,
root: str,
split: str,
max_num_elements: int,
online_process: bool = True):
data_name = 'scipostlayout'
super().__init__(root,
data_name,
split,
max_num_elements,
label_set=self.labels,
online_process=online_process)
def load_raw_data(self) -> list:
return load_scipostlayout_data(self.raw_dir, self.max_num_elements,
self.label_set, self.label2index(self.label_set))
if __name__ == "__main__":
dataset = SciPostLayoutDataset(root="./", split="dev", max_num_elements=50) |