Datasets:
Upload 9 files
Browse files- .gitattributes +1 -0
- README.md +40 -0
- dev.json +0 -0
- dev.zip +3 -0
- load_dataset.py +241 -0
- poster_pdf.zip +3 -0
- test.json +0 -0
- test.zip +3 -0
- train.json +3 -0
- train.zip +3 -0
.gitattributes
CHANGED
@@ -53,3 +53,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
53 |
*.jpg filter=lfs diff=lfs merge=lfs -text
|
54 |
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
55 |
*.webp filter=lfs diff=lfs merge=lfs -text
|
|
|
|
53 |
*.jpg filter=lfs diff=lfs merge=lfs -text
|
54 |
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
55 |
*.webp filter=lfs diff=lfs merge=lfs -text
|
56 |
+
train.json filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,3 +1,43 @@
|
|
1 |
---
|
2 |
license: cc
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: cc
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
size_categories:
|
6 |
+
- 1K<n<10K
|
7 |
---
|
8 |
+
|
9 |
+
This is the dataset repository of a paper ''SciPostLayout: A Dataset for Layout Analysis and Layout Generation of Scientific Posters''.
|
10 |
+
This dataset includes 7,755 poster images in train set, 50 poster images in dev/test sets, respectively.
|
11 |
+
The file structure is as follows.
|
12 |
+
|
13 |
+
- train.zip
|
14 |
+
- 7,755 poster images of train set.
|
15 |
+
- dev.zip
|
16 |
+
- 50 poster images of dev set.
|
17 |
+
- test.zip
|
18 |
+
- 50 poster images of test set.
|
19 |
+
- train.json
|
20 |
+
- annotation data of train set.
|
21 |
+
- dev.json
|
22 |
+
- annotation data of valid set.
|
23 |
+
- test.json
|
24 |
+
- annotation data of test set.
|
25 |
+
- load_dataset.py
|
26 |
+
- example script to load the dataset.
|
27 |
+
- poster_pdf.zip
|
28 |
+
- poster pdf files (optional)
|
29 |
+
|
30 |
+
After downloading the data set, place each file as follows to run load_dataset.py
|
31 |
+
|
32 |
+
- load_dataset.py
|
33 |
+
- scipostlayout
|
34 |
+
- raw
|
35 |
+
- train
|
36 |
+
- train png files
|
37 |
+
- dev
|
38 |
+
- dev png files
|
39 |
+
- test
|
40 |
+
- test png files
|
41 |
+
- train.json
|
42 |
+
- dev.json
|
43 |
+
- test.json
|
dev.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
dev.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:600922983bee703da3dedda0c782fe4edd66afb19795718956799604e6b4c070
|
3 |
+
size 135972578
|
load_dataset.py
ADDED
@@ -0,0 +1,241 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import errno
|
3 |
+
import os.path as osp
|
4 |
+
from typing import List, Set, Union
|
5 |
+
|
6 |
+
import json
|
7 |
+
from pathlib import Path
|
8 |
+
from typing import List, Set, Union, Dict
|
9 |
+
|
10 |
+
import torch
|
11 |
+
from torch.utils.data import Dataset
|
12 |
+
import seaborn as sns
|
13 |
+
from pycocotools.coco import COCO
|
14 |
+
"""
|
15 |
+
load raw data
|
16 |
+
"""
|
17 |
+
|
18 |
+
|
19 |
+
def makedirs(path):
|
20 |
+
try:
|
21 |
+
os.makedirs(osp.expanduser(osp.normpath(path)))
|
22 |
+
except OSError as e:
|
23 |
+
if e.errno != errno.EEXIST and osp.isdir(path):
|
24 |
+
raise e
|
25 |
+
|
26 |
+
|
27 |
+
def files_exist(files):
|
28 |
+
return all([osp.exists(f) for f in files])
|
29 |
+
|
30 |
+
|
31 |
+
|
32 |
+
def load_scipostlayout_data(raw_dir: str, max_num_elements: int,
|
33 |
+
label_set: Union[List, Set], label2index: Dict):
|
34 |
+
|
35 |
+
def is_valid(element):
|
36 |
+
label = coco.cats[element['category_id']]['name']
|
37 |
+
if label not in set(label_set):
|
38 |
+
return False
|
39 |
+
x1, y1, width, height = element['bbox']
|
40 |
+
x2, y2 = x1 + width, y1 + height
|
41 |
+
|
42 |
+
if x1 < 0 or y1 < 0 or W < x2 or H < y2:
|
43 |
+
return False
|
44 |
+
if x2 <= x1 or y2 <= y1:
|
45 |
+
return False
|
46 |
+
|
47 |
+
return True
|
48 |
+
|
49 |
+
train_list, dev_list = None, None
|
50 |
+
# raw_dir = osp.join(Path(raw_dir), 'scipostlayout')
|
51 |
+
for split in ['train', 'dev', 'test']:
|
52 |
+
dataset = []
|
53 |
+
coco = COCO(osp.join(raw_dir, f'{split}.json'))
|
54 |
+
for img_id in sorted(coco.getImgIds()):
|
55 |
+
ann_img = coco.loadImgs(img_id)
|
56 |
+
W = float(ann_img[0]['width'])
|
57 |
+
H = float(ann_img[0]['height'])
|
58 |
+
name = ann_img[0]['file_name']
|
59 |
+
# if H < W:
|
60 |
+
# continue
|
61 |
+
|
62 |
+
elements = coco.loadAnns(coco.getAnnIds(imgIds=[img_id]))
|
63 |
+
_elements = list(filter(is_valid, elements))
|
64 |
+
filtered = len(elements) != len(_elements)
|
65 |
+
elements = _elements
|
66 |
+
|
67 |
+
N = len(elements)
|
68 |
+
if N == 0 or max_num_elements < N:
|
69 |
+
continue
|
70 |
+
|
71 |
+
bboxes = []
|
72 |
+
labels = []
|
73 |
+
|
74 |
+
for element in elements:
|
75 |
+
# bbox
|
76 |
+
x1, y1, width, height = element['bbox']
|
77 |
+
b = [x1 / W, y1 / H, width / W, height / H] # bbox format: ltwh
|
78 |
+
bboxes.append(b)
|
79 |
+
|
80 |
+
# label
|
81 |
+
label = coco.cats[element['category_id']]['name']
|
82 |
+
labels.append(label2index[label])
|
83 |
+
|
84 |
+
bboxes = torch.tensor(bboxes, dtype=torch.float)
|
85 |
+
labels = torch.tensor(labels, dtype=torch.long)
|
86 |
+
|
87 |
+
data = {
|
88 |
+
'name': name,
|
89 |
+
'bboxes': bboxes,
|
90 |
+
'labels': labels,
|
91 |
+
'canvas_size': [W, H],
|
92 |
+
'filtered': filtered,
|
93 |
+
}
|
94 |
+
dataset.append(data)
|
95 |
+
|
96 |
+
if split == 'train':
|
97 |
+
train_list = dataset
|
98 |
+
elif split == 'dev':
|
99 |
+
dev_list = dataset
|
100 |
+
else:
|
101 |
+
test_list = dataset
|
102 |
+
|
103 |
+
# shuffle train with seed
|
104 |
+
generator = torch.Generator().manual_seed(0)
|
105 |
+
indices = torch.randperm(len(train_list), generator=generator)
|
106 |
+
train_list = [train_list[i] for i in indices]
|
107 |
+
|
108 |
+
train_set = train_list
|
109 |
+
dev_set = dev_list
|
110 |
+
test_set = test_list
|
111 |
+
split_dataset = [train_set, dev_set, test_set]
|
112 |
+
return split_dataset
|
113 |
+
|
114 |
+
|
115 |
+
class LayoutDataset(Dataset):
|
116 |
+
|
117 |
+
_label2index = None
|
118 |
+
_index2label = None
|
119 |
+
_colors = None
|
120 |
+
|
121 |
+
split_file_names = ['train.pt', 'dev.pt', 'test.pt']
|
122 |
+
|
123 |
+
def __init__(self,
|
124 |
+
root: str,
|
125 |
+
data_name: str,
|
126 |
+
split: str,
|
127 |
+
max_num_elements: int,
|
128 |
+
label_set: Union[List, Set],
|
129 |
+
online_process: bool = True):
|
130 |
+
|
131 |
+
self.root = f'{root}/{data_name}/'
|
132 |
+
self.raw_dir = osp.join(self.root, 'raw')
|
133 |
+
self.max_num_elements = max_num_elements
|
134 |
+
self.label_set = label_set
|
135 |
+
self.pre_processed_dir = osp.join(
|
136 |
+
self.root, 'pre_processed_{}_{}'.format(self.max_num_elements, len(self.label_set)))
|
137 |
+
assert split in ['train', 'dev', 'test']
|
138 |
+
|
139 |
+
if files_exist(self.pre_processed_paths):
|
140 |
+
idx = self.split_file_names.index('{}.pt'.format(split))
|
141 |
+
print(f'Loading {split}...')
|
142 |
+
self.data = torch.load(self.pre_processed_paths[idx])
|
143 |
+
else:
|
144 |
+
print(f'Pre-processing and loading {split}...')
|
145 |
+
makedirs(self.pre_processed_dir)
|
146 |
+
split_dataset = self.load_raw_data()
|
147 |
+
self.save_split_dataset(split_dataset)
|
148 |
+
idx = self.split_file_names.index('{}.pt'.format(split))
|
149 |
+
self.data = torch.load(self.pre_processed_paths[idx])
|
150 |
+
|
151 |
+
self.online_process = online_process
|
152 |
+
if not self.online_process:
|
153 |
+
self.data = [self.process(item) for item in self.data]
|
154 |
+
|
155 |
+
@property
|
156 |
+
def pre_processed_paths(self):
|
157 |
+
return [
|
158 |
+
osp.join(self.pre_processed_dir, f) for f in self.split_file_names
|
159 |
+
]
|
160 |
+
|
161 |
+
@classmethod
|
162 |
+
def label2index(self, label_set):
|
163 |
+
if self._label2index is None:
|
164 |
+
self._label2index = dict()
|
165 |
+
for idx, label in enumerate(label_set):
|
166 |
+
self._label2index[label] = idx # HACK idx + 1
|
167 |
+
return self._label2index
|
168 |
+
|
169 |
+
@classmethod
|
170 |
+
def index2label(self, label_set):
|
171 |
+
if self._index2label is None:
|
172 |
+
self._index2label = dict()
|
173 |
+
for idx, label in enumerate(label_set):
|
174 |
+
self._index2label[idx] = label # HACK idx + 1
|
175 |
+
return self._index2label
|
176 |
+
|
177 |
+
@property
|
178 |
+
def colors(self):
|
179 |
+
if self._colors is None:
|
180 |
+
n_colors = len(self.label_set) + 1
|
181 |
+
colors = sns.color_palette('husl', n_colors=n_colors)
|
182 |
+
self._colors = [
|
183 |
+
tuple(map(lambda x: int(x * 255), c)) for c in colors
|
184 |
+
]
|
185 |
+
return self._colors
|
186 |
+
|
187 |
+
def save_split_dataset(self, split_dataset):
|
188 |
+
torch.save(split_dataset[0], self.pre_processed_paths[0])
|
189 |
+
torch.save(split_dataset[1], self.pre_processed_paths[1])
|
190 |
+
torch.save(split_dataset[2], self.pre_processed_paths[2])
|
191 |
+
|
192 |
+
def load_raw_data(self) -> list:
|
193 |
+
raise NotImplementedError
|
194 |
+
|
195 |
+
def process(self, data) -> dict:
|
196 |
+
raise NotImplementedError
|
197 |
+
|
198 |
+
def __len__(self):
|
199 |
+
return len(self.data)
|
200 |
+
|
201 |
+
def __getitem__(self, idx):
|
202 |
+
if self.online_process:
|
203 |
+
sample = self.process(self.data[idx])
|
204 |
+
else:
|
205 |
+
sample = self.data[idx]
|
206 |
+
return sample
|
207 |
+
|
208 |
+
|
209 |
+
class SciPostLayoutDataset(LayoutDataset):
|
210 |
+
labels = [
|
211 |
+
'Title',
|
212 |
+
'Author Info',
|
213 |
+
'Section',
|
214 |
+
'List',
|
215 |
+
'Text',
|
216 |
+
'Caption',
|
217 |
+
'Figure',
|
218 |
+
'Table',
|
219 |
+
'Unknown'
|
220 |
+
]
|
221 |
+
|
222 |
+
def __init__(self,
|
223 |
+
root: str,
|
224 |
+
split: str,
|
225 |
+
max_num_elements: int,
|
226 |
+
online_process: bool = True):
|
227 |
+
data_name = 'scipostlayout'
|
228 |
+
super().__init__(root,
|
229 |
+
data_name,
|
230 |
+
split,
|
231 |
+
max_num_elements,
|
232 |
+
label_set=self.labels,
|
233 |
+
online_process=online_process)
|
234 |
+
|
235 |
+
def load_raw_data(self) -> list:
|
236 |
+
return load_scipostlayout_data(self.raw_dir, self.max_num_elements,
|
237 |
+
self.label_set, self.label2index(self.label_set))
|
238 |
+
|
239 |
+
|
240 |
+
if __name__ == "__main__":
|
241 |
+
dataset = SciPostLayoutDataset(root="./", split="dev", max_num_elements=50)
|
poster_pdf.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:63f86a43b8c75d451102709e12c8c417ef91c3e4c3092d6f76c9ef8b31453128
|
3 |
+
size 8774293867
|
test.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
test.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d18be440d37dd86ef4e46690757a9f672593ee3fcdb99b93f293cb3a19ae4c55
|
3 |
+
size 143442481
|
train.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:357cc415d0d89ec1427ce3cdf5342b38df082e0761621d2ffa0f254f100253f8
|
3 |
+
size 142449053
|
train.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c588fa06fdd47e97b7d02039c9fd1b94d079d2875c6ba1586b6afc083c219039
|
3 |
+
size 22211140890
|