arxiv_id
stringlengths
11
12
tables
listlengths
1
11
1906.06874v2
[ { "index": 1, "records": [ { "column": 2, "dataset": "Set5 - 2x upscaling", "metric": "PSNR", "model": "HBPN", "row": 12, "task": "Image Super-Resolution", "value": "38.13" }, { "column": 3, "dataset": "Set5 - 2x upscaling", "metric": "SSIM", "model": "HBPN", "row": 12, "task": "Image Super-Resolution", "value": "0.961" }, { "column": 4, "dataset": "Set14 - 2x upscaling", "metric": "PSNR", "model": "HBPN", "row": 12, "task": "Image Super-Resolution", "value": "33.78" }, { "column": 5, "dataset": "Set14 - 2x upscaling", "metric": "SSIM", "model": "HBPN", "row": 12, "task": "Image Super-Resolution", "value": "0.9209999999999999" }, { "column": 6, "dataset": "BSD100 - 2x upscaling", "metric": "PSNR", "model": "HBPN", "row": 12, "task": "Image Super-Resolution", "value": "32.33" }, { "column": 7, "dataset": "BSD100 - 2x upscaling", "metric": "SSIM", "model": "HBPN", "row": 12, "task": "Image Super-Resolution", "value": "0.902" }, { "column": 8, "dataset": "Urban100 - 2x upscaling", "metric": "PSNR", "model": "HBPN", "row": 12, "task": "Image Super-Resolution", "value": "33.12" }, { "column": 9, "dataset": "Urban100 - 2x upscaling", "metric": "SSIM", "model": "HBPN", "row": 12, "task": "Image Super-Resolution", "value": "0.938" }, { "column": 10, "dataset": "Manga109 - 2x upscaling", "metric": "PSNR", "model": "HBPN", "row": 12, "task": "Image Super-Resolution", "value": "39.3" }, { "column": 11, "dataset": "Manga109 - 2x upscaling", "metric": "SSIM", "model": "HBPN", "row": 12, "task": "Image Super-Resolution", "value": "0.9790000000000001" }, { "column": 2, "dataset": "Set5 - 4x upscaling", "metric": "PSNR", "model": "HBPN", "row": 23, "task": "Image Super-Resolution", "value": "32.55" }, { "column": 3, "dataset": "Set5 - 4x upscaling", "metric": "SSIM", "model": "HBPN", "row": 23, "task": "Image Super-Resolution", "value": "0.9" }, { "column": 4, "dataset": "Set14 - 4x upscaling", "metric": "PSNR", "model": "HBPN", "row": 23, "task": "Image Super-Resolution", "value": "28.67" }, { "column": 5, "dataset": "Set14 - 4x upscaling", "metric": "SSIM", "model": "HBPN", "row": 23, "task": "Image Super-Resolution", "value": "0.785" }, { "column": 6, "dataset": "BSD100 - 4x upscaling", "metric": "PSNR", "model": "HBPN", "row": 23, "task": "Image Super-Resolution", "value": "27.77" }, { "column": 7, "dataset": "BSD100 - 4x upscaling", "metric": "SSIM", "model": "HBPN", "row": 23, "task": "Image Super-Resolution", "value": "0.743" }, { "column": 8, "dataset": "Urban100 - 4x upscaling", "metric": "PSNR", "model": "HBPN", "row": 23, "task": "Image Super-Resolution", "value": "27.3" }, { "column": 9, "dataset": "Urban100 - 4x upscaling", "metric": "SSIM", "model": "HBPN", "row": 23, "task": "Image Super-Resolution", "value": "0.818" }, { "column": 10, "dataset": "Manga109 - 4x upscaling", "metric": "PSNR", "model": "HBPN", "row": 23, "task": "Image Super-Resolution", "value": "31.57" }, { "column": 11, "dataset": "Manga109 - 4x upscaling", "metric": "SSIM", "model": "HBPN", "row": 23, "task": "Image Super-Resolution", "value": "0.92" }, { "column": 2, "dataset": "Set5 - 8x upscaling", "metric": "PSNR", "model": "HBPN", "row": 34, "task": "Image Super-Resolution", "value": "27.17" }, { "column": 3, "dataset": "Set5 - 8x upscaling", "metric": "SSIM", "model": "HBPN", "row": 34, "task": "Image Super-Resolution", "value": "0.785" }, { "column": 4, "dataset": "Set14 - 8x upscaling", "metric": "PSNR", "model": "HBPN", "row": 34, "task": "Image Super-Resolution", "value": "24.96" }, { "column": 5, "dataset": "Set14 - 8x upscaling", "metric": "SSIM", "model": "HBPN", "row": 34, "task": "Image Super-Resolution", "value": "0.642" }, { "column": 6, "dataset": "BSD100 - 8x upscaling", "metric": "PSNR", "model": "HBPN", "row": 34, "task": "Image Super-Resolution", "value": "24.93" }, { "column": 7, "dataset": "BSD100 - 8x upscaling", "metric": "SSIM", "model": "HBPN", "row": 34, "task": "Image Super-Resolution", "value": "0.602" }, { "column": 8, "dataset": "Urban100 - 8x upscaling", "metric": "PSNR", "model": "HBPN", "row": 34, "task": "Image Super-Resolution", "value": "23.04" }, { "column": 9, "dataset": "Urban100 - 8x upscaling", "metric": "SSIM", "model": "HBPN", "row": 34, "task": "Image Super-Resolution", "value": "0.647" }, { "column": 10, "dataset": "Manga109 - 8x upscaling", "metric": "PSNR", "model": "HBPN", "row": 34, "task": "Image Super-Resolution", "value": "25.24" }, { "column": 11, "dataset": "Manga109 - 8x upscaling", "metric": "SSIM", "model": "HBPN", "row": 34, "task": "Image Super-Resolution", "value": "0.802" } ] } ]
1906.07078v1
[ { "index": 0, "records": [ { "column": 1, "dataset": "VggFace2 - 8x upscaling", "metric": "PSNR", "model": "Full-GWAInet", "row": 8, "task": "Image Super-Resolution", "value": "25.57" }, { "column": 2, "dataset": "WebFace - 8x upscaling", "metric": "PSNR", "model": "Full-GWAInet", "row": 8, "task": "Image Super-Resolution", "value": "27.11" } ] } ]
1906.08101v2
[ { "index": 3, "records": [ { "column": 1, "dataset": "CMRC 2018 (Simplified Chinese) Dev", "metric": "EM", "model": "RoBERTa-wwm-ext-large", "row": 7, "task": "Chinese Reading Comprehension", "value": "68.5" }, { "column": 2, "dataset": "CMRC 2018 (Simplified Chinese) Dev", "metric": "F1", "model": "RoBERTa-wwm-ext-large", "row": 7, "task": "Chinese Reading Comprehension", "value": "88.4" }, { "column": 3, "dataset": "CMRC 2018 (Simplified Chinese)", "metric": "EM", "model": "RoBERTa-wwm-ext-large", "row": 7, "task": "Chinese Reading Comprehension", "value": "74.2" }, { "column": 4, "dataset": "CMRC 2018 (Simplified Chinese)", "metric": "F1", "model": "RoBERTa-wwm-ext-large", "row": 7, "task": "Chinese Reading Comprehension", "value": "90.6" }, { "column": 5, "dataset": "CMRC 2018 (Simplified Chinese) Challenge", "metric": "EM", "model": "RoBERTa-wwm-ext-large", "row": 7, "task": "Chinese Reading Comprehension", "value": "31.5" }, { "column": 6, "dataset": "CMRC 2018 (Simplified Chinese) Challenge", "metric": "F1", "model": "RoBERTa-wwm-ext-large", "row": 7, "task": "Chinese Reading Comprehension", "value": "60.1" } ] }, { "index": 4, "records": [ { "column": 1, "dataset": "DRCD (Traditional Chinese) Dev", "metric": "EM", "model": "RoBERTa-wwm-ext-large", "row": 7, "task": "Chinese Reading Comprehension", "value": "89.6" }, { "column": 2, "dataset": "DRCD (Traditional Chinese) Dev", "metric": "F1", "model": "RoBERTa-wwm-ext-large", "row": 7, "task": "Chinese Reading Comprehension", "value": "94.8" }, { "column": 3, "dataset": "DRCD (Traditional Chinese)", "metric": "EM", "model": "RoBERTa-wwm-ext-large", "row": 7, "task": "Chinese Reading Comprehension", "value": "89.6" }, { "column": 4, "dataset": "DRCD (Traditional Chinese)", "metric": "F1", "model": "RoBERTa-wwm-ext-large", "row": 7, "task": "Chinese Reading Comprehension", "value": "94.5" } ] }, { "index": 5, "records": [ { "column": 1, "dataset": "CJRC Dev", "metric": "EM", "model": "RoBERTa-wwm-ext-large", "row": 7, "task": "Chinese Reading Comprehension", "value": "62.1" }, { "column": 2, "dataset": "CJRC Dev", "metric": "F1", "model": "RoBERTa-wwm-ext-large", "row": 7, "task": "Chinese Reading Comprehension", "value": "82.4" }, { "column": 3, "dataset": "CJRC", "metric": "EM", "model": "RoBERTa-wwm-ext-large", "row": 7, "task": "Chinese Reading Comprehension", "value": "62.4" }, { "column": 4, "dataset": "CJRC", "metric": "F1", "model": "RoBERTa-wwm-ext-large", "row": 7, "task": "Chinese Reading Comprehension", "value": "82.20" } ] }, { "index": 6, "records": [ { "column": 1, "dataset": "XNLI Dev", "metric": "F1", "model": "RoBERTa-wwm-ext-large", "row": 6, "task": "Chinese Sentence Pair Classification", "value": "82.1" }, { "column": 2, "dataset": "XNLI", "metric": "F1", "model": "RoBERTa-wwm-ext-large", "row": 6, "task": "Chinese Sentence Pair Classification", "value": "81.2" } ] }, { "index": 7, "records": [ { "column": 1, "dataset": "ChnSentiCorp Dev", "metric": "F1", "model": "RoBERTa-wwm-ext-large", "row": 6, "task": "Sentiment Analysis", "value": "95.8" }, { "column": 2, "dataset": "ChnSentiCorp", "metric": "F1", "model": "RoBERTa-wwm-ext-large", "row": 6, "task": "Sentiment Analysis", "value": "95.8" } ] }, { "index": 8, "records": [ { "column": 1, "dataset": "LCQMC Dev", "metric": "F1", "model": "RoBERTa-wwm-ext-large", "row": 7, "task": "Chinese Sentence Pair Classification", "value": "90.4" }, { "column": 2, "dataset": "LCQMC", "metric": "F1", "model": "RoBERTa-wwm-ext-large", "row": 7, "task": "Chinese Sentence Pair Classification", "value": "87" }, { "column": 3, "dataset": "BQ Dev", "metric": "F1", "model": "RoBERTa-wwm-ext-large", "row": 7, "task": "Chinese Sentence Pair Classification", "value": "86.3" }, { "column": 4, "dataset": "BQ", "metric": "F1", "model": "RoBERTa-wwm-ext-large", "row": 7, "task": "Chinese Sentence Pair Classification", "value": "85.8" } ] }, { "index": 9, "records": [ { "column": 1, "dataset": "THUCNews Dev", "metric": "F1", "model": "RoBERTa-wwm-ext-large", "row": 6, "task": "Chinese Document Classification", "value": "98.3" }, { "column": 2, "dataset": "THUCNews", "metric": "F1", "model": "RoBERTa-wwm-ext-large", "row": 6, "task": "Chinese Document Classification", "value": "97.8" } ] } ]
1906.08237v2
[ { "index": 1, "records": [ { "column": 1, "dataset": "RACE", "metric": "Accuracy", "model": "XLNet", "row": 5, "task": "Reading Comprehension", "value": "85.4" }, { "column": 2, "dataset": "RACE", "metric": "Accuracy (Middle)", "model": "XLNet", "row": 5, "task": "Reading Comprehension", "value": "88.6" }, { "column": 3, "dataset": "RACE", "metric": "Accuracy (High)", "model": "XLNet", "row": 5, "task": "Reading Comprehension", "value": "84.0" }, { "column": 5, "dataset": "ClueWeb09-B", "metric": "nDCG@20", "model": "XLNet", "row": 5, "task": "Document Ranking", "value": "31.10" }, { "column": 6, "dataset": "ClueWeb09-B", "metric": "ERR@20", "model": "XLNet", "row": 5, "task": "Document Ranking", "value": "20.28" } ] }, { "index": 2, "records": [ { "column": 1, "dataset": "SQuAD2.0 dev", "metric": "EM", "model": "XLNet (single model)", "row": 4, "task": "Question Answering", "value": "87.9" }, { "column": 2, "dataset": "SQuAD2.0 dev", "metric": "F1", "model": "XLNet (single model)", "row": 4, "task": "Question Answering", "value": "90.6" }, { "column": 4, "dataset": "SQuAD1.1 dev", "metric": "EM", "model": "XLNet (single model)", "row": 4, "task": "Question Answering", "value": "89.7" }, { "column": 5, "dataset": "SQuAD1.1 dev", "metric": "F1", "model": "XLNet (single model)", "row": 4, "task": "Question Answering", "value": "95.1" }, { "column": 1, "dataset": "SQuAD2.0", "metric": "EM", "model": "XLNet (single model)", "row": 8, "task": "Question Answering", "value": "87.926" }, { "column": 2, "dataset": "SQuAD2.0", "metric": "F1", "model": "XLNet (single model)", "row": 8, "task": "Question Answering", "value": "90.689" }, { "column": 4, "dataset": "SQuAD1.1", "metric": "EM", "model": "XLNet (single model)", "row": 8, "task": "Question Answering", "value": "89.898" }, { "column": 5, "dataset": "SQuAD1.1", "metric": "F1", "model": "XLNet (single model)", "row": 8, "task": "Question Answering", "value": "95.080" } ] }, { "index": 3, "records": [ { "column": 1, "dataset": "IMDb", "metric": "Accuracy", "model": "XLNet", "row": 6, "task": "Text Classification", "value": "96.8" }, { "column": 2, "dataset": "Yelp-2", "metric": "Accuracy", "model": "XLNet", "row": 6, "task": "Text Classification", "value": "98.63" }, { "column": 3, "dataset": "Yelp-5", "metric": "Accuracy", "model": "XLNet", "row": 6, "task": "Text Classification", "value": "72.95" }, { "column": 4, "dataset": "DBpedia", "metric": "Error", "model": "XLNet", "row": 6, "task": "Text Classification", "value": "0.6" }, { "column": 5, "dataset": "AG News", "metric": "Error", "model": "XLNet", "row": 6, "task": "Text Classification", "value": "4.45" }, { "column": 6, "dataset": "Amazon-2", "metric": "Error", "model": "XLNet", "row": 6, "task": "Text Classification", "value": "2.11" }, { "column": 7, "dataset": "Amazon-5", "metric": "Error", "model": "XLNet", "row": 6, "task": "Text Classification", "value": "31.67" } ] }, { "index": 4, "records": [ { "column": 1, "dataset": "MultiNLI", "metric": "Matched", "model": "XLNet (single model)", "row": 4, "task": "Natural Language Inference", "value": "90.8" }, { "column": 2, "dataset": "QNLI", "metric": "Accuracy", "model": "XLNet (single model)", "row": 4, "task": "Natural Language Inference", "value": "94.9" }, { "column": 3, "dataset": "Quora Question Pairs", "metric": "Accuracy", "model": "XLNet (single model)", "row": 4, "task": "Question Answering", "value": "92.3" }, { "column": 4, "dataset": "RTE", "metric": "Accuracy", "model": "XLNet (single model)", "row": 4, "task": "Natural Language Inference", "value": "85.9" }, { "column": 5, "dataset": "SST-2 Binary classification", "metric": "Accuracy", "model": "XLNet (single model)", "row": 4, "task": "Sentiment Analysis", "value": "97" }, { "column": 6, "dataset": "MRPC", "metric": "Accuracy", "model": "XLNet (single model)", "row": 4, "task": "Semantic Textual Similarity", "value": "90.8" }, { "column": 7, "dataset": "CoLA", "metric": "Accuracy", "model": "XLNet (single model)", "row": 4, "task": "Linguistic Acceptability", "value": "69" }, { "column": 8, "dataset": "STS Benchmark", "metric": "Pearson Correlation", "model": "XLNet (single model)", "row": 4, "task": "Semantic Textual Similarity", "value": "92.5" } ] } ]
1906.08332v2
[ { "index": 8, "records": [ { "column": 2, "dataset": "Market-1501", "metric": "MAP", "model": "IBN-Net50-a", "row": 10, "task": "Person Re-Identification", "value": "88.2" }, { "column": 4, "dataset": "DukeMTMC-reID", "metric": "MAP", "model": "IBN-Net50-a", "row": 10, "task": "Person Re-Identification", "value": "79.1" } ] } ]
1906.09217v1
[ { "index": 2, "records": [ { "column": 7, "dataset": "MovieLens 20M", "metric": "Recall@10", "model": "HGN", "row": 2, "task": "Recommendation Systems", "value": "0.1255" }, { "column": 7, "dataset": "Amazon-Book", "metric": "Recall@10", "model": "HGN", "row": 3, "task": "Recommendation Systems", "value": "0.0429" }, { "column": 7, "dataset": "Amazon-CDs", "metric": "Recall@10", "model": "HGN", "row": 4, "task": "Recommendation Systems", "value": "0.0426" }, { "column": 7, "dataset": "GoodReads-Children", "metric": "Recall@10", "model": "HGN", "row": 5, "task": "Recommendation Systems", "value": "0.1263" }, { "column": 7, "dataset": "GoodReads-Comics", "metric": "Recall@10", "model": "HGN", "row": 6, "task": "Recommendation Systems", "value": "0.1743" }, { "column": 7, "dataset": "MovieLens 20M", "metric": "nDCG@10", "model": "HGN", "row": 8, "task": "Recommendation Systems", "value": "0.1195" }, { "column": 7, "dataset": "Amazon-Book", "metric": "nDCG@10", "model": "HGN", "row": 9, "task": "Recommendation Systems", "value": "0.0298" }, { "column": 7, "dataset": "Amazon-CDs", "metric": "nDCG@10", "model": "HGN", "row": 10, "task": "Recommendation Systems", "value": "0.0233" }, { "column": 7, "dataset": "GoodReads-Children", "metric": "nDCG@10", "model": "HGN", "row": 11, "task": "Recommendation Systems", "value": "0.113" }, { "column": 7, "dataset": "GoodReads-Comics", "metric": "nDCG@10", "model": "HGN", "row": 12, "task": "Recommendation Systems", "value": "0.1927" } ] } ]
1906.09506v1
[ { "index": 1, "records": [ { "column": 1, "dataset": "Last.FM", "metric": "HR@10", "model": "Ekar*", "row": 10, "task": "Recommendation Systems", "value": "0.2483" }, { "column": 2, "dataset": "Last.FM", "metric": "nDCG@10", "model": "Ekar*", "row": 10, "task": "Recommendation Systems", "value": "0.1766" }, { "column": 3, "dataset": "MovieLens 1M", "metric": "HR@10", "model": "Ekar*", "row": 10, "task": "Recommendation Systems", "value": "0.1994" }, { "column": 4, "dataset": "MovieLens 1M", "metric": "nDCG@10", "model": "Ekar*", "row": 10, "task": "Recommendation Systems", "value": "0.3699" }, { "column": 5, "dataset": "DBbook2014", "metric": "HR@10", "model": "Ekar*", "row": 10, "task": "Recommendation Systems", "value": "0.1874" }, { "column": 6, "dataset": "DBbook2014", "metric": "nDCG@10", "model": "Ekar*", "row": 10, "task": "Recommendation Systems", "value": "0.1371" } ] } ]
1906.10169v1
[ { "index": 0, "records": [ { "column": 1, "dataset": "VQA-CP", "metric": "Score", "model": "RUBi", "row": 10, "task": "Visual Question Answering", "value": "47.11" } ] }, { "index": 2, "records": [ { "column": 2, "dataset": "VQA v2 test-dev", "metric": "Accuracy", "model": "RUBi (ours)", "row": 2, "task": "Visual Question Answering", "value": "63.18" } ] } ]
1906.10343v2
[ { "index": 0, "records": [ { "column": 1, "dataset": "SVHN, 250 Labels", "metric": "Accuracy", "model": "SESEMI SSL (ConvNet)", "row": 11, "task": "Semi-Supervised Image Classification", "value": "91.68" }, { "column": 2, "dataset": "SVHN, 500 Labels", "metric": "Accuracy", "model": "SESEMI SSL (ConvNet)", "row": 11, "task": "Semi-Supervised Image Classification", "value": "93.5" }, { "column": 3, "dataset": "SVHN, 1000 labels", "metric": "Accuracy", "model": "SESEMI SSL (ConvNet)", "row": 11, "task": "Semi-Supervised Image Classification", "value": "94.41" } ] }, { "index": 1, "records": [ { "column": 1, "dataset": "CIFAR-10, 1000 Labels", "metric": "Accuracy", "model": "SESEMI SSL (ConvNet)", "row": 11, "task": "Semi-Supervised Image Classification", "value": "82.12" }, { "column": 2, "dataset": "CIFAR-10, 2000 Labels", "metric": "Accuracy", "model": "SESEMI SSL (ConvNet)", "row": 11, "task": "Semi-Supervised Image Classification", "value": "85.78" }, { "column": 3, "dataset": "CIFAR-10, 4000 Labels", "metric": "Accuracy", "model": "SESEMI SSL (ConvNet)", "row": 11, "task": "Semi-Supervised Image Classification", "value": "88.35" } ] }, { "index": 2, "records": [ { "column": 1, "dataset": "cifar-100, 10000 Labels", "metric": "Accuracy", "model": "SESEMI SSL (ConvNet)", "row": 7, "task": "Semi-Supervised Image Classification", "value": "61.29" } ] } ]
1906.10770v1
[ { "index": 3, "records": [ { "column": 1, "dataset": "VQA v2 test-dev", "metric": "Accuracy", "model": "MCANed-6", "row": 6, "task": "Visual Question Answering", "value": "70.63" }, { "column": 5, "dataset": "VQA v2 test-std", "metric": "Accuracy", "model": "MCANed-6", "row": 6, "task": "Visual Question Answering", "value": "70.9" } ] } ]
1906.10958v3
[ { "index": 1, "records": [ { "column": 12, "dataset": "Bitcoin-Alpha", "metric": "Accuracy", "model": "SiGAT", "row": 2, "task": "Link Sign Prediction", "value": "0.9480" }, { "column": 12, "dataset": "Bitcoin-Alpha", "metric": "AUC", "model": "SiGAT", "row": 3, "task": "Link Sign Prediction", "value": "0.9727" }, { "column": 12, "dataset": "Bitcoin-Alpha", "metric": "Macro-F1", "model": "SiGAT", "row": 4, "task": "Link Sign Prediction", "value": "0.7138" }, { "column": 12, "dataset": "Bitcoin-Alpha", "metric": "AUC", "model": "SiGAT", "row": 5, "task": "Link Sign Prediction", "value": "0.8942" }, { "column": 12, "dataset": "Slashdot", "metric": "Accuracy", "model": "SiGAT", "row": 6, "task": "Link Sign Prediction", "value": "0.8482" }, { "column": 12, "dataset": "Slashdot", "metric": "AUC", "model": "SiGAT", "row": 7, "task": "Link Sign Prediction", "value": "0.9047" }, { "column": 12, "dataset": "Slashdot", "metric": "Macro-F1", "model": "SiGAT", "row": 8, "task": "Link Sign Prediction", "value": "0.7659999999999999" }, { "column": 12, "dataset": "Slashdot", "metric": "AUC", "model": "SiGAT", "row": 9, "task": "Link Sign Prediction", "value": "0.8864" }, { "column": 12, "dataset": "Epinions", "metric": "Accuracy", "model": "SiGAT", "row": 10, "task": "Link Sign Prediction", "value": "0.9293" }, { "column": 12, "dataset": "Epinions", "metric": "AUC", "model": "SiGAT", "row": 11, "task": "Link Sign Prediction", "value": "0.9593" }, { "column": 12, "dataset": "Epinions", "metric": "Macro-F1", "model": "SiGAT", "row": 12, "task": "Link Sign Prediction", "value": "0.8449" }, { "column": 12, "dataset": "Epinions", "metric": "AUC", "model": "SiGAT", "row": 13, "task": "Link Sign Prediction", "value": "0.9333" } ] } ]
1906.11109v2
[ { "index": 0, "records": [ { "column": 2, "dataset": "Cityscapes test", "metric": "Average Precision", "model": "Learnable Margin", "row": 9, "task": "Instance Segmentation", "value": "27.6" } ] } ]
1906.11172v1
[ { "index": 2, "records": [ { "column": 3, "dataset": "COCO test-dev", "metric": "box AP", "model": "NAS-FPN (AmoebaNet-D, learned aug)", "row": 4, "task": "Object Detection", "value": "50.7" }, { "column": 4, "dataset": "COCO test-dev", "metric": "APS", "model": "NAS-FPN (AmoebaNet-D, learned aug)", "row": 4, "task": "Object Detection", "value": "34.2" }, { "column": 5, "dataset": "COCO test-dev", "metric": "APM", "model": "NAS-FPN (AmoebaNet-D, learned aug)", "row": 4, "task": "Object Detection", "value": "55.5" }, { "column": 6, "dataset": "COCO test-dev", "metric": "APL", "model": "NAS-FPN (AmoebaNet-D, learned aug)", "row": 4, "task": "Object Detection", "value": "64.5" } ] }, { "index": 3, "records": [ { "column": 21, "dataset": "PASCAL VOC 2007", "metric": "MAP", "model": "Faster R-CNN (ResNet-101, learned aug)", "row": 2, "task": "Object Detection", "value": "78.7" } ] } ]
1906.11890v1
[ { "index": 0, "records": [ { "column": 1, "dataset": "Set8 sigma10", "metric": "PSNR", "model": "DVDnet", "row": 1, "task": "Video Denoising", "value": "36.08" }, { "column": 1, "dataset": "Set8 sigma20", "metric": "PSNR", "model": "DVDnet", "row": 2, "task": "Video Denoising", "value": "33.49" }, { "column": 1, "dataset": "Set8 sigma30", "metric": "PSNR", "model": "DVDnet", "row": 3, "task": "Video Denoising", "value": "31.79" }, { "column": 1, "dataset": "Set8 sigma40", "metric": "PSNR", "model": "DVDnet", "row": 4, "task": "Video Denoising", "value": "30.55" }, { "column": 1, "dataset": "Set8 sigma50", "metric": "PSNR", "model": "DVDnet", "row": 5, "task": "Video Denoising", "value": "29.56" } ] }, { "index": 1, "records": [ { "column": 1, "dataset": "DAVIS sigma10", "metric": "PSNR", "model": "DVDnet", "row": 1, "task": "Video Denoising", "value": "38.13" }, { "column": 1, "dataset": "DAVIS sigma20", "metric": "PSNR", "model": "DVDnet", "row": 2, "task": "Video Denoising", "value": "35.7" }, { "column": 1, "dataset": "DAVIS sigma30", "metric": "PSNR", "model": "DVDnet", "row": 3, "task": "Video Denoising", "value": "34.08" }, { "column": 1, "dataset": "DAVIS sigma40", "metric": "PSNR", "model": "DVDnet", "row": 4, "task": "Video Denoising", "value": "32.86" }, { "column": 1, "dataset": "DAVIS sigma50", "metric": "PSNR", "model": "DVDnet", "row": 5, "task": "Video Denoising", "value": "31.85" } ] } ]
1906.11894v2
[ { "index": 0, "records": [ { "column": 1, "dataset": "DIVA-HisDB", "metric": "Line IoU", "model": "Semantic Seg Preprocessing", "row": 5, "task": "Text-Line Extraction", "value": "99.42" }, { "column": 2, "dataset": "DIVA-HisDB", "metric": "Pixel IoU", "model": "Semantic Seg Preprocessing", "row": 5, "task": "Text-Line Extraction", "value": "96.11" } ] } ]
1906.12021v2
[ { "index": 1, "records": [ { "column": 2, "dataset": "Set5 - 2x upscaling", "metric": "PSNR", "model": "DRLN+", "row": 15, "task": "Image Super-Resolution", "value": "38.34" }, { "column": 3, "dataset": "Set5 - 2x upscaling", "metric": "SSIM", "model": "DRLN+", "row": 15, "task": "Image Super-Resolution", "value": "0.9619" }, { "column": 4, "dataset": "Set14 - 2x upscaling", "metric": "PSNR", "model": "DRLN+", "row": 15, "task": "Image Super-Resolution", "value": "34.43" }, { "column": 5, "dataset": "Set14 - 2x upscaling", "metric": "SSIM", "model": "DRLN+", "row": 15, "task": "Image Super-Resolution", "value": "0.9247" }, { "column": 6, "dataset": "BSD100 - 2x upscaling", "metric": "PSNR", "model": "DRLN+", "row": 15, "task": "Image Super-Resolution", "value": "32.47" }, { "column": 7, "dataset": "BSD100 - 2x upscaling", "metric": "SSIM", "model": "DRLN+", "row": 15, "task": "Image Super-Resolution", "value": "0.9032" }, { "column": 8, "dataset": "Urban100 - 2x upscaling", "metric": "PSNR", "model": "DRLN+", "row": 15, "task": "Image Super-Resolution", "value": "33.54" }, { "column": 9, "dataset": "Urban100 - 2x upscaling", "metric": "SSIM", "model": "DRLN+", "row": 15, "task": "Image Super-Resolution", "value": "0.9402" }, { "column": 10, "dataset": "Manga109 - 2x upscaling", "metric": "PSNR", "model": "DRLN+", "row": 15, "task": "Image Super-Resolution", "value": "39.75" }, { "column": 11, "dataset": "Manga109 - 2x upscaling", "metric": "SSIM", "model": "DRLN+", "row": 15, "task": "Image Super-Resolution", "value": "0.9792" }, { "column": 2, "dataset": "Set5 - 3x upscaling", "metric": "PSNR", "model": "DRLN+", "row": 28, "task": "Image Super-Resolution", "value": "34.86" }, { "column": 3, "dataset": "Set5 - 3x upscaling", "metric": "SSIM", "model": "DRLN+", "row": 28, "task": "Image Super-Resolution", "value": "0.9307" }, { "column": 4, "dataset": "Set14 - 3x upscaling", "metric": "PSNR", "model": "DRLN+", "row": 28, "task": "Image Super-Resolution", "value": "30.8" }, { "column": 5, "dataset": "Set14 - 3x upscaling", "metric": "SSIM", "model": "DRLN+", "row": 28, "task": "Image Super-Resolution", "value": "0.8498" }, { "column": 6, "dataset": "BSD100 - 3x upscaling", "metric": "PSNR", "model": "DRLN+", "row": 28, "task": "Image Super-Resolution", "value": "29.4" }, { "column": 7, "dataset": "BSD100 - 3x upscaling", "metric": "SSIM", "model": "DRLN+", "row": 28, "task": "Image Super-Resolution", "value": "0.8125" }, { "column": 8, "dataset": "Urban100 - 3x upscaling", "metric": "PSNR", "model": "DRLN+", "row": 28, "task": "Image Super-Resolution", "value": "29.37" }, { "column": 9, "dataset": "Urban100 - 3x upscaling", "metric": "SSIM", "model": "DRLN+", "row": 28, "task": "Image Super-Resolution", "value": "0.8746" }, { "column": 10, "dataset": "Manga109 - 3x upscaling", "metric": "PSNR", "model": "DRLN+", "row": 28, "task": "Image Super-Resolution", "value": "34.94" }, { "column": 11, "dataset": "Manga109 - 3x upscaling", "metric": "SSIM", "model": "DRLN+", "row": 28, "task": "Image Super-Resolution", "value": "0.9518" }, { "column": 2, "dataset": "Set5 - 4x upscaling", "metric": "PSNR", "model": "DRLN+", "row": 42, "task": "Image Super-Resolution", "value": "32.74" }, { "column": 3, "dataset": "Set5 - 4x upscaling", "metric": "SSIM", "model": "DRLN+", "row": 42, "task": "Image Super-Resolution", "value": "0.9013" }, { "column": 4, "dataset": "Set14 - 4x upscaling", "metric": "PSNR", "model": "DRLN+", "row": 42, "task": "Image Super-Resolution", "value": "29.02" }, { "column": 5, "dataset": "Set14 - 4x upscaling", "metric": "SSIM", "model": "DRLN+", "row": 42, "task": "Image Super-Resolution", "value": "0.7914" }, { "column": 6, "dataset": "BSD100 - 4x upscaling", "metric": "PSNR", "model": "DRLN+", "row": 42, "task": "Image Super-Resolution", "value": "27.87" }, { "column": 7, "dataset": "BSD100 - 4x upscaling", "metric": "SSIM", "model": "DRLN+", "row": 42, "task": "Image Super-Resolution", "value": "0.7453" }, { "column": 8, "dataset": "Urban100 - 4x upscaling", "metric": "PSNR", "model": "DRLN+", "row": 42, "task": "Image Super-Resolution", "value": "27.14" }, { "column": 9, "dataset": "Urban100 - 4x upscaling", "metric": "SSIM", "model": "DRLN+", "row": 42, "task": "Image Super-Resolution", "value": "0.8149" }, { "column": 10, "dataset": "Manga109 - 4x upscaling", "metric": "PSNR", "model": "DRLN+", "row": 42, "task": "Image Super-Resolution", "value": "31.78" }, { "column": 11, "dataset": "Manga109 - 4x upscaling", "metric": "SSIM", "model": "DRLN+", "row": 42, "task": "Image Super-Resolution", "value": "0.9211" }, { "column": 2, "dataset": "Set5 - 8x upscaling", "metric": "PSNR", "model": "DRLN+", "row": 55, "task": "Image Super-Resolution", "value": "27.46" }, { "column": 3, "dataset": "Set5 - 8x upscaling", "metric": "SSIM", "model": "DRLN+", "row": 55, "task": "Image Super-Resolution", "value": "0.7916" }, { "column": 4, "dataset": "Set14 - 8x upscaling", "metric": "PSNR", "model": "DRLN+", "row": 55, "task": "Image Super-Resolution", "value": "25.4" }, { "column": 5, "dataset": "Set14 - 8x upscaling", "metric": "SSIM", "model": "DRLN+", "row": 55, "task": "Image Super-Resolution", "value": "0.6547" }, { "column": 6, "dataset": "BSD100 - 8x upscaling", "metric": "PSNR", "model": "DRLN+", "row": 55, "task": "Image Super-Resolution", "value": "25.06" }, { "column": 7, "dataset": "BSD100 - 8x upscaling", "metric": "SSIM", "model": "DRLN+", "row": 55, "task": "Image Super-Resolution", "value": "0.607" }, { "column": 8, "dataset": "Urban100 - 8x upscaling", "metric": "PSNR", "model": "DRLN+", "row": 55, "task": "Image Super-Resolution", "value": "23.24" }, { "column": 9, "dataset": "Urban100 - 8x upscaling", "metric": "SSIM", "model": "DRLN+", "row": 55, "task": "Image Super-Resolution", "value": "0.6523" }, { "column": 10, "dataset": "Manga109 - 8x upscaling", "metric": "PSNR", "model": "DRLN+", "row": 55, "task": "Image Super-Resolution", "value": "25.55" }, { "column": 11, "dataset": "Manga109 - 8x upscaling", "metric": "SSIM", "model": "DRLN+", "row": 55, "task": "Image Super-Resolution", "value": "0.8087" } ] } ]
1907.00193v2
[ { "index": 0, "records": [ { "column": 3, "dataset": "CK+", "metric": "Accuracy (10-fold)", "model": "FAN", "row": 7, "task": "Facial Expression Recognition", "value": "99.69" } ] } ]
1907.00837v1
[ { "index": 3, "records": [ { "column": 1, "dataset": "MPI-INF-3DHP", "metric": "3DPCK", "model": "XNect (SelecSLS)", "row": 12, "task": "3D Human Pose Estimation", "value": "82.8" }, { "column": 2, "dataset": "MPI-INF-3DHP", "metric": "AUC", "model": "XNect (SelecSLS)", "row": 12, "task": "3D Human Pose Estimation", "value": "45.3" }, { "column": 3, "dataset": "MPI-INF-3DHP", "metric": "MJPE", "model": "XNect (SelecSLS)", "row": 12, "task": "3D Human Pose Estimation", "value": "98.4" } ] }, { "index": 4, "records": [ { "column": 21, "dataset": "MuPoTS-3D", "metric": "3DPCK", "model": "SelecSLS", "row": 9, "task": "3D Multi-Person Human Pose Estimation", "value": "75.8" } ] }, { "index": 5, "records": [ { "column": 16, "dataset": "Human3.6M", "metric": "Average MPJPE (mm)", "model": "SelecSLS", "row": 12, "task": "3D Human Pose Estimation", "value": "63.6" } ] } ]
1907.01203v2
[ { "index": 1, "records": [ { "column": 3, "dataset": "DAVIS-2017", "metric": "Jaccard (Mean)", "model": "PTSNet", "row": 12, "task": "Visual Object Tracking", "value": "71.6" }, { "column": 4, "dataset": "DAVIS-2017", "metric": "F-measure (Mean)", "model": "PTSNet", "row": 12, "task": "Visual Object Tracking", "value": "77.7" } ] }, { "index": 2, "records": [ { "column": 2, "dataset": "YouTube-VOS", "metric": "Jaccard (Seen)", "model": "PTSNet", "row": 9, "task": "Visual Object Tracking", "value": "73.5" }, { "column": 3, "dataset": "YouTube-VOS", "metric": "Jaccard (Unseen)", "model": "PTSNet", "row": 9, "task": "Visual Object Tracking", "value": "64.3" } ] } ]
1907.01294v2
[ { "index": 0, "records": [ { "column": 1, "dataset": "TuSimple", "metric": "Accuracy", "model": "End-to-end ERFNet", "row": 4, "task": "Lane Detection", "value": "95.24" } ] } ]
1907.01361v1
[ { "index": 2, "records": [ { "column": 6, "dataset": "Set8 sigma10", "metric": "PSNR", "model": "FastDVDnet", "row": 1, "task": "Video Denoising", "value": "36.43" }, { "column": 6, "dataset": "Set8 sigma20", "metric": "PSNR", "model": "FastDVDnet", "row": 2, "task": "Video Denoising", "value": "33.37" }, { "column": 6, "dataset": "Set8 sigma30", "metric": "PSNR", "model": "FastDVDnet", "row": 3, "task": "Video Denoising", "value": "31.6" }, { "column": 6, "dataset": "Set8 sigma40", "metric": "PSNR", "model": "FastDVDnet", "row": 4, "task": "Video Denoising", "value": "30.37" }, { "column": 6, "dataset": "Set8 sigma50", "metric": "PSNR", "model": "FastDVDnet", "row": 5, "task": "Video Denoising", "value": "29.42" } ] }, { "index": 3, "records": [ { "column": 5, "dataset": "DAVIS sigma10", "metric": "PSNR", "model": "FastDVDnet", "row": 1, "task": "Video Denoising", "value": "38.97" }, { "column": 5, "dataset": "DAVIS sigma20", "metric": "PSNR", "model": "FastDVDnet", "row": 2, "task": "Video Denoising", "value": "35.86" }, { "column": 5, "dataset": "DAVIS sigma30", "metric": "PSNR", "model": "FastDVDnet", "row": 3, "task": "Video Denoising", "value": "34.06" }, { "column": 5, "dataset": "DAVIS sigma40", "metric": "PSNR", "model": "FastDVDnet", "row": 4, "task": "Video Denoising", "value": "32.8" }, { "column": 5, "dataset": "DAVIS sigma50", "metric": "PSNR", "model": "FastDVDnet", "row": 5, "task": "Video Denoising", "value": "31.83" } ] } ]
1907.03029v1
[ { "index": 1, "records": [ { "column": 2, "dataset": "BSD68 sigma5", "metric": "PSNR", "model": "BUIFD75 (blind)", "row": 7, "task": "Grayscale Image Denoising", "value": "37.25" }, { "column": 3, "dataset": "BSD68 sigma10", "metric": "PSNR", "model": "BUIFD75 (blind)", "row": 7, "task": "Grayscale Image Denoising", "value": "33.47" }, { "column": 4, "dataset": "BSD68 sigma15", "metric": "PSNR", "model": "BUIFD75 (blind)", "row": 7, "task": "Grayscale Image Denoising", "value": "31.35" }, { "column": 5, "dataset": "BSD68 sigma20", "metric": "PSNR", "model": "BUIFD75 (blind)", "row": 7, "task": "Grayscale Image Denoising", "value": "29.88" }, { "column": 6, "dataset": "BSD68 sigma25", "metric": "PSNR", "model": "BUIFD75 (blind)", "row": 7, "task": "Grayscale Image Denoising", "value": "28.75" }, { "column": 7, "dataset": "BSD68 sigma30", "metric": "PSNR", "model": "BUIFD75 (blind)", "row": 7, "task": "Grayscale Image Denoising", "value": "27.82" }, { "column": 8, "dataset": "BSD68 sigma35", "metric": "PSNR", "model": "BUIFD75 (blind)", "row": 7, "task": "Grayscale Image Denoising", "value": "27.03" }, { "column": 9, "dataset": "BSD68 sigma40", "metric": "PSNR", "model": "BUIFD75 (blind)", "row": 7, "task": "Grayscale Image Denoising", "value": "26.31" }, { "column": 2, "dataset": "BSD68 sigma45", "metric": "PSNR", "model": "BUIFD75 (blind)", "row": 14, "task": "Grayscale Image Denoising", "value": "25.67" }, { "column": 3, "dataset": "BSD68 sigma50", "metric": "PSNR", "model": "BUIFD75 (blind)", "row": 14, "task": "Grayscale Image Denoising", "value": "25.1" }, { "column": 4, "dataset": "BSD68 sigma55", "metric": "PSNR", "model": "BUIFD75 (blind)", "row": 14, "task": "Grayscale Image Denoising", "value": "24.55" }, { "column": 5, "dataset": "BSD68 sigma60", "metric": "PSNR", "model": "BUIFD75 (blind)", "row": 14, "task": "Grayscale Image Denoising", "value": "24.05" }, { "column": 6, "dataset": "BSD68 sigma65", "metric": "PSNR", "model": "BUIFD75 (blind)", "row": 14, "task": "Grayscale Image Denoising", "value": "23.56" }, { "column": 7, "dataset": "BSD68 sigma70", "metric": "PSNR", "model": "BUIFD75 (blind)", "row": 14, "task": "Grayscale Image Denoising", "value": "23.1" }, { "column": 8, "dataset": "BSD68 sigma75", "metric": "PSNR", "model": "BUIFD75 (blind)", "row": 14, "task": "Grayscale Image Denoising", "value": "22.67" } ] }, { "index": 3, "records": [ { "column": 2, "dataset": "CBSD68 sigma5", "metric": "PSNR", "model": "CBUIFD75", "row": 7, "task": "Color Image Denoising", "value": "40.05" }, { "column": 3, "dataset": "CBSD68 sigma10", "metric": "PSNR", "model": "CBUIFD75", "row": 7, "task": "Color Image Denoising", "value": "35.98" }, { "column": 4, "dataset": "CBSD68 sigma15", "metric": "PSNR", "model": "CBUIFD75", "row": 7, "task": "Color Image Denoising", "value": "33.66" }, { "column": 5, "dataset": "CBSD68 sigma20", "metric": "PSNR", "model": "CBUIFD75", "row": 7, "task": "Color Image Denoising", "value": "32.02" }, { "column": 6, "dataset": "CBSD68 sigma25", "metric": "PSNR", "model": "CBUIFD75", "row": 7, "task": "Color Image Denoising", "value": "30.76" }, { "column": 7, "dataset": "CBSD68 sigma30", "metric": "PSNR", "model": "CBUIFD75", "row": 7, "task": "Color Image Denoising", "value": "29.71" }, { "column": 8, "dataset": "CBSD68 sigma35", "metric": "PSNR", "model": "CBUIFD75", "row": 7, "task": "Color Image Denoising", "value": "28.81" }, { "column": 9, "dataset": "CBSD68 sigma40", "metric": "PSNR", "model": "CBUIFD75", "row": 7, "task": "Color Image Denoising", "value": "28.01" }, { "column": 2, "dataset": "CBSD68 sigma45", "metric": "PSNR", "model": "CBUIFD75", "row": 14, "task": "Color Image Denoising", "value": "27.28" }, { "column": 3, "dataset": "CBSD68 sigma50", "metric": "PSNR", "model": "CBUIFD75", "row": 14, "task": "Color Image Denoising", "value": "26.6" }, { "column": 4, "dataset": "CBSD68 sigma55", "metric": "PSNR", "model": "CBUIFD75", "row": 14, "task": "Color Image Denoising", "value": "25.95" }, { "column": 5, "dataset": "CBSD68 sigma60", "metric": "PSNR", "model": "CBUIFD75", "row": 14, "task": "Color Image Denoising", "value": "25.34" }, { "column": 6, "dataset": "CBSD68 sigma65", "metric": "PSNR", "model": "CBUIFD75", "row": 14, "task": "Color Image Denoising", "value": "24.75" }, { "column": 7, "dataset": "CBSD68 sigma70", "metric": "PSNR", "model": "CBUIFD75", "row": 14, "task": "Color Image Denoising", "value": "24.18" }, { "column": 8, "dataset": "CBSD68 sigma75", "metric": "PSNR", "model": "CBUIFD75", "row": 14, "task": "Color Image Denoising", "value": "23.63" } ] } ]
1907.03739v2
[ { "index": 0, "records": [ { "column": 3, "dataset": "ShapeNet-Part", "metric": "Instance Average IoU", "model": "PVCNN volumetric", "row": 10, "task": "3D Part Segmentation", "value": "86.2" } ] }, { "index": 3, "records": [ { "column": 3, "dataset": "S3DIS", "metric": "mAcc", "model": "PVCNN++ (1xC) volumetric", "row": 10, "task": "3D Instance Segmentation", "value": "87.12" }, { "column": 4, "dataset": "S3DIS", "metric": "mIoU", "model": "PVCNN++ (1xC) volumetric", "row": 10, "task": "3D Instance Segmentation", "value": "58.98" } ] }, { "index": 4, "records": [ { "column": 3, "dataset": "KITTI Cars Easy val", "metric": "AP", "model": "PVCNN", "row": 5, "task": "3D Object Detection", "value": "84.02" }, { "column": 4, "dataset": "KITTI Cars Moderate val", "metric": "AP", "model": "PVCNN", "row": 5, "task": "3D Object Detection", "value": "71.54" }, { "column": 5, "dataset": "KITTI Cars Hard val", "metric": "AP", "model": "PVCNN", "row": 5, "task": "3D Object Detection", "value": "63.81" }, { "column": 6, "dataset": "KITTI Pedestrian Easy val", "metric": "AP", "model": "PVCNN", "row": 5, "task": "3D Object Detection", "value": "73.2" }, { "column": 7, "dataset": "KITTI Pedestrian Moderate val", "metric": "AP", "model": "PVCNN", "row": 5, "task": "3D Object Detection", "value": "64.71" }, { "column": 8, "dataset": "KITTI Pedestrian Hard val", "metric": "AP", "model": "PVCNN", "row": 5, "task": "3D Object Detection", "value": "56.78" }, { "column": 9, "dataset": "KITTI Cyclist Easy val", "metric": "AP", "model": "PVCNN", "row": 5, "task": "3D Object Detection", "value": "81.4" }, { "column": 10, "dataset": "KITTI Cyclist Moderate val", "metric": "AP", "model": "PVCNN", "row": 5, "task": "3D Object Detection", "value": "59.97" }, { "column": 11, "dataset": "KITTI Cyclist Hard val", "metric": "AP", "model": "PVCNN", "row": 5, "task": "3D Object Detection", "value": "56.24" } ] } ]
1907.03950v4
[ { "index": 0, "records": [ { "column": 7, "dataset": "GQA test-std", "metric": "Accuracy", "model": "NSM", "row": 14, "task": "Visual Question Answering", "value": "63.17" } ] }, { "index": 2, "records": [ { "column": 1, "dataset": "VQA-CP", "metric": "Score", "model": "NSM", "row": 8, "task": "Visual Question Answering", "value": "45.8" } ] }, { "index": 4, "records": [ { "column": 1, "dataset": "GQA test-dev", "metric": "Accuracy", "model": "NSM", "row": 1, "task": "Visual Question Answering", "value": "62.95" } ] } ]
1907.04253v2
[ { "index": 0, "records": [ { "column": 11, "dataset": "Set14 - 4x upscaling", "metric": "PSNR", "model": "GMFN", "row": 7, "task": "Image Super-Resolution", "value": "28.84" }, { "column": 11, "dataset": "BSD100 - 4x upscaling", "metric": "PSNR", "model": "GMFN", "row": 10, "task": "Image Super-Resolution", "value": "27.74" }, { "column": 11, "dataset": "Urban100 - 4x upscaling", "metric": "PSNR", "model": "GMFN", "row": 13, "task": "Image Super-Resolution", "value": "26.69" }, { "column": 11, "dataset": "Manga109 - 4x upscaling", "metric": "PSNR", "model": "GMFN", "row": 16, "task": "Image Super-Resolution", "value": "31.24" } ] } ]
1907.04840v2
[ { "index": 0, "records": [ { "column": 2, "dataset": "MNIST", "metric": "Percentage error", "model": "LeNet 300-100 (Sparse Momentum)", "row": 15, "task": "Image Classification", "value": "1.26" } ] }, { "index": 1, "records": [ { "column": 3, "dataset": "CIFAR-10", "metric": "Percentage correct", "model": "WRN-22-8 (Sparse Momentum)", "row": 9, "task": "Image Classification", "value": "95.04" } ] } ]
1907.05888v1
[ { "index": 0, "records": [ { "column": 2, "dataset": "CHF database", "metric": "Precision", "model": "Inclined Entropy (R-HessELM)", "row": 8, "task": "Congestive Heart Failure detection", "value": "98.05" }, { "column": 3, "dataset": "CHF database", "metric": "Sensitivity", "model": "Inclined Entropy (R-HessELM)", "row": 8, "task": "Congestive Heart Failure detection", "value": "98.3" }, { "column": 4, "dataset": "CHF database", "metric": "Accuracy", "model": "Inclined Entropy (R-HessELM)", "row": 8, "task": "Congestive Heart Failure detection", "value": "98.49" } ] } ]
1907.06922v1
[ { "index": 4, "records": [ { "column": 1, "dataset": "CrowdPose", "metric": "mAP @0.5:0.95", "model": "OccNet", "row": 3, "task": "Multi-Person Pose Estimation", "value": "65.5" }, { "column": 2, "dataset": "CrowdPose", "metric": "AP Easy", "model": "OccNet", "row": 3, "task": "Multi-Person Pose Estimation", "value": "75.2" }, { "column": 3, "dataset": "CrowdPose", "metric": "AP Medium", "model": "OccNet", "row": 3, "task": "Multi-Person Pose Estimation", "value": "66.6" }, { "column": 4, "dataset": "CrowdPose", "metric": "AP Hard", "model": "OccNet", "row": 3, "task": "Multi-Person Pose Estimation", "value": "53.1" } ] } ]
1907.07034v1
[ { "index": 0, "records": [ { "column": 3, "dataset": "Atrial Segmentation Challenge", "metric": "Dice Score", "model": "UA-MT", "row": 11, "task": "Left Atrium Segmentation", "value": "88.88" }, { "column": 4, "dataset": "Atrial Segmentation Challenge", "metric": "Jaccard", "model": "UA-MT", "row": 11, "task": "Left Atrium Segmentation", "value": "80.21" }, { "column": 5, "dataset": "Atrial Segmentation Challenge", "metric": "ASD", "model": "UA-MT", "row": 11, "task": "Left Atrium Segmentation", "value": "2.26" }, { "column": 6, "dataset": "Atrial Segmentation Challenge", "metric": "95HD", "model": "UA-MT", "row": 11, "task": "Left Atrium Segmentation", "value": "7.32" } ] } ]
1907.08375v1
[ { "index": 2, "records": [ { "column": 14, "dataset": "Office-31", "metric": "Average Accuracy", "model": "DAOD", "row": 8, "task": "Domain Adaptation", "value": "85.4" }, { "column": 14, "dataset": "Office-Home", "metric": "Accuracy", "model": "DAOD", "row": 21, "task": "Domain Adaptation", "value": "69.8" } ] } ]
1907.08448v1
[ { "index": 2, "records": [ { "column": 8, "dataset": "Set12 sigma15", "metric": "PSNR", "model": "GCDN", "row": 1, "task": "Grayscale Image Denoising", "value": "33.14" }, { "column": 8, "dataset": "Set12 sigma25", "metric": "PSNR", "model": "GCDN", "row": 2, "task": "Grayscale Image Denoising", "value": "30.78" }, { "column": 8, "dataset": "Set12 sigma50", "metric": "PSNR", "model": "GCDN", "row": 3, "task": "Grayscale Image Denoising", "value": "27.6" }, { "column": 8, "dataset": "BSD68 sigma15", "metric": "PSNR", "model": "GCDN", "row": 4, "task": "Grayscale Image Denoising", "value": "31.83" }, { "column": 8, "dataset": "BSD68 sigma25", "metric": "PSNR", "model": "GCDN", "row": 5, "task": "Grayscale Image Denoising", "value": "29.35" }, { "column": 8, "dataset": "BSD68 sigma50", "metric": "PSNR", "model": "GCDN", "row": 6, "task": "Grayscale Image Denoising", "value": "26.38" }, { "column": 8, "dataset": "Urban100 sigma15", "metric": "PSNR", "model": "GCDN", "row": 7, "task": "Grayscale Image Denoising", "value": "33.47" }, { "column": 8, "dataset": "Urban100 sigma25", "metric": "PSNR", "model": "GCDN", "row": 8, "task": "Grayscale Image Denoising", "value": "30.95" }, { "column": 8, "dataset": "Urban100 sigma50", "metric": "PSNR", "model": "GCDN", "row": 9, "task": "Grayscale Image Denoising", "value": "27.41" } ] } ]
1907.08871v1
[ { "index": 0, "records": [ { "column": 4, "dataset": "DHG-14", "metric": "Accuracy", "model": "DG-STA", "row": 1, "task": "Hand Gesture Recognition", "value": "91.9" }, { "column": 4, "dataset": "DHG-28", "metric": "Accuracy", "model": "DG-STA", "row": 2, "task": "Hand Gesture Recognition", "value": "88" }, { "column": 4, "dataset": "SHREC 2017", "metric": "14 gestures accuracy", "model": "DG-STA", "row": 3, "task": "Hand Gesture Recognition", "value": "94.4" }, { "column": 4, "dataset": "SHREC 2017", "metric": "28 gestures accuracy", "model": "DG-STA", "row": 4, "task": "Hand Gesture Recognition", "value": "90.7" } ] } ]
1907.09495v2
[ { "index": 0, "records": [ { "column": 10, "dataset": "HIV-fMRI-77", "metric": "Accuracy", "model": "IsoNN", "row": 2, "task": "Graph Classification", "value": "73.4" }, { "column": 10, "dataset": "HIV-fMRI-77", "metric": "F1", "model": "IsoNN", "row": 3, "task": "Graph Classification", "value": "72.2" }, { "column": 10, "dataset": "HIV-DTI-77", "metric": "Accuracy", "model": "IsoNN", "row": 4, "task": "Graph Classification", "value": "67.5" }, { "column": 10, "dataset": "HIV-DTI-77", "metric": "F1", "model": "IsoNN", "row": 5, "task": "Graph Classification", "value": "68.3" }, { "column": 10, "dataset": "BP-fMRI-97", "metric": "Accuracy", "model": "IsoNN", "row": 6, "task": "Graph Classification", "value": "64.9" }, { "column": 10, "dataset": "BP-fMRI-97", "metric": "F1", "model": "IsoNN", "row": 7, "task": "Graph Classification", "value": "69.7" }, { "column": 9, "dataset": "MUTAG", "metric": "Accuracy", "model": "Function Space Pooling", "row": 8, "task": "Graph Classification", "value": "83.3" }, { "column": 10, "dataset": "PTC", "metric": "Accuracy", "model": "IsoNN", "row": 10, "task": "Graph Classification", "value": "59.9" } ] } ]
1907.09595v3
[ { "index": 1, "records": [ { "column": 2, "dataset": "ImageNet", "metric": "Number of params", "model": "MixNet-S", "row": 17, "task": "Image Classification", "value": "4.1M" }, { "column": 4, "dataset": "ImageNet", "metric": "Top 1 Accuracy", "model": "MixNet-S", "row": 17, "task": "Image Classification", "value": "75.8" }, { "column": 5, "dataset": "ImageNet", "metric": "Top 5 Accuracy", "model": "MixNet-S", "row": 17, "task": "Image Classification", "value": "92.8" }, { "column": 2, "dataset": "ImageNet", "metric": "Number of params", "model": "MixNet-M", "row": 18, "task": "Image Classification", "value": "5M" }, { "column": 4, "dataset": "ImageNet", "metric": "Top 1 Accuracy", "model": "MixNet-M", "row": 18, "task": "Image Classification", "value": "77" }, { "column": 5, "dataset": "ImageNet", "metric": "Top 5 Accuracy", "model": "MixNet-M", "row": 18, "task": "Image Classification", "value": "93.3" }, { "column": 2, "dataset": "ImageNet", "metric": "Number of params", "model": "MixNet-L", "row": 19, "task": "Image Classification", "value": "7.3M" }, { "column": 4, "dataset": "ImageNet", "metric": "Top 1 Accuracy", "model": "MixNet-L", "row": 19, "task": "Image Classification", "value": "78.9" }, { "column": 5, "dataset": "ImageNet", "metric": "Top 5 Accuracy", "model": "MixNet-L", "row": 19, "task": "Image Classification", "value": "94.2" } ] } ]
1907.09658v7
[ { "index": 1, "records": [ { "column": 2, "dataset": "SHREC 2017 track on 3D Hand Gesture Recognition", "metric": "14 gestures accuracy", "model": "DD-Net", "row": 15, "task": "Skeleton Based Action Recognition", "value": "94.6" }, { "column": 3, "dataset": "SHREC 2017 track on 3D Hand Gesture Recognition", "metric": "28 gestures accuracy", "model": "DD-Net", "row": 15, "task": "Skeleton Based Action Recognition", "value": "91.9" } ] }, { "index": 2, "records": [ { "column": 2, "dataset": "JHMDB (2D poses only)", "metric": "Average accuracy of 3 splits", "model": "DD-Net", "row": 12, "task": "Skeleton Based Action Recognition", "value": "77.2" } ] } ]
1907.09702v1
[ { "index": 1, "records": [ { "column": 6, "dataset": "ActivityNet-1.3", "metric": "AR@100", "model": "BMN", "row": 1, "task": "Temporal Action Proposal Generation", "value": "75.01" }, { "column": 6, "dataset": "ActivityNet-1.3", "metric": "AUC (val)", "model": "BMN", "row": 2, "task": "Temporal Action Proposal Generation", "value": "67.1" } ] }, { "index": 3, "records": [ { "column": 4, "dataset": "ActivityNet-1.3", "metric": "AUC (val)", "model": "BMN", "row": 5, "task": "Temporal Action Proposal Generation", "value": "67.1" } ] }, { "index": 5, "records": [ { "column": 1, "dataset": "ActivityNet-1.3", "metric": "mAP [email protected]", "model": "BMN", "row": 6, "task": "Temporal Action Localization", "value": "50.07" }, { "column": 5, "dataset": "ActivityNet-1.3", "metric": "mAP", "model": "BMN", "row": 6, "task": "Temporal Action Localization", "value": "36.42" } ] }, { "index": 6, "records": [ { "column": 4, "dataset": "THUMOS’14", "metric": "mAP [email protected]", "model": "BMN", "row": 4, "task": "Temporal Action Localization", "value": "32.2" } ] } ]
1907.10014v2
[ { "index": 1, "records": [ { "column": 1, "dataset": "KITTI Horizon", "metric": "AUC", "model": "ConvLSTM (Huber Loss, naive residual path)", "row": 5, "task": "Horizon Line Estimation", "value": "74.55" }, { "column": 2, "dataset": "KITTI Horizon", "metric": "MSE", "model": "ConvLSTM (Huber Loss, naive residual path)", "row": 5, "task": "Horizon Line Estimation", "value": "6.731" }, { "column": 3, "dataset": "KITTI Horizon", "metric": "ATV", "model": "ConvLSTM (Huber Loss, naive residual path)", "row": 5, "task": "Horizon Line Estimation", "value": "4.984" } ] } ]
1907.10399v1
[ { "index": 3, "records": [ { "column": 1, "dataset": "Set5 - 4x upscaling", "metric": "PSNR", "model": "RFN", "row": 19, "task": "Image Super-Resolution", "value": "32.71" }, { "column": 3, "dataset": "Set14 - 4x upscaling", "metric": "PSNR", "model": "RFN", "row": 19, "task": "Image Super-Resolution", "value": "28.95" }, { "column": 5, "dataset": "BSD100 - 4x upscaling", "metric": "PSNR", "model": "RFN", "row": 19, "task": "Image Super-Resolution", "value": "27.83" }, { "column": 7, "dataset": "Urban100 - 4x upscaling", "metric": "PSNR", "model": "RFN", "row": 19, "task": "Image Super-Resolution", "value": "27.01" }, { "column": 9, "dataset": "Manga109 - 4x upscaling", "metric": "PSNR", "model": "RFN", "row": 19, "task": "Image Super-Resolution", "value": "31.59" }, { "column": 2, "dataset": "Set5 - 4x upscaling", "metric": "SSIM", "model": "S-RFN", "row": 20, "task": "Image Super-Resolution", "value": "0.9022" }, { "column": 4, "dataset": "Set14 - 4x upscaling", "metric": "SSIM", "model": "S-RFN", "row": 20, "task": "Image Super-Resolution", "value": "0.7946" }, { "column": 6, "dataset": "BSD100 - 4x upscaling", "metric": "SSIM", "model": "S-RFN", "row": 20, "task": "Image Super-Resolution", "value": "0.7515" }, { "column": 8, "dataset": "Urban100 - 4x upscaling", "metric": "SSIM", "model": "S-RFN", "row": 20, "task": "Image Super-Resolution", "value": "0.8169" }, { "column": 10, "dataset": "Manga109 - 4x upscaling", "metric": "SSIM", "model": "S-RFN", "row": 20, "task": "Image Super-Resolution", "value": "0.9211" } ] } ]
1907.10471v1
[ { "index": 2, "records": [ { "column": 3, "dataset": "KITTI Cars Easy", "metric": "AP", "model": "STD", "row": 12, "task": "Birds Eye View Object Detection", "value": "89.66" }, { "column": 4, "dataset": "KITTI Cars Moderate", "metric": "AP", "model": "STD", "row": 12, "task": "Birds Eye View Object Detection", "value": "87.76" }, { "column": 5, "dataset": "KITTI Cars Hard", "metric": "AP", "model": "STD", "row": 12, "task": "Birds Eye View Object Detection", "value": "86.89" }, { "column": 6, "dataset": "KITTI Cars Easy", "metric": "AP", "model": "STD", "row": 12, "task": "3D Object Detection", "value": "86.61" }, { "column": 7, "dataset": "KITTI Cars Moderate", "metric": "AP", "model": "STD", "row": 12, "task": "3D Object Detection", "value": "77.63" }, { "column": 8, "dataset": "KITTI Cars Hard", "metric": "AP", "model": "STD", "row": 12, "task": "3D Object Detection", "value": "76.06" }, { "column": 3, "dataset": "KITTI Pedestrians Easy", "metric": "AP", "model": "STD", "row": 19, "task": "Birds Eye View Object Detection", "value": "60.99" }, { "column": 4, "dataset": "KITTI Pedestrians Moderate", "metric": "AP", "model": "STD", "row": 19, "task": "Birds Eye View Object Detection", "value": "51.39" }, { "column": 5, "dataset": "KITTI Pedestrians Hard", "metric": "AP", "model": "STD", "row": 19, "task": "Birds Eye View Object Detection", "value": "45.89" }, { "column": 6, "dataset": "KITTI Pedestrians Easy", "metric": "AP", "model": "STD", "row": 19, "task": "3D Object Detection", "value": "53.08" }, { "column": 7, "dataset": "KITTI Pedestrians Moderate", "metric": "AP", "model": "STD", "row": 19, "task": "3D Object Detection", "value": "44.24" }, { "column": 8, "dataset": "KITTI Pedestrians Hard", "metric": "AP", "model": "STD", "row": 19, "task": "3D Object Detection", "value": "41.97" }, { "column": 3, "dataset": "KITTI Cyclists Easy", "metric": "AP", "model": "STD", "row": 26, "task": "Birds Eye View Object Detection", "value": "81.04" }, { "column": 4, "dataset": "KITTI Cyclists Moderate", "metric": "AP", "model": "STD", "row": 26, "task": "Birds Eye View Object Detection", "value": "65.32" }, { "column": 5, "dataset": "KITTI Cyclists Hard", "metric": "AP", "model": "STD", "row": 26, "task": "Birds Eye View Object Detection", "value": "57.85" }, { "column": 6, "dataset": "KITTI Cyclists Easy", "metric": "AP", "model": "STD", "row": 26, "task": "3D Object Detection", "value": "78.89" }, { "column": 7, "dataset": "KITTI Cyclists Moderate", "metric": "AP", "model": "STD", "row": 26, "task": "3D Object Detection", "value": "62.53" }, { "column": 8, "dataset": "KITTI Cyclists Hard", "metric": "AP", "model": "STD", "row": 26, "task": "3D Object Detection", "value": "55.77" } ] } ]
1907.10529v3
[ { "index": 0, "records": [ { "column": 1, "dataset": "SQuAD1.1", "metric": "EM", "model": "SpanBERT (single model)", "row": 6, "task": "Question Answering", "value": "88.8" }, { "column": 2, "dataset": "SQuAD1.1", "metric": "F1", "model": "SpanBERT (single model)", "row": 6, "task": "Question Answering", "value": "94.6" }, { "column": 3, "dataset": "SQuAD2.0", "metric": "EM", "model": "SpanBERT", "row": 6, "task": "Question Answering", "value": "85.7" }, { "column": 4, "dataset": "SQuAD2.0", "metric": "F1", "model": "SpanBERT", "row": 6, "task": "Question Answering", "value": "88.7" } ] }, { "index": 1, "records": [ { "column": 1, "dataset": "NewsQA", "metric": "F1", "model": "SpanBERT", "row": 4, "task": "Question Answering", "value": "73.6" }, { "column": 2, "dataset": "TriviaQA", "metric": "F1", "model": "SpanBERT", "row": 4, "task": "Question Answering", "value": "83.6" }, { "column": 3, "dataset": "SearchQA", "metric": "F1", "model": "SpanBERT", "row": 4, "task": "Open-Domain Question Answering", "value": "84.8" }, { "column": 4, "dataset": "HotpotQA", "metric": "Joint F1", "model": "SpanBERT", "row": 4, "task": "Question Answering", "value": "83" }, { "column": 5, "dataset": "NaturalQA", "metric": "F1", "model": "SpanBERT", "row": 4, "task": "Question Answering", "value": "82.5" } ] }, { "index": 2, "records": [ { "column": 10, "dataset": "OntoNotes", "metric": "F1", "model": "SpanBERT", "row": 6, "task": "Coreference Resolution", "value": "79.6" } ] }, { "index": 3, "records": [ { "column": 1, "dataset": "TACRED", "metric": "Precision", "model": "SpanBERT", "row": 6, "task": "Relation Extraction", "value": "70.8" }, { "column": 2, "dataset": "TACRED", "metric": "Recall", "model": "SpanBERT", "row": 6, "task": "Relation Extraction", "value": "70.9" }, { "column": 3, "dataset": "TACRED", "metric": "F1", "model": "SpanBERT", "row": 6, "task": "Relation Extraction", "value": "70.8" } ] }, { "index": 4, "records": [ { "column": 1, "dataset": "CoLA", "metric": "Accuracy", "model": "SpanBERT", "row": 4, "task": "Linguistic Acceptability", "value": "64.3" }, { "column": 2, "dataset": "SST-2 Binary classification", "metric": "Accuracy", "model": "SpanBERT", "row": 4, "task": "Sentiment Analysis", "value": "94.8" }, { "column": 3, "dataset": "MRPC", "metric": "Accuracy", "model": "SpanBERT", "row": 4, "task": "Semantic Textual Similarity", "value": "90.9" }, { "column": 4, "dataset": "STS Benchmark", "metric": "Pearson Correlation", "model": "SpanBERT", "row": 4, "task": "Semantic Textual Similarity", "value": "0.899" }, { "column": 5, "dataset": "Quora Question Pairs", "metric": "Accuracy", "model": "SpanBERT", "row": 4, "task": "Paraphrase Identification", "value": "71.9" }, { "column": 6, "dataset": "MultiNLI", "metric": "Matched", "model": "SpanBERT", "row": 4, "task": "Natural Language Inference", "value": "88.1" }, { "column": 7, "dataset": "QNLI", "metric": "Accuracy", "model": "SpanBERT", "row": 4, "task": "Natural Language Inference", "value": "94.3" }, { "column": 8, "dataset": "RTE", "metric": "Accuracy", "model": "SpanBERT", "row": 4, "task": "Natural Language Inference", "value": "79.0" } ] }, { "index": 6, "records": [ { "column": 1, "dataset": "SQuAD2.0 dev", "metric": "F1", "model": "SpanBERT", "row": 3, "task": "Question Answering", "value": "86.8" } ] } ]
1907.10628v2
[ { "index": 0, "records": [ { "column": 7, "dataset": "Office-31", "metric": "Average Accuracy", "model": "CD3A", "row": 11, "task": "Domain Adaptation", "value": "79.5" } ] } ]
1907.10830v3
[ { "index": 2, "records": [ { "column": 2, "dataset": "horse2zebra", "metric": "Kernel Inception Distance", "model": "U-GAT-IT", "row": 1, "task": "Image-to-Image Translation", "value": "7.06" }, { "column": 3, "dataset": "cat2dog", "metric": "Kernel Inception Distance", "model": "U-GAT-IT", "row": 1, "task": "Image-to-Image Translation", "value": "7.07" }, { "column": 4, "dataset": "photo2portrait", "metric": "Kernel Inception Distance", "model": "U-GAT-IT", "row": 1, "task": "Image-to-Image Translation", "value": "1.79" }, { "column": 5, "dataset": "photo2vangogh", "metric": "Kernel Inception Distance", "model": "U-GAT-IT", "row": 1, "task": "Image-to-Image Translation", "value": "4.28" }, { "column": 2, "dataset": "zebra2horse", "metric": "Kernel Inception Distance", "model": "U-GAT-IT", "row": 9, "task": "Image-to-Image Translation", "value": "7.47" }, { "column": 3, "dataset": "dog2cat", "metric": "Kernel Inception Distance", "model": "U-GAT-IT", "row": 9, "task": "Image-to-Image Translation", "value": "8.15" }, { "column": 4, "dataset": "portrait2photo", "metric": "Kernel Inception Distance", "model": "U-GAT-IT", "row": 9, "task": "Image-to-Image Translation", "value": "1.69" }, { "column": 5, "dataset": "vangogh2photo", "metric": "Kernel Inception Distance", "model": "U-GAT-IT", "row": 9, "task": "Image-to-Image Translation", "value": "5.61" } ] } ]
1907.10936v1
[ { "index": 0, "records": [ { "column": 1, "dataset": "REFUGE", "metric": "DiceOC", "model": "ET-Net", "row": 7, "task": "Optic Disc Segmentation", "value": "0.8912" }, { "column": 2, "dataset": "REFUGE", "metric": "DiceOD", "model": "ET-Net", "row": 7, "task": "Optic Disc Segmentation", "value": "0.9529" }, { "column": 3, "dataset": "REFUGE", "metric": "mIoU", "model": "ET-Net", "row": 7, "task": "Optic Disc Segmentation", "value": "0.867" }, { "column": 4, "dataset": "Drishti-GS", "metric": "DiceOC", "model": "ET-Net", "row": 7, "task": "Optic Disc Segmentation", "value": "0.9314" }, { "column": 5, "dataset": "Drishti-GS", "metric": "DiceOD", "model": "ET-Net", "row": 7, "task": "Optic Disc Segmentation", "value": "0.9752" }, { "column": 6, "dataset": "Drishti-GS", "metric": "mIoU", "model": "ET-Net", "row": 7, "task": "Optic Disc Segmentation", "value": "0.8792" } ] }, { "index": 1, "records": [ { "column": 1, "dataset": "DRIVE", "metric": "Accuracy", "model": "ET-Net", "row": 6, "task": "Retinal Vessel Segmentation", "value": "0.956" }, { "column": 2, "dataset": "DRIVE", "metric": "mIoU", "model": "ET-Net", "row": 6, "task": "Retinal Vessel Segmentation", "value": "0.7744" }, { "column": 3, "dataset": "Montgomery County", "metric": "Accuracy", "model": "ET-Net", "row": 6, "task": "Lung Nodule Segmentation", "value": "0.9865" }, { "column": 4, "dataset": "Montgomery County", "metric": "mIoU", "model": "ET-Net", "row": 6, "task": "Lung Nodule Segmentation", "value": "0.942" }, { "column": 5, "dataset": "LUNA", "metric": "Accuracy", "model": "ET-Net", "row": 6, "task": "Lung Nodule Segmentation", "value": "0.9868" }, { "column": 6, "dataset": "LUNA", "metric": "mIoU", "model": "ET-Net", "row": 6, "task": "Lung Nodule Segmentation", "value": "0.9623" } ] } ]
1907.11223v2
[ { "index": 0, "records": [ { "column": 5, "dataset": "QED", "metric": "Success", "model": "HierG2G", "row": 9, "task": "Drug Discovery", "value": "76.9%" }, { "column": 6, "dataset": "QED", "metric": "Diversity", "model": "HierG2G", "row": 9, "task": "Drug Discovery", "value": "0.477" }, { "column": 7, "dataset": "DRD2", "metric": "Success", "model": "HierG2G", "row": 9, "task": "Drug Discovery", "value": "85.9%" }, { "column": 8, "dataset": "DRD2", "metric": "Diversity", "model": "HierG2G", "row": 9, "task": "Drug Discovery", "value": "0.192" } ] } ]
1907.11692v1
[ { "index": 4, "records": [ { "column": 1, "dataset": "RTE", "metric": "Accuracy", "model": "RoBERTa", "row": 6, "task": "Natural Language Inference", "value": "88.2" }, { "column": 9, "dataset": "WNLI", "metric": "Accuracy", "model": "RoBERTa", "row": 7, "task": "Natural Language Inference", "value": "89.0" }, { "column": 1, "dataset": "MultiNLI", "metric": "Matched", "model": "RoBERTa", "row": 9, "task": "Natural Language Inference", "value": "90.8" }, { "column": 2, "dataset": "QNLI", "metric": "Accuracy", "model": "RoBERTa", "row": 9, "task": "Natural Language Inference", "value": "98.9" }, { "column": 5, "dataset": "SST-2 Binary classification", "metric": "Accuracy", "model": "RoBERTa", "row": 9, "task": "Sentiment Analysis", "value": "96.7" } ] }, { "index": 5, "records": [ { "column": 3, "dataset": "SQuAD2.0 dev", "metric": "EM", "model": "RoBERTa (no data aug)", "row": 5, "task": "Question Answering", "value": "86.5" }, { "column": 4, "dataset": "SQuAD2.0 dev", "metric": "F1", "model": "RoBERTa (no data aug)", "row": 5, "task": "Question Answering", "value": "89.4" } ] }, { "index": 6, "records": [ { "column": 1, "dataset": "RACE", "metric": "Accuracy", "model": "RoBERTa", "row": 4, "task": "Reading Comprehension", "value": "83.2" } ] } ]
1907.11983v1
[ { "index": 1, "records": [ { "column": 1, "dataset": "WNLI", "metric": "Accuracy", "model": "HNN", "row": 6, "task": "Natural Language Understanding", "value": "83.6" }, { "column": 2, "dataset": "Wisconsin Sleep Cohort (WSC)", "metric": "Accuracy", "model": "HNN", "row": 6, "task": "Natural Language Understanding", "value": "75.1" }, { "column": 3, "dataset": "PDP60", "metric": "Accuracy", "model": "HNN", "row": 6, "task": "Natural Language Understanding", "value": "90" } ] } ]
1907.12087v4
[ { "index": 0, "records": [ { "column": 1, "dataset": "Mini-Imagenet 5-way (1-shot)", "metric": "Accuracy", "model": "S2M2R", "row": 10, "task": "Few-Shot Image Classification", "value": "64.93" }, { "column": 2, "dataset": "Mini-Imagenet 5-way (5-shot)", "metric": "Accuracy", "model": "S2M2R", "row": 10, "task": "Few-Shot Image Classification", "value": "83.18" }, { "column": 3, "dataset": "Tiered ImageNet 5-way (1-shot)", "metric": "Accuracy", "model": "S2M2R", "row": 10, "task": "Few-Shot Image Classification", "value": "73.71" }, { "column": 4, "dataset": "Tiered ImageNet 5-way (5-shot)", "metric": "Accuracy", "model": "S2M2R", "row": 10, "task": "Few-Shot Image Classification", "value": "88.59" }, { "column": 5, "dataset": "CUB 200 5-way 1-shot", "metric": "Accuracy", "model": "S2M2R", "row": 10, "task": "Few-Shot Image Classification", "value": "80.68" }, { "column": 6, "dataset": "CUB 200 5-way 5-shot", "metric": "Accuracy", "model": "S2M2R", "row": 10, "task": "Few-Shot Image Classification", "value": "90.85" }, { "column": 7, "dataset": "CIFAR-FS 5-way (1-shot)", "metric": "Accuracy", "model": "S2M2R", "row": 10, "task": "Few-Shot Image Classification", "value": "74.81" }, { "column": 8, "dataset": "CIFAR-FS 5-way (5-shot)", "metric": "Accuracy", "model": "S2M2R", "row": 10, "task": "Few-Shot Image Classification", "value": "87.47" } ] } ]
1907.12412v2
[ { "index": 4, "records": [ { "column": 2, "dataset": "CoLA", "metric": "Accuracy", "model": "ERNIE 2.0 Base", "row": 3, "task": "Linguistic Acceptability", "value": "55.2" }, { "column": 7, "dataset": "CoLA", "metric": "Accuracy", "model": "ERNIE 2.0 Large", "row": 3, "task": "Linguistic Acceptability", "value": "63.5" }, { "column": 2, "dataset": "SST-2 Binary classification", "metric": "Accuracy", "model": "ERNIE 2.0 Base", "row": 4, "task": "Sentiment Analysis", "value": "95" }, { "column": 7, "dataset": "SST-5 Fine-grained classification", "metric": "Accuracy", "model": "ERNIE 2.0 Large", "row": 4, "task": "Sentiment Analysis", "value": "95.6" }, { "column": 2, "dataset": "MRPC", "metric": "Accuracy", "model": "ERNIE 2.0 Base", "row": 5, "task": "Semantic Textual Similarity", "value": "86.1" }, { "column": 7, "dataset": "MRPC", "metric": "Accuracy", "model": "ERNIE 2.0 Large", "row": 5, "task": "Semantic Textual Similarity", "value": "87.4" }, { "column": 2, "dataset": "STS Benchmark", "metric": "Pearson Correlation", "model": "ERNIE 2.0 Base", "row": 6, "task": "Semantic Textual Similarity", "value": "0.876" }, { "column": 7, "dataset": "STS Benchmark", "metric": "Pearson Correlation", "model": "ERNIE 2.0 Large", "row": 6, "task": "Semantic Textual Similarity", "value": "0.912" }, { "column": 2, "dataset": "Quora Question Pairs", "metric": "Accuracy", "model": "ERNIE 2.0 Base", "row": 7, "task": "Question Answering", "value": "89.8" }, { "column": 7, "dataset": "Quora Question Pairs", "metric": "Accuracy", "model": "ERNIE 2.0 Large", "row": 7, "task": "Question Answering", "value": "90.1" }, { "column": 2, "dataset": "MultiNLI", "metric": "Matched", "model": "ERNIE 2.0 Base", "row": 8, "task": "Natural Language Inference", "value": "86.1" }, { "column": 7, "dataset": "MultiNLI", "metric": "Matched", "model": "ERNIE 2.0 Large", "row": 8, "task": "Natural Language Inference", "value": "88.7" }, { "column": 2, "dataset": "QNLI", "metric": "Accuracy", "model": "ERNIE 2.0 Base", "row": 9, "task": "Natural Language Inference", "value": "92.9" }, { "column": 7, "dataset": "QNLI", "metric": "Accuracy", "model": "ERNIE 2.0 Large", "row": 9, "task": "Natural Language Inference", "value": "94.6" }, { "column": 2, "dataset": "RTE", "metric": "Accuracy", "model": "ERNIE 2.0 Base", "row": 10, "task": "Natural Language Inference", "value": "74.8" }, { "column": 7, "dataset": "RTE", "metric": "Accuracy", "model": "ERNIE 2.0 Large", "row": 10, "task": "Natural Language Inference", "value": "80.2" }, { "column": 2, "dataset": "WNLI", "metric": "Accuracy", "model": "ERNIE 2.0 Large", "row": 11, "task": "Natural Language Inference", "value": "65.1" }, { "column": 7, "dataset": "WNLI", "metric": "Accuracy", "model": "ERNIE 2.0 Large", "row": 11, "task": "Natural Language Inference", "value": "67.8" } ] }, { "index": 5, "records": [ { "column": 6, "dataset": "CMRC 2018 (Simplified Chinese) Dev", "metric": "EM", "model": "ERNIE 2.0 Base", "row": 2, "task": "Chinese Reading Comprehension", "value": "69.1" }, { "column": 8, "dataset": "CMRC 2018 (Simplified Chinese) Dev", "metric": "EM", "model": "ERNIE 2.0 Large", "row": 2, "task": "Chinese Reading Comprehension", "value": "28.5" }, { "column": 6, "dataset": "DRCD (Traditional Chinese) Dev", "metric": "EM", "model": "ERNIE 2.0 Base", "row": 3, "task": "Chinese Reading Comprehension", "value": "88.5" }, { "column": 7, "dataset": "DRCD (Traditional Chinese)", "metric": "EM", "model": "ERNIE 2.0 Base", "row": 3, "task": "Chinese Reading Comprehension", "value": "88.0" }, { "column": 8, "dataset": "DRCD (Traditional Chinese) Dev", "metric": "EM", "model": "ERNIE 2.0 Large", "row": 3, "task": "Chinese Reading Comprehension", "value": "89.7" }, { "column": 9, "dataset": "DRCD (Traditional Chinese)", "metric": "EM", "model": "ERNIE 2.0 Large", "row": 3, "task": "Chinese Reading Comprehension", "value": "89" }, { "column": 6, "dataset": "DuReader", "metric": "EM", "model": "ERNIE 2.0 Base", "row": 4, "task": "Open-Domain Question Answering", "value": "61.3" }, { "column": 8, "dataset": "DuReader", "metric": "EM", "model": "ERNIE 2.0 Large", "row": 4, "task": "Open-Domain Question Answering", "value": "64.2" }, { "column": 6, "dataset": "MSRA Dev", "metric": "F1", "model": "ERNIE 2.0 Base", "row": 5, "task": "Chinese Named Entity Recognition", "value": "95.2" }, { "column": 7, "dataset": "MSRA", "metric": "F1", "model": "ERNIE 2.0 Base", "row": 5, "task": "Chinese Named Entity Recognition", "value": "93.8" }, { "column": 8, "dataset": "MSRA Dev", "metric": "F1", "model": "ERNIE 2.0 Large", "row": 5, "task": "Chinese Named Entity Recognition", "value": "96.3" }, { "column": 9, "dataset": "MSRA", "metric": "F1", "model": "ERNIE 2.0 Large", "row": 5, "task": "Chinese Named Entity Recognition", "value": "95" }, { "column": 6, "dataset": "XNLI Chinese Dev", "metric": "Accuracy", "model": "ERNIE 2.0 Base", "row": 6, "task": "Natural Language Inference", "value": "81.2" }, { "column": 7, "dataset": "XNLI Chinese", "metric": "Accuracy", "model": "ERNIE 2.0 Base", "row": 6, "task": "Natural Language Inference", "value": "79.7" }, { "column": 8, "dataset": "XNLI Chinese Dev", "metric": "Accuracy", "model": "ERNIE 2.0 Large", "row": 6, "task": "Natural Language Inference", "value": "82.6" }, { "column": 9, "dataset": "XNLI Chinese", "metric": "Accuracy", "model": "ERNIE 2.0 Large", "row": 6, "task": "Natural Language Inference", "value": "81" }, { "column": 6, "dataset": "ChnSentiCorp Dev", "metric": "Accuracy", "model": "ERNIE 2.0 Base", "row": 7, "task": "Chinese Sentiment Analysis", "value": "95.7" }, { "column": 7, "dataset": "ChnSentiCorp", "metric": "Accuracy", "model": "ERNIE 2.0 Base", "row": 7, "task": "Chinese Sentiment Analysis", "value": "95.5" }, { "column": 8, "dataset": "ChnSentiCorp Dev", "metric": "Accuracy", "model": "ERNIE 2.0 Large", "row": 7, "task": "Chinese Sentiment Analysis", "value": "96.1" }, { "column": 9, "dataset": "ChnSentiCorp", "metric": "Accuracy", "model": "ERNIE 2.0 Large", "row": 7, "task": "Chinese Sentiment Analysis", "value": "95.8" }, { "column": 6, "dataset": "LCQMC Dev", "metric": "Accuracy", "model": "ERNIE 2.0 Base", "row": 8, "task": "Chinese Sentence Pair Classification", "value": "90.9" }, { "column": 7, "dataset": "LCQMC", "metric": "Accuracy", "model": "ERNIE 2.0 Base", "row": 8, "task": "Chinese Sentence Pair Classification", "value": "87.9" }, { "column": 8, "dataset": "LCQMC Dev", "metric": "Accuracy", "model": "ERNIE 2.0 Large", "row": 8, "task": "Chinese Sentence Pair Classification", "value": "90.9" }, { "column": 9, "dataset": "LCQMC", "metric": "Accuracy", "model": "ERNIE 2.0 Large", "row": 8, "task": "Chinese Sentence Pair Classification", "value": "87.9" }, { "column": 6, "dataset": "BQ Dev", "metric": "Accuracy", "model": "ERNIE 2.0 Base", "row": 9, "task": "Chinese Sentence Pair Classification", "value": "86.4" }, { "column": 7, "dataset": "BQ", "metric": "Accuracy", "model": "ERNIE 2.0 Base", "row": 9, "task": "Chinese Sentence Pair Classification", "value": "85.0" }, { "column": 8, "dataset": "BQ Dev", "metric": "Accuracy", "model": "ERNIE 2.0 Large", "row": 9, "task": "Chinese Sentence Pair Classification", "value": "86.5" }, { "column": 9, "dataset": "BQ", "metric": "Accuracy", "model": "ERNIE 2.0 Large", "row": 9, "task": "Chinese Sentence Pair Classification", "value": "85.2" }, { "column": 6, "dataset": "NLPCC-DBQA Dev", "metric": "MRR", "model": "ERNIE 2.0 Base", "row": 10, "task": "Chinese Sentence Pair Classification", "value": "95.7" }, { "column": 7, "dataset": "NLPCC-DBQA", "metric": "MRR", "model": "ERNIE 2.0 Base", "row": 10, "task": "Chinese Sentence Pair Classification", "value": "95.7" }, { "column": 8, "dataset": "NLPCC-DBQA Dev", "metric": "MRR", "model": "ERNIE 2.0 Large", "row": 10, "task": "Chinese Sentence Pair Classification", "value": "95.9" }, { "column": 9, "dataset": "NLPCC-DBQA", "metric": "MRR", "model": "ERNIE 2.0 Large", "row": 10, "task": "Chinese Sentence Pair Classification", "value": "95.8" } ] } ]
1907.12743v6
[ { "index": 2, "records": [ { "column": 3, "dataset": "UCF --> HMDB (full)", "metric": "Accuracy", "model": "TA3N", "row": 9, "task": "Domain Adaptation", "value": "78.33" } ] }, { "index": 3, "records": [ { "column": 3, "dataset": "HMDB --> UCF (full)", "metric": "Accuracy", "model": "TA3N", "row": 9, "task": "Domain Adaptation", "value": "81.79" } ] } ]
1907.12904v2
[ { "index": 0, "records": [ { "column": 8, "dataset": "Set5 - 2x upscaling", "metric": "PSNR", "model": "CAR", "row": 2, "task": "Image Super-Resolution", "value": "38.94" }, { "column": 8, "dataset": "Set5 - 4x upscaling", "metric": "PSNR", "model": "CAR", "row": 3, "task": "Image Super-Resolution", "value": "33.88" }, { "column": 8, "dataset": "Set14 - 2x upscaling", "metric": "PSNR", "model": "CAR", "row": 4, "task": "Image Super-Resolution", "value": "35.61" }, { "column": 8, "dataset": "Set14 - 4x upscaling", "metric": "PSNR", "model": "CAR", "row": 5, "task": "Image Super-Resolution", "value": "30.31" }, { "column": 8, "dataset": "BSD100 - 2x upscaling", "metric": "PSNR", "model": "CAR", "row": 6, "task": "Image Super-Resolution", "value": "33.83" }, { "column": 8, "dataset": "BSD100 - 4x upscaling", "metric": "PSNR", "model": "CAR", "row": 7, "task": "Image Super-Resolution", "value": "29.15" }, { "column": 8, "dataset": "Urban100 - 2x upscaling", "metric": "PSNR", "model": "CAR", "row": 8, "task": "Image Super-Resolution", "value": "35.24" }, { "column": 8, "dataset": "Urban100 - 4x upscaling", "metric": "PSNR", "model": "CAR", "row": 9, "task": "Image Super-Resolution", "value": "29.28" }, { "column": 8, "dataset": "DIV2K val - 2x upscaling", "metric": "PSNR", "model": "CAR", "row": 10, "task": "Image Super-Resolution", "value": "38.26" }, { "column": 8, "dataset": "DIV2K val - 4x upscaling", "metric": "PSNR", "model": "CAR", "row": 11, "task": "Image Super-Resolution", "value": "32.82" } ] } ]
1907.13242v2
[ { "index": 3, "records": [ { "column": 9, "dataset": "VOT2017", "metric": "Expected Average Overlap (EAO)", "model": "GFS-DCF", "row": 1, "task": "Visual Object Tracking", "value": "0.397" } ] }, { "index": 4, "records": [ { "column": 1, "dataset": "TrackingNet", "metric": "Accuracy", "model": "GFS-DCF", "row": 4, "task": "Visual Object Tracking", "value": "60.9" }, { "column": 2, "dataset": "TrackingNet", "metric": "Precision", "model": "GFS-DCF", "row": 4, "task": "Visual Object Tracking", "value": "56.57" }, { "column": 3, "dataset": "TrackingNet", "metric": "Normalized Precision", "model": "GFS-DCF", "row": 4, "task": "Visual Object Tracking", "value": "71.79" } ] } ]
1907.13347v1
[ { "index": 2, "records": [ { "column": 3, "dataset": "MOT15", "metric": "MOTA", "model": "GMPHD Filter (Occlusion Group Management)", "row": 3, "task": "Online Multi-Object Tracking", "value": "30.7" } ] }, { "index": 3, "records": [ { "column": 3, "dataset": "MOT17", "metric": "MOTA", "model": "GMPHD Filter (Occlusion Group Management)", "row": 4, "task": "Online Multi-Object Tracking", "value": "49.9" } ] } ]
1908.00273v2
[ { "index": 0, "records": [ { "column": 1, "dataset": "Darmstadt Noise Dataset", "metric": "PSNR (Raw)", "model": "PRIDNet (blind)", "row": 11, "task": "Color Image Denoising", "value": "48.48" }, { "column": 2, "dataset": "Darmstadt Noise Dataset", "metric": "SSIM (Raw)", "model": "PRIDNet (blind)", "row": 11, "task": "Color Image Denoising", "value": "0.9806" }, { "column": 3, "dataset": "Darmstadt Noise Dataset", "metric": "PSNR (sRGB)", "model": "PRIDNet (blind)", "row": 11, "task": "Color Image Denoising", "value": "39.42" }, { "column": 4, "dataset": "Darmstadt Noise Dataset", "metric": "SSIM (sRGB)", "model": "PRIDNet (blind)", "row": 11, "task": "Color Image Denoising", "value": "0.9528" } ] } ]
1908.01114v3
[ { "index": 0, "records": [ { "column": 1, "dataset": "Market-1501", "metric": "Rank-1", "model": "ABD-Net (ResNet-50)", "row": 11, "task": "Person Re-Identification", "value": "95.6" }, { "column": 2, "dataset": "Market-1501", "metric": "MAP", "model": "ABD-Net (ResNet-50)", "row": 11, "task": "Person Re-Identification", "value": "88.28" } ] }, { "index": 2, "records": [ { "column": 2, "dataset": "DukeMTMC-reID", "metric": "MAP", "model": "ABD-Net (ResNet-50)", "row": 21, "task": "Person Re-Identification", "value": "78.59" } ] }, { "index": 3, "records": [ { "column": 3, "dataset": "MSMT17", "metric": "mAP", "model": "ABD-Net (ResNet-50)", "row": 4, "task": "Person Re-Identification", "value": "60.8" } ] } ]
1908.01259v2
[ { "index": 2, "records": [ { "column": 3, "dataset": "ImageNet", "metric": "Top 1 Accuracy", "model": "AOGNet-40M-AN", "row": 8, "task": "Image Classification", "value": "81.87" }, { "column": 4, "dataset": "ImageNet", "metric": "Top 5 Accuracy", "model": "AOGNet-40M-AN", "row": 8, "task": "Image Classification", "value": "95.74" } ] }, { "index": 3, "records": [ { "column": 4, "dataset": "COCO minival", "metric": "box AP", "model": "Mask R-CNN-FPN (AOGNet-40M)", "row": 17, "task": "Object Detection", "value": "44.9" }, { "column": 5, "dataset": "COCO minival", "metric": "AP50", "model": "Mask R-CNN-FPN (AOGNet-40M)", "row": 17, "task": "Object Detection", "value": "66.2" }, { "column": 6, "dataset": "COCO minival", "metric": "AP75", "model": "Mask R-CNN-FPN (AOGNet-40M)", "row": 17, "task": "Object Detection", "value": "49.1" }, { "column": 7, "dataset": "COCO minival", "metric": "mask AP", "model": "Mask R-CNN-FPN (AOGNet-40M)", "row": 17, "task": "Instance Segmentation", "value": "40.2" }, { "column": 8, "dataset": "COCO minival", "metric": "AP50", "model": "Mask R-CNN-FPN (AOGNet-40M)", "row": 17, "task": "Instance Segmentation", "value": "63.2" }, { "column": 9, "dataset": "COCO minival", "metric": "AP75", "model": "Mask R-CNN-FPN (AOGNet-40M)", "row": 17, "task": "Instance Segmentation", "value": "43.3" } ] } ]
1908.01683v1
[ { "index": 5, "records": [ { "column": 2, "dataset": "MARS", "metric": "Rank-1", "model": "NVAN", "row": 10, "task": "Person Re-Identification", "value": "90" }, { "column": 3, "dataset": "MARS", "metric": "mAP", "model": "NVAN", "row": 10, "task": "Person Re-Identification", "value": "82.8" } ] } ]
1908.01853v1
[ { "index": 0, "records": [ { "column": 4, "dataset": "TREC-6", "metric": "Error", "model": "DELTA (CNN)", "row": 2, "task": "Text Classification", "value": "7.8" }, { "column": 4, "dataset": "Yahoo! Answers", "metric": "Accuracy", "model": "DELTA (HAN)", "row": 3, "task": "Text Classification", "value": "75.1" }, { "column": 4, "dataset": "CoNLL 2003 (English)", "metric": "F1", "model": "DELTA(BLSTM-CRF)", "row": 5, "task": "Named Entity Recognition", "value": "84.6" }, { "column": 4, "dataset": "ATIS", "metric": "Accuracy", "model": "DELTA (BLSTM-CRF)", "row": 7, "task": "Intent Detection", "value": "97.4" }, { "column": 4, "dataset": "ATIS", "metric": "F1", "model": "DELTA (BLSTM-CRF)", "row": 8, "task": "Intent Detection", "value": "95.2" }, { "column": 4, "dataset": "SNLI", "metric": "% Test Accuracy", "model": "DELTA (LSTM)", "row": 10, "task": "Natural Language Inference", "value": "80.7" }, { "column": 4, "dataset": "CNN / Daily Mail", "metric": "Rouge-L", "model": "DELTA (BLSTM)", "row": 12, "task": "Abstractive Text Summarization", "value": "27.3" }, { "column": 4, "dataset": "CoNLL 2003 (English)", "metric": "F1", "model": " DELTA (NER ELMO)", "row": 14, "task": "Named Entity Recognition", "value": "92.2" }, { "column": 4, "dataset": "CoNLL 2003 (English)", "metric": "F1", "model": "DELTA (BERT)", "row": 15, "task": "Named Entity Recognition", "value": "94.6" } ] } ]
1908.03557v1
[ { "index": 0, "records": [ { "column": 1, "dataset": "VQA v2 test-dev", "metric": "Accuracy", "model": "VisualBERT", "row": 5, "task": "Visual Question Answering", "value": "70.8" }, { "column": 2, "dataset": "VQA v2 test-std", "metric": "Accuracy", "model": "VisualBERT", "row": 5, "task": "Visual Question Answering", "value": "71" } ] }, { "index": 1, "records": [ { "column": 1, "dataset": "VCR (Q-A) dev", "metric": "Accuracy", "model": "VisualBERT", "row": 6, "task": "Visual Question Answering", "value": "70.8" }, { "column": 2, "dataset": "VCR (Q-A) test", "metric": "Accuracy", "model": "VisualBERT", "row": 6, "task": "Visual Question Answering", "value": "71.6" }, { "column": 3, "dataset": "VCR (QA-R) dev", "metric": "Accuracy", "model": "VisualBERT", "row": 6, "task": "Visual Question Answering", "value": "73.2" }, { "column": 4, "dataset": "VCR (QA-R) test", "metric": "Accuracy", "model": "VisualBERT", "row": 6, "task": "Visual Question Answering", "value": "73.2" }, { "column": 5, "dataset": "VCR (Q-AR) dev", "metric": "Accuracy", "model": "VisualBERT", "row": 6, "task": "Visual Question Answering", "value": "52.2" }, { "column": 6, "dataset": "VCR (Q-AR) test", "metric": "Accuracy", "model": "VisualBERT", "row": 6, "task": "Visual Question Answering", "value": "52.4" } ] }, { "index": 2, "records": [ { "column": 2, "dataset": "NLVR", "metric": "Accuracy (Test-P)", "model": "VisualBERT", "row": 4, "task": "Visual Reasoning", "value": "67" }, { "column": 3, "dataset": "NLVR", "metric": "Accuracy (Test-U)", "model": "VisualBERT", "row": 4, "task": "Visual Reasoning", "value": "67.3" } ] }, { "index": 3, "records": [ { "column": 1, "dataset": "Flickr30k Entities Dev", "metric": "R@1", "model": "VisualBERT", "row": 5, "task": "Phrase Grounding", "value": "70.4" }, { "column": 2, "dataset": "Flickr30k Entities Test", "metric": "R@1", "model": "VisualBERT", "row": 5, "task": "Phrase Grounding", "value": "71.33" }, { "column": 3, "dataset": "Flickr30k Entities Dev", "metric": "R@5", "model": "VisualBERT", "row": 5, "task": "Phrase Grounding", "value": "84.49" }, { "column": 4, "dataset": "Flickr30k Entities Test", "metric": "R@5", "model": "VisualBERT", "row": 5, "task": "Phrase Grounding", "value": "84.98" }, { "column": 5, "dataset": "Flickr30k Entities Dev", "metric": "R@10", "model": "VisualBERT", "row": 5, "task": "Phrase Grounding", "value": "86.31" }, { "column": 6, "dataset": "Flickr30k Entities Test", "metric": "R@10", "model": "VisualBERT", "row": 5, "task": "Phrase Grounding", "value": "86.51" } ] }, { "index": 4, "records": [ { "column": 2, "dataset": "NLVR2 Dev", "metric": "Accuracy", "model": "VisualBERT", "row": 1, "task": "Visual Reasoning", "value": "66.7" } ] } ]
1908.03835v1
[ { "index": 0, "records": [ { "column": 1, "dataset": "CIFAR-10", "metric": "Inception score", "model": "AutoGAN", "row": 13, "task": "Image Generation", "value": "8.55" }, { "column": 2, "dataset": "CIFAR-10", "metric": "FID", "model": "AutoGAN", "row": 13, "task": "Image Generation", "value": "12.42" } ] }, { "index": 1, "records": [ { "column": 1, "dataset": "STL-10", "metric": "Inception score", "model": "AutoGAN", "row": 7, "task": "Image Generation", "value": "9.16" }, { "column": 2, "dataset": "STL-10", "metric": "FID", "model": "AutoGAN", "row": 7, "task": "Image Generation", "value": "31.01" } ] } ]
1908.03885v3
[ { "index": 2, "records": [ { "column": 1, "dataset": "iLIDS-VID", "metric": "Rank-1", "model": "TKP", "row": 8, "task": "Person Re-Identification", "value": "54.6" }, { "column": 2, "dataset": "iLIDS-VID", "metric": "Rank-5", "model": "TKP", "row": 8, "task": "Person Re-Identification", "value": "79.4" }, { "column": 3, "dataset": "iLIDS-VID", "metric": "Rank-10", "model": "TKP", "row": 8, "task": "Person Re-Identification", "value": "86.9" }, { "column": 4, "dataset": "iLIDS-VID", "metric": "Rank-20", "model": "TKP", "row": 8, "task": "Person Re-Identification", "value": "93.5" } ] }, { "index": 4, "records": [ { "column": 1, "dataset": "MARS", "metric": "Rank-1", "model": "TKP", "row": 6, "task": "Person Re-Identification", "value": "84" }, { "column": 2, "dataset": "MARS", "metric": "Rank-5", "model": "TKP", "row": 6, "task": "Person Re-Identification", "value": "93.7" }, { "column": 3, "dataset": "MARS", "metric": "Rank-10", "model": "TKP", "row": 6, "task": "Person Re-Identification", "value": "95.7" }, { "column": 4, "dataset": "MARS", "metric": "mAP", "model": "TKP", "row": 6, "task": "Person Re-Identification", "value": "73.3" } ] } ]
1908.04032v2
[ { "index": 1, "records": [ { "column": 3, "dataset": "MovieLens 1M", "metric": "AUC", "model": "KNI", "row": 11, "task": "Click-Through Rate Prediction", "value": "0.9449" }, { "column": 7, "dataset": "MovieLens 20M", "metric": "AUC", "model": "KNI", "row": 11, "task": "Click-Through Rate Prediction", "value": "0.9704" } ] } ]
1908.04156v3
[ { "index": 0, "records": [ { "column": 1, "dataset": "ImageNet", "metric": "Top 1 Accuracy", "model": "ResNet-50 (LIP Bottleneck-256)", "row": 8, "task": "Image Classification", "value": "78.15" }, { "column": 2, "dataset": "ImageNet", "metric": "Top 5 Accuracy", "model": "ResNet-50 (LIP Bottleneck-256)", "row": 8, "task": "Image Classification", "value": "94.02" }, { "column": 3, "dataset": "ImageNet", "metric": "Number of params", "model": "ResNet-50 (LIP Bottleneck-256)", "row": 8, "task": "Image Classification", "value": "25.8M" } ] }, { "index": 3, "records": [ { "column": 1, "dataset": "ImageNet", "metric": "Top 1 Accuracy", "model": "LIP-ResNet-101", "row": 4, "task": "Image Classification", "value": "79.33" }, { "column": 2, "dataset": "ImageNet", "metric": "Top 5 Accuracy", "model": "LIP-ResNet-101", "row": 4, "task": "Image Classification", "value": "94.6" }, { "column": 3, "dataset": "ImageNet", "metric": "Number of params", "model": "LIP-ResNet-101", "row": 4, "task": "Image Classification", "value": "42.9M" }, { "column": 1, "dataset": "ImageNet", "metric": "Top 1 Accuracy", "model": "LIP-DenseNet-BC-121", "row": 7, "task": "Image Classification", "value": "76.64" }, { "column": 2, "dataset": "ImageNet", "metric": "Top 5 Accuracy", "model": "LIP-DenseNet-BC-121", "row": 7, "task": "Image Classification", "value": "93.16" }, { "column": 3, "dataset": "ImageNet", "metric": "Number of params", "model": "LIP-DenseNet-BC-121", "row": 7, "task": "Image Classification", "value": "8.7M" } ] }, { "index": 4, "records": [ { "column": 1, "dataset": "COCO minival", "metric": "box AP", "model": "Faster R-CNN (LIP-ResNet-101)", "row": 5, "task": "Object Detection", "value": "41.7" }, { "column": 2, "dataset": "COCO minival", "metric": "AP50", "model": "Faster R-CNN (LIP-ResNet-101)", "row": 5, "task": "Object Detection", "value": "63.6" }, { "column": 3, "dataset": "COCO minival", "metric": "AP75", "model": "Faster R-CNN (LIP-ResNet-101)", "row": 5, "task": "Object Detection", "value": "45.6" }, { "column": 4, "dataset": "COCO minival", "metric": "APS", "model": "Faster R-CNN (LIP-ResNet-101)", "row": 5, "task": "Object Detection", "value": "25.2" }, { "column": 5, "dataset": "COCO minival", "metric": "APM", "model": "Faster R-CNN (LIP-ResNet-101)", "row": 5, "task": "Object Detection", "value": "45.8" } ] }, { "index": 5, "records": [ { "column": 2, "dataset": "COCO test-dev", "metric": "box AP", "model": "Faster R-CNN (LIP-ResNet-101-MD w FPN)", "row": 9, "task": "Object Detection", "value": "43.9" }, { "column": 3, "dataset": "COCO test-dev", "metric": "AP50", "model": "Faster R-CNN (LIP-ResNet-101-MD w FPN)", "row": 9, "task": "Object Detection", "value": "65.7" }, { "column": 4, "dataset": "COCO test-dev", "metric": "AP75", "model": "Faster R-CNN (LIP-ResNet-101-MD w FPN)", "row": 9, "task": "Object Detection", "value": "48.1" }, { "column": 5, "dataset": "COCO test-dev", "metric": "APS", "model": "Faster R-CNN (LIP-ResNet-101-MD w FPN)", "row": 9, "task": "Object Detection", "value": "25.4" }, { "column": 6, "dataset": "COCO test-dev", "metric": "APM", "model": "Faster R-CNN (LIP-ResNet-101-MD w FPN)", "row": 9, "task": "Object Detection", "value": "46.7" }, { "column": 7, "dataset": "COCO test-dev", "metric": "APL", "model": "Faster R-CNN (LIP-ResNet-101-MD w FPN)", "row": 9, "task": "Object Detection", "value": "56.3" } ] } ]
1908.05900v1
[ { "index": 3, "records": [ { "column": 3, "dataset": "SCUT-CTW1500", "metric": "Precision", "model": "PAN-640", "row": 14, "task": "Scene Text Detection", "value": "86.4" }, { "column": 4, "dataset": "SCUT-CTW1500", "metric": "Recall", "model": "PAN-640", "row": 14, "task": "Scene Text Detection", "value": "81.2" }, { "column": 5, "dataset": "SCUT-CTW1500", "metric": "F-Measure", "model": "PAN-640", "row": 14, "task": "Scene Text Detection", "value": "83.7" } ] }, { "index": 4, "records": [ { "column": 3, "dataset": "Total-Text", "metric": "Precision", "model": "PAN-640", "row": 14, "task": "Scene Text Detection", "value": "89.3" }, { "column": 4, "dataset": "Total-Text", "metric": "Recall", "model": "PAN-640", "row": 14, "task": "Scene Text Detection", "value": "81" }, { "column": 5, "dataset": "Total-Text", "metric": "F-Measure", "model": "PAN-640", "row": 14, "task": "Scene Text Detection", "value": "85" } ] }, { "index": 5, "records": [ { "column": 3, "dataset": "ICDAR 2015", "metric": "Precision", "model": "PAN", "row": 17, "task": "Scene Text Detection", "value": "84" }, { "column": 4, "dataset": "ICDAR 2015", "metric": "Recall", "model": "PAN", "row": 17, "task": "Scene Text Detection", "value": "81.9" }, { "column": 5, "dataset": "ICDAR 2015", "metric": "F-Measure", "model": "PAN", "row": 17, "task": "Scene Text Detection", "value": "82.9" } ] }, { "index": 6, "records": [ { "column": 3, "dataset": "MSRA-TD500", "metric": "F-Measure", "model": "PAN", "row": 12, "task": "Scene Text Detection", "value": "84.4" }, { "column": 4, "dataset": "MSRA-TD500", "metric": "Recall", "model": "PAN", "row": 12, "task": "Scene Text Detection", "value": "83.8" }, { "column": 5, "dataset": "MSRA-TD500", "metric": "F-Measure", "model": "PAN", "row": 12, "task": "Scene Text Detection", "value": "84.1" } ] } ]
1908.05968v5
[ { "index": 0, "records": [ { "column": 1, "dataset": "MNIST-full", "metric": "Accuracy", "model": "N2D (UMAP)", "row": 9, "task": "Image Clustering", "value": "0.979" }, { "column": 2, "dataset": "MNIST-full", "metric": "NMI", "model": "N2D (UMAP)", "row": 9, "task": "Image Clustering", "value": "0.942" }, { "column": 3, "dataset": "MNIST-test", "metric": "Accuracy", "model": "N2D (UMAP)", "row": 9, "task": "Image Clustering", "value": "0.948" }, { "column": 4, "dataset": "MNIST-test", "metric": "NMI", "model": "N2D (UMAP)", "row": 9, "task": "Image Clustering", "value": "0.882" }, { "column": 5, "dataset": "USPS", "metric": "Accuracy", "model": "N2D (UMAP)", "row": 9, "task": "Image Clustering", "value": "0.958" }, { "column": 6, "dataset": "USPS", "metric": "NMI", "model": "N2D (UMAP)", "row": 9, "task": "Image Clustering", "value": "0.901" }, { "column": 7, "dataset": "Fashion-MNIST", "metric": "Accuracy", "model": "N2D (UMAP)", "row": 9, "task": "Image Clustering", "value": "0.672" }, { "column": 8, "dataset": "Fashion-MNIST", "metric": "NMI", "model": "N2D (UMAP)", "row": 9, "task": "Image Clustering", "value": "0.684" }, { "column": 9, "dataset": "pendigits", "metric": "Accuracy", "model": "N2D (UMAP)", "row": 9, "task": "Image Clustering", "value": "0.885" }, { "column": 10, "dataset": "pendigits", "metric": "NMI", "model": "N2D (UMAP)", "row": 9, "task": "Image Clustering", "value": "0.863" }, { "column": 11, "dataset": "HAR", "metric": "Accuracy", "model": "N2D (UMAP)", "row": 9, "task": "Image Clustering", "value": "0.801" }, { "column": 12, "dataset": "HAR", "metric": "NMI", "model": "N2D (UMAP)", "row": 9, "task": "Image Clustering", "value": "0.683" } ] } ]
1908.06022v4
[ { "index": 0, "records": [ { "column": 2, "dataset": "ImageNet", "metric": "Number of params", "model": "SCARLET-A", "row": 13, "task": "Image Classification", "value": "6.7M" }, { "column": 3, "dataset": "ImageNet", "metric": "Top 1 Accuracy", "model": "SCARLET-A", "row": 13, "task": "Image Classification", "value": "76.9" }, { "column": 4, "dataset": "ImageNet", "metric": "Top 5 Accuracy", "model": "SCARLET-A", "row": 13, "task": "Image Classification", "value": "93.4" }, { "column": 2, "dataset": "ImageNet", "metric": "Number of params", "model": "SCARLET-B", "row": 14, "task": "Image Classification", "value": "6.5M" }, { "column": 3, "dataset": "ImageNet", "metric": "Top 1 Accuracy", "model": "SCARLET-B", "row": 14, "task": "Image Classification", "value": "76.3" }, { "column": 4, "dataset": "ImageNet", "metric": "Top 5 Accuracy", "model": "SCARLET-B", "row": 14, "task": "Image Classification", "value": "93" }, { "column": 2, "dataset": "ImageNet", "metric": "Number of params", "model": "SCARLET-C", "row": 15, "task": "Image Classification", "value": "6M" }, { "column": 3, "dataset": "ImageNet", "metric": "Top 1 Accuracy", "model": "SCARLET-C", "row": 15, "task": "Image Classification", "value": "75.6" }, { "column": 4, "dataset": "ImageNet", "metric": "Top 5 Accuracy", "model": "SCARLET-C", "row": 15, "task": "Image Classification", "value": "92.6" } ] }, { "index": 1, "records": [ { "column": 5, "dataset": "ImageNet", "metric": "Number of params", "model": "SCARLET-A4", "row": 10, "task": "Image Classification", "value": "27.8M" }, { "column": 6, "dataset": "ImageNet", "metric": "Top 1 Accuracy", "model": "SCARLET-A4", "row": 10, "task": "Image Classification", "value": "82.3" }, { "column": 7, "dataset": "ImageNet", "metric": "Top 5 Accuracy", "model": "SCARLET-A4", "row": 10, "task": "Image Classification", "value": "96" } ] } ]
1908.06267v2
[ { "index": 1, "records": [ { "column": 1, "dataset": "Reuters-21578", "metric": "Accuracy", "model": "MPAD-path", "row": 16, "task": "Document Classification", "value": "97.44" }, { "column": 2, "dataset": "BBCSport", "metric": "Accuracy", "model": "MPAD-path", "row": 16, "task": "Document Classification", "value": "99.59" }, { "column": 5, "dataset": "MPQA", "metric": "Accuracy", "model": "MPAD-path", "row": 16, "task": "Document Classification", "value": "89.81" }, { "column": 6, "dataset": "IMDb", "metric": "Accuracy", "model": "MPAD-path", "row": 16, "task": "Text Classification", "value": "91.84" }, { "column": 7, "dataset": "TREC-6", "metric": "Error", "model": "MPAD-path", "row": 16, "task": "Text Classification", "value": "6.2" }, { "column": 8, "dataset": "SST-5 Fine-grained classification", "metric": "Accuracy", "model": "MPAD-path", "row": 16, "task": "Sentiment Analysis", "value": "49.68" }, { "column": 9, "dataset": "SST-2 Binary classification", "metric": "Accuracy", "model": "MPAD-path", "row": 16, "task": "Sentiment Analysis", "value": "87.75" } ] } ]
1908.06452v1
[ { "index": 1, "records": [ { "column": 9, "dataset": "BSD300 sigma30", "metric": "PSNR", "model": "CNN (Median Layers)", "row": 13, "task": "Color Image Denoising", "value": "40.9" }, { "column": 9, "dataset": "BSD300 sigma50", "metric": "PSNR", "model": "CNN (Median Layers)", "row": 14, "task": "Color Image Denoising", "value": "37.28" }, { "column": 9, "dataset": "BSD300 sigma70", "metric": "PSNR", "model": "CNN (Median Layers)", "row": 15, "task": "Color Image Denoising", "value": "32.4" } ] }, { "index": 2, "records": [ { "column": 3, "dataset": "Kodak24 sigma30", "metric": "PSNR", "model": "CNN (Median Layers)", "row": 1, "task": "Color Image Denoising", "value": "36.39" }, { "column": 3, "dataset": "Kodak24 sigma50", "metric": "PSNR", "model": "CNN (Median Layers)", "row": 2, "task": "Color Image Denoising", "value": "34.35" }, { "column": 3, "dataset": "Kodak24 sigma70", "metric": "PSNR", "model": "CNN (Median Layers)", "row": 3, "task": "Color Image Denoising", "value": "31.56" } ] } ]
1908.06647v4
[ { "index": 0, "records": [ { "column": 4, "dataset": "DAVIS 2016", "metric": "Jaccard (Mean)", "model": "RANet+ (online learning)", "row": 8, "task": "Visual Object Tracking", "value": "86.6" }, { "column": 5, "dataset": "DAVIS 2016", "metric": "Jaccard (Recall)", "model": "RANet+ (online learning)", "row": 8, "task": "Visual Object Tracking", "value": "97" }, { "column": 6, "dataset": "DAVIS 2016", "metric": "Jaccard (Decay)", "model": "RANet+ (online learning)", "row": 8, "task": "Visual Object Tracking", "value": "7.4" }, { "column": 7, "dataset": "DAVIS 2016", "metric": "F-measure (Mean)", "model": "RANet+ (online learning)", "row": 8, "task": "Visual Object Tracking", "value": "87.6" }, { "column": 8, "dataset": "DAVIS 2016", "metric": "F-measure (Recall)", "model": "RANet+ (online learning)", "row": 8, "task": "Visual Object Tracking", "value": "96.1" }, { "column": 9, "dataset": "DAVIS 2016", "metric": "F-measure (Decay)", "model": "RANet+ (online learning)", "row": 8, "task": "Visual Object Tracking", "value": "8.2" }, { "column": 4, "dataset": "DAVIS 2016", "metric": "Jaccard (Mean)", "model": "RANet", "row": 20, "task": "Visual Object Tracking", "value": "85.5" }, { "column": 5, "dataset": "DAVIS 2016", "metric": "Jaccard (Recall)", "model": "RANet", "row": 20, "task": "Visual Object Tracking", "value": "97.2" }, { "column": 6, "dataset": "DAVIS 2016", "metric": "Jaccard (Decay)", "model": "RANet", "row": 20, "task": "Visual Object Tracking", "value": "6.2" }, { "column": 7, "dataset": "DAVIS 2016", "metric": "F-measure (Mean)", "model": "RANet", "row": 20, "task": "Visual Object Tracking", "value": "85.4" }, { "column": 8, "dataset": "DAVIS 2016", "metric": "F-measure (Recall)", "model": "RANet", "row": 20, "task": "Visual Object Tracking", "value": "94.9" }, { "column": 9, "dataset": "DAVIS 2016", "metric": "F-measure (Decay)", "model": "RANet", "row": 20, "task": "Visual Object Tracking", "value": "5.1" } ] }, { "index": 2, "records": [ { "column": 5, "dataset": "DAVIS-2017", "metric": "Jaccard (Mean)", "model": "RANet", "row": 13, "task": "Visual Object Tracking", "value": "53.4" } ] } ]
1908.07433v1
[ { "index": 0, "records": [ { "column": 14, "dataset": "LineMOD", "metric": "Mean ADD", "model": "Pix2Pose", "row": 1, "task": "6D Pose Estimation using RGB", "value": "72.4" } ] }, { "index": 1, "records": [ { "column": 1, "dataset": "LineMOD", "metric": "Mean ADD", "model": "Pix2Pose", "row": 9, "task": "6D Pose Estimation using RGB", "value": "32" } ] }, { "index": 2, "records": [ { "column": 1, "dataset": "T-LESS", "metric": "Recall (VSD)", "model": "Pix2Pose without ICP", "row": 2, "task": "6D Pose Estimation using RGB", "value": "29.5" } ] } ]
1908.07490v3
[ { "index": 1, "records": [ { "column": 4, "dataset": "VQA v2 test-std", "metric": "Accuracy", "model": "LXMERT", "row": 6, "task": "Visual Question Answering", "value": "72.5" }, { "column": 7, "dataset": "GQA test-std", "metric": "Accuracy", "model": "LXMERT", "row": 6, "task": "Visual Question Answering", "value": "60.3" }, { "column": 9, "dataset": "NLVR2 Test", "metric": "Accuracy", "model": "LXMERT", "row": 6, "task": "Visual Reasoning", "value": "76.2" } ] }, { "index": 2, "records": [ { "column": 1, "dataset": "VQA v2 test-dev", "metric": "Accuracy", "model": "LXMERT (Pre-train + scratch)", "row": 11, "task": "Visual Question Answering", "value": "69.9" }, { "column": 2, "dataset": "GQA test-dev", "metric": "Accuracy", "model": "LXMERT (Pre-train + scratch)", "row": 11, "task": "Visual Question Answering", "value": "60.0" }, { "column": 3, "dataset": "NLVR2 Dev", "metric": "Accuracy", "model": "LXMERT (Pre-train + scratch)", "row": 11, "task": "Visual Reasoning", "value": "74.9" } ] } ]
1908.07678v5
[ { "index": 2, "records": [ { "column": 3, "dataset": "Cityscapes test", "metric": "Mean IoU (class)", "model": "Asymmetric ALNN", "row": 13, "task": "Semantic Segmentation", "value": "81.3" } ] }, { "index": 3, "records": [ { "column": 2, "dataset": "ADE20K val", "metric": "mIoU", "model": "Asymmetric ALNN", "row": 9, "task": "Semantic Segmentation", "value": "45.24" } ] }, { "index": 4, "records": [ { "column": 2, "dataset": "PASCAL Context", "metric": "mIoU", "model": "Asymmetric ALNN", "row": 8, "task": "Semantic Segmentation", "value": "52.8" } ] }, { "index": 7, "records": [ { "column": 2, "dataset": "COCO-Stuff test", "metric": "mIoU", "model": "Asymmetric ALNN", "row": 3, "task": "Semantic Segmentation", "value": "37.2" }, { "column": 5, "dataset": "NYU Depth v2", "metric": "Mean IoU", "model": "Asymmetric ALNN", "row": 3, "task": "Semantic Segmentation", "value": "44.4" } ] } ]
1908.07801v1
[ { "index": 0, "records": [ { "column": 2, "dataset": "COCO test-dev", "metric": "box AP", "model": "Cascade R-CNN-FPN (ResNet-101, map-guided)", "row": 9, "task": "Object Detection", "value": "45.9" }, { "column": 3, "dataset": "COCO test-dev", "metric": "AP50", "model": "Cascade R-CNN-FPN (ResNet-101, map-guided)", "row": 9, "task": "Object Detection", "value": "64.2" }, { "column": 4, "dataset": "COCO test-dev", "metric": "AP75", "model": "Cascade R-CNN-FPN (ResNet-101, map-guided)", "row": 9, "task": "Object Detection", "value": "50" }, { "column": 5, "dataset": "COCO test-dev", "metric": "APS", "model": "Cascade R-CNN-FPN (ResNet-101, map-guided)", "row": 9, "task": "Object Detection", "value": "26.3" }, { "column": 6, "dataset": "COCO test-dev", "metric": "APM", "model": "Cascade R-CNN-FPN (ResNet-101, map-guided)", "row": 9, "task": "Object Detection", "value": "49" }, { "column": 7, "dataset": "COCO test-dev", "metric": "APL", "model": "Cascade R-CNN-FPN (ResNet-101, map-guided)", "row": 9, "task": "Object Detection", "value": "58.6" } ] }, { "index": 1, "records": [ { "column": 2, "dataset": "COCO test-dev", "metric": "mask AP", "model": "Cascade R-CNN (ResNet-101-FPN, map-guided)", "row": 9, "task": "Instance Segmentation", "value": "39.5" }, { "column": 3, "dataset": "COCO test-dev", "metric": "AP50", "model": "Cascade R-CNN (ResNet-101-FPN, map-guided)", "row": 9, "task": "Instance Segmentation", "value": "61.4" }, { "column": 4, "dataset": "COCO test-dev", "metric": "AP75", "model": "Cascade R-CNN (ResNet-101-FPN, map-guided)", "row": 9, "task": "Instance Segmentation", "value": "42.9" }, { "column": 5, "dataset": "COCO test-dev", "metric": "APS", "model": "Cascade R-CNN (ResNet-101-FPN, map-guided)", "row": 9, "task": "Instance Segmentation", "value": "21.2" }, { "column": 6, "dataset": "COCO test-dev", "metric": "APM", "model": "Cascade R-CNN (ResNet-101-FPN, map-guided)", "row": 9, "task": "Instance Segmentation", "value": "42.5" }, { "column": 7, "dataset": "COCO test-dev", "metric": "APL", "model": "Cascade R-CNN (ResNet-101-FPN, map-guided)", "row": 9, "task": "Instance Segmentation", "value": "52.1" } ] } ]
1908.08216v2
[ { "index": 0, "records": [ { "column": 1, "dataset": "THUMOS’14", "metric": "mAP [email protected]", "model": "3C-Net", "row": 12, "task": "Temporal Action Localization", "value": "59.1" }, { "column": 2, "dataset": "THUMOS’14", "metric": "mAP [email protected]", "model": "3C-Net", "row": 12, "task": "Temporal Action Localization", "value": "53.5" }, { "column": 3, "dataset": "THUMOS’14", "metric": "mAP [email protected]", "model": "3C-Net", "row": 12, "task": "Temporal Action Localization", "value": "44.2" }, { "column": 4, "dataset": "THUMOS’14", "metric": "mAP [email protected]", "model": "3C-Net", "row": 12, "task": "Temporal Action Localization", "value": "34.1" }, { "column": 5, "dataset": "THUMOS’14", "metric": "mAP [email protected]", "model": "3C-Net", "row": 12, "task": "Temporal Action Localization", "value": "26.6" }, { "column": 6, "dataset": "THUMOS’14", "metric": "mAP [email protected]", "model": "3C-Net", "row": 12, "task": "Temporal Action Localization", "value": "8.1" } ] }, { "index": 1, "records": [ { "column": 1, "dataset": "ActivityNet-1.3", "metric": "mAP [email protected]", "model": "3C-Net", "row": 7, "task": "Temporal Action Localization", "value": "37.2" }, { "column": 2, "dataset": "ActivityNet-1.3", "metric": "mAP [email protected]", "model": "3C-Net", "row": 7, "task": "Temporal Action Localization", "value": "23.7" }, { "column": 3, "dataset": "ActivityNet-1.3", "metric": "mAP [email protected]", "model": "3C-Net", "row": 7, "task": "Temporal Action Localization", "value": "9.2" }, { "column": 4, "dataset": "ActivityNet-1.3", "metric": "mAP", "model": "3C-Net", "row": 7, "task": "Temporal Action Localization", "value": "21.7" } ] }, { "index": 2, "records": [ { "column": 1, "dataset": "THUMOS’14", "metric": "mAP", "model": "3C-Net", "row": 8, "task": "Action Classification", "value": "86.9" }, { "column": 2, "dataset": "ActivityNet-1.2", "metric": "mAP", "model": "3C-Net", "row": 8, "task": "Action Classification", "value": "92.4" } ] } ]
1908.08239v1
[ { "index": 2, "records": [ { "column": 1, "dataset": "CelebA Aligned", "metric": "PSNR", "model": "Progressive Face SR", "row": 7, "task": "Face Alignment", "value": "22.66" }, { "column": 2, "dataset": "CelebA Aligned", "metric": "SSIM", "model": "Progressive Face SR", "row": 7, "task": "Face Alignment", "value": "0.685" }, { "column": 3, "dataset": "CelebA Aligned", "metric": "MS-SSIM", "model": "Progressive Face SR", "row": 7, "task": "Face Alignment", "value": "0.902" }, { "column": 4, "dataset": "CelebA Aligned", "metric": "MOS", "model": "Progressive Face SR", "row": 7, "task": "Face Alignment", "value": "3.73" }, { "column": 5, "dataset": "CelebA + AFLW Unaligned", "metric": "PSNR", "model": "Progressive Face SR", "row": 7, "task": "Face Alignment", "value": "22.96" }, { "column": 6, "dataset": "CelebA + AFLW Unaligned", "metric": "SSIM", "model": "Progressive Face SR", "row": 7, "task": "Face Alignment", "value": "0.695" }, { "column": 7, "dataset": "CelebA + AFLW Unaligned", "metric": "MS-SSIM", "model": "Progressive Face SR", "row": 7, "task": "Face Alignment", "value": "0.897" }, { "column": 8, "dataset": "CelebA + AFLW Unaligned", "metric": "MOS", "model": "Progressive Face SR", "row": 7, "task": "Face Alignment", "value": "3.73" } ] } ]
1908.08530v4
[ { "index": 0, "records": [ { "column": 1, "dataset": "VCR (Q-A) dev", "metric": "Accuracy", "model": "VL-BERTBASE", "row": 8, "task": "Visual Question Answering", "value": "73.8" }, { "column": 3, "dataset": "VCR (QA-R) dev", "metric": "Accuracy", "model": "VL-BERTBASE", "row": 8, "task": "Visual Question Answering", "value": "74.4" }, { "column": 5, "dataset": "VCR (Q-AR) dev", "metric": "Accuracy", "model": "VL-BERTBASE", "row": 8, "task": "Visual Question Answering", "value": "55.2" }, { "column": 1, "dataset": "VCR (Q-A) dev", "metric": "Accuracy", "model": "VL-BERTLARGE", "row": 9, "task": "Visual Question Answering", "value": "75.5" }, { "column": 2, "dataset": "VCR (Q-A) test", "metric": "Accuracy", "model": "VL-BERTLARGE", "row": 9, "task": "Visual Question Answering", "value": "75.8" }, { "column": 3, "dataset": "VCR (QA-R) dev", "metric": "Accuracy", "model": "VL-BERTLARGE", "row": 9, "task": "Visual Question Answering", "value": "77.9" }, { "column": 4, "dataset": "VCR (QA-R) test", "metric": "Accuracy", "model": "VL-BERTLARGE", "row": 9, "task": "Visual Question Answering", "value": "78.4" }, { "column": 5, "dataset": "VCR (Q-AR) dev", "metric": "Accuracy", "model": "VL-BERTLARGE", "row": 9, "task": "Visual Question Answering", "value": "58.9" }, { "column": 6, "dataset": "VCR (Q-AR) test", "metric": "Accuracy", "model": "VL-BERTLARGE", "row": 9, "task": "Visual Question Answering", "value": "59.7" } ] }, { "index": 1, "records": [ { "column": 1, "dataset": "VQA v2 test-dev", "metric": "Accuracy", "model": "VL-BERTBASE", "row": 7, "task": "Visual Question Answering", "value": "71.16" }, { "column": 1, "dataset": "VQA v2 test-dev", "metric": "Accuracy", "model": "VL-BERTLARGE", "row": 8, "task": "Visual Question Answering", "value": "71.79" }, { "column": 2, "dataset": "VQA v2 test-std", "metric": "Accuracy", "model": "VL-BERTLARGE", "row": 8, "task": "Visual Question Answering", "value": "72.22" } ] } ]
1908.08788v2
[ { "index": 0, "records": [ { "column": 1, "dataset": "ARSC", "metric": "Accuracy", "model": "MTM", "row": 7, "task": "Multi-Domain Sentiment Classification", "value": "90.01" } ] } ]
1908.09124v3
[ { "index": 3, "records": [ { "column": 8, "dataset": "AgeDB-30", "metric": "Accuracy", "model": "Seesaw-shuffleFaceNet", "row": 11, "task": "Face Verification", "value": "0.9685" }, { "column": 6, "dataset": "Labeled Faces in the Wild", "metric": "Accuracy", "model": "Seesaw-shuffleFaceNet (mobi)", "row": 12, "task": "Face Verification", "value": "99.65" }, { "column": 7, "dataset": "CFP-FP", "metric": "Accuracy", "model": "Seesaw-shuffleFaceNet (mobi)", "row": 12, "task": "Face Verification", "value": "0.9307" } ] } ]
1908.09220v1
[ { "index": 0, "records": [ { "column": 8, "dataset": "MPII Multi-Person", "metric": "AP", "model": "SPM", "row": 9, "task": "Multi-Person Pose Estimation", "value": "78.5" } ] }, { "index": 3, "records": [ { "column": 1, "dataset": "COCO test-dev", "metric": "AP", "model": "SPM", "row": 7, "task": "Multi-Person Pose Estimation", "value": "66.9" }, { "column": 2, "dataset": "COCO test-dev", "metric": "AP50", "model": "SPM", "row": 7, "task": "Multi-Person Pose Estimation", "value": "88.5" }, { "column": 3, "dataset": "COCO test-dev", "metric": "AP75", "model": "SPM", "row": 7, "task": "Multi-Person Pose Estimation", "value": "72.9" }, { "column": 4, "dataset": "COCO test-dev", "metric": "APM", "model": "SPM", "row": 7, "task": "Multi-Person Pose Estimation", "value": "62.6" }, { "column": 5, "dataset": "COCO test-dev", "metric": "APL", "model": "SPM", "row": 7, "task": "Multi-Person Pose Estimation", "value": "73.1" } ] } ]
1908.09492v1
[ { "index": 1, "records": [ { "column": 4, "dataset": "nuScenes", "metric": "MAP", "model": "MEGVII", "row": 6, "task": "3D Object Detection", "value": "52.8" }, { "column": 10, "dataset": "nuScenes", "metric": "NDS", "model": "MEGVII", "row": 6, "task": "3D Object Detection", "value": "63.3" } ] } ]
1908.09547v1
[ { "index": 0, "records": [ { "column": 21, "dataset": "GTAV-to-Cityscapes Labels", "metric": "mIoU", "model": "PyCDA (ResNet-38)", "row": 14, "task": "Synthetic-to-Real Translation", "value": "48" } ] }, { "index": 1, "records": [ { "column": 19, "dataset": "SYNTHIA-to-Cityscapes", "metric": "mIoU", "model": "PyCDA (ResNet-101)", "row": 15, "task": "Image-to-Image Translation", "value": "53.3" } ] } ]
1908.09822v2
[ { "index": 1, "records": [ { "column": 13, "dataset": "VisDA2017", "metric": "Mean Accuracy", "model": "MRKLD + LRENT", "row": 15, "task": "Domain Adaptation", "value": "78.1" } ] }, { "index": 2, "records": [ { "column": 7, "dataset": "Office-31", "metric": "Average Accuracy", "model": "MRKLD + LRENT", "row": 13, "task": "Domain Adaptation", "value": "86.8" } ] }, { "index": 3, "records": [ { "column": 21, "dataset": "GTAV-to-Cityscapes Labels", "metric": "mIoU", "model": "MRKLD-SP-MST (ResNet-38)", "row": 24, "task": "Synthetic-to-Real Translation", "value": "49.8" } ] }, { "index": 4, "records": [ { "column": 19, "dataset": "SYNTHIA-to-Cityscapes", "metric": "mIoU", "model": "LRENT (DeepLabv2)", "row": 13, "task": "Image-to-Image Translation", "value": "48.7" } ] } ]
1908.09895v1
[ { "index": 4, "records": [ { "column": 4, "dataset": "BSD68 sigma15", "metric": "PSNR", "model": "Index Network", "row": 24, "task": "Grayscale Image Denoising", "value": "31.23" }, { "column": 5, "dataset": "BSD68 sigma25", "metric": "PSNR", "model": "Index Network", "row": 24, "task": "Grayscale Image Denoising", "value": "29.06" }, { "column": 6, "dataset": "BSD68 sigma50", "metric": "PSNR", "model": "Index Network", "row": 24, "task": "Grayscale Image Denoising", "value": "26.34" }, { "column": 7, "dataset": "Set12 sigma15", "metric": "PSNR", "model": "Index Network", "row": 24, "task": "Grayscale Image Denoising", "value": "32.82" }, { "column": 8, "dataset": "Set12 sigma30", "metric": "PSNR", "model": "Index Network", "row": 24, "task": "Grayscale Image Denoising", "value": "30.43" }, { "column": 9, "dataset": "Set12 sigma50", "metric": "PSNR", "model": "Index Network", "row": 24, "task": "Grayscale Image Denoising", "value": "27.29" } ] }, { "index": 5, "records": [ { "column": 4, "dataset": "SUN-RGBD", "metric": "Mean IoU", "model": "Index Network", "row": 22, "task": "Scene Segmentation", "value": "33.48" } ] }, { "index": 6, "records": [ { "column": 4, "dataset": "NYU-Depth V2", "metric": "RMSE", "model": "Index Network", "row": 23, "task": "Monocular Depth Estimation", "value": "0.565" }, { "column": 5, "dataset": "NYU Depth v2", "metric": "Delta1", "model": "Index Network", "row": 23, "task": "Monocular Depth Estimation", "value": "0.787" } ] } ]
1908.09995v1
[ { "index": 0, "records": [ { "column": 5, "dataset": "Something-Something V1", "metric": "Top 1 Accuracy", "model": "TRG (Inception-V3)", "row": 15, "task": "Action Recognition In Videos", "value": "49.7" }, { "column": 7, "dataset": "Something-Something V2", "metric": "Top-1 Accuracy", "model": "TRG (Inception-V3)", "row": 15, "task": "Action Recognition In Videos", "value": "61.3" }, { "column": 8, "dataset": "Something-Something V2", "metric": "Top-5 Accuracy", "model": "TRG (Inception-V3)", "row": 15, "task": "Action Recognition In Videos", "value": "91.4" }, { "column": 5, "dataset": "Something-Something V1", "metric": "Top 1 Accuracy", "model": "TRG (ResNet-50)", "row": 18, "task": "Action Recognition In Videos", "value": "49.5" }, { "column": 6, "dataset": "Something-Something V1", "metric": "Top 5 Accuracy", "model": "TRG (ResNet-50)", "row": 18, "task": "Action Recognition In Videos", "value": "86.1" }, { "column": 7, "dataset": "Something-Something V2", "metric": "Top-1 Accuracy", "model": "TRG (ResNet-50)", "row": 18, "task": "Action Recognition In Videos", "value": "62.2" }, { "column": 8, "dataset": "Something-Something V2", "metric": "Top-5 Accuracy", "model": "TRG (ResNet-50)", "row": 18, "task": "Action Recognition In Videos", "value": "90.3" } ] }, { "index": 1, "records": [ { "column": 3, "dataset": "Charades", "metric": "MAP", "model": "TRG (ResNet-101)", "row": 22, "task": "Action Classification", "value": "40.2" } ] } ]
1908.09999v1
[ { "index": 2, "records": [ { "column": 2, "dataset": "NYU Hands", "metric": "Average 3D Error", "model": "A2J (Ours)", "row": 15, "task": "Hand Pose Estimation", "value": "105.06" } ] }, { "index": 3, "records": [ { "column": 2, "dataset": "ICVL Hands", "metric": "Average 3D Error", "model": "A2J (Ours)", "row": 15, "task": "Hand Pose Estimation", "value": "105.06" } ] }, { "index": 4, "records": [ { "column": 8, "dataset": "ITOP front-view", "metric": "Mean mAP", "model": "A2J (Ours)", "row": 3, "task": "Pose Estimation", "value": "99.2" } ] }, { "index": 6, "records": [ { "column": 2, "dataset": "NYU-Depth V2", "metric": "RMS", "model": "A2J (Ours)", "row": 4, "task": "Depth Estimation", "value": "0.0861" } ] } ]
1908.10063v1
[ { "index": 2, "records": [ { "column": 2, "dataset": "Financial PhraseBank", "metric": "Accuracy", "model": "FinBERT", "row": 8, "task": "Sentiment Analysis", "value": "86" }, { "column": 3, "dataset": "Financial PhraseBank", "metric": "F1 score", "model": "FinBERT", "row": 8, "task": "Sentiment Analysis", "value": "84" } ] }, { "index": 3, "records": [ { "column": 1, "dataset": "FiQA", "metric": "MSE", "model": "FinBERT", "row": 3, "task": "Sentiment Analysis", "value": "0.07" }, { "column": 2, "dataset": "FiQA", "metric": "R^2", "model": "FinBERT", "row": 3, "task": "Sentiment Analysis", "value": "0.55" } ] } ]
1908.10357v2
[ { "index": 0, "records": [ { "column": 5, "dataset": "COCO test-dev", "metric": "AP", "model": "HigherHRNet (HR-Net-48)", "row": 13, "task": "Multi-Person Pose Estimation", "value": "70.5" }, { "column": 6, "dataset": "COCO test-dev", "metric": "AP50", "model": "HigherHRNet (HR-Net-48)", "row": 13, "task": "Multi-Person Pose Estimation", "value": "89.3" }, { "column": 7, "dataset": "COCO test-dev", "metric": "AP75", "model": "HigherHRNet (HR-Net-48)", "row": 13, "task": "Multi-Person Pose Estimation", "value": "77.2" }, { "column": 8, "dataset": "COCO test-dev", "metric": "APM", "model": "HigherHRNet (HR-Net-48)", "row": 13, "task": "Multi-Person Pose Estimation", "value": "66.6" }, { "column": 9, "dataset": "COCO test-dev", "metric": "APL", "model": "HigherHRNet (HR-Net-48)", "row": 13, "task": "Multi-Person Pose Estimation", "value": "75.8" } ] } ]
1908.10419v1
[ { "index": 1, "records": [ { "column": 2, "dataset": "RCV1", "metric": "Micro F1", "model": "HiLAP (bow-CNN)", "row": 13, "task": "Text Classification", "value": "83.3" }, { "column": 3, "dataset": "RCV1", "metric": "Macro F1", "model": "HiLAP (bow-CNN)", "row": 13, "task": "Text Classification", "value": "60.1" } ] } ]
1908.11046v2
[ { "index": 0, "records": [ { "column": 4, "dataset": "Long-tail emerging entities", "metric": "Precision", "model": "Cross-BiLSTM-CNN", "row": 6, "task": "Named Entity Recognition", "value": "58.28" }, { "column": 5, "dataset": "Long-tail emerging entities", "metric": "Recall", "model": "Cross-BiLSTM-CNN", "row": 6, "task": "Named Entity Recognition", "value": "33.92" }, { "column": 6, "dataset": "Long-tail emerging entities", "metric": "F1", "model": "Cross-BiLSTM-CNN", "row": 6, "task": "Named Entity Recognition", "value": "42.85" }, { "column": 1, "dataset": "Ontonotes v5 (English)", "metric": "Precision", "model": "Att-BiLSTM-CNN", "row": 7, "task": "Named Entity Recognition", "value": "88.71" }, { "column": 2, "dataset": "Ontonotes v5 (English)", "metric": "Recall", "model": "Att-BiLSTM-CNN", "row": 7, "task": "Named Entity Recognition", "value": "88.11" }, { "column": 3, "dataset": "Ontonotes v5 (English)", "metric": "F1", "model": "Att-BiLSTM-CNN", "row": 7, "task": "Named Entity Recognition", "value": "88.4" } ] } ]
1908.11513v1
[ { "index": 0, "records": [ { "column": 1, "dataset": "FB15k-237", "metric": "MRR", "model": "Meta-KGR (ConvE)", "row": 8, "task": "Link Prediction", "value": "0.469" }, { "column": 2, "dataset": "FB15k-237", "metric": "Hits@1", "model": "Meta-KGR (ConvE)", "row": 8, "task": "Link Prediction", "value": "0.412" }, { "column": 3, "dataset": "FB15k-237", "metric": "Hits@10", "model": "Meta-KGR (ConvE)", "row": 8, "task": "Link Prediction", "value": "0.588" }, { "column": 4, "dataset": "NELL-995", "metric": "MRR", "model": "Meta-KGR (ConvE)", "row": 8, "task": "Link Prediction", "value": "0.253" }, { "column": 5, "dataset": "NELL-995", "metric": "Hits@1", "model": "Meta-KGR (ConvE)", "row": 8, "task": "Link Prediction", "value": "0.197" }, { "column": 6, "dataset": "NELL-995", "metric": "Hits@10", "model": "Meta-KGR (ConvE)", "row": 8, "task": "Link Prediction", "value": "0.347" } ] } ]
1908.11540v1
[ { "index": 2, "records": [ { "column": 13, "dataset": "IEMOCAP", "metric": "Accuracy", "model": "DialogueGCN", "row": 10, "task": "Emotion Recognition in Conversation", "value": "65.25" }, { "column": 14, "dataset": "IEMOCAP", "metric": "F1", "model": "DialogueGCN", "row": 10, "task": "Emotion Recognition in Conversation", "value": "64.18%" } ] } ]
1908.11561v1
[ { "index": 0, "records": [ { "column": 2, "dataset": "SMS", "metric": "Accuracy", "model": "StoneSkipping", "row": 17, "task": "Chinese Spam Detection", "value": "85.1" }, { "column": 3, "dataset": "SMS", "metric": "F1-Score", "model": "StoneSkipping", "row": 17, "task": "Chinese Spam Detection", "value": "83.2" }, { "column": 4, "dataset": "Product Review", "metric": "Accuracy", "model": "StoneSkipping", "row": 17, "task": "Chinese Spam Detection", "value": "85.4" }, { "column": 5, "dataset": "Product Review", "metric": "F1-Score", "model": "StoneSkipping", "row": 17, "task": "Chinese Spam Detection", "value": "82.2" } ] } ]
1909.00105v1
[ { "index": 1, "records": [ { "column": 1, "dataset": "Food.com", "metric": "BPE Perplexity", "model": "Prior Name", "row": 5, "task": "Recipe Generation", "value": "9.516" }, { "column": 2, "dataset": "Food.com", "metric": "BLEU-1", "model": "Prior Name", "row": 5, "task": "Recipe Generation", "value": "28.046" }, { "column": 3, "dataset": "Food.com", "metric": "BLEU-4", "model": "Prior Name", "row": 5, "task": "Recipe Generation", "value": "3.211" }, { "column": 4, "dataset": "Food.com", "metric": "Rouge-L", "model": "Prior Name", "row": 5, "task": "Recipe Generation", "value": "24.794" }, { "column": 5, "dataset": "Food.com", "metric": "D-1", "model": "Prior Name", "row": 5, "task": "Recipe Generation", "value": "0.233" }, { "column": 6, "dataset": "Food.com", "metric": "D-2", "model": "Prior Name", "row": 5, "task": "Recipe Generation", "value": "2.08" } ] } ]
1909.00166v1
[ { "index": 0, "records": [ { "column": 1, "dataset": "DRIVE", "metric": "F1 score", "model": "BCDU-Net (d=3)", "row": 8, "task": "Retinal Vessel Segmentation", "value": "0.8224" }, { "column": 5, "dataset": "DRIVE", "metric": "AUC", "model": "BCDU-Net (d=3)", "row": 8, "task": "Retinal Vessel Segmentation", "value": "0.9789" } ] }, { "index": 1, "records": [ { "column": 1, "dataset": "ISIC 2018", "metric": "F1-Score", "model": "BCDU-Net (d=3)", "row": 6, "task": "Lesion Segmentation", "value": "0.851" } ] }, { "index": 2, "records": [ { "column": 1, "dataset": "LUNA", "metric": "F1 score", "model": "BCDU-Net (d=3)", "row": 5, "task": "Lung Nodule Segmentation", "value": "0.9904" }, { "column": 5, "dataset": "LUNA", "metric": "AUC", "model": "BCDU-Net (d=3)", "row": 5, "task": "Lung Nodule Segmentation", "value": "0.9946" } ] } ]
1909.00794v1
[ { "index": 5, "records": [ { "column": 1, "dataset": "ICDAR 2015", "metric": "Recall", "model": "GNNets", "row": 18, "task": "Scene Text Detection", "value": "86.71" }, { "column": 2, "dataset": "ICDAR 2015", "metric": "Precision", "model": "GNNets", "row": 18, "task": "Scene Text Detection", "value": "90.41" }, { "column": 3, "dataset": "ICDAR 2015", "metric": "F-Measure", "model": "GNNets", "row": 18, "task": "Scene Text Detection", "value": "88.52" }, { "column": 5, "dataset": "ICDAR 2017 MLT", "metric": "Recall", "model": "GNNets", "row": 18, "task": "Scene Text Detection", "value": "70.06" }, { "column": 6, "dataset": "ICDAR 2017 MLT", "metric": "Precision", "model": "GNNets", "row": 18, "task": "Scene Text Detection", "value": "79.63" }, { "column": 7, "dataset": "ICDAR 2017 MLT", "metric": "F-Measure", "model": "GNNets", "row": 18, "task": "Scene Text Detection", "value": "74.54" } ] } ]
1909.01187v1
[ { "index": 2, "records": [ { "column": 1, "dataset": "DiscoFuse", "metric": "Exact", "model": "LaserTaggerAR", "row": 5, "task": "Sentence Fusion", "value": "53.8" }, { "column": 2, "dataset": "DiscoFuse", "metric": "SARI", "model": "LaserTaggerAR", "row": 5, "task": "Sentence Fusion", "value": "85.5" } ] }, { "index": 3, "records": [ { "column": 1, "dataset": "WikiSplit1.0", "metric": "BLEU score", "model": "LaserTaggerAR", "row": 4, "task": "Split and Rephrase", "value": "76.3" }, { "column": 2, "dataset": "WikiSplit1.0", "metric": "Exact", "model": "LaserTaggerAR", "row": 4, "task": "Split and Rephrase", "value": "15.2" }, { "column": 3, "dataset": "WikiSplit1.0", "metric": "SARI", "model": "LaserTaggerAR", "row": 4, "task": "Split and Rephrase", "value": "61.7" } ] } ]
1909.01259v2
[ { "index": 0, "records": [ { "column": 1, "dataset": "20NEWS", "metric": "Accuracy", "model": "NABoE-full", "row": 5, "task": "Text Classification", "value": "86.8" }, { "column": 2, "dataset": "20NEWS", "metric": "F-measure", "model": "NABoE-full", "row": 5, "task": "Text Classification", "value": "86.2" }, { "column": 3, "dataset": "R8", "metric": "Accuracy", "model": "NABoE-full", "row": 5, "task": "Text Classification", "value": "97.1" }, { "column": 4, "dataset": "R8", "metric": "F-measure", "model": "NABoE-full", "row": 5, "task": "Text Classification", "value": "91.7" } ] } ]
1909.01804v1
[ { "index": 0, "records": [ { "column": 1, "dataset": "CIFAR-10, 1000 Labels", "metric": "Accuracy", "model": "Dual Student (600)", "row": 11, "task": "Semi-Supervised Image Classification", "value": "85.83" }, { "column": 2, "dataset": "CIFAR-10, 2000 Labels", "metric": "Accuracy", "model": "Dual Student (600)", "row": 11, "task": "Semi-Supervised Image Classification", "value": "89.28" }, { "column": 3, "dataset": "CIFAR-10, 4000 Labels", "metric": "Accuracy", "model": "Dual Student (600)", "row": 11, "task": "Semi-Supervised Image Classification", "value": "91.11" } ] }, { "index": 1, "records": [ { "column": 1, "dataset": "cifar-100, 10000 Labels", "metric": "Accuracy", "model": "Dual Student (480)", "row": 9, "task": "Semi-Supervised Image Classification", "value": "67.23" } ] }, { "index": 2, "records": [ { "column": 1, "dataset": "SVHN, 250 Labels", "metric": "Accuracy", "model": "Dual Student", "row": 3, "task": "Semi-Supervised Image Classification", "value": "95.76" }, { "column": 2, "dataset": "SVHN, 500 Labels", "metric": "Accuracy", "model": "Dual Student", "row": 3, "task": "Semi-Supervised Image Classification", "value": "96.04" } ] }, { "index": 3, "records": [ { "column": 1, "dataset": "ImageNet - 10% labeled data", "metric": "Top 1 Accuracy", "model": "Dual Student", "row": 3, "task": "Semi-Supervised Image Classification", "value": "63.52" }, { "column": 2, "dataset": "ImageNet - 10% labeled data", "metric": "Top 5 Accuracy", "model": "Dual Student", "row": 3, "task": "Semi-Supervised Image Classification", "value": "83.58" } ] } ]
1909.02480v3
[ { "index": 0, "records": [ { "column": 1, "dataset": "WMT2014 English-German", "metric": "BLEU score", "model": "FlowSeq-base", "row": 5, "task": "Machine Translation", "value": "18.55" }, { "column": 2, "dataset": "WMT2014 German-English", "metric": "BLEU score", "model": "FlowSeq-base", "row": 5, "task": "Machine Translation", "value": "23.36" }, { "column": 3, "dataset": "WMT2016 English-Romanian", "metric": "BLEU score", "model": "FlowSeq-base", "row": 5, "task": "Machine Translation", "value": "29.26" }, { "column": 4, "dataset": "WMT2016 Romanian-English", "metric": "BLEU score", "model": "FlowSeq-base", "row": 5, "task": "Machine Translation", "value": "30.16" }, { "column": 5, "dataset": "IWSLT2015 German-English", "metric": "BLEU score", "model": "FlowSeq-base", "row": 5, "task": "Machine Translation", "value": "24.75" }, { "column": 1, "dataset": "WMT2014 English-German", "metric": "BLEU score", "model": "FlowSeq-large", "row": 6, "task": "Machine Translation", "value": "20.85" }, { "column": 2, "dataset": "WMT2014 German-English", "metric": "BLEU score", "model": "FlowSeq-large", "row": 6, "task": "Machine Translation", "value": "25.4" }, { "column": 3, "dataset": "WMT2016 English-Romanian", "metric": "BLEU score", "model": "FlowSeq-large", "row": 6, "task": "Machine Translation", "value": "29.86" }, { "column": 4, "dataset": "WMT2016 Romanian-English", "metric": "BLEU score", "model": "FlowSeq-large", "row": 6, "task": "Machine Translation", "value": "30.69" } ] }, { "index": 1, "records": [ { "column": 1, "dataset": "WMT2014 English-German", "metric": "BLEU score", "model": "FlowSeq-large (IWD n = 15)", "row": 11, "task": "Machine Translation", "value": "22.94" }, { "column": 2, "dataset": "WMT2014 German-English", "metric": "BLEU score", "model": "FlowSeq-large (IWD n=15)", "row": 11, "task": "Machine Translation", "value": "27.16" }, { "column": 3, "dataset": "WMT2016 English-Romanian", "metric": "BLEU score", "model": "FlowSeq-large (IWD n = 15)", "row": 11, "task": "Machine Translation", "value": "31.08" }, { "column": 4, "dataset": "WMT2016 Romanian-English", "metric": "BLEU score", "model": "FlowSeq-large (IWD n = 15)", "row": 11, "task": "Machine Translation", "value": "32.03" }, { "column": 1, "dataset": "WMT2014 English-German", "metric": "BLEU score", "model": "FlowSeq-large (NPD n = 15)", "row": 12, "task": "Machine Translation", "value": "23.14" }, { "column": 2, "dataset": "WMT2014 German-English", "metric": "BLEU score", "model": "FlowSeq-large (NPD n = 15)", "row": 12, "task": "Machine Translation", "value": "27.71" }, { "column": 3, "dataset": "WMT2016 English-Romanian", "metric": "BLEU score", "model": "FlowSeq-large (NPD n=15)", "row": 12, "task": "Machine Translation", "value": "31.97" }, { "column": 4, "dataset": "WMT2016 Romanian-English", "metric": "BLEU score", "model": "FlowSeq-large (NPD n = 15)", "row": 12, "task": "Machine Translation", "value": "32.46" }, { "column": 1, "dataset": "WMT2014 English-German", "metric": "BLEU score", "model": "FlowSeq-large (NPD n = 30)", "row": 13, "task": "Machine Translation", "value": "23.64" }, { "column": 2, "dataset": "WMT2014 German-English", "metric": "BLEU score", "model": "FlowSeq-large (NPD n = 30)", "row": 13, "task": "Machine Translation", "value": "28.29" }, { "column": 3, "dataset": "WMT2016 English-Romanian", "metric": "BLEU score", "model": "FlowSeq-large (NPD n = 30)", "row": 13, "task": "Machine Translation", "value": "32.35" }, { "column": 4, "dataset": "WMT2016 Romanian-English", "metric": "BLEU score", "model": "FlowSeq-large (NPD n = 30)", "row": 13, "task": "Machine Translation", "value": "32.91" } ] } ]
1909.03252v1
[ { "index": 0, "records": [ { "column": 1, "dataset": "THUMOS’14", "metric": "mAP [email protected]", "model": "P-GCN", "row": 21, "task": "Temporal Action Localization", "value": "69.5" }, { "column": 2, "dataset": "THUMOS’14", "metric": "mAP [email protected]", "model": "P-GCN", "row": 21, "task": "Temporal Action Localization", "value": "67.8" }, { "column": 3, "dataset": "THUMOS’14", "metric": "mAP [email protected]", "model": "P-GCN", "row": 21, "task": "Temporal Action Localization", "value": "63.6" }, { "column": 4, "dataset": "THUMOS’14", "metric": "mAP [email protected]", "model": "P-GCN", "row": 21, "task": "Temporal Action Localization", "value": "57.8" }, { "column": 5, "dataset": "THUMOS’14", "metric": "mAP [email protected]", "model": "P-GCN", "row": 21, "task": "Temporal Action Localization", "value": "49.1" } ] }, { "index": 1, "records": [ { "column": 1, "dataset": "ActivityNet-1.3", "metric": "mAP [email protected]", "model": "P-GCN*", "row": 10, "task": "Temporal Action Localization", "value": "48.26" }, { "column": 2, "dataset": "ActivityNet-1.3", "metric": "mAP [email protected]", "model": "P-GCN*", "row": 10, "task": "Temporal Action Localization", "value": "33.16" }, { "column": 3, "dataset": "ActivityNet-1.3", "metric": "mAP [email protected]", "model": "P-GCN*", "row": 10, "task": "Temporal Action Localization", "value": "3.27" }, { "column": 4, "dataset": "ActivityNet-1.3", "metric": "mAP", "model": "P-GCN*", "row": 10, "task": "Temporal Action Localization", "value": "31.11" } ] } ]
1909.03573v1
[ { "index": 0, "records": [ { "column": 2, "dataset": "Set5 - 3x upscaling", "metric": "PSNR", "model": "LCSCNet", "row": 5, "task": "Image Super-Resolution", "value": "33.99" }, { "column": 3, "dataset": "Set14 - 3x upscaling", "metric": "PSNR", "model": "LCSCNet", "row": 5, "task": "Image Super-Resolution", "value": "29.87" }, { "column": 4, "dataset": "BSD100 - 3x upscaling", "metric": "PSNR", "model": "LCSCNet", "row": 5, "task": "Image Super-Resolution", "value": "28.87" }, { "column": 5, "dataset": "Urban100 - 3x upscaling", "metric": "PSNR", "model": "LCSCNet", "row": 5, "task": "Image Super-Resolution", "value": "27.24" } ] } ]