arxiv_id
stringlengths 11
12
| tables
listlengths 1
11
|
---|---|
1906.06874v2 | [
{
"index": 1,
"records": [
{
"column": 2,
"dataset": "Set5 - 2x upscaling",
"metric": "PSNR",
"model": "HBPN",
"row": 12,
"task": "Image Super-Resolution",
"value": "38.13"
},
{
"column": 3,
"dataset": "Set5 - 2x upscaling",
"metric": "SSIM",
"model": "HBPN",
"row": 12,
"task": "Image Super-Resolution",
"value": "0.961"
},
{
"column": 4,
"dataset": "Set14 - 2x upscaling",
"metric": "PSNR",
"model": "HBPN",
"row": 12,
"task": "Image Super-Resolution",
"value": "33.78"
},
{
"column": 5,
"dataset": "Set14 - 2x upscaling",
"metric": "SSIM",
"model": "HBPN",
"row": 12,
"task": "Image Super-Resolution",
"value": "0.9209999999999999"
},
{
"column": 6,
"dataset": "BSD100 - 2x upscaling",
"metric": "PSNR",
"model": "HBPN",
"row": 12,
"task": "Image Super-Resolution",
"value": "32.33"
},
{
"column": 7,
"dataset": "BSD100 - 2x upscaling",
"metric": "SSIM",
"model": "HBPN",
"row": 12,
"task": "Image Super-Resolution",
"value": "0.902"
},
{
"column": 8,
"dataset": "Urban100 - 2x upscaling",
"metric": "PSNR",
"model": "HBPN",
"row": 12,
"task": "Image Super-Resolution",
"value": "33.12"
},
{
"column": 9,
"dataset": "Urban100 - 2x upscaling",
"metric": "SSIM",
"model": "HBPN",
"row": 12,
"task": "Image Super-Resolution",
"value": "0.938"
},
{
"column": 10,
"dataset": "Manga109 - 2x upscaling",
"metric": "PSNR",
"model": "HBPN",
"row": 12,
"task": "Image Super-Resolution",
"value": "39.3"
},
{
"column": 11,
"dataset": "Manga109 - 2x upscaling",
"metric": "SSIM",
"model": "HBPN",
"row": 12,
"task": "Image Super-Resolution",
"value": "0.9790000000000001"
},
{
"column": 2,
"dataset": "Set5 - 4x upscaling",
"metric": "PSNR",
"model": "HBPN",
"row": 23,
"task": "Image Super-Resolution",
"value": "32.55"
},
{
"column": 3,
"dataset": "Set5 - 4x upscaling",
"metric": "SSIM",
"model": "HBPN",
"row": 23,
"task": "Image Super-Resolution",
"value": "0.9"
},
{
"column": 4,
"dataset": "Set14 - 4x upscaling",
"metric": "PSNR",
"model": "HBPN",
"row": 23,
"task": "Image Super-Resolution",
"value": "28.67"
},
{
"column": 5,
"dataset": "Set14 - 4x upscaling",
"metric": "SSIM",
"model": "HBPN",
"row": 23,
"task": "Image Super-Resolution",
"value": "0.785"
},
{
"column": 6,
"dataset": "BSD100 - 4x upscaling",
"metric": "PSNR",
"model": "HBPN",
"row": 23,
"task": "Image Super-Resolution",
"value": "27.77"
},
{
"column": 7,
"dataset": "BSD100 - 4x upscaling",
"metric": "SSIM",
"model": "HBPN",
"row": 23,
"task": "Image Super-Resolution",
"value": "0.743"
},
{
"column": 8,
"dataset": "Urban100 - 4x upscaling",
"metric": "PSNR",
"model": "HBPN",
"row": 23,
"task": "Image Super-Resolution",
"value": "27.3"
},
{
"column": 9,
"dataset": "Urban100 - 4x upscaling",
"metric": "SSIM",
"model": "HBPN",
"row": 23,
"task": "Image Super-Resolution",
"value": "0.818"
},
{
"column": 10,
"dataset": "Manga109 - 4x upscaling",
"metric": "PSNR",
"model": "HBPN",
"row": 23,
"task": "Image Super-Resolution",
"value": "31.57"
},
{
"column": 11,
"dataset": "Manga109 - 4x upscaling",
"metric": "SSIM",
"model": "HBPN",
"row": 23,
"task": "Image Super-Resolution",
"value": "0.92"
},
{
"column": 2,
"dataset": "Set5 - 8x upscaling",
"metric": "PSNR",
"model": "HBPN",
"row": 34,
"task": "Image Super-Resolution",
"value": "27.17"
},
{
"column": 3,
"dataset": "Set5 - 8x upscaling",
"metric": "SSIM",
"model": "HBPN",
"row": 34,
"task": "Image Super-Resolution",
"value": "0.785"
},
{
"column": 4,
"dataset": "Set14 - 8x upscaling",
"metric": "PSNR",
"model": "HBPN",
"row": 34,
"task": "Image Super-Resolution",
"value": "24.96"
},
{
"column": 5,
"dataset": "Set14 - 8x upscaling",
"metric": "SSIM",
"model": "HBPN",
"row": 34,
"task": "Image Super-Resolution",
"value": "0.642"
},
{
"column": 6,
"dataset": "BSD100 - 8x upscaling",
"metric": "PSNR",
"model": "HBPN",
"row": 34,
"task": "Image Super-Resolution",
"value": "24.93"
},
{
"column": 7,
"dataset": "BSD100 - 8x upscaling",
"metric": "SSIM",
"model": "HBPN",
"row": 34,
"task": "Image Super-Resolution",
"value": "0.602"
},
{
"column": 8,
"dataset": "Urban100 - 8x upscaling",
"metric": "PSNR",
"model": "HBPN",
"row": 34,
"task": "Image Super-Resolution",
"value": "23.04"
},
{
"column": 9,
"dataset": "Urban100 - 8x upscaling",
"metric": "SSIM",
"model": "HBPN",
"row": 34,
"task": "Image Super-Resolution",
"value": "0.647"
},
{
"column": 10,
"dataset": "Manga109 - 8x upscaling",
"metric": "PSNR",
"model": "HBPN",
"row": 34,
"task": "Image Super-Resolution",
"value": "25.24"
},
{
"column": 11,
"dataset": "Manga109 - 8x upscaling",
"metric": "SSIM",
"model": "HBPN",
"row": 34,
"task": "Image Super-Resolution",
"value": "0.802"
}
]
}
] |
1906.07078v1 | [
{
"index": 0,
"records": [
{
"column": 1,
"dataset": "VggFace2 - 8x upscaling",
"metric": "PSNR",
"model": "Full-GWAInet",
"row": 8,
"task": "Image Super-Resolution",
"value": "25.57"
},
{
"column": 2,
"dataset": "WebFace - 8x upscaling",
"metric": "PSNR",
"model": "Full-GWAInet",
"row": 8,
"task": "Image Super-Resolution",
"value": "27.11"
}
]
}
] |
1906.08101v2 | [
{
"index": 3,
"records": [
{
"column": 1,
"dataset": "CMRC 2018 (Simplified Chinese) Dev",
"metric": "EM",
"model": "RoBERTa-wwm-ext-large",
"row": 7,
"task": "Chinese Reading Comprehension",
"value": "68.5"
},
{
"column": 2,
"dataset": "CMRC 2018 (Simplified Chinese) Dev",
"metric": "F1",
"model": "RoBERTa-wwm-ext-large",
"row": 7,
"task": "Chinese Reading Comprehension",
"value": "88.4"
},
{
"column": 3,
"dataset": "CMRC 2018 (Simplified Chinese)",
"metric": "EM",
"model": "RoBERTa-wwm-ext-large",
"row": 7,
"task": "Chinese Reading Comprehension",
"value": "74.2"
},
{
"column": 4,
"dataset": "CMRC 2018 (Simplified Chinese)",
"metric": "F1",
"model": "RoBERTa-wwm-ext-large",
"row": 7,
"task": "Chinese Reading Comprehension",
"value": "90.6"
},
{
"column": 5,
"dataset": "CMRC 2018 (Simplified Chinese) Challenge",
"metric": "EM",
"model": "RoBERTa-wwm-ext-large",
"row": 7,
"task": "Chinese Reading Comprehension",
"value": "31.5"
},
{
"column": 6,
"dataset": "CMRC 2018 (Simplified Chinese) Challenge",
"metric": "F1",
"model": "RoBERTa-wwm-ext-large",
"row": 7,
"task": "Chinese Reading Comprehension",
"value": "60.1"
}
]
},
{
"index": 4,
"records": [
{
"column": 1,
"dataset": "DRCD (Traditional Chinese) Dev",
"metric": "EM",
"model": "RoBERTa-wwm-ext-large",
"row": 7,
"task": "Chinese Reading Comprehension",
"value": "89.6"
},
{
"column": 2,
"dataset": "DRCD (Traditional Chinese) Dev",
"metric": "F1",
"model": "RoBERTa-wwm-ext-large",
"row": 7,
"task": "Chinese Reading Comprehension",
"value": "94.8"
},
{
"column": 3,
"dataset": "DRCD (Traditional Chinese)",
"metric": "EM",
"model": "RoBERTa-wwm-ext-large",
"row": 7,
"task": "Chinese Reading Comprehension",
"value": "89.6"
},
{
"column": 4,
"dataset": "DRCD (Traditional Chinese)",
"metric": "F1",
"model": "RoBERTa-wwm-ext-large",
"row": 7,
"task": "Chinese Reading Comprehension",
"value": "94.5"
}
]
},
{
"index": 5,
"records": [
{
"column": 1,
"dataset": "CJRC Dev",
"metric": "EM",
"model": "RoBERTa-wwm-ext-large",
"row": 7,
"task": "Chinese Reading Comprehension",
"value": "62.1"
},
{
"column": 2,
"dataset": "CJRC Dev",
"metric": "F1",
"model": "RoBERTa-wwm-ext-large",
"row": 7,
"task": "Chinese Reading Comprehension",
"value": "82.4"
},
{
"column": 3,
"dataset": "CJRC",
"metric": "EM",
"model": "RoBERTa-wwm-ext-large",
"row": 7,
"task": "Chinese Reading Comprehension",
"value": "62.4"
},
{
"column": 4,
"dataset": "CJRC",
"metric": "F1",
"model": "RoBERTa-wwm-ext-large",
"row": 7,
"task": "Chinese Reading Comprehension",
"value": "82.20"
}
]
},
{
"index": 6,
"records": [
{
"column": 1,
"dataset": "XNLI Dev",
"metric": "F1",
"model": "RoBERTa-wwm-ext-large",
"row": 6,
"task": "Chinese Sentence Pair Classification",
"value": "82.1"
},
{
"column": 2,
"dataset": "XNLI",
"metric": "F1",
"model": "RoBERTa-wwm-ext-large",
"row": 6,
"task": "Chinese Sentence Pair Classification",
"value": "81.2"
}
]
},
{
"index": 7,
"records": [
{
"column": 1,
"dataset": "ChnSentiCorp Dev",
"metric": "F1",
"model": "RoBERTa-wwm-ext-large",
"row": 6,
"task": "Sentiment Analysis",
"value": "95.8"
},
{
"column": 2,
"dataset": "ChnSentiCorp",
"metric": "F1",
"model": "RoBERTa-wwm-ext-large",
"row": 6,
"task": "Sentiment Analysis",
"value": "95.8"
}
]
},
{
"index": 8,
"records": [
{
"column": 1,
"dataset": "LCQMC Dev",
"metric": "F1",
"model": "RoBERTa-wwm-ext-large",
"row": 7,
"task": "Chinese Sentence Pair Classification",
"value": "90.4"
},
{
"column": 2,
"dataset": "LCQMC",
"metric": "F1",
"model": "RoBERTa-wwm-ext-large",
"row": 7,
"task": "Chinese Sentence Pair Classification",
"value": "87"
},
{
"column": 3,
"dataset": "BQ Dev",
"metric": "F1",
"model": "RoBERTa-wwm-ext-large",
"row": 7,
"task": "Chinese Sentence Pair Classification",
"value": "86.3"
},
{
"column": 4,
"dataset": "BQ",
"metric": "F1",
"model": "RoBERTa-wwm-ext-large",
"row": 7,
"task": "Chinese Sentence Pair Classification",
"value": "85.8"
}
]
},
{
"index": 9,
"records": [
{
"column": 1,
"dataset": "THUCNews Dev",
"metric": "F1",
"model": "RoBERTa-wwm-ext-large",
"row": 6,
"task": "Chinese Document Classification",
"value": "98.3"
},
{
"column": 2,
"dataset": "THUCNews",
"metric": "F1",
"model": "RoBERTa-wwm-ext-large",
"row": 6,
"task": "Chinese Document Classification",
"value": "97.8"
}
]
}
] |
1906.08237v2 | [
{
"index": 1,
"records": [
{
"column": 1,
"dataset": "RACE",
"metric": "Accuracy",
"model": "XLNet",
"row": 5,
"task": "Reading Comprehension",
"value": "85.4"
},
{
"column": 2,
"dataset": "RACE",
"metric": "Accuracy (Middle)",
"model": "XLNet",
"row": 5,
"task": "Reading Comprehension",
"value": "88.6"
},
{
"column": 3,
"dataset": "RACE",
"metric": "Accuracy (High)",
"model": "XLNet",
"row": 5,
"task": "Reading Comprehension",
"value": "84.0"
},
{
"column": 5,
"dataset": "ClueWeb09-B",
"metric": "nDCG@20",
"model": "XLNet",
"row": 5,
"task": "Document Ranking",
"value": "31.10"
},
{
"column": 6,
"dataset": "ClueWeb09-B",
"metric": "ERR@20",
"model": "XLNet",
"row": 5,
"task": "Document Ranking",
"value": "20.28"
}
]
},
{
"index": 2,
"records": [
{
"column": 1,
"dataset": "SQuAD2.0 dev",
"metric": "EM",
"model": "XLNet (single model)",
"row": 4,
"task": "Question Answering",
"value": "87.9"
},
{
"column": 2,
"dataset": "SQuAD2.0 dev",
"metric": "F1",
"model": "XLNet (single model)",
"row": 4,
"task": "Question Answering",
"value": "90.6"
},
{
"column": 4,
"dataset": "SQuAD1.1 dev",
"metric": "EM",
"model": "XLNet (single model)",
"row": 4,
"task": "Question Answering",
"value": "89.7"
},
{
"column": 5,
"dataset": "SQuAD1.1 dev",
"metric": "F1",
"model": "XLNet (single model)",
"row": 4,
"task": "Question Answering",
"value": "95.1"
},
{
"column": 1,
"dataset": "SQuAD2.0",
"metric": "EM",
"model": "XLNet (single model)",
"row": 8,
"task": "Question Answering",
"value": "87.926"
},
{
"column": 2,
"dataset": "SQuAD2.0",
"metric": "F1",
"model": "XLNet (single model)",
"row": 8,
"task": "Question Answering",
"value": "90.689"
},
{
"column": 4,
"dataset": "SQuAD1.1",
"metric": "EM",
"model": "XLNet (single model)",
"row": 8,
"task": "Question Answering",
"value": "89.898"
},
{
"column": 5,
"dataset": "SQuAD1.1",
"metric": "F1",
"model": "XLNet (single model)",
"row": 8,
"task": "Question Answering",
"value": "95.080"
}
]
},
{
"index": 3,
"records": [
{
"column": 1,
"dataset": "IMDb",
"metric": "Accuracy",
"model": "XLNet",
"row": 6,
"task": "Text Classification",
"value": "96.8"
},
{
"column": 2,
"dataset": "Yelp-2",
"metric": "Accuracy",
"model": "XLNet",
"row": 6,
"task": "Text Classification",
"value": "98.63"
},
{
"column": 3,
"dataset": "Yelp-5",
"metric": "Accuracy",
"model": "XLNet",
"row": 6,
"task": "Text Classification",
"value": "72.95"
},
{
"column": 4,
"dataset": "DBpedia",
"metric": "Error",
"model": "XLNet",
"row": 6,
"task": "Text Classification",
"value": "0.6"
},
{
"column": 5,
"dataset": "AG News",
"metric": "Error",
"model": "XLNet",
"row": 6,
"task": "Text Classification",
"value": "4.45"
},
{
"column": 6,
"dataset": "Amazon-2",
"metric": "Error",
"model": "XLNet",
"row": 6,
"task": "Text Classification",
"value": "2.11"
},
{
"column": 7,
"dataset": "Amazon-5",
"metric": "Error",
"model": "XLNet",
"row": 6,
"task": "Text Classification",
"value": "31.67"
}
]
},
{
"index": 4,
"records": [
{
"column": 1,
"dataset": "MultiNLI",
"metric": "Matched",
"model": "XLNet (single model)",
"row": 4,
"task": "Natural Language Inference",
"value": "90.8"
},
{
"column": 2,
"dataset": "QNLI",
"metric": "Accuracy",
"model": "XLNet (single model)",
"row": 4,
"task": "Natural Language Inference",
"value": "94.9"
},
{
"column": 3,
"dataset": "Quora Question Pairs",
"metric": "Accuracy",
"model": "XLNet (single model)",
"row": 4,
"task": "Question Answering",
"value": "92.3"
},
{
"column": 4,
"dataset": "RTE",
"metric": "Accuracy",
"model": "XLNet (single model)",
"row": 4,
"task": "Natural Language Inference",
"value": "85.9"
},
{
"column": 5,
"dataset": "SST-2 Binary classification",
"metric": "Accuracy",
"model": "XLNet (single model)",
"row": 4,
"task": "Sentiment Analysis",
"value": "97"
},
{
"column": 6,
"dataset": "MRPC",
"metric": "Accuracy",
"model": "XLNet (single model)",
"row": 4,
"task": "Semantic Textual Similarity",
"value": "90.8"
},
{
"column": 7,
"dataset": "CoLA",
"metric": "Accuracy",
"model": "XLNet (single model)",
"row": 4,
"task": "Linguistic Acceptability",
"value": "69"
},
{
"column": 8,
"dataset": "STS Benchmark",
"metric": "Pearson Correlation",
"model": "XLNet (single model)",
"row": 4,
"task": "Semantic Textual Similarity",
"value": "92.5"
}
]
}
] |
1906.08332v2 | [
{
"index": 8,
"records": [
{
"column": 2,
"dataset": "Market-1501",
"metric": "MAP",
"model": "IBN-Net50-a",
"row": 10,
"task": "Person Re-Identification",
"value": "88.2"
},
{
"column": 4,
"dataset": "DukeMTMC-reID",
"metric": "MAP",
"model": "IBN-Net50-a",
"row": 10,
"task": "Person Re-Identification",
"value": "79.1"
}
]
}
] |
1906.09217v1 | [
{
"index": 2,
"records": [
{
"column": 7,
"dataset": "MovieLens 20M",
"metric": "Recall@10",
"model": "HGN",
"row": 2,
"task": "Recommendation Systems",
"value": "0.1255"
},
{
"column": 7,
"dataset": "Amazon-Book",
"metric": "Recall@10",
"model": "HGN",
"row": 3,
"task": "Recommendation Systems",
"value": "0.0429"
},
{
"column": 7,
"dataset": "Amazon-CDs",
"metric": "Recall@10",
"model": "HGN",
"row": 4,
"task": "Recommendation Systems",
"value": "0.0426"
},
{
"column": 7,
"dataset": "GoodReads-Children",
"metric": "Recall@10",
"model": "HGN",
"row": 5,
"task": "Recommendation Systems",
"value": "0.1263"
},
{
"column": 7,
"dataset": "GoodReads-Comics",
"metric": "Recall@10",
"model": "HGN",
"row": 6,
"task": "Recommendation Systems",
"value": "0.1743"
},
{
"column": 7,
"dataset": "MovieLens 20M",
"metric": "nDCG@10",
"model": "HGN",
"row": 8,
"task": "Recommendation Systems",
"value": "0.1195"
},
{
"column": 7,
"dataset": "Amazon-Book",
"metric": "nDCG@10",
"model": "HGN",
"row": 9,
"task": "Recommendation Systems",
"value": "0.0298"
},
{
"column": 7,
"dataset": "Amazon-CDs",
"metric": "nDCG@10",
"model": "HGN",
"row": 10,
"task": "Recommendation Systems",
"value": "0.0233"
},
{
"column": 7,
"dataset": "GoodReads-Children",
"metric": "nDCG@10",
"model": "HGN",
"row": 11,
"task": "Recommendation Systems",
"value": "0.113"
},
{
"column": 7,
"dataset": "GoodReads-Comics",
"metric": "nDCG@10",
"model": "HGN",
"row": 12,
"task": "Recommendation Systems",
"value": "0.1927"
}
]
}
] |
1906.09506v1 | [
{
"index": 1,
"records": [
{
"column": 1,
"dataset": "Last.FM",
"metric": "HR@10",
"model": "Ekar*",
"row": 10,
"task": "Recommendation Systems",
"value": "0.2483"
},
{
"column": 2,
"dataset": "Last.FM",
"metric": "nDCG@10",
"model": "Ekar*",
"row": 10,
"task": "Recommendation Systems",
"value": "0.1766"
},
{
"column": 3,
"dataset": "MovieLens 1M",
"metric": "HR@10",
"model": "Ekar*",
"row": 10,
"task": "Recommendation Systems",
"value": "0.1994"
},
{
"column": 4,
"dataset": "MovieLens 1M",
"metric": "nDCG@10",
"model": "Ekar*",
"row": 10,
"task": "Recommendation Systems",
"value": "0.3699"
},
{
"column": 5,
"dataset": "DBbook2014",
"metric": "HR@10",
"model": "Ekar*",
"row": 10,
"task": "Recommendation Systems",
"value": "0.1874"
},
{
"column": 6,
"dataset": "DBbook2014",
"metric": "nDCG@10",
"model": "Ekar*",
"row": 10,
"task": "Recommendation Systems",
"value": "0.1371"
}
]
}
] |
1906.10169v1 | [
{
"index": 0,
"records": [
{
"column": 1,
"dataset": "VQA-CP",
"metric": "Score",
"model": "RUBi",
"row": 10,
"task": "Visual Question Answering",
"value": "47.11"
}
]
},
{
"index": 2,
"records": [
{
"column": 2,
"dataset": "VQA v2 test-dev",
"metric": "Accuracy",
"model": "RUBi (ours)",
"row": 2,
"task": "Visual Question Answering",
"value": "63.18"
}
]
}
] |
1906.10343v2 | [
{
"index": 0,
"records": [
{
"column": 1,
"dataset": "SVHN, 250 Labels",
"metric": "Accuracy",
"model": "SESEMI SSL (ConvNet)",
"row": 11,
"task": "Semi-Supervised Image Classification",
"value": "91.68"
},
{
"column": 2,
"dataset": "SVHN, 500 Labels",
"metric": "Accuracy",
"model": "SESEMI SSL (ConvNet)",
"row": 11,
"task": "Semi-Supervised Image Classification",
"value": "93.5"
},
{
"column": 3,
"dataset": "SVHN, 1000 labels",
"metric": "Accuracy",
"model": "SESEMI SSL (ConvNet)",
"row": 11,
"task": "Semi-Supervised Image Classification",
"value": "94.41"
}
]
},
{
"index": 1,
"records": [
{
"column": 1,
"dataset": "CIFAR-10, 1000 Labels",
"metric": "Accuracy",
"model": "SESEMI SSL (ConvNet)",
"row": 11,
"task": "Semi-Supervised Image Classification",
"value": "82.12"
},
{
"column": 2,
"dataset": "CIFAR-10, 2000 Labels",
"metric": "Accuracy",
"model": "SESEMI SSL (ConvNet)",
"row": 11,
"task": "Semi-Supervised Image Classification",
"value": "85.78"
},
{
"column": 3,
"dataset": "CIFAR-10, 4000 Labels",
"metric": "Accuracy",
"model": "SESEMI SSL (ConvNet)",
"row": 11,
"task": "Semi-Supervised Image Classification",
"value": "88.35"
}
]
},
{
"index": 2,
"records": [
{
"column": 1,
"dataset": "cifar-100, 10000 Labels",
"metric": "Accuracy",
"model": "SESEMI SSL (ConvNet)",
"row": 7,
"task": "Semi-Supervised Image Classification",
"value": "61.29"
}
]
}
] |
1906.10770v1 | [
{
"index": 3,
"records": [
{
"column": 1,
"dataset": "VQA v2 test-dev",
"metric": "Accuracy",
"model": "MCANed-6",
"row": 6,
"task": "Visual Question Answering",
"value": "70.63"
},
{
"column": 5,
"dataset": "VQA v2 test-std",
"metric": "Accuracy",
"model": "MCANed-6",
"row": 6,
"task": "Visual Question Answering",
"value": "70.9"
}
]
}
] |
1906.10958v3 | [
{
"index": 1,
"records": [
{
"column": 12,
"dataset": "Bitcoin-Alpha",
"metric": "Accuracy",
"model": "SiGAT",
"row": 2,
"task": "Link Sign Prediction",
"value": "0.9480"
},
{
"column": 12,
"dataset": "Bitcoin-Alpha",
"metric": "AUC",
"model": "SiGAT",
"row": 3,
"task": "Link Sign Prediction",
"value": "0.9727"
},
{
"column": 12,
"dataset": "Bitcoin-Alpha",
"metric": "Macro-F1",
"model": "SiGAT",
"row": 4,
"task": "Link Sign Prediction",
"value": "0.7138"
},
{
"column": 12,
"dataset": "Bitcoin-Alpha",
"metric": "AUC",
"model": "SiGAT",
"row": 5,
"task": "Link Sign Prediction",
"value": "0.8942"
},
{
"column": 12,
"dataset": "Slashdot",
"metric": "Accuracy",
"model": "SiGAT",
"row": 6,
"task": "Link Sign Prediction",
"value": "0.8482"
},
{
"column": 12,
"dataset": "Slashdot",
"metric": "AUC",
"model": "SiGAT",
"row": 7,
"task": "Link Sign Prediction",
"value": "0.9047"
},
{
"column": 12,
"dataset": "Slashdot",
"metric": "Macro-F1",
"model": "SiGAT",
"row": 8,
"task": "Link Sign Prediction",
"value": "0.7659999999999999"
},
{
"column": 12,
"dataset": "Slashdot",
"metric": "AUC",
"model": "SiGAT",
"row": 9,
"task": "Link Sign Prediction",
"value": "0.8864"
},
{
"column": 12,
"dataset": "Epinions",
"metric": "Accuracy",
"model": "SiGAT",
"row": 10,
"task": "Link Sign Prediction",
"value": "0.9293"
},
{
"column": 12,
"dataset": "Epinions",
"metric": "AUC",
"model": "SiGAT",
"row": 11,
"task": "Link Sign Prediction",
"value": "0.9593"
},
{
"column": 12,
"dataset": "Epinions",
"metric": "Macro-F1",
"model": "SiGAT",
"row": 12,
"task": "Link Sign Prediction",
"value": "0.8449"
},
{
"column": 12,
"dataset": "Epinions",
"metric": "AUC",
"model": "SiGAT",
"row": 13,
"task": "Link Sign Prediction",
"value": "0.9333"
}
]
}
] |
1906.11109v2 | [
{
"index": 0,
"records": [
{
"column": 2,
"dataset": "Cityscapes test",
"metric": "Average Precision",
"model": "Learnable Margin",
"row": 9,
"task": "Instance Segmentation",
"value": "27.6"
}
]
}
] |
1906.11172v1 | [
{
"index": 2,
"records": [
{
"column": 3,
"dataset": "COCO test-dev",
"metric": "box AP",
"model": "NAS-FPN (AmoebaNet-D, learned aug)",
"row": 4,
"task": "Object Detection",
"value": "50.7"
},
{
"column": 4,
"dataset": "COCO test-dev",
"metric": "APS",
"model": "NAS-FPN (AmoebaNet-D, learned aug)",
"row": 4,
"task": "Object Detection",
"value": "34.2"
},
{
"column": 5,
"dataset": "COCO test-dev",
"metric": "APM",
"model": "NAS-FPN (AmoebaNet-D, learned aug)",
"row": 4,
"task": "Object Detection",
"value": "55.5"
},
{
"column": 6,
"dataset": "COCO test-dev",
"metric": "APL",
"model": "NAS-FPN (AmoebaNet-D, learned aug)",
"row": 4,
"task": "Object Detection",
"value": "64.5"
}
]
},
{
"index": 3,
"records": [
{
"column": 21,
"dataset": "PASCAL VOC 2007",
"metric": "MAP",
"model": "Faster R-CNN (ResNet-101, learned aug)",
"row": 2,
"task": "Object Detection",
"value": "78.7"
}
]
}
] |
1906.11890v1 | [
{
"index": 0,
"records": [
{
"column": 1,
"dataset": "Set8 sigma10",
"metric": "PSNR",
"model": "DVDnet",
"row": 1,
"task": "Video Denoising",
"value": "36.08"
},
{
"column": 1,
"dataset": "Set8 sigma20",
"metric": "PSNR",
"model": "DVDnet",
"row": 2,
"task": "Video Denoising",
"value": "33.49"
},
{
"column": 1,
"dataset": "Set8 sigma30",
"metric": "PSNR",
"model": "DVDnet",
"row": 3,
"task": "Video Denoising",
"value": "31.79"
},
{
"column": 1,
"dataset": "Set8 sigma40",
"metric": "PSNR",
"model": "DVDnet",
"row": 4,
"task": "Video Denoising",
"value": "30.55"
},
{
"column": 1,
"dataset": "Set8 sigma50",
"metric": "PSNR",
"model": "DVDnet",
"row": 5,
"task": "Video Denoising",
"value": "29.56"
}
]
},
{
"index": 1,
"records": [
{
"column": 1,
"dataset": "DAVIS sigma10",
"metric": "PSNR",
"model": "DVDnet",
"row": 1,
"task": "Video Denoising",
"value": "38.13"
},
{
"column": 1,
"dataset": "DAVIS sigma20",
"metric": "PSNR",
"model": "DVDnet",
"row": 2,
"task": "Video Denoising",
"value": "35.7"
},
{
"column": 1,
"dataset": "DAVIS sigma30",
"metric": "PSNR",
"model": "DVDnet",
"row": 3,
"task": "Video Denoising",
"value": "34.08"
},
{
"column": 1,
"dataset": "DAVIS sigma40",
"metric": "PSNR",
"model": "DVDnet",
"row": 4,
"task": "Video Denoising",
"value": "32.86"
},
{
"column": 1,
"dataset": "DAVIS sigma50",
"metric": "PSNR",
"model": "DVDnet",
"row": 5,
"task": "Video Denoising",
"value": "31.85"
}
]
}
] |
1906.11894v2 | [
{
"index": 0,
"records": [
{
"column": 1,
"dataset": "DIVA-HisDB",
"metric": "Line IoU",
"model": "Semantic Seg Preprocessing",
"row": 5,
"task": "Text-Line Extraction",
"value": "99.42"
},
{
"column": 2,
"dataset": "DIVA-HisDB",
"metric": "Pixel IoU",
"model": "Semantic Seg Preprocessing",
"row": 5,
"task": "Text-Line Extraction",
"value": "96.11"
}
]
}
] |
1906.12021v2 | [
{
"index": 1,
"records": [
{
"column": 2,
"dataset": "Set5 - 2x upscaling",
"metric": "PSNR",
"model": "DRLN+",
"row": 15,
"task": "Image Super-Resolution",
"value": "38.34"
},
{
"column": 3,
"dataset": "Set5 - 2x upscaling",
"metric": "SSIM",
"model": "DRLN+",
"row": 15,
"task": "Image Super-Resolution",
"value": "0.9619"
},
{
"column": 4,
"dataset": "Set14 - 2x upscaling",
"metric": "PSNR",
"model": "DRLN+",
"row": 15,
"task": "Image Super-Resolution",
"value": "34.43"
},
{
"column": 5,
"dataset": "Set14 - 2x upscaling",
"metric": "SSIM",
"model": "DRLN+",
"row": 15,
"task": "Image Super-Resolution",
"value": "0.9247"
},
{
"column": 6,
"dataset": "BSD100 - 2x upscaling",
"metric": "PSNR",
"model": "DRLN+",
"row": 15,
"task": "Image Super-Resolution",
"value": "32.47"
},
{
"column": 7,
"dataset": "BSD100 - 2x upscaling",
"metric": "SSIM",
"model": "DRLN+",
"row": 15,
"task": "Image Super-Resolution",
"value": "0.9032"
},
{
"column": 8,
"dataset": "Urban100 - 2x upscaling",
"metric": "PSNR",
"model": "DRLN+",
"row": 15,
"task": "Image Super-Resolution",
"value": "33.54"
},
{
"column": 9,
"dataset": "Urban100 - 2x upscaling",
"metric": "SSIM",
"model": "DRLN+",
"row": 15,
"task": "Image Super-Resolution",
"value": "0.9402"
},
{
"column": 10,
"dataset": "Manga109 - 2x upscaling",
"metric": "PSNR",
"model": "DRLN+",
"row": 15,
"task": "Image Super-Resolution",
"value": "39.75"
},
{
"column": 11,
"dataset": "Manga109 - 2x upscaling",
"metric": "SSIM",
"model": "DRLN+",
"row": 15,
"task": "Image Super-Resolution",
"value": "0.9792"
},
{
"column": 2,
"dataset": "Set5 - 3x upscaling",
"metric": "PSNR",
"model": "DRLN+",
"row": 28,
"task": "Image Super-Resolution",
"value": "34.86"
},
{
"column": 3,
"dataset": "Set5 - 3x upscaling",
"metric": "SSIM",
"model": "DRLN+",
"row": 28,
"task": "Image Super-Resolution",
"value": "0.9307"
},
{
"column": 4,
"dataset": "Set14 - 3x upscaling",
"metric": "PSNR",
"model": "DRLN+",
"row": 28,
"task": "Image Super-Resolution",
"value": "30.8"
},
{
"column": 5,
"dataset": "Set14 - 3x upscaling",
"metric": "SSIM",
"model": "DRLN+",
"row": 28,
"task": "Image Super-Resolution",
"value": "0.8498"
},
{
"column": 6,
"dataset": "BSD100 - 3x upscaling",
"metric": "PSNR",
"model": "DRLN+",
"row": 28,
"task": "Image Super-Resolution",
"value": "29.4"
},
{
"column": 7,
"dataset": "BSD100 - 3x upscaling",
"metric": "SSIM",
"model": "DRLN+",
"row": 28,
"task": "Image Super-Resolution",
"value": "0.8125"
},
{
"column": 8,
"dataset": "Urban100 - 3x upscaling",
"metric": "PSNR",
"model": "DRLN+",
"row": 28,
"task": "Image Super-Resolution",
"value": "29.37"
},
{
"column": 9,
"dataset": "Urban100 - 3x upscaling",
"metric": "SSIM",
"model": "DRLN+",
"row": 28,
"task": "Image Super-Resolution",
"value": "0.8746"
},
{
"column": 10,
"dataset": "Manga109 - 3x upscaling",
"metric": "PSNR",
"model": "DRLN+",
"row": 28,
"task": "Image Super-Resolution",
"value": "34.94"
},
{
"column": 11,
"dataset": "Manga109 - 3x upscaling",
"metric": "SSIM",
"model": "DRLN+",
"row": 28,
"task": "Image Super-Resolution",
"value": "0.9518"
},
{
"column": 2,
"dataset": "Set5 - 4x upscaling",
"metric": "PSNR",
"model": "DRLN+",
"row": 42,
"task": "Image Super-Resolution",
"value": "32.74"
},
{
"column": 3,
"dataset": "Set5 - 4x upscaling",
"metric": "SSIM",
"model": "DRLN+",
"row": 42,
"task": "Image Super-Resolution",
"value": "0.9013"
},
{
"column": 4,
"dataset": "Set14 - 4x upscaling",
"metric": "PSNR",
"model": "DRLN+",
"row": 42,
"task": "Image Super-Resolution",
"value": "29.02"
},
{
"column": 5,
"dataset": "Set14 - 4x upscaling",
"metric": "SSIM",
"model": "DRLN+",
"row": 42,
"task": "Image Super-Resolution",
"value": "0.7914"
},
{
"column": 6,
"dataset": "BSD100 - 4x upscaling",
"metric": "PSNR",
"model": "DRLN+",
"row": 42,
"task": "Image Super-Resolution",
"value": "27.87"
},
{
"column": 7,
"dataset": "BSD100 - 4x upscaling",
"metric": "SSIM",
"model": "DRLN+",
"row": 42,
"task": "Image Super-Resolution",
"value": "0.7453"
},
{
"column": 8,
"dataset": "Urban100 - 4x upscaling",
"metric": "PSNR",
"model": "DRLN+",
"row": 42,
"task": "Image Super-Resolution",
"value": "27.14"
},
{
"column": 9,
"dataset": "Urban100 - 4x upscaling",
"metric": "SSIM",
"model": "DRLN+",
"row": 42,
"task": "Image Super-Resolution",
"value": "0.8149"
},
{
"column": 10,
"dataset": "Manga109 - 4x upscaling",
"metric": "PSNR",
"model": "DRLN+",
"row": 42,
"task": "Image Super-Resolution",
"value": "31.78"
},
{
"column": 11,
"dataset": "Manga109 - 4x upscaling",
"metric": "SSIM",
"model": "DRLN+",
"row": 42,
"task": "Image Super-Resolution",
"value": "0.9211"
},
{
"column": 2,
"dataset": "Set5 - 8x upscaling",
"metric": "PSNR",
"model": "DRLN+",
"row": 55,
"task": "Image Super-Resolution",
"value": "27.46"
},
{
"column": 3,
"dataset": "Set5 - 8x upscaling",
"metric": "SSIM",
"model": "DRLN+",
"row": 55,
"task": "Image Super-Resolution",
"value": "0.7916"
},
{
"column": 4,
"dataset": "Set14 - 8x upscaling",
"metric": "PSNR",
"model": "DRLN+",
"row": 55,
"task": "Image Super-Resolution",
"value": "25.4"
},
{
"column": 5,
"dataset": "Set14 - 8x upscaling",
"metric": "SSIM",
"model": "DRLN+",
"row": 55,
"task": "Image Super-Resolution",
"value": "0.6547"
},
{
"column": 6,
"dataset": "BSD100 - 8x upscaling",
"metric": "PSNR",
"model": "DRLN+",
"row": 55,
"task": "Image Super-Resolution",
"value": "25.06"
},
{
"column": 7,
"dataset": "BSD100 - 8x upscaling",
"metric": "SSIM",
"model": "DRLN+",
"row": 55,
"task": "Image Super-Resolution",
"value": "0.607"
},
{
"column": 8,
"dataset": "Urban100 - 8x upscaling",
"metric": "PSNR",
"model": "DRLN+",
"row": 55,
"task": "Image Super-Resolution",
"value": "23.24"
},
{
"column": 9,
"dataset": "Urban100 - 8x upscaling",
"metric": "SSIM",
"model": "DRLN+",
"row": 55,
"task": "Image Super-Resolution",
"value": "0.6523"
},
{
"column": 10,
"dataset": "Manga109 - 8x upscaling",
"metric": "PSNR",
"model": "DRLN+",
"row": 55,
"task": "Image Super-Resolution",
"value": "25.55"
},
{
"column": 11,
"dataset": "Manga109 - 8x upscaling",
"metric": "SSIM",
"model": "DRLN+",
"row": 55,
"task": "Image Super-Resolution",
"value": "0.8087"
}
]
}
] |
1907.00193v2 | [
{
"index": 0,
"records": [
{
"column": 3,
"dataset": "CK+",
"metric": "Accuracy (10-fold)",
"model": "FAN",
"row": 7,
"task": "Facial Expression Recognition",
"value": "99.69"
}
]
}
] |
1907.00837v1 | [
{
"index": 3,
"records": [
{
"column": 1,
"dataset": "MPI-INF-3DHP",
"metric": "3DPCK",
"model": "XNect (SelecSLS)",
"row": 12,
"task": "3D Human Pose Estimation",
"value": "82.8"
},
{
"column": 2,
"dataset": "MPI-INF-3DHP",
"metric": "AUC",
"model": "XNect (SelecSLS)",
"row": 12,
"task": "3D Human Pose Estimation",
"value": "45.3"
},
{
"column": 3,
"dataset": "MPI-INF-3DHP",
"metric": "MJPE",
"model": "XNect (SelecSLS)",
"row": 12,
"task": "3D Human Pose Estimation",
"value": "98.4"
}
]
},
{
"index": 4,
"records": [
{
"column": 21,
"dataset": "MuPoTS-3D",
"metric": "3DPCK",
"model": "SelecSLS",
"row": 9,
"task": "3D Multi-Person Human Pose Estimation",
"value": "75.8"
}
]
},
{
"index": 5,
"records": [
{
"column": 16,
"dataset": "Human3.6M",
"metric": "Average MPJPE (mm)",
"model": "SelecSLS",
"row": 12,
"task": "3D Human Pose Estimation",
"value": "63.6"
}
]
}
] |
1907.01203v2 | [
{
"index": 1,
"records": [
{
"column": 3,
"dataset": "DAVIS-2017",
"metric": "Jaccard (Mean)",
"model": "PTSNet",
"row": 12,
"task": "Visual Object Tracking",
"value": "71.6"
},
{
"column": 4,
"dataset": "DAVIS-2017",
"metric": "F-measure (Mean)",
"model": "PTSNet",
"row": 12,
"task": "Visual Object Tracking",
"value": "77.7"
}
]
},
{
"index": 2,
"records": [
{
"column": 2,
"dataset": "YouTube-VOS",
"metric": "Jaccard (Seen)",
"model": "PTSNet",
"row": 9,
"task": "Visual Object Tracking",
"value": "73.5"
},
{
"column": 3,
"dataset": "YouTube-VOS",
"metric": "Jaccard (Unseen)",
"model": "PTSNet",
"row": 9,
"task": "Visual Object Tracking",
"value": "64.3"
}
]
}
] |
1907.01294v2 | [
{
"index": 0,
"records": [
{
"column": 1,
"dataset": "TuSimple",
"metric": "Accuracy",
"model": "End-to-end ERFNet",
"row": 4,
"task": "Lane Detection",
"value": "95.24"
}
]
}
] |
1907.01361v1 | [
{
"index": 2,
"records": [
{
"column": 6,
"dataset": "Set8 sigma10",
"metric": "PSNR",
"model": "FastDVDnet",
"row": 1,
"task": "Video Denoising",
"value": "36.43"
},
{
"column": 6,
"dataset": "Set8 sigma20",
"metric": "PSNR",
"model": "FastDVDnet",
"row": 2,
"task": "Video Denoising",
"value": "33.37"
},
{
"column": 6,
"dataset": "Set8 sigma30",
"metric": "PSNR",
"model": "FastDVDnet",
"row": 3,
"task": "Video Denoising",
"value": "31.6"
},
{
"column": 6,
"dataset": "Set8 sigma40",
"metric": "PSNR",
"model": "FastDVDnet",
"row": 4,
"task": "Video Denoising",
"value": "30.37"
},
{
"column": 6,
"dataset": "Set8 sigma50",
"metric": "PSNR",
"model": "FastDVDnet",
"row": 5,
"task": "Video Denoising",
"value": "29.42"
}
]
},
{
"index": 3,
"records": [
{
"column": 5,
"dataset": "DAVIS sigma10",
"metric": "PSNR",
"model": "FastDVDnet",
"row": 1,
"task": "Video Denoising",
"value": "38.97"
},
{
"column": 5,
"dataset": "DAVIS sigma20",
"metric": "PSNR",
"model": "FastDVDnet",
"row": 2,
"task": "Video Denoising",
"value": "35.86"
},
{
"column": 5,
"dataset": "DAVIS sigma30",
"metric": "PSNR",
"model": "FastDVDnet",
"row": 3,
"task": "Video Denoising",
"value": "34.06"
},
{
"column": 5,
"dataset": "DAVIS sigma40",
"metric": "PSNR",
"model": "FastDVDnet",
"row": 4,
"task": "Video Denoising",
"value": "32.8"
},
{
"column": 5,
"dataset": "DAVIS sigma50",
"metric": "PSNR",
"model": "FastDVDnet",
"row": 5,
"task": "Video Denoising",
"value": "31.83"
}
]
}
] |
1907.03029v1 | [
{
"index": 1,
"records": [
{
"column": 2,
"dataset": "BSD68 sigma5",
"metric": "PSNR",
"model": "BUIFD75 (blind)",
"row": 7,
"task": "Grayscale Image Denoising",
"value": "37.25"
},
{
"column": 3,
"dataset": "BSD68 sigma10",
"metric": "PSNR",
"model": "BUIFD75 (blind)",
"row": 7,
"task": "Grayscale Image Denoising",
"value": "33.47"
},
{
"column": 4,
"dataset": "BSD68 sigma15",
"metric": "PSNR",
"model": "BUIFD75 (blind)",
"row": 7,
"task": "Grayscale Image Denoising",
"value": "31.35"
},
{
"column": 5,
"dataset": "BSD68 sigma20",
"metric": "PSNR",
"model": "BUIFD75 (blind)",
"row": 7,
"task": "Grayscale Image Denoising",
"value": "29.88"
},
{
"column": 6,
"dataset": "BSD68 sigma25",
"metric": "PSNR",
"model": "BUIFD75 (blind)",
"row": 7,
"task": "Grayscale Image Denoising",
"value": "28.75"
},
{
"column": 7,
"dataset": "BSD68 sigma30",
"metric": "PSNR",
"model": "BUIFD75 (blind)",
"row": 7,
"task": "Grayscale Image Denoising",
"value": "27.82"
},
{
"column": 8,
"dataset": "BSD68 sigma35",
"metric": "PSNR",
"model": "BUIFD75 (blind)",
"row": 7,
"task": "Grayscale Image Denoising",
"value": "27.03"
},
{
"column": 9,
"dataset": "BSD68 sigma40",
"metric": "PSNR",
"model": "BUIFD75 (blind)",
"row": 7,
"task": "Grayscale Image Denoising",
"value": "26.31"
},
{
"column": 2,
"dataset": "BSD68 sigma45",
"metric": "PSNR",
"model": "BUIFD75 (blind)",
"row": 14,
"task": "Grayscale Image Denoising",
"value": "25.67"
},
{
"column": 3,
"dataset": "BSD68 sigma50",
"metric": "PSNR",
"model": "BUIFD75 (blind)",
"row": 14,
"task": "Grayscale Image Denoising",
"value": "25.1"
},
{
"column": 4,
"dataset": "BSD68 sigma55",
"metric": "PSNR",
"model": "BUIFD75 (blind)",
"row": 14,
"task": "Grayscale Image Denoising",
"value": "24.55"
},
{
"column": 5,
"dataset": "BSD68 sigma60",
"metric": "PSNR",
"model": "BUIFD75 (blind)",
"row": 14,
"task": "Grayscale Image Denoising",
"value": "24.05"
},
{
"column": 6,
"dataset": "BSD68 sigma65",
"metric": "PSNR",
"model": "BUIFD75 (blind)",
"row": 14,
"task": "Grayscale Image Denoising",
"value": "23.56"
},
{
"column": 7,
"dataset": "BSD68 sigma70",
"metric": "PSNR",
"model": "BUIFD75 (blind)",
"row": 14,
"task": "Grayscale Image Denoising",
"value": "23.1"
},
{
"column": 8,
"dataset": "BSD68 sigma75",
"metric": "PSNR",
"model": "BUIFD75 (blind)",
"row": 14,
"task": "Grayscale Image Denoising",
"value": "22.67"
}
]
},
{
"index": 3,
"records": [
{
"column": 2,
"dataset": "CBSD68 sigma5",
"metric": "PSNR",
"model": "CBUIFD75",
"row": 7,
"task": "Color Image Denoising",
"value": "40.05"
},
{
"column": 3,
"dataset": "CBSD68 sigma10",
"metric": "PSNR",
"model": "CBUIFD75",
"row": 7,
"task": "Color Image Denoising",
"value": "35.98"
},
{
"column": 4,
"dataset": "CBSD68 sigma15",
"metric": "PSNR",
"model": "CBUIFD75",
"row": 7,
"task": "Color Image Denoising",
"value": "33.66"
},
{
"column": 5,
"dataset": "CBSD68 sigma20",
"metric": "PSNR",
"model": "CBUIFD75",
"row": 7,
"task": "Color Image Denoising",
"value": "32.02"
},
{
"column": 6,
"dataset": "CBSD68 sigma25",
"metric": "PSNR",
"model": "CBUIFD75",
"row": 7,
"task": "Color Image Denoising",
"value": "30.76"
},
{
"column": 7,
"dataset": "CBSD68 sigma30",
"metric": "PSNR",
"model": "CBUIFD75",
"row": 7,
"task": "Color Image Denoising",
"value": "29.71"
},
{
"column": 8,
"dataset": "CBSD68 sigma35",
"metric": "PSNR",
"model": "CBUIFD75",
"row": 7,
"task": "Color Image Denoising",
"value": "28.81"
},
{
"column": 9,
"dataset": "CBSD68 sigma40",
"metric": "PSNR",
"model": "CBUIFD75",
"row": 7,
"task": "Color Image Denoising",
"value": "28.01"
},
{
"column": 2,
"dataset": "CBSD68 sigma45",
"metric": "PSNR",
"model": "CBUIFD75",
"row": 14,
"task": "Color Image Denoising",
"value": "27.28"
},
{
"column": 3,
"dataset": "CBSD68 sigma50",
"metric": "PSNR",
"model": "CBUIFD75",
"row": 14,
"task": "Color Image Denoising",
"value": "26.6"
},
{
"column": 4,
"dataset": "CBSD68 sigma55",
"metric": "PSNR",
"model": "CBUIFD75",
"row": 14,
"task": "Color Image Denoising",
"value": "25.95"
},
{
"column": 5,
"dataset": "CBSD68 sigma60",
"metric": "PSNR",
"model": "CBUIFD75",
"row": 14,
"task": "Color Image Denoising",
"value": "25.34"
},
{
"column": 6,
"dataset": "CBSD68 sigma65",
"metric": "PSNR",
"model": "CBUIFD75",
"row": 14,
"task": "Color Image Denoising",
"value": "24.75"
},
{
"column": 7,
"dataset": "CBSD68 sigma70",
"metric": "PSNR",
"model": "CBUIFD75",
"row": 14,
"task": "Color Image Denoising",
"value": "24.18"
},
{
"column": 8,
"dataset": "CBSD68 sigma75",
"metric": "PSNR",
"model": "CBUIFD75",
"row": 14,
"task": "Color Image Denoising",
"value": "23.63"
}
]
}
] |
1907.03739v2 | [
{
"index": 0,
"records": [
{
"column": 3,
"dataset": "ShapeNet-Part",
"metric": "Instance Average IoU",
"model": "PVCNN volumetric",
"row": 10,
"task": "3D Part Segmentation",
"value": "86.2"
}
]
},
{
"index": 3,
"records": [
{
"column": 3,
"dataset": "S3DIS",
"metric": "mAcc",
"model": "PVCNN++ (1xC) volumetric",
"row": 10,
"task": "3D Instance Segmentation",
"value": "87.12"
},
{
"column": 4,
"dataset": "S3DIS",
"metric": "mIoU",
"model": "PVCNN++ (1xC) volumetric",
"row": 10,
"task": "3D Instance Segmentation",
"value": "58.98"
}
]
},
{
"index": 4,
"records": [
{
"column": 3,
"dataset": "KITTI Cars Easy val",
"metric": "AP",
"model": "PVCNN",
"row": 5,
"task": "3D Object Detection",
"value": "84.02"
},
{
"column": 4,
"dataset": "KITTI Cars Moderate val",
"metric": "AP",
"model": "PVCNN",
"row": 5,
"task": "3D Object Detection",
"value": "71.54"
},
{
"column": 5,
"dataset": "KITTI Cars Hard val",
"metric": "AP",
"model": "PVCNN",
"row": 5,
"task": "3D Object Detection",
"value": "63.81"
},
{
"column": 6,
"dataset": "KITTI Pedestrian Easy val",
"metric": "AP",
"model": "PVCNN",
"row": 5,
"task": "3D Object Detection",
"value": "73.2"
},
{
"column": 7,
"dataset": "KITTI Pedestrian Moderate val",
"metric": "AP",
"model": "PVCNN",
"row": 5,
"task": "3D Object Detection",
"value": "64.71"
},
{
"column": 8,
"dataset": "KITTI Pedestrian Hard val",
"metric": "AP",
"model": "PVCNN",
"row": 5,
"task": "3D Object Detection",
"value": "56.78"
},
{
"column": 9,
"dataset": "KITTI Cyclist Easy val",
"metric": "AP",
"model": "PVCNN",
"row": 5,
"task": "3D Object Detection",
"value": "81.4"
},
{
"column": 10,
"dataset": "KITTI Cyclist Moderate val",
"metric": "AP",
"model": "PVCNN",
"row": 5,
"task": "3D Object Detection",
"value": "59.97"
},
{
"column": 11,
"dataset": "KITTI Cyclist Hard val",
"metric": "AP",
"model": "PVCNN",
"row": 5,
"task": "3D Object Detection",
"value": "56.24"
}
]
}
] |
1907.03950v4 | [
{
"index": 0,
"records": [
{
"column": 7,
"dataset": "GQA test-std",
"metric": "Accuracy",
"model": "NSM",
"row": 14,
"task": "Visual Question Answering",
"value": "63.17"
}
]
},
{
"index": 2,
"records": [
{
"column": 1,
"dataset": "VQA-CP",
"metric": "Score",
"model": "NSM",
"row": 8,
"task": "Visual Question Answering",
"value": "45.8"
}
]
},
{
"index": 4,
"records": [
{
"column": 1,
"dataset": "GQA test-dev",
"metric": "Accuracy",
"model": "NSM",
"row": 1,
"task": "Visual Question Answering",
"value": "62.95"
}
]
}
] |
1907.04253v2 | [
{
"index": 0,
"records": [
{
"column": 11,
"dataset": "Set14 - 4x upscaling",
"metric": "PSNR",
"model": "GMFN",
"row": 7,
"task": "Image Super-Resolution",
"value": "28.84"
},
{
"column": 11,
"dataset": "BSD100 - 4x upscaling",
"metric": "PSNR",
"model": "GMFN",
"row": 10,
"task": "Image Super-Resolution",
"value": "27.74"
},
{
"column": 11,
"dataset": "Urban100 - 4x upscaling",
"metric": "PSNR",
"model": "GMFN",
"row": 13,
"task": "Image Super-Resolution",
"value": "26.69"
},
{
"column": 11,
"dataset": "Manga109 - 4x upscaling",
"metric": "PSNR",
"model": "GMFN",
"row": 16,
"task": "Image Super-Resolution",
"value": "31.24"
}
]
}
] |
1907.04840v2 | [
{
"index": 0,
"records": [
{
"column": 2,
"dataset": "MNIST",
"metric": "Percentage error",
"model": "LeNet 300-100 (Sparse Momentum)",
"row": 15,
"task": "Image Classification",
"value": "1.26"
}
]
},
{
"index": 1,
"records": [
{
"column": 3,
"dataset": "CIFAR-10",
"metric": "Percentage correct",
"model": "WRN-22-8 (Sparse Momentum)",
"row": 9,
"task": "Image Classification",
"value": "95.04"
}
]
}
] |
1907.05888v1 | [
{
"index": 0,
"records": [
{
"column": 2,
"dataset": "CHF database",
"metric": "Precision",
"model": "Inclined Entropy (R-HessELM)",
"row": 8,
"task": "Congestive Heart Failure detection",
"value": "98.05"
},
{
"column": 3,
"dataset": "CHF database",
"metric": "Sensitivity",
"model": "Inclined Entropy (R-HessELM)",
"row": 8,
"task": "Congestive Heart Failure detection",
"value": "98.3"
},
{
"column": 4,
"dataset": "CHF database",
"metric": "Accuracy",
"model": "Inclined Entropy (R-HessELM)",
"row": 8,
"task": "Congestive Heart Failure detection",
"value": "98.49"
}
]
}
] |
1907.06922v1 | [
{
"index": 4,
"records": [
{
"column": 1,
"dataset": "CrowdPose",
"metric": "mAP @0.5:0.95",
"model": "OccNet",
"row": 3,
"task": "Multi-Person Pose Estimation",
"value": "65.5"
},
{
"column": 2,
"dataset": "CrowdPose",
"metric": "AP Easy",
"model": "OccNet",
"row": 3,
"task": "Multi-Person Pose Estimation",
"value": "75.2"
},
{
"column": 3,
"dataset": "CrowdPose",
"metric": "AP Medium",
"model": "OccNet",
"row": 3,
"task": "Multi-Person Pose Estimation",
"value": "66.6"
},
{
"column": 4,
"dataset": "CrowdPose",
"metric": "AP Hard",
"model": "OccNet",
"row": 3,
"task": "Multi-Person Pose Estimation",
"value": "53.1"
}
]
}
] |
1907.07034v1 | [
{
"index": 0,
"records": [
{
"column": 3,
"dataset": "Atrial Segmentation Challenge",
"metric": "Dice Score",
"model": "UA-MT",
"row": 11,
"task": "Left Atrium Segmentation",
"value": "88.88"
},
{
"column": 4,
"dataset": "Atrial Segmentation Challenge",
"metric": "Jaccard",
"model": "UA-MT",
"row": 11,
"task": "Left Atrium Segmentation",
"value": "80.21"
},
{
"column": 5,
"dataset": "Atrial Segmentation Challenge",
"metric": "ASD",
"model": "UA-MT",
"row": 11,
"task": "Left Atrium Segmentation",
"value": "2.26"
},
{
"column": 6,
"dataset": "Atrial Segmentation Challenge",
"metric": "95HD",
"model": "UA-MT",
"row": 11,
"task": "Left Atrium Segmentation",
"value": "7.32"
}
]
}
] |
1907.08375v1 | [
{
"index": 2,
"records": [
{
"column": 14,
"dataset": "Office-31",
"metric": "Average Accuracy",
"model": "DAOD",
"row": 8,
"task": "Domain Adaptation",
"value": "85.4"
},
{
"column": 14,
"dataset": "Office-Home",
"metric": "Accuracy",
"model": "DAOD",
"row": 21,
"task": "Domain Adaptation",
"value": "69.8"
}
]
}
] |
1907.08448v1 | [
{
"index": 2,
"records": [
{
"column": 8,
"dataset": "Set12 sigma15",
"metric": "PSNR",
"model": "GCDN",
"row": 1,
"task": "Grayscale Image Denoising",
"value": "33.14"
},
{
"column": 8,
"dataset": "Set12 sigma25",
"metric": "PSNR",
"model": "GCDN",
"row": 2,
"task": "Grayscale Image Denoising",
"value": "30.78"
},
{
"column": 8,
"dataset": "Set12 sigma50",
"metric": "PSNR",
"model": "GCDN",
"row": 3,
"task": "Grayscale Image Denoising",
"value": "27.6"
},
{
"column": 8,
"dataset": "BSD68 sigma15",
"metric": "PSNR",
"model": "GCDN",
"row": 4,
"task": "Grayscale Image Denoising",
"value": "31.83"
},
{
"column": 8,
"dataset": "BSD68 sigma25",
"metric": "PSNR",
"model": "GCDN",
"row": 5,
"task": "Grayscale Image Denoising",
"value": "29.35"
},
{
"column": 8,
"dataset": "BSD68 sigma50",
"metric": "PSNR",
"model": "GCDN",
"row": 6,
"task": "Grayscale Image Denoising",
"value": "26.38"
},
{
"column": 8,
"dataset": "Urban100 sigma15",
"metric": "PSNR",
"model": "GCDN",
"row": 7,
"task": "Grayscale Image Denoising",
"value": "33.47"
},
{
"column": 8,
"dataset": "Urban100 sigma25",
"metric": "PSNR",
"model": "GCDN",
"row": 8,
"task": "Grayscale Image Denoising",
"value": "30.95"
},
{
"column": 8,
"dataset": "Urban100 sigma50",
"metric": "PSNR",
"model": "GCDN",
"row": 9,
"task": "Grayscale Image Denoising",
"value": "27.41"
}
]
}
] |
1907.08871v1 | [
{
"index": 0,
"records": [
{
"column": 4,
"dataset": "DHG-14",
"metric": "Accuracy",
"model": "DG-STA",
"row": 1,
"task": "Hand Gesture Recognition",
"value": "91.9"
},
{
"column": 4,
"dataset": "DHG-28",
"metric": "Accuracy",
"model": "DG-STA",
"row": 2,
"task": "Hand Gesture Recognition",
"value": "88"
},
{
"column": 4,
"dataset": "SHREC 2017",
"metric": "14 gestures accuracy",
"model": "DG-STA",
"row": 3,
"task": "Hand Gesture Recognition",
"value": "94.4"
},
{
"column": 4,
"dataset": "SHREC 2017",
"metric": "28 gestures accuracy",
"model": "DG-STA",
"row": 4,
"task": "Hand Gesture Recognition",
"value": "90.7"
}
]
}
] |
1907.09495v2 | [
{
"index": 0,
"records": [
{
"column": 10,
"dataset": "HIV-fMRI-77",
"metric": "Accuracy",
"model": "IsoNN",
"row": 2,
"task": "Graph Classification",
"value": "73.4"
},
{
"column": 10,
"dataset": "HIV-fMRI-77",
"metric": "F1",
"model": "IsoNN",
"row": 3,
"task": "Graph Classification",
"value": "72.2"
},
{
"column": 10,
"dataset": "HIV-DTI-77",
"metric": "Accuracy",
"model": "IsoNN",
"row": 4,
"task": "Graph Classification",
"value": "67.5"
},
{
"column": 10,
"dataset": "HIV-DTI-77",
"metric": "F1",
"model": "IsoNN",
"row": 5,
"task": "Graph Classification",
"value": "68.3"
},
{
"column": 10,
"dataset": "BP-fMRI-97",
"metric": "Accuracy",
"model": "IsoNN",
"row": 6,
"task": "Graph Classification",
"value": "64.9"
},
{
"column": 10,
"dataset": "BP-fMRI-97",
"metric": "F1",
"model": "IsoNN",
"row": 7,
"task": "Graph Classification",
"value": "69.7"
},
{
"column": 9,
"dataset": "MUTAG",
"metric": "Accuracy",
"model": "Function Space Pooling",
"row": 8,
"task": "Graph Classification",
"value": "83.3"
},
{
"column": 10,
"dataset": "PTC",
"metric": "Accuracy",
"model": "IsoNN",
"row": 10,
"task": "Graph Classification",
"value": "59.9"
}
]
}
] |
1907.09595v3 | [
{
"index": 1,
"records": [
{
"column": 2,
"dataset": "ImageNet",
"metric": "Number of params",
"model": "MixNet-S",
"row": 17,
"task": "Image Classification",
"value": "4.1M"
},
{
"column": 4,
"dataset": "ImageNet",
"metric": "Top 1 Accuracy",
"model": "MixNet-S",
"row": 17,
"task": "Image Classification",
"value": "75.8"
},
{
"column": 5,
"dataset": "ImageNet",
"metric": "Top 5 Accuracy",
"model": "MixNet-S",
"row": 17,
"task": "Image Classification",
"value": "92.8"
},
{
"column": 2,
"dataset": "ImageNet",
"metric": "Number of params",
"model": "MixNet-M",
"row": 18,
"task": "Image Classification",
"value": "5M"
},
{
"column": 4,
"dataset": "ImageNet",
"metric": "Top 1 Accuracy",
"model": "MixNet-M",
"row": 18,
"task": "Image Classification",
"value": "77"
},
{
"column": 5,
"dataset": "ImageNet",
"metric": "Top 5 Accuracy",
"model": "MixNet-M",
"row": 18,
"task": "Image Classification",
"value": "93.3"
},
{
"column": 2,
"dataset": "ImageNet",
"metric": "Number of params",
"model": "MixNet-L",
"row": 19,
"task": "Image Classification",
"value": "7.3M"
},
{
"column": 4,
"dataset": "ImageNet",
"metric": "Top 1 Accuracy",
"model": "MixNet-L",
"row": 19,
"task": "Image Classification",
"value": "78.9"
},
{
"column": 5,
"dataset": "ImageNet",
"metric": "Top 5 Accuracy",
"model": "MixNet-L",
"row": 19,
"task": "Image Classification",
"value": "94.2"
}
]
}
] |
1907.09658v7 | [
{
"index": 1,
"records": [
{
"column": 2,
"dataset": "SHREC 2017 track on 3D Hand Gesture Recognition",
"metric": "14 gestures accuracy",
"model": "DD-Net",
"row": 15,
"task": "Skeleton Based Action Recognition",
"value": "94.6"
},
{
"column": 3,
"dataset": "SHREC 2017 track on 3D Hand Gesture Recognition",
"metric": "28 gestures accuracy",
"model": "DD-Net",
"row": 15,
"task": "Skeleton Based Action Recognition",
"value": "91.9"
}
]
},
{
"index": 2,
"records": [
{
"column": 2,
"dataset": "JHMDB (2D poses only)",
"metric": "Average accuracy of 3 splits",
"model": "DD-Net",
"row": 12,
"task": "Skeleton Based Action Recognition",
"value": "77.2"
}
]
}
] |
1907.09702v1 | [
{
"index": 1,
"records": [
{
"column": 6,
"dataset": "ActivityNet-1.3",
"metric": "AR@100",
"model": "BMN",
"row": 1,
"task": "Temporal Action Proposal Generation",
"value": "75.01"
},
{
"column": 6,
"dataset": "ActivityNet-1.3",
"metric": "AUC (val)",
"model": "BMN",
"row": 2,
"task": "Temporal Action Proposal Generation",
"value": "67.1"
}
]
},
{
"index": 3,
"records": [
{
"column": 4,
"dataset": "ActivityNet-1.3",
"metric": "AUC (val)",
"model": "BMN",
"row": 5,
"task": "Temporal Action Proposal Generation",
"value": "67.1"
}
]
},
{
"index": 5,
"records": [
{
"column": 1,
"dataset": "ActivityNet-1.3",
"metric": "mAP [email protected]",
"model": "BMN",
"row": 6,
"task": "Temporal Action Localization",
"value": "50.07"
},
{
"column": 5,
"dataset": "ActivityNet-1.3",
"metric": "mAP",
"model": "BMN",
"row": 6,
"task": "Temporal Action Localization",
"value": "36.42"
}
]
},
{
"index": 6,
"records": [
{
"column": 4,
"dataset": "THUMOS’14",
"metric": "mAP [email protected]",
"model": "BMN",
"row": 4,
"task": "Temporal Action Localization",
"value": "32.2"
}
]
}
] |
1907.10014v2 | [
{
"index": 1,
"records": [
{
"column": 1,
"dataset": "KITTI Horizon",
"metric": "AUC",
"model": "ConvLSTM (Huber Loss, naive residual path)",
"row": 5,
"task": "Horizon Line Estimation",
"value": "74.55"
},
{
"column": 2,
"dataset": "KITTI Horizon",
"metric": "MSE",
"model": "ConvLSTM (Huber Loss, naive residual path)",
"row": 5,
"task": "Horizon Line Estimation",
"value": "6.731"
},
{
"column": 3,
"dataset": "KITTI Horizon",
"metric": "ATV",
"model": "ConvLSTM (Huber Loss, naive residual path)",
"row": 5,
"task": "Horizon Line Estimation",
"value": "4.984"
}
]
}
] |
1907.10399v1 | [
{
"index": 3,
"records": [
{
"column": 1,
"dataset": "Set5 - 4x upscaling",
"metric": "PSNR",
"model": "RFN",
"row": 19,
"task": "Image Super-Resolution",
"value": "32.71"
},
{
"column": 3,
"dataset": "Set14 - 4x upscaling",
"metric": "PSNR",
"model": "RFN",
"row": 19,
"task": "Image Super-Resolution",
"value": "28.95"
},
{
"column": 5,
"dataset": "BSD100 - 4x upscaling",
"metric": "PSNR",
"model": "RFN",
"row": 19,
"task": "Image Super-Resolution",
"value": "27.83"
},
{
"column": 7,
"dataset": "Urban100 - 4x upscaling",
"metric": "PSNR",
"model": "RFN",
"row": 19,
"task": "Image Super-Resolution",
"value": "27.01"
},
{
"column": 9,
"dataset": "Manga109 - 4x upscaling",
"metric": "PSNR",
"model": "RFN",
"row": 19,
"task": "Image Super-Resolution",
"value": "31.59"
},
{
"column": 2,
"dataset": "Set5 - 4x upscaling",
"metric": "SSIM",
"model": "S-RFN",
"row": 20,
"task": "Image Super-Resolution",
"value": "0.9022"
},
{
"column": 4,
"dataset": "Set14 - 4x upscaling",
"metric": "SSIM",
"model": "S-RFN",
"row": 20,
"task": "Image Super-Resolution",
"value": "0.7946"
},
{
"column": 6,
"dataset": "BSD100 - 4x upscaling",
"metric": "SSIM",
"model": "S-RFN",
"row": 20,
"task": "Image Super-Resolution",
"value": "0.7515"
},
{
"column": 8,
"dataset": "Urban100 - 4x upscaling",
"metric": "SSIM",
"model": "S-RFN",
"row": 20,
"task": "Image Super-Resolution",
"value": "0.8169"
},
{
"column": 10,
"dataset": "Manga109 - 4x upscaling",
"metric": "SSIM",
"model": "S-RFN",
"row": 20,
"task": "Image Super-Resolution",
"value": "0.9211"
}
]
}
] |
1907.10471v1 | [
{
"index": 2,
"records": [
{
"column": 3,
"dataset": "KITTI Cars Easy",
"metric": "AP",
"model": "STD",
"row": 12,
"task": "Birds Eye View Object Detection",
"value": "89.66"
},
{
"column": 4,
"dataset": "KITTI Cars Moderate",
"metric": "AP",
"model": "STD",
"row": 12,
"task": "Birds Eye View Object Detection",
"value": "87.76"
},
{
"column": 5,
"dataset": "KITTI Cars Hard",
"metric": "AP",
"model": "STD",
"row": 12,
"task": "Birds Eye View Object Detection",
"value": "86.89"
},
{
"column": 6,
"dataset": "KITTI Cars Easy",
"metric": "AP",
"model": "STD",
"row": 12,
"task": "3D Object Detection",
"value": "86.61"
},
{
"column": 7,
"dataset": "KITTI Cars Moderate",
"metric": "AP",
"model": "STD",
"row": 12,
"task": "3D Object Detection",
"value": "77.63"
},
{
"column": 8,
"dataset": "KITTI Cars Hard",
"metric": "AP",
"model": "STD",
"row": 12,
"task": "3D Object Detection",
"value": "76.06"
},
{
"column": 3,
"dataset": "KITTI Pedestrians Easy",
"metric": "AP",
"model": "STD",
"row": 19,
"task": "Birds Eye View Object Detection",
"value": "60.99"
},
{
"column": 4,
"dataset": "KITTI Pedestrians Moderate",
"metric": "AP",
"model": "STD",
"row": 19,
"task": "Birds Eye View Object Detection",
"value": "51.39"
},
{
"column": 5,
"dataset": "KITTI Pedestrians Hard",
"metric": "AP",
"model": "STD",
"row": 19,
"task": "Birds Eye View Object Detection",
"value": "45.89"
},
{
"column": 6,
"dataset": "KITTI Pedestrians Easy",
"metric": "AP",
"model": "STD",
"row": 19,
"task": "3D Object Detection",
"value": "53.08"
},
{
"column": 7,
"dataset": "KITTI Pedestrians Moderate",
"metric": "AP",
"model": "STD",
"row": 19,
"task": "3D Object Detection",
"value": "44.24"
},
{
"column": 8,
"dataset": "KITTI Pedestrians Hard",
"metric": "AP",
"model": "STD",
"row": 19,
"task": "3D Object Detection",
"value": "41.97"
},
{
"column": 3,
"dataset": "KITTI Cyclists Easy",
"metric": "AP",
"model": "STD",
"row": 26,
"task": "Birds Eye View Object Detection",
"value": "81.04"
},
{
"column": 4,
"dataset": "KITTI Cyclists Moderate",
"metric": "AP",
"model": "STD",
"row": 26,
"task": "Birds Eye View Object Detection",
"value": "65.32"
},
{
"column": 5,
"dataset": "KITTI Cyclists Hard",
"metric": "AP",
"model": "STD",
"row": 26,
"task": "Birds Eye View Object Detection",
"value": "57.85"
},
{
"column": 6,
"dataset": "KITTI Cyclists Easy",
"metric": "AP",
"model": "STD",
"row": 26,
"task": "3D Object Detection",
"value": "78.89"
},
{
"column": 7,
"dataset": "KITTI Cyclists Moderate",
"metric": "AP",
"model": "STD",
"row": 26,
"task": "3D Object Detection",
"value": "62.53"
},
{
"column": 8,
"dataset": "KITTI Cyclists Hard",
"metric": "AP",
"model": "STD",
"row": 26,
"task": "3D Object Detection",
"value": "55.77"
}
]
}
] |
1907.10529v3 | [
{
"index": 0,
"records": [
{
"column": 1,
"dataset": "SQuAD1.1",
"metric": "EM",
"model": "SpanBERT (single model)",
"row": 6,
"task": "Question Answering",
"value": "88.8"
},
{
"column": 2,
"dataset": "SQuAD1.1",
"metric": "F1",
"model": "SpanBERT (single model)",
"row": 6,
"task": "Question Answering",
"value": "94.6"
},
{
"column": 3,
"dataset": "SQuAD2.0",
"metric": "EM",
"model": "SpanBERT",
"row": 6,
"task": "Question Answering",
"value": "85.7"
},
{
"column": 4,
"dataset": "SQuAD2.0",
"metric": "F1",
"model": "SpanBERT",
"row": 6,
"task": "Question Answering",
"value": "88.7"
}
]
},
{
"index": 1,
"records": [
{
"column": 1,
"dataset": "NewsQA",
"metric": "F1",
"model": "SpanBERT",
"row": 4,
"task": "Question Answering",
"value": "73.6"
},
{
"column": 2,
"dataset": "TriviaQA",
"metric": "F1",
"model": "SpanBERT",
"row": 4,
"task": "Question Answering",
"value": "83.6"
},
{
"column": 3,
"dataset": "SearchQA",
"metric": "F1",
"model": "SpanBERT",
"row": 4,
"task": "Open-Domain Question Answering",
"value": "84.8"
},
{
"column": 4,
"dataset": "HotpotQA",
"metric": "Joint F1",
"model": "SpanBERT",
"row": 4,
"task": "Question Answering",
"value": "83"
},
{
"column": 5,
"dataset": "NaturalQA",
"metric": "F1",
"model": "SpanBERT",
"row": 4,
"task": "Question Answering",
"value": "82.5"
}
]
},
{
"index": 2,
"records": [
{
"column": 10,
"dataset": "OntoNotes",
"metric": "F1",
"model": "SpanBERT",
"row": 6,
"task": "Coreference Resolution",
"value": "79.6"
}
]
},
{
"index": 3,
"records": [
{
"column": 1,
"dataset": "TACRED",
"metric": "Precision",
"model": "SpanBERT",
"row": 6,
"task": "Relation Extraction",
"value": "70.8"
},
{
"column": 2,
"dataset": "TACRED",
"metric": "Recall",
"model": "SpanBERT",
"row": 6,
"task": "Relation Extraction",
"value": "70.9"
},
{
"column": 3,
"dataset": "TACRED",
"metric": "F1",
"model": "SpanBERT",
"row": 6,
"task": "Relation Extraction",
"value": "70.8"
}
]
},
{
"index": 4,
"records": [
{
"column": 1,
"dataset": "CoLA",
"metric": "Accuracy",
"model": "SpanBERT",
"row": 4,
"task": "Linguistic Acceptability",
"value": "64.3"
},
{
"column": 2,
"dataset": "SST-2 Binary classification",
"metric": "Accuracy",
"model": "SpanBERT",
"row": 4,
"task": "Sentiment Analysis",
"value": "94.8"
},
{
"column": 3,
"dataset": "MRPC",
"metric": "Accuracy",
"model": "SpanBERT",
"row": 4,
"task": "Semantic Textual Similarity",
"value": "90.9"
},
{
"column": 4,
"dataset": "STS Benchmark",
"metric": "Pearson Correlation",
"model": "SpanBERT",
"row": 4,
"task": "Semantic Textual Similarity",
"value": "0.899"
},
{
"column": 5,
"dataset": "Quora Question Pairs",
"metric": "Accuracy",
"model": "SpanBERT",
"row": 4,
"task": "Paraphrase Identification",
"value": "71.9"
},
{
"column": 6,
"dataset": "MultiNLI",
"metric": "Matched",
"model": "SpanBERT",
"row": 4,
"task": "Natural Language Inference",
"value": "88.1"
},
{
"column": 7,
"dataset": "QNLI",
"metric": "Accuracy",
"model": "SpanBERT",
"row": 4,
"task": "Natural Language Inference",
"value": "94.3"
},
{
"column": 8,
"dataset": "RTE",
"metric": "Accuracy",
"model": "SpanBERT",
"row": 4,
"task": "Natural Language Inference",
"value": "79.0"
}
]
},
{
"index": 6,
"records": [
{
"column": 1,
"dataset": "SQuAD2.0 dev",
"metric": "F1",
"model": "SpanBERT",
"row": 3,
"task": "Question Answering",
"value": "86.8"
}
]
}
] |
1907.10628v2 | [
{
"index": 0,
"records": [
{
"column": 7,
"dataset": "Office-31",
"metric": "Average Accuracy",
"model": "CD3A",
"row": 11,
"task": "Domain Adaptation",
"value": "79.5"
}
]
}
] |
1907.10830v3 | [
{
"index": 2,
"records": [
{
"column": 2,
"dataset": "horse2zebra",
"metric": "Kernel Inception Distance",
"model": "U-GAT-IT",
"row": 1,
"task": "Image-to-Image Translation",
"value": "7.06"
},
{
"column": 3,
"dataset": "cat2dog",
"metric": "Kernel Inception Distance",
"model": "U-GAT-IT",
"row": 1,
"task": "Image-to-Image Translation",
"value": "7.07"
},
{
"column": 4,
"dataset": "photo2portrait",
"metric": "Kernel Inception Distance",
"model": "U-GAT-IT",
"row": 1,
"task": "Image-to-Image Translation",
"value": "1.79"
},
{
"column": 5,
"dataset": "photo2vangogh",
"metric": "Kernel Inception Distance",
"model": "U-GAT-IT",
"row": 1,
"task": "Image-to-Image Translation",
"value": "4.28"
},
{
"column": 2,
"dataset": "zebra2horse",
"metric": "Kernel Inception Distance",
"model": "U-GAT-IT",
"row": 9,
"task": "Image-to-Image Translation",
"value": "7.47"
},
{
"column": 3,
"dataset": "dog2cat",
"metric": "Kernel Inception Distance",
"model": "U-GAT-IT",
"row": 9,
"task": "Image-to-Image Translation",
"value": "8.15"
},
{
"column": 4,
"dataset": "portrait2photo",
"metric": "Kernel Inception Distance",
"model": "U-GAT-IT",
"row": 9,
"task": "Image-to-Image Translation",
"value": "1.69"
},
{
"column": 5,
"dataset": "vangogh2photo",
"metric": "Kernel Inception Distance",
"model": "U-GAT-IT",
"row": 9,
"task": "Image-to-Image Translation",
"value": "5.61"
}
]
}
] |
1907.10936v1 | [
{
"index": 0,
"records": [
{
"column": 1,
"dataset": "REFUGE",
"metric": "DiceOC",
"model": "ET-Net",
"row": 7,
"task": "Optic Disc Segmentation",
"value": "0.8912"
},
{
"column": 2,
"dataset": "REFUGE",
"metric": "DiceOD",
"model": "ET-Net",
"row": 7,
"task": "Optic Disc Segmentation",
"value": "0.9529"
},
{
"column": 3,
"dataset": "REFUGE",
"metric": "mIoU",
"model": "ET-Net",
"row": 7,
"task": "Optic Disc Segmentation",
"value": "0.867"
},
{
"column": 4,
"dataset": "Drishti-GS",
"metric": "DiceOC",
"model": "ET-Net",
"row": 7,
"task": "Optic Disc Segmentation",
"value": "0.9314"
},
{
"column": 5,
"dataset": "Drishti-GS",
"metric": "DiceOD",
"model": "ET-Net",
"row": 7,
"task": "Optic Disc Segmentation",
"value": "0.9752"
},
{
"column": 6,
"dataset": "Drishti-GS",
"metric": "mIoU",
"model": "ET-Net",
"row": 7,
"task": "Optic Disc Segmentation",
"value": "0.8792"
}
]
},
{
"index": 1,
"records": [
{
"column": 1,
"dataset": "DRIVE",
"metric": "Accuracy",
"model": "ET-Net",
"row": 6,
"task": "Retinal Vessel Segmentation",
"value": "0.956"
},
{
"column": 2,
"dataset": "DRIVE",
"metric": "mIoU",
"model": "ET-Net",
"row": 6,
"task": "Retinal Vessel Segmentation",
"value": "0.7744"
},
{
"column": 3,
"dataset": "Montgomery County",
"metric": "Accuracy",
"model": "ET-Net",
"row": 6,
"task": "Lung Nodule Segmentation",
"value": "0.9865"
},
{
"column": 4,
"dataset": "Montgomery County",
"metric": "mIoU",
"model": "ET-Net",
"row": 6,
"task": "Lung Nodule Segmentation",
"value": "0.942"
},
{
"column": 5,
"dataset": "LUNA",
"metric": "Accuracy",
"model": "ET-Net",
"row": 6,
"task": "Lung Nodule Segmentation",
"value": "0.9868"
},
{
"column": 6,
"dataset": "LUNA",
"metric": "mIoU",
"model": "ET-Net",
"row": 6,
"task": "Lung Nodule Segmentation",
"value": "0.9623"
}
]
}
] |
1907.11223v2 | [
{
"index": 0,
"records": [
{
"column": 5,
"dataset": "QED",
"metric": "Success",
"model": "HierG2G",
"row": 9,
"task": "Drug Discovery",
"value": "76.9%"
},
{
"column": 6,
"dataset": "QED",
"metric": "Diversity",
"model": "HierG2G",
"row": 9,
"task": "Drug Discovery",
"value": "0.477"
},
{
"column": 7,
"dataset": "DRD2",
"metric": "Success",
"model": "HierG2G",
"row": 9,
"task": "Drug Discovery",
"value": "85.9%"
},
{
"column": 8,
"dataset": "DRD2",
"metric": "Diversity",
"model": "HierG2G",
"row": 9,
"task": "Drug Discovery",
"value": "0.192"
}
]
}
] |
1907.11692v1 | [
{
"index": 4,
"records": [
{
"column": 1,
"dataset": "RTE",
"metric": "Accuracy",
"model": "RoBERTa",
"row": 6,
"task": "Natural Language Inference",
"value": "88.2"
},
{
"column": 9,
"dataset": "WNLI",
"metric": "Accuracy",
"model": "RoBERTa",
"row": 7,
"task": "Natural Language Inference",
"value": "89.0"
},
{
"column": 1,
"dataset": "MultiNLI",
"metric": "Matched",
"model": "RoBERTa",
"row": 9,
"task": "Natural Language Inference",
"value": "90.8"
},
{
"column": 2,
"dataset": "QNLI",
"metric": "Accuracy",
"model": "RoBERTa",
"row": 9,
"task": "Natural Language Inference",
"value": "98.9"
},
{
"column": 5,
"dataset": "SST-2 Binary classification",
"metric": "Accuracy",
"model": "RoBERTa",
"row": 9,
"task": "Sentiment Analysis",
"value": "96.7"
}
]
},
{
"index": 5,
"records": [
{
"column": 3,
"dataset": "SQuAD2.0 dev",
"metric": "EM",
"model": "RoBERTa (no data aug)",
"row": 5,
"task": "Question Answering",
"value": "86.5"
},
{
"column": 4,
"dataset": "SQuAD2.0 dev",
"metric": "F1",
"model": "RoBERTa (no data aug)",
"row": 5,
"task": "Question Answering",
"value": "89.4"
}
]
},
{
"index": 6,
"records": [
{
"column": 1,
"dataset": "RACE",
"metric": "Accuracy",
"model": "RoBERTa",
"row": 4,
"task": "Reading Comprehension",
"value": "83.2"
}
]
}
] |
1907.11983v1 | [
{
"index": 1,
"records": [
{
"column": 1,
"dataset": "WNLI",
"metric": "Accuracy",
"model": "HNN",
"row": 6,
"task": "Natural Language Understanding",
"value": "83.6"
},
{
"column": 2,
"dataset": "Wisconsin Sleep Cohort (WSC)",
"metric": "Accuracy",
"model": "HNN",
"row": 6,
"task": "Natural Language Understanding",
"value": "75.1"
},
{
"column": 3,
"dataset": "PDP60",
"metric": "Accuracy",
"model": "HNN",
"row": 6,
"task": "Natural Language Understanding",
"value": "90"
}
]
}
] |
1907.12087v4 | [
{
"index": 0,
"records": [
{
"column": 1,
"dataset": "Mini-Imagenet 5-way (1-shot)",
"metric": "Accuracy",
"model": "S2M2R",
"row": 10,
"task": "Few-Shot Image Classification",
"value": "64.93"
},
{
"column": 2,
"dataset": "Mini-Imagenet 5-way (5-shot)",
"metric": "Accuracy",
"model": "S2M2R",
"row": 10,
"task": "Few-Shot Image Classification",
"value": "83.18"
},
{
"column": 3,
"dataset": "Tiered ImageNet 5-way (1-shot)",
"metric": "Accuracy",
"model": "S2M2R",
"row": 10,
"task": "Few-Shot Image Classification",
"value": "73.71"
},
{
"column": 4,
"dataset": "Tiered ImageNet 5-way (5-shot)",
"metric": "Accuracy",
"model": "S2M2R",
"row": 10,
"task": "Few-Shot Image Classification",
"value": "88.59"
},
{
"column": 5,
"dataset": "CUB 200 5-way 1-shot",
"metric": "Accuracy",
"model": "S2M2R",
"row": 10,
"task": "Few-Shot Image Classification",
"value": "80.68"
},
{
"column": 6,
"dataset": "CUB 200 5-way 5-shot",
"metric": "Accuracy",
"model": "S2M2R",
"row": 10,
"task": "Few-Shot Image Classification",
"value": "90.85"
},
{
"column": 7,
"dataset": "CIFAR-FS 5-way (1-shot)",
"metric": "Accuracy",
"model": "S2M2R",
"row": 10,
"task": "Few-Shot Image Classification",
"value": "74.81"
},
{
"column": 8,
"dataset": "CIFAR-FS 5-way (5-shot)",
"metric": "Accuracy",
"model": "S2M2R",
"row": 10,
"task": "Few-Shot Image Classification",
"value": "87.47"
}
]
}
] |
1907.12412v2 | [
{
"index": 4,
"records": [
{
"column": 2,
"dataset": "CoLA",
"metric": "Accuracy",
"model": "ERNIE 2.0 Base",
"row": 3,
"task": "Linguistic Acceptability",
"value": "55.2"
},
{
"column": 7,
"dataset": "CoLA",
"metric": "Accuracy",
"model": "ERNIE 2.0 Large",
"row": 3,
"task": "Linguistic Acceptability",
"value": "63.5"
},
{
"column": 2,
"dataset": "SST-2 Binary classification",
"metric": "Accuracy",
"model": "ERNIE 2.0 Base",
"row": 4,
"task": "Sentiment Analysis",
"value": "95"
},
{
"column": 7,
"dataset": "SST-5 Fine-grained classification",
"metric": "Accuracy",
"model": "ERNIE 2.0 Large",
"row": 4,
"task": "Sentiment Analysis",
"value": "95.6"
},
{
"column": 2,
"dataset": "MRPC",
"metric": "Accuracy",
"model": "ERNIE 2.0 Base",
"row": 5,
"task": "Semantic Textual Similarity",
"value": "86.1"
},
{
"column": 7,
"dataset": "MRPC",
"metric": "Accuracy",
"model": "ERNIE 2.0 Large",
"row": 5,
"task": "Semantic Textual Similarity",
"value": "87.4"
},
{
"column": 2,
"dataset": "STS Benchmark",
"metric": "Pearson Correlation",
"model": "ERNIE 2.0 Base",
"row": 6,
"task": "Semantic Textual Similarity",
"value": "0.876"
},
{
"column": 7,
"dataset": "STS Benchmark",
"metric": "Pearson Correlation",
"model": "ERNIE 2.0 Large",
"row": 6,
"task": "Semantic Textual Similarity",
"value": "0.912"
},
{
"column": 2,
"dataset": "Quora Question Pairs",
"metric": "Accuracy",
"model": "ERNIE 2.0 Base",
"row": 7,
"task": "Question Answering",
"value": "89.8"
},
{
"column": 7,
"dataset": "Quora Question Pairs",
"metric": "Accuracy",
"model": "ERNIE 2.0 Large",
"row": 7,
"task": "Question Answering",
"value": "90.1"
},
{
"column": 2,
"dataset": "MultiNLI",
"metric": "Matched",
"model": "ERNIE 2.0 Base",
"row": 8,
"task": "Natural Language Inference",
"value": "86.1"
},
{
"column": 7,
"dataset": "MultiNLI",
"metric": "Matched",
"model": "ERNIE 2.0 Large",
"row": 8,
"task": "Natural Language Inference",
"value": "88.7"
},
{
"column": 2,
"dataset": "QNLI",
"metric": "Accuracy",
"model": "ERNIE 2.0 Base",
"row": 9,
"task": "Natural Language Inference",
"value": "92.9"
},
{
"column": 7,
"dataset": "QNLI",
"metric": "Accuracy",
"model": "ERNIE 2.0 Large",
"row": 9,
"task": "Natural Language Inference",
"value": "94.6"
},
{
"column": 2,
"dataset": "RTE",
"metric": "Accuracy",
"model": "ERNIE 2.0 Base",
"row": 10,
"task": "Natural Language Inference",
"value": "74.8"
},
{
"column": 7,
"dataset": "RTE",
"metric": "Accuracy",
"model": "ERNIE 2.0 Large",
"row": 10,
"task": "Natural Language Inference",
"value": "80.2"
},
{
"column": 2,
"dataset": "WNLI",
"metric": "Accuracy",
"model": "ERNIE 2.0 Large",
"row": 11,
"task": "Natural Language Inference",
"value": "65.1"
},
{
"column": 7,
"dataset": "WNLI",
"metric": "Accuracy",
"model": "ERNIE 2.0 Large",
"row": 11,
"task": "Natural Language Inference",
"value": "67.8"
}
]
},
{
"index": 5,
"records": [
{
"column": 6,
"dataset": "CMRC 2018 (Simplified Chinese) Dev",
"metric": "EM",
"model": "ERNIE 2.0 Base",
"row": 2,
"task": "Chinese Reading Comprehension",
"value": "69.1"
},
{
"column": 8,
"dataset": "CMRC 2018 (Simplified Chinese) Dev",
"metric": "EM",
"model": "ERNIE 2.0 Large",
"row": 2,
"task": "Chinese Reading Comprehension",
"value": "28.5"
},
{
"column": 6,
"dataset": "DRCD (Traditional Chinese) Dev",
"metric": "EM",
"model": "ERNIE 2.0 Base",
"row": 3,
"task": "Chinese Reading Comprehension",
"value": "88.5"
},
{
"column": 7,
"dataset": "DRCD (Traditional Chinese)",
"metric": "EM",
"model": "ERNIE 2.0 Base",
"row": 3,
"task": "Chinese Reading Comprehension",
"value": "88.0"
},
{
"column": 8,
"dataset": "DRCD (Traditional Chinese) Dev",
"metric": "EM",
"model": "ERNIE 2.0 Large",
"row": 3,
"task": "Chinese Reading Comprehension",
"value": "89.7"
},
{
"column": 9,
"dataset": "DRCD (Traditional Chinese)",
"metric": "EM",
"model": "ERNIE 2.0 Large",
"row": 3,
"task": "Chinese Reading Comprehension",
"value": "89"
},
{
"column": 6,
"dataset": "DuReader",
"metric": "EM",
"model": "ERNIE 2.0 Base",
"row": 4,
"task": "Open-Domain Question Answering",
"value": "61.3"
},
{
"column": 8,
"dataset": "DuReader",
"metric": "EM",
"model": "ERNIE 2.0 Large",
"row": 4,
"task": "Open-Domain Question Answering",
"value": "64.2"
},
{
"column": 6,
"dataset": "MSRA Dev",
"metric": "F1",
"model": "ERNIE 2.0 Base",
"row": 5,
"task": "Chinese Named Entity Recognition",
"value": "95.2"
},
{
"column": 7,
"dataset": "MSRA",
"metric": "F1",
"model": "ERNIE 2.0 Base",
"row": 5,
"task": "Chinese Named Entity Recognition",
"value": "93.8"
},
{
"column": 8,
"dataset": "MSRA Dev",
"metric": "F1",
"model": "ERNIE 2.0 Large",
"row": 5,
"task": "Chinese Named Entity Recognition",
"value": "96.3"
},
{
"column": 9,
"dataset": "MSRA",
"metric": "F1",
"model": "ERNIE 2.0 Large",
"row": 5,
"task": "Chinese Named Entity Recognition",
"value": "95"
},
{
"column": 6,
"dataset": "XNLI Chinese Dev",
"metric": "Accuracy",
"model": "ERNIE 2.0 Base",
"row": 6,
"task": "Natural Language Inference",
"value": "81.2"
},
{
"column": 7,
"dataset": "XNLI Chinese",
"metric": "Accuracy",
"model": "ERNIE 2.0 Base",
"row": 6,
"task": "Natural Language Inference",
"value": "79.7"
},
{
"column": 8,
"dataset": "XNLI Chinese Dev",
"metric": "Accuracy",
"model": "ERNIE 2.0 Large",
"row": 6,
"task": "Natural Language Inference",
"value": "82.6"
},
{
"column": 9,
"dataset": "XNLI Chinese",
"metric": "Accuracy",
"model": "ERNIE 2.0 Large",
"row": 6,
"task": "Natural Language Inference",
"value": "81"
},
{
"column": 6,
"dataset": "ChnSentiCorp Dev",
"metric": "Accuracy",
"model": "ERNIE 2.0 Base",
"row": 7,
"task": "Chinese Sentiment Analysis",
"value": "95.7"
},
{
"column": 7,
"dataset": "ChnSentiCorp",
"metric": "Accuracy",
"model": "ERNIE 2.0 Base",
"row": 7,
"task": "Chinese Sentiment Analysis",
"value": "95.5"
},
{
"column": 8,
"dataset": "ChnSentiCorp Dev",
"metric": "Accuracy",
"model": "ERNIE 2.0 Large",
"row": 7,
"task": "Chinese Sentiment Analysis",
"value": "96.1"
},
{
"column": 9,
"dataset": "ChnSentiCorp",
"metric": "Accuracy",
"model": "ERNIE 2.0 Large",
"row": 7,
"task": "Chinese Sentiment Analysis",
"value": "95.8"
},
{
"column": 6,
"dataset": "LCQMC Dev",
"metric": "Accuracy",
"model": "ERNIE 2.0 Base",
"row": 8,
"task": "Chinese Sentence Pair Classification",
"value": "90.9"
},
{
"column": 7,
"dataset": "LCQMC",
"metric": "Accuracy",
"model": "ERNIE 2.0 Base",
"row": 8,
"task": "Chinese Sentence Pair Classification",
"value": "87.9"
},
{
"column": 8,
"dataset": "LCQMC Dev",
"metric": "Accuracy",
"model": "ERNIE 2.0 Large",
"row": 8,
"task": "Chinese Sentence Pair Classification",
"value": "90.9"
},
{
"column": 9,
"dataset": "LCQMC",
"metric": "Accuracy",
"model": "ERNIE 2.0 Large",
"row": 8,
"task": "Chinese Sentence Pair Classification",
"value": "87.9"
},
{
"column": 6,
"dataset": "BQ Dev",
"metric": "Accuracy",
"model": "ERNIE 2.0 Base",
"row": 9,
"task": "Chinese Sentence Pair Classification",
"value": "86.4"
},
{
"column": 7,
"dataset": "BQ",
"metric": "Accuracy",
"model": "ERNIE 2.0 Base",
"row": 9,
"task": "Chinese Sentence Pair Classification",
"value": "85.0"
},
{
"column": 8,
"dataset": "BQ Dev",
"metric": "Accuracy",
"model": "ERNIE 2.0 Large",
"row": 9,
"task": "Chinese Sentence Pair Classification",
"value": "86.5"
},
{
"column": 9,
"dataset": "BQ",
"metric": "Accuracy",
"model": "ERNIE 2.0 Large",
"row": 9,
"task": "Chinese Sentence Pair Classification",
"value": "85.2"
},
{
"column": 6,
"dataset": "NLPCC-DBQA Dev",
"metric": "MRR",
"model": "ERNIE 2.0 Base",
"row": 10,
"task": "Chinese Sentence Pair Classification",
"value": "95.7"
},
{
"column": 7,
"dataset": "NLPCC-DBQA",
"metric": "MRR",
"model": "ERNIE 2.0 Base",
"row": 10,
"task": "Chinese Sentence Pair Classification",
"value": "95.7"
},
{
"column": 8,
"dataset": "NLPCC-DBQA Dev",
"metric": "MRR",
"model": "ERNIE 2.0 Large",
"row": 10,
"task": "Chinese Sentence Pair Classification",
"value": "95.9"
},
{
"column": 9,
"dataset": "NLPCC-DBQA",
"metric": "MRR",
"model": "ERNIE 2.0 Large",
"row": 10,
"task": "Chinese Sentence Pair Classification",
"value": "95.8"
}
]
}
] |
1907.12743v6 | [
{
"index": 2,
"records": [
{
"column": 3,
"dataset": "UCF --> HMDB (full)",
"metric": "Accuracy",
"model": "TA3N",
"row": 9,
"task": "Domain Adaptation",
"value": "78.33"
}
]
},
{
"index": 3,
"records": [
{
"column": 3,
"dataset": "HMDB --> UCF (full)",
"metric": "Accuracy",
"model": "TA3N",
"row": 9,
"task": "Domain Adaptation",
"value": "81.79"
}
]
}
] |
1907.12904v2 | [
{
"index": 0,
"records": [
{
"column": 8,
"dataset": "Set5 - 2x upscaling",
"metric": "PSNR",
"model": "CAR",
"row": 2,
"task": "Image Super-Resolution",
"value": "38.94"
},
{
"column": 8,
"dataset": "Set5 - 4x upscaling",
"metric": "PSNR",
"model": "CAR",
"row": 3,
"task": "Image Super-Resolution",
"value": "33.88"
},
{
"column": 8,
"dataset": "Set14 - 2x upscaling",
"metric": "PSNR",
"model": "CAR",
"row": 4,
"task": "Image Super-Resolution",
"value": "35.61"
},
{
"column": 8,
"dataset": "Set14 - 4x upscaling",
"metric": "PSNR",
"model": "CAR",
"row": 5,
"task": "Image Super-Resolution",
"value": "30.31"
},
{
"column": 8,
"dataset": "BSD100 - 2x upscaling",
"metric": "PSNR",
"model": "CAR",
"row": 6,
"task": "Image Super-Resolution",
"value": "33.83"
},
{
"column": 8,
"dataset": "BSD100 - 4x upscaling",
"metric": "PSNR",
"model": "CAR",
"row": 7,
"task": "Image Super-Resolution",
"value": "29.15"
},
{
"column": 8,
"dataset": "Urban100 - 2x upscaling",
"metric": "PSNR",
"model": "CAR",
"row": 8,
"task": "Image Super-Resolution",
"value": "35.24"
},
{
"column": 8,
"dataset": "Urban100 - 4x upscaling",
"metric": "PSNR",
"model": "CAR",
"row": 9,
"task": "Image Super-Resolution",
"value": "29.28"
},
{
"column": 8,
"dataset": "DIV2K val - 2x upscaling",
"metric": "PSNR",
"model": "CAR",
"row": 10,
"task": "Image Super-Resolution",
"value": "38.26"
},
{
"column": 8,
"dataset": "DIV2K val - 4x upscaling",
"metric": "PSNR",
"model": "CAR",
"row": 11,
"task": "Image Super-Resolution",
"value": "32.82"
}
]
}
] |
1907.13242v2 | [
{
"index": 3,
"records": [
{
"column": 9,
"dataset": "VOT2017",
"metric": "Expected Average Overlap (EAO)",
"model": "GFS-DCF",
"row": 1,
"task": "Visual Object Tracking",
"value": "0.397"
}
]
},
{
"index": 4,
"records": [
{
"column": 1,
"dataset": "TrackingNet",
"metric": "Accuracy",
"model": "GFS-DCF",
"row": 4,
"task": "Visual Object Tracking",
"value": "60.9"
},
{
"column": 2,
"dataset": "TrackingNet",
"metric": "Precision",
"model": "GFS-DCF",
"row": 4,
"task": "Visual Object Tracking",
"value": "56.57"
},
{
"column": 3,
"dataset": "TrackingNet",
"metric": "Normalized Precision",
"model": "GFS-DCF",
"row": 4,
"task": "Visual Object Tracking",
"value": "71.79"
}
]
}
] |
1907.13347v1 | [
{
"index": 2,
"records": [
{
"column": 3,
"dataset": "MOT15",
"metric": "MOTA",
"model": "GMPHD Filter (Occlusion Group Management)",
"row": 3,
"task": "Online Multi-Object Tracking",
"value": "30.7"
}
]
},
{
"index": 3,
"records": [
{
"column": 3,
"dataset": "MOT17",
"metric": "MOTA",
"model": "GMPHD Filter (Occlusion Group Management)",
"row": 4,
"task": "Online Multi-Object Tracking",
"value": "49.9"
}
]
}
] |
1908.00273v2 | [
{
"index": 0,
"records": [
{
"column": 1,
"dataset": "Darmstadt Noise Dataset",
"metric": "PSNR (Raw)",
"model": "PRIDNet (blind)",
"row": 11,
"task": "Color Image Denoising",
"value": "48.48"
},
{
"column": 2,
"dataset": "Darmstadt Noise Dataset",
"metric": "SSIM (Raw)",
"model": "PRIDNet (blind)",
"row": 11,
"task": "Color Image Denoising",
"value": "0.9806"
},
{
"column": 3,
"dataset": "Darmstadt Noise Dataset",
"metric": "PSNR (sRGB)",
"model": "PRIDNet (blind)",
"row": 11,
"task": "Color Image Denoising",
"value": "39.42"
},
{
"column": 4,
"dataset": "Darmstadt Noise Dataset",
"metric": "SSIM (sRGB)",
"model": "PRIDNet (blind)",
"row": 11,
"task": "Color Image Denoising",
"value": "0.9528"
}
]
}
] |
1908.01114v3 | [
{
"index": 0,
"records": [
{
"column": 1,
"dataset": "Market-1501",
"metric": "Rank-1",
"model": "ABD-Net (ResNet-50)",
"row": 11,
"task": "Person Re-Identification",
"value": "95.6"
},
{
"column": 2,
"dataset": "Market-1501",
"metric": "MAP",
"model": "ABD-Net (ResNet-50)",
"row": 11,
"task": "Person Re-Identification",
"value": "88.28"
}
]
},
{
"index": 2,
"records": [
{
"column": 2,
"dataset": "DukeMTMC-reID",
"metric": "MAP",
"model": "ABD-Net (ResNet-50)",
"row": 21,
"task": "Person Re-Identification",
"value": "78.59"
}
]
},
{
"index": 3,
"records": [
{
"column": 3,
"dataset": "MSMT17",
"metric": "mAP",
"model": "ABD-Net (ResNet-50)",
"row": 4,
"task": "Person Re-Identification",
"value": "60.8"
}
]
}
] |
1908.01259v2 | [
{
"index": 2,
"records": [
{
"column": 3,
"dataset": "ImageNet",
"metric": "Top 1 Accuracy",
"model": "AOGNet-40M-AN",
"row": 8,
"task": "Image Classification",
"value": "81.87"
},
{
"column": 4,
"dataset": "ImageNet",
"metric": "Top 5 Accuracy",
"model": "AOGNet-40M-AN",
"row": 8,
"task": "Image Classification",
"value": "95.74"
}
]
},
{
"index": 3,
"records": [
{
"column": 4,
"dataset": "COCO minival",
"metric": "box AP",
"model": "Mask R-CNN-FPN (AOGNet-40M)",
"row": 17,
"task": "Object Detection",
"value": "44.9"
},
{
"column": 5,
"dataset": "COCO minival",
"metric": "AP50",
"model": "Mask R-CNN-FPN (AOGNet-40M)",
"row": 17,
"task": "Object Detection",
"value": "66.2"
},
{
"column": 6,
"dataset": "COCO minival",
"metric": "AP75",
"model": "Mask R-CNN-FPN (AOGNet-40M)",
"row": 17,
"task": "Object Detection",
"value": "49.1"
},
{
"column": 7,
"dataset": "COCO minival",
"metric": "mask AP",
"model": "Mask R-CNN-FPN (AOGNet-40M)",
"row": 17,
"task": "Instance Segmentation",
"value": "40.2"
},
{
"column": 8,
"dataset": "COCO minival",
"metric": "AP50",
"model": "Mask R-CNN-FPN (AOGNet-40M)",
"row": 17,
"task": "Instance Segmentation",
"value": "63.2"
},
{
"column": 9,
"dataset": "COCO minival",
"metric": "AP75",
"model": "Mask R-CNN-FPN (AOGNet-40M)",
"row": 17,
"task": "Instance Segmentation",
"value": "43.3"
}
]
}
] |
1908.01683v1 | [
{
"index": 5,
"records": [
{
"column": 2,
"dataset": "MARS",
"metric": "Rank-1",
"model": "NVAN",
"row": 10,
"task": "Person Re-Identification",
"value": "90"
},
{
"column": 3,
"dataset": "MARS",
"metric": "mAP",
"model": "NVAN",
"row": 10,
"task": "Person Re-Identification",
"value": "82.8"
}
]
}
] |
1908.01853v1 | [
{
"index": 0,
"records": [
{
"column": 4,
"dataset": "TREC-6",
"metric": "Error",
"model": "DELTA (CNN)",
"row": 2,
"task": "Text Classification",
"value": "7.8"
},
{
"column": 4,
"dataset": "Yahoo! Answers",
"metric": "Accuracy",
"model": "DELTA (HAN)",
"row": 3,
"task": "Text Classification",
"value": "75.1"
},
{
"column": 4,
"dataset": "CoNLL 2003 (English)",
"metric": "F1",
"model": "DELTA(BLSTM-CRF)",
"row": 5,
"task": "Named Entity Recognition",
"value": "84.6"
},
{
"column": 4,
"dataset": "ATIS",
"metric": "Accuracy",
"model": "DELTA (BLSTM-CRF)",
"row": 7,
"task": "Intent Detection",
"value": "97.4"
},
{
"column": 4,
"dataset": "ATIS",
"metric": "F1",
"model": "DELTA (BLSTM-CRF)",
"row": 8,
"task": "Intent Detection",
"value": "95.2"
},
{
"column": 4,
"dataset": "SNLI",
"metric": "% Test Accuracy",
"model": "DELTA (LSTM)",
"row": 10,
"task": "Natural Language Inference",
"value": "80.7"
},
{
"column": 4,
"dataset": "CNN / Daily Mail",
"metric": "Rouge-L",
"model": "DELTA (BLSTM)",
"row": 12,
"task": "Abstractive Text Summarization",
"value": "27.3"
},
{
"column": 4,
"dataset": "CoNLL 2003 (English)",
"metric": "F1",
"model": " DELTA (NER ELMO)",
"row": 14,
"task": "Named Entity Recognition",
"value": "92.2"
},
{
"column": 4,
"dataset": "CoNLL 2003 (English)",
"metric": "F1",
"model": "DELTA (BERT)",
"row": 15,
"task": "Named Entity Recognition",
"value": "94.6"
}
]
}
] |
1908.03557v1 | [
{
"index": 0,
"records": [
{
"column": 1,
"dataset": "VQA v2 test-dev",
"metric": "Accuracy",
"model": "VisualBERT",
"row": 5,
"task": "Visual Question Answering",
"value": "70.8"
},
{
"column": 2,
"dataset": "VQA v2 test-std",
"metric": "Accuracy",
"model": "VisualBERT",
"row": 5,
"task": "Visual Question Answering",
"value": "71"
}
]
},
{
"index": 1,
"records": [
{
"column": 1,
"dataset": "VCR (Q-A) dev",
"metric": "Accuracy",
"model": "VisualBERT",
"row": 6,
"task": "Visual Question Answering",
"value": "70.8"
},
{
"column": 2,
"dataset": "VCR (Q-A) test",
"metric": "Accuracy",
"model": "VisualBERT",
"row": 6,
"task": "Visual Question Answering",
"value": "71.6"
},
{
"column": 3,
"dataset": "VCR (QA-R) dev",
"metric": "Accuracy",
"model": "VisualBERT",
"row": 6,
"task": "Visual Question Answering",
"value": "73.2"
},
{
"column": 4,
"dataset": "VCR (QA-R) test",
"metric": "Accuracy",
"model": "VisualBERT",
"row": 6,
"task": "Visual Question Answering",
"value": "73.2"
},
{
"column": 5,
"dataset": "VCR (Q-AR) dev",
"metric": "Accuracy",
"model": "VisualBERT",
"row": 6,
"task": "Visual Question Answering",
"value": "52.2"
},
{
"column": 6,
"dataset": "VCR (Q-AR) test",
"metric": "Accuracy",
"model": "VisualBERT",
"row": 6,
"task": "Visual Question Answering",
"value": "52.4"
}
]
},
{
"index": 2,
"records": [
{
"column": 2,
"dataset": "NLVR",
"metric": "Accuracy (Test-P)",
"model": "VisualBERT",
"row": 4,
"task": "Visual Reasoning",
"value": "67"
},
{
"column": 3,
"dataset": "NLVR",
"metric": "Accuracy (Test-U)",
"model": "VisualBERT",
"row": 4,
"task": "Visual Reasoning",
"value": "67.3"
}
]
},
{
"index": 3,
"records": [
{
"column": 1,
"dataset": "Flickr30k Entities Dev",
"metric": "R@1",
"model": "VisualBERT",
"row": 5,
"task": "Phrase Grounding",
"value": "70.4"
},
{
"column": 2,
"dataset": "Flickr30k Entities Test",
"metric": "R@1",
"model": "VisualBERT",
"row": 5,
"task": "Phrase Grounding",
"value": "71.33"
},
{
"column": 3,
"dataset": "Flickr30k Entities Dev",
"metric": "R@5",
"model": "VisualBERT",
"row": 5,
"task": "Phrase Grounding",
"value": "84.49"
},
{
"column": 4,
"dataset": "Flickr30k Entities Test",
"metric": "R@5",
"model": "VisualBERT",
"row": 5,
"task": "Phrase Grounding",
"value": "84.98"
},
{
"column": 5,
"dataset": "Flickr30k Entities Dev",
"metric": "R@10",
"model": "VisualBERT",
"row": 5,
"task": "Phrase Grounding",
"value": "86.31"
},
{
"column": 6,
"dataset": "Flickr30k Entities Test",
"metric": "R@10",
"model": "VisualBERT",
"row": 5,
"task": "Phrase Grounding",
"value": "86.51"
}
]
},
{
"index": 4,
"records": [
{
"column": 2,
"dataset": "NLVR2 Dev",
"metric": "Accuracy",
"model": "VisualBERT",
"row": 1,
"task": "Visual Reasoning",
"value": "66.7"
}
]
}
] |
1908.03835v1 | [
{
"index": 0,
"records": [
{
"column": 1,
"dataset": "CIFAR-10",
"metric": "Inception score",
"model": "AutoGAN",
"row": 13,
"task": "Image Generation",
"value": "8.55"
},
{
"column": 2,
"dataset": "CIFAR-10",
"metric": "FID",
"model": "AutoGAN",
"row": 13,
"task": "Image Generation",
"value": "12.42"
}
]
},
{
"index": 1,
"records": [
{
"column": 1,
"dataset": "STL-10",
"metric": "Inception score",
"model": "AutoGAN",
"row": 7,
"task": "Image Generation",
"value": "9.16"
},
{
"column": 2,
"dataset": "STL-10",
"metric": "FID",
"model": "AutoGAN",
"row": 7,
"task": "Image Generation",
"value": "31.01"
}
]
}
] |
1908.03885v3 | [
{
"index": 2,
"records": [
{
"column": 1,
"dataset": "iLIDS-VID",
"metric": "Rank-1",
"model": "TKP",
"row": 8,
"task": "Person Re-Identification",
"value": "54.6"
},
{
"column": 2,
"dataset": "iLIDS-VID",
"metric": "Rank-5",
"model": "TKP",
"row": 8,
"task": "Person Re-Identification",
"value": "79.4"
},
{
"column": 3,
"dataset": "iLIDS-VID",
"metric": "Rank-10",
"model": "TKP",
"row": 8,
"task": "Person Re-Identification",
"value": "86.9"
},
{
"column": 4,
"dataset": "iLIDS-VID",
"metric": "Rank-20",
"model": "TKP",
"row": 8,
"task": "Person Re-Identification",
"value": "93.5"
}
]
},
{
"index": 4,
"records": [
{
"column": 1,
"dataset": "MARS",
"metric": "Rank-1",
"model": "TKP",
"row": 6,
"task": "Person Re-Identification",
"value": "84"
},
{
"column": 2,
"dataset": "MARS",
"metric": "Rank-5",
"model": "TKP",
"row": 6,
"task": "Person Re-Identification",
"value": "93.7"
},
{
"column": 3,
"dataset": "MARS",
"metric": "Rank-10",
"model": "TKP",
"row": 6,
"task": "Person Re-Identification",
"value": "95.7"
},
{
"column": 4,
"dataset": "MARS",
"metric": "mAP",
"model": "TKP",
"row": 6,
"task": "Person Re-Identification",
"value": "73.3"
}
]
}
] |
1908.04032v2 | [
{
"index": 1,
"records": [
{
"column": 3,
"dataset": "MovieLens 1M",
"metric": "AUC",
"model": "KNI",
"row": 11,
"task": "Click-Through Rate Prediction",
"value": "0.9449"
},
{
"column": 7,
"dataset": "MovieLens 20M",
"metric": "AUC",
"model": "KNI",
"row": 11,
"task": "Click-Through Rate Prediction",
"value": "0.9704"
}
]
}
] |
1908.04156v3 | [
{
"index": 0,
"records": [
{
"column": 1,
"dataset": "ImageNet",
"metric": "Top 1 Accuracy",
"model": "ResNet-50 (LIP Bottleneck-256)",
"row": 8,
"task": "Image Classification",
"value": "78.15"
},
{
"column": 2,
"dataset": "ImageNet",
"metric": "Top 5 Accuracy",
"model": "ResNet-50 (LIP Bottleneck-256)",
"row": 8,
"task": "Image Classification",
"value": "94.02"
},
{
"column": 3,
"dataset": "ImageNet",
"metric": "Number of params",
"model": "ResNet-50 (LIP Bottleneck-256)",
"row": 8,
"task": "Image Classification",
"value": "25.8M"
}
]
},
{
"index": 3,
"records": [
{
"column": 1,
"dataset": "ImageNet",
"metric": "Top 1 Accuracy",
"model": "LIP-ResNet-101",
"row": 4,
"task": "Image Classification",
"value": "79.33"
},
{
"column": 2,
"dataset": "ImageNet",
"metric": "Top 5 Accuracy",
"model": "LIP-ResNet-101",
"row": 4,
"task": "Image Classification",
"value": "94.6"
},
{
"column": 3,
"dataset": "ImageNet",
"metric": "Number of params",
"model": "LIP-ResNet-101",
"row": 4,
"task": "Image Classification",
"value": "42.9M"
},
{
"column": 1,
"dataset": "ImageNet",
"metric": "Top 1 Accuracy",
"model": "LIP-DenseNet-BC-121",
"row": 7,
"task": "Image Classification",
"value": "76.64"
},
{
"column": 2,
"dataset": "ImageNet",
"metric": "Top 5 Accuracy",
"model": "LIP-DenseNet-BC-121",
"row": 7,
"task": "Image Classification",
"value": "93.16"
},
{
"column": 3,
"dataset": "ImageNet",
"metric": "Number of params",
"model": "LIP-DenseNet-BC-121",
"row": 7,
"task": "Image Classification",
"value": "8.7M"
}
]
},
{
"index": 4,
"records": [
{
"column": 1,
"dataset": "COCO minival",
"metric": "box AP",
"model": "Faster R-CNN (LIP-ResNet-101)",
"row": 5,
"task": "Object Detection",
"value": "41.7"
},
{
"column": 2,
"dataset": "COCO minival",
"metric": "AP50",
"model": "Faster R-CNN (LIP-ResNet-101)",
"row": 5,
"task": "Object Detection",
"value": "63.6"
},
{
"column": 3,
"dataset": "COCO minival",
"metric": "AP75",
"model": "Faster R-CNN (LIP-ResNet-101)",
"row": 5,
"task": "Object Detection",
"value": "45.6"
},
{
"column": 4,
"dataset": "COCO minival",
"metric": "APS",
"model": "Faster R-CNN (LIP-ResNet-101)",
"row": 5,
"task": "Object Detection",
"value": "25.2"
},
{
"column": 5,
"dataset": "COCO minival",
"metric": "APM",
"model": "Faster R-CNN (LIP-ResNet-101)",
"row": 5,
"task": "Object Detection",
"value": "45.8"
}
]
},
{
"index": 5,
"records": [
{
"column": 2,
"dataset": "COCO test-dev",
"metric": "box AP",
"model": "Faster R-CNN (LIP-ResNet-101-MD w FPN)",
"row": 9,
"task": "Object Detection",
"value": "43.9"
},
{
"column": 3,
"dataset": "COCO test-dev",
"metric": "AP50",
"model": "Faster R-CNN (LIP-ResNet-101-MD w FPN)",
"row": 9,
"task": "Object Detection",
"value": "65.7"
},
{
"column": 4,
"dataset": "COCO test-dev",
"metric": "AP75",
"model": "Faster R-CNN (LIP-ResNet-101-MD w FPN)",
"row": 9,
"task": "Object Detection",
"value": "48.1"
},
{
"column": 5,
"dataset": "COCO test-dev",
"metric": "APS",
"model": "Faster R-CNN (LIP-ResNet-101-MD w FPN)",
"row": 9,
"task": "Object Detection",
"value": "25.4"
},
{
"column": 6,
"dataset": "COCO test-dev",
"metric": "APM",
"model": "Faster R-CNN (LIP-ResNet-101-MD w FPN)",
"row": 9,
"task": "Object Detection",
"value": "46.7"
},
{
"column": 7,
"dataset": "COCO test-dev",
"metric": "APL",
"model": "Faster R-CNN (LIP-ResNet-101-MD w FPN)",
"row": 9,
"task": "Object Detection",
"value": "56.3"
}
]
}
] |
1908.05900v1 | [
{
"index": 3,
"records": [
{
"column": 3,
"dataset": "SCUT-CTW1500",
"metric": "Precision",
"model": "PAN-640",
"row": 14,
"task": "Scene Text Detection",
"value": "86.4"
},
{
"column": 4,
"dataset": "SCUT-CTW1500",
"metric": "Recall",
"model": "PAN-640",
"row": 14,
"task": "Scene Text Detection",
"value": "81.2"
},
{
"column": 5,
"dataset": "SCUT-CTW1500",
"metric": "F-Measure",
"model": "PAN-640",
"row": 14,
"task": "Scene Text Detection",
"value": "83.7"
}
]
},
{
"index": 4,
"records": [
{
"column": 3,
"dataset": "Total-Text",
"metric": "Precision",
"model": "PAN-640",
"row": 14,
"task": "Scene Text Detection",
"value": "89.3"
},
{
"column": 4,
"dataset": "Total-Text",
"metric": "Recall",
"model": "PAN-640",
"row": 14,
"task": "Scene Text Detection",
"value": "81"
},
{
"column": 5,
"dataset": "Total-Text",
"metric": "F-Measure",
"model": "PAN-640",
"row": 14,
"task": "Scene Text Detection",
"value": "85"
}
]
},
{
"index": 5,
"records": [
{
"column": 3,
"dataset": "ICDAR 2015",
"metric": "Precision",
"model": "PAN",
"row": 17,
"task": "Scene Text Detection",
"value": "84"
},
{
"column": 4,
"dataset": "ICDAR 2015",
"metric": "Recall",
"model": "PAN",
"row": 17,
"task": "Scene Text Detection",
"value": "81.9"
},
{
"column": 5,
"dataset": "ICDAR 2015",
"metric": "F-Measure",
"model": "PAN",
"row": 17,
"task": "Scene Text Detection",
"value": "82.9"
}
]
},
{
"index": 6,
"records": [
{
"column": 3,
"dataset": "MSRA-TD500",
"metric": "F-Measure",
"model": "PAN",
"row": 12,
"task": "Scene Text Detection",
"value": "84.4"
},
{
"column": 4,
"dataset": "MSRA-TD500",
"metric": "Recall",
"model": "PAN",
"row": 12,
"task": "Scene Text Detection",
"value": "83.8"
},
{
"column": 5,
"dataset": "MSRA-TD500",
"metric": "F-Measure",
"model": "PAN",
"row": 12,
"task": "Scene Text Detection",
"value": "84.1"
}
]
}
] |
1908.05968v5 | [
{
"index": 0,
"records": [
{
"column": 1,
"dataset": "MNIST-full",
"metric": "Accuracy",
"model": "N2D (UMAP)",
"row": 9,
"task": "Image Clustering",
"value": "0.979"
},
{
"column": 2,
"dataset": "MNIST-full",
"metric": "NMI",
"model": "N2D (UMAP)",
"row": 9,
"task": "Image Clustering",
"value": "0.942"
},
{
"column": 3,
"dataset": "MNIST-test",
"metric": "Accuracy",
"model": "N2D (UMAP)",
"row": 9,
"task": "Image Clustering",
"value": "0.948"
},
{
"column": 4,
"dataset": "MNIST-test",
"metric": "NMI",
"model": "N2D (UMAP)",
"row": 9,
"task": "Image Clustering",
"value": "0.882"
},
{
"column": 5,
"dataset": "USPS",
"metric": "Accuracy",
"model": "N2D (UMAP)",
"row": 9,
"task": "Image Clustering",
"value": "0.958"
},
{
"column": 6,
"dataset": "USPS",
"metric": "NMI",
"model": "N2D (UMAP)",
"row": 9,
"task": "Image Clustering",
"value": "0.901"
},
{
"column": 7,
"dataset": "Fashion-MNIST",
"metric": "Accuracy",
"model": "N2D (UMAP)",
"row": 9,
"task": "Image Clustering",
"value": "0.672"
},
{
"column": 8,
"dataset": "Fashion-MNIST",
"metric": "NMI",
"model": "N2D (UMAP)",
"row": 9,
"task": "Image Clustering",
"value": "0.684"
},
{
"column": 9,
"dataset": "pendigits",
"metric": "Accuracy",
"model": "N2D (UMAP)",
"row": 9,
"task": "Image Clustering",
"value": "0.885"
},
{
"column": 10,
"dataset": "pendigits",
"metric": "NMI",
"model": "N2D (UMAP)",
"row": 9,
"task": "Image Clustering",
"value": "0.863"
},
{
"column": 11,
"dataset": "HAR",
"metric": "Accuracy",
"model": "N2D (UMAP)",
"row": 9,
"task": "Image Clustering",
"value": "0.801"
},
{
"column": 12,
"dataset": "HAR",
"metric": "NMI",
"model": "N2D (UMAP)",
"row": 9,
"task": "Image Clustering",
"value": "0.683"
}
]
}
] |
1908.06022v4 | [
{
"index": 0,
"records": [
{
"column": 2,
"dataset": "ImageNet",
"metric": "Number of params",
"model": "SCARLET-A",
"row": 13,
"task": "Image Classification",
"value": "6.7M"
},
{
"column": 3,
"dataset": "ImageNet",
"metric": "Top 1 Accuracy",
"model": "SCARLET-A",
"row": 13,
"task": "Image Classification",
"value": "76.9"
},
{
"column": 4,
"dataset": "ImageNet",
"metric": "Top 5 Accuracy",
"model": "SCARLET-A",
"row": 13,
"task": "Image Classification",
"value": "93.4"
},
{
"column": 2,
"dataset": "ImageNet",
"metric": "Number of params",
"model": "SCARLET-B",
"row": 14,
"task": "Image Classification",
"value": "6.5M"
},
{
"column": 3,
"dataset": "ImageNet",
"metric": "Top 1 Accuracy",
"model": "SCARLET-B",
"row": 14,
"task": "Image Classification",
"value": "76.3"
},
{
"column": 4,
"dataset": "ImageNet",
"metric": "Top 5 Accuracy",
"model": "SCARLET-B",
"row": 14,
"task": "Image Classification",
"value": "93"
},
{
"column": 2,
"dataset": "ImageNet",
"metric": "Number of params",
"model": "SCARLET-C",
"row": 15,
"task": "Image Classification",
"value": "6M"
},
{
"column": 3,
"dataset": "ImageNet",
"metric": "Top 1 Accuracy",
"model": "SCARLET-C",
"row": 15,
"task": "Image Classification",
"value": "75.6"
},
{
"column": 4,
"dataset": "ImageNet",
"metric": "Top 5 Accuracy",
"model": "SCARLET-C",
"row": 15,
"task": "Image Classification",
"value": "92.6"
}
]
},
{
"index": 1,
"records": [
{
"column": 5,
"dataset": "ImageNet",
"metric": "Number of params",
"model": "SCARLET-A4",
"row": 10,
"task": "Image Classification",
"value": "27.8M"
},
{
"column": 6,
"dataset": "ImageNet",
"metric": "Top 1 Accuracy",
"model": "SCARLET-A4",
"row": 10,
"task": "Image Classification",
"value": "82.3"
},
{
"column": 7,
"dataset": "ImageNet",
"metric": "Top 5 Accuracy",
"model": "SCARLET-A4",
"row": 10,
"task": "Image Classification",
"value": "96"
}
]
}
] |
1908.06267v2 | [
{
"index": 1,
"records": [
{
"column": 1,
"dataset": "Reuters-21578",
"metric": "Accuracy",
"model": "MPAD-path",
"row": 16,
"task": "Document Classification",
"value": "97.44"
},
{
"column": 2,
"dataset": "BBCSport",
"metric": "Accuracy",
"model": "MPAD-path",
"row": 16,
"task": "Document Classification",
"value": "99.59"
},
{
"column": 5,
"dataset": "MPQA",
"metric": "Accuracy",
"model": "MPAD-path",
"row": 16,
"task": "Document Classification",
"value": "89.81"
},
{
"column": 6,
"dataset": "IMDb",
"metric": "Accuracy",
"model": "MPAD-path",
"row": 16,
"task": "Text Classification",
"value": "91.84"
},
{
"column": 7,
"dataset": "TREC-6",
"metric": "Error",
"model": "MPAD-path",
"row": 16,
"task": "Text Classification",
"value": "6.2"
},
{
"column": 8,
"dataset": "SST-5 Fine-grained classification",
"metric": "Accuracy",
"model": "MPAD-path",
"row": 16,
"task": "Sentiment Analysis",
"value": "49.68"
},
{
"column": 9,
"dataset": "SST-2 Binary classification",
"metric": "Accuracy",
"model": "MPAD-path",
"row": 16,
"task": "Sentiment Analysis",
"value": "87.75"
}
]
}
] |
1908.06452v1 | [
{
"index": 1,
"records": [
{
"column": 9,
"dataset": "BSD300 sigma30",
"metric": "PSNR",
"model": "CNN (Median Layers)",
"row": 13,
"task": "Color Image Denoising",
"value": "40.9"
},
{
"column": 9,
"dataset": "BSD300 sigma50",
"metric": "PSNR",
"model": "CNN (Median Layers)",
"row": 14,
"task": "Color Image Denoising",
"value": "37.28"
},
{
"column": 9,
"dataset": "BSD300 sigma70",
"metric": "PSNR",
"model": "CNN (Median Layers)",
"row": 15,
"task": "Color Image Denoising",
"value": "32.4"
}
]
},
{
"index": 2,
"records": [
{
"column": 3,
"dataset": "Kodak24 sigma30",
"metric": "PSNR",
"model": "CNN (Median Layers)",
"row": 1,
"task": "Color Image Denoising",
"value": "36.39"
},
{
"column": 3,
"dataset": "Kodak24 sigma50",
"metric": "PSNR",
"model": "CNN (Median Layers)",
"row": 2,
"task": "Color Image Denoising",
"value": "34.35"
},
{
"column": 3,
"dataset": "Kodak24 sigma70",
"metric": "PSNR",
"model": "CNN (Median Layers)",
"row": 3,
"task": "Color Image Denoising",
"value": "31.56"
}
]
}
] |
1908.06647v4 | [
{
"index": 0,
"records": [
{
"column": 4,
"dataset": "DAVIS 2016",
"metric": "Jaccard (Mean)",
"model": "RANet+ (online learning)",
"row": 8,
"task": "Visual Object Tracking",
"value": "86.6"
},
{
"column": 5,
"dataset": "DAVIS 2016",
"metric": "Jaccard (Recall)",
"model": "RANet+ (online learning)",
"row": 8,
"task": "Visual Object Tracking",
"value": "97"
},
{
"column": 6,
"dataset": "DAVIS 2016",
"metric": "Jaccard (Decay)",
"model": "RANet+ (online learning)",
"row": 8,
"task": "Visual Object Tracking",
"value": "7.4"
},
{
"column": 7,
"dataset": "DAVIS 2016",
"metric": "F-measure (Mean)",
"model": "RANet+ (online learning)",
"row": 8,
"task": "Visual Object Tracking",
"value": "87.6"
},
{
"column": 8,
"dataset": "DAVIS 2016",
"metric": "F-measure (Recall)",
"model": "RANet+ (online learning)",
"row": 8,
"task": "Visual Object Tracking",
"value": "96.1"
},
{
"column": 9,
"dataset": "DAVIS 2016",
"metric": "F-measure (Decay)",
"model": "RANet+ (online learning)",
"row": 8,
"task": "Visual Object Tracking",
"value": "8.2"
},
{
"column": 4,
"dataset": "DAVIS 2016",
"metric": "Jaccard (Mean)",
"model": "RANet",
"row": 20,
"task": "Visual Object Tracking",
"value": "85.5"
},
{
"column": 5,
"dataset": "DAVIS 2016",
"metric": "Jaccard (Recall)",
"model": "RANet",
"row": 20,
"task": "Visual Object Tracking",
"value": "97.2"
},
{
"column": 6,
"dataset": "DAVIS 2016",
"metric": "Jaccard (Decay)",
"model": "RANet",
"row": 20,
"task": "Visual Object Tracking",
"value": "6.2"
},
{
"column": 7,
"dataset": "DAVIS 2016",
"metric": "F-measure (Mean)",
"model": "RANet",
"row": 20,
"task": "Visual Object Tracking",
"value": "85.4"
},
{
"column": 8,
"dataset": "DAVIS 2016",
"metric": "F-measure (Recall)",
"model": "RANet",
"row": 20,
"task": "Visual Object Tracking",
"value": "94.9"
},
{
"column": 9,
"dataset": "DAVIS 2016",
"metric": "F-measure (Decay)",
"model": "RANet",
"row": 20,
"task": "Visual Object Tracking",
"value": "5.1"
}
]
},
{
"index": 2,
"records": [
{
"column": 5,
"dataset": "DAVIS-2017",
"metric": "Jaccard (Mean)",
"model": "RANet",
"row": 13,
"task": "Visual Object Tracking",
"value": "53.4"
}
]
}
] |
1908.07433v1 | [
{
"index": 0,
"records": [
{
"column": 14,
"dataset": "LineMOD",
"metric": "Mean ADD",
"model": "Pix2Pose",
"row": 1,
"task": "6D Pose Estimation using RGB",
"value": "72.4"
}
]
},
{
"index": 1,
"records": [
{
"column": 1,
"dataset": "LineMOD",
"metric": "Mean ADD",
"model": "Pix2Pose",
"row": 9,
"task": "6D Pose Estimation using RGB",
"value": "32"
}
]
},
{
"index": 2,
"records": [
{
"column": 1,
"dataset": "T-LESS",
"metric": "Recall (VSD)",
"model": "Pix2Pose without ICP",
"row": 2,
"task": "6D Pose Estimation using RGB",
"value": "29.5"
}
]
}
] |
1908.07490v3 | [
{
"index": 1,
"records": [
{
"column": 4,
"dataset": "VQA v2 test-std",
"metric": "Accuracy",
"model": "LXMERT",
"row": 6,
"task": "Visual Question Answering",
"value": "72.5"
},
{
"column": 7,
"dataset": "GQA test-std",
"metric": "Accuracy",
"model": "LXMERT",
"row": 6,
"task": "Visual Question Answering",
"value": "60.3"
},
{
"column": 9,
"dataset": "NLVR2 Test",
"metric": "Accuracy",
"model": "LXMERT",
"row": 6,
"task": "Visual Reasoning",
"value": "76.2"
}
]
},
{
"index": 2,
"records": [
{
"column": 1,
"dataset": "VQA v2 test-dev",
"metric": "Accuracy",
"model": "LXMERT (Pre-train + scratch)",
"row": 11,
"task": "Visual Question Answering",
"value": "69.9"
},
{
"column": 2,
"dataset": "GQA test-dev",
"metric": "Accuracy",
"model": "LXMERT (Pre-train + scratch)",
"row": 11,
"task": "Visual Question Answering",
"value": "60.0"
},
{
"column": 3,
"dataset": "NLVR2 Dev",
"metric": "Accuracy",
"model": "LXMERT (Pre-train + scratch)",
"row": 11,
"task": "Visual Reasoning",
"value": "74.9"
}
]
}
] |
1908.07678v5 | [
{
"index": 2,
"records": [
{
"column": 3,
"dataset": "Cityscapes test",
"metric": "Mean IoU (class)",
"model": "Asymmetric ALNN",
"row": 13,
"task": "Semantic Segmentation",
"value": "81.3"
}
]
},
{
"index": 3,
"records": [
{
"column": 2,
"dataset": "ADE20K val",
"metric": "mIoU",
"model": "Asymmetric ALNN",
"row": 9,
"task": "Semantic Segmentation",
"value": "45.24"
}
]
},
{
"index": 4,
"records": [
{
"column": 2,
"dataset": "PASCAL Context",
"metric": "mIoU",
"model": "Asymmetric ALNN",
"row": 8,
"task": "Semantic Segmentation",
"value": "52.8"
}
]
},
{
"index": 7,
"records": [
{
"column": 2,
"dataset": "COCO-Stuff test",
"metric": "mIoU",
"model": "Asymmetric ALNN",
"row": 3,
"task": "Semantic Segmentation",
"value": "37.2"
},
{
"column": 5,
"dataset": "NYU Depth v2",
"metric": "Mean IoU",
"model": "Asymmetric ALNN",
"row": 3,
"task": "Semantic Segmentation",
"value": "44.4"
}
]
}
] |
1908.07801v1 | [
{
"index": 0,
"records": [
{
"column": 2,
"dataset": "COCO test-dev",
"metric": "box AP",
"model": "Cascade R-CNN-FPN (ResNet-101, map-guided)",
"row": 9,
"task": "Object Detection",
"value": "45.9"
},
{
"column": 3,
"dataset": "COCO test-dev",
"metric": "AP50",
"model": "Cascade R-CNN-FPN (ResNet-101, map-guided)",
"row": 9,
"task": "Object Detection",
"value": "64.2"
},
{
"column": 4,
"dataset": "COCO test-dev",
"metric": "AP75",
"model": "Cascade R-CNN-FPN (ResNet-101, map-guided)",
"row": 9,
"task": "Object Detection",
"value": "50"
},
{
"column": 5,
"dataset": "COCO test-dev",
"metric": "APS",
"model": "Cascade R-CNN-FPN (ResNet-101, map-guided)",
"row": 9,
"task": "Object Detection",
"value": "26.3"
},
{
"column": 6,
"dataset": "COCO test-dev",
"metric": "APM",
"model": "Cascade R-CNN-FPN (ResNet-101, map-guided)",
"row": 9,
"task": "Object Detection",
"value": "49"
},
{
"column": 7,
"dataset": "COCO test-dev",
"metric": "APL",
"model": "Cascade R-CNN-FPN (ResNet-101, map-guided)",
"row": 9,
"task": "Object Detection",
"value": "58.6"
}
]
},
{
"index": 1,
"records": [
{
"column": 2,
"dataset": "COCO test-dev",
"metric": "mask AP",
"model": "Cascade R-CNN (ResNet-101-FPN, map-guided)",
"row": 9,
"task": "Instance Segmentation",
"value": "39.5"
},
{
"column": 3,
"dataset": "COCO test-dev",
"metric": "AP50",
"model": "Cascade R-CNN (ResNet-101-FPN, map-guided)",
"row": 9,
"task": "Instance Segmentation",
"value": "61.4"
},
{
"column": 4,
"dataset": "COCO test-dev",
"metric": "AP75",
"model": "Cascade R-CNN (ResNet-101-FPN, map-guided)",
"row": 9,
"task": "Instance Segmentation",
"value": "42.9"
},
{
"column": 5,
"dataset": "COCO test-dev",
"metric": "APS",
"model": "Cascade R-CNN (ResNet-101-FPN, map-guided)",
"row": 9,
"task": "Instance Segmentation",
"value": "21.2"
},
{
"column": 6,
"dataset": "COCO test-dev",
"metric": "APM",
"model": "Cascade R-CNN (ResNet-101-FPN, map-guided)",
"row": 9,
"task": "Instance Segmentation",
"value": "42.5"
},
{
"column": 7,
"dataset": "COCO test-dev",
"metric": "APL",
"model": "Cascade R-CNN (ResNet-101-FPN, map-guided)",
"row": 9,
"task": "Instance Segmentation",
"value": "52.1"
}
]
}
] |
1908.08216v2 | [
{
"index": 0,
"records": [
{
"column": 1,
"dataset": "THUMOS’14",
"metric": "mAP [email protected]",
"model": "3C-Net",
"row": 12,
"task": "Temporal Action Localization",
"value": "59.1"
},
{
"column": 2,
"dataset": "THUMOS’14",
"metric": "mAP [email protected]",
"model": "3C-Net",
"row": 12,
"task": "Temporal Action Localization",
"value": "53.5"
},
{
"column": 3,
"dataset": "THUMOS’14",
"metric": "mAP [email protected]",
"model": "3C-Net",
"row": 12,
"task": "Temporal Action Localization",
"value": "44.2"
},
{
"column": 4,
"dataset": "THUMOS’14",
"metric": "mAP [email protected]",
"model": "3C-Net",
"row": 12,
"task": "Temporal Action Localization",
"value": "34.1"
},
{
"column": 5,
"dataset": "THUMOS’14",
"metric": "mAP [email protected]",
"model": "3C-Net",
"row": 12,
"task": "Temporal Action Localization",
"value": "26.6"
},
{
"column": 6,
"dataset": "THUMOS’14",
"metric": "mAP [email protected]",
"model": "3C-Net",
"row": 12,
"task": "Temporal Action Localization",
"value": "8.1"
}
]
},
{
"index": 1,
"records": [
{
"column": 1,
"dataset": "ActivityNet-1.3",
"metric": "mAP [email protected]",
"model": "3C-Net",
"row": 7,
"task": "Temporal Action Localization",
"value": "37.2"
},
{
"column": 2,
"dataset": "ActivityNet-1.3",
"metric": "mAP [email protected]",
"model": "3C-Net",
"row": 7,
"task": "Temporal Action Localization",
"value": "23.7"
},
{
"column": 3,
"dataset": "ActivityNet-1.3",
"metric": "mAP [email protected]",
"model": "3C-Net",
"row": 7,
"task": "Temporal Action Localization",
"value": "9.2"
},
{
"column": 4,
"dataset": "ActivityNet-1.3",
"metric": "mAP",
"model": "3C-Net",
"row": 7,
"task": "Temporal Action Localization",
"value": "21.7"
}
]
},
{
"index": 2,
"records": [
{
"column": 1,
"dataset": "THUMOS’14",
"metric": "mAP",
"model": "3C-Net",
"row": 8,
"task": "Action Classification",
"value": "86.9"
},
{
"column": 2,
"dataset": "ActivityNet-1.2",
"metric": "mAP",
"model": "3C-Net",
"row": 8,
"task": "Action Classification",
"value": "92.4"
}
]
}
] |
1908.08239v1 | [
{
"index": 2,
"records": [
{
"column": 1,
"dataset": "CelebA Aligned",
"metric": "PSNR",
"model": "Progressive Face SR",
"row": 7,
"task": "Face Alignment",
"value": "22.66"
},
{
"column": 2,
"dataset": "CelebA Aligned",
"metric": "SSIM",
"model": "Progressive Face SR",
"row": 7,
"task": "Face Alignment",
"value": "0.685"
},
{
"column": 3,
"dataset": "CelebA Aligned",
"metric": "MS-SSIM",
"model": "Progressive Face SR",
"row": 7,
"task": "Face Alignment",
"value": "0.902"
},
{
"column": 4,
"dataset": "CelebA Aligned",
"metric": "MOS",
"model": "Progressive Face SR",
"row": 7,
"task": "Face Alignment",
"value": "3.73"
},
{
"column": 5,
"dataset": "CelebA + AFLW Unaligned",
"metric": "PSNR",
"model": "Progressive Face SR",
"row": 7,
"task": "Face Alignment",
"value": "22.96"
},
{
"column": 6,
"dataset": "CelebA + AFLW Unaligned",
"metric": "SSIM",
"model": "Progressive Face SR",
"row": 7,
"task": "Face Alignment",
"value": "0.695"
},
{
"column": 7,
"dataset": "CelebA + AFLW Unaligned",
"metric": "MS-SSIM",
"model": "Progressive Face SR",
"row": 7,
"task": "Face Alignment",
"value": "0.897"
},
{
"column": 8,
"dataset": "CelebA + AFLW Unaligned",
"metric": "MOS",
"model": "Progressive Face SR",
"row": 7,
"task": "Face Alignment",
"value": "3.73"
}
]
}
] |
1908.08530v4 | [
{
"index": 0,
"records": [
{
"column": 1,
"dataset": "VCR (Q-A) dev",
"metric": "Accuracy",
"model": "VL-BERTBASE",
"row": 8,
"task": "Visual Question Answering",
"value": "73.8"
},
{
"column": 3,
"dataset": "VCR (QA-R) dev",
"metric": "Accuracy",
"model": "VL-BERTBASE",
"row": 8,
"task": "Visual Question Answering",
"value": "74.4"
},
{
"column": 5,
"dataset": "VCR (Q-AR) dev",
"metric": "Accuracy",
"model": "VL-BERTBASE",
"row": 8,
"task": "Visual Question Answering",
"value": "55.2"
},
{
"column": 1,
"dataset": "VCR (Q-A) dev",
"metric": "Accuracy",
"model": "VL-BERTLARGE",
"row": 9,
"task": "Visual Question Answering",
"value": "75.5"
},
{
"column": 2,
"dataset": "VCR (Q-A) test",
"metric": "Accuracy",
"model": "VL-BERTLARGE",
"row": 9,
"task": "Visual Question Answering",
"value": "75.8"
},
{
"column": 3,
"dataset": "VCR (QA-R) dev",
"metric": "Accuracy",
"model": "VL-BERTLARGE",
"row": 9,
"task": "Visual Question Answering",
"value": "77.9"
},
{
"column": 4,
"dataset": "VCR (QA-R) test",
"metric": "Accuracy",
"model": "VL-BERTLARGE",
"row": 9,
"task": "Visual Question Answering",
"value": "78.4"
},
{
"column": 5,
"dataset": "VCR (Q-AR) dev",
"metric": "Accuracy",
"model": "VL-BERTLARGE",
"row": 9,
"task": "Visual Question Answering",
"value": "58.9"
},
{
"column": 6,
"dataset": "VCR (Q-AR) test",
"metric": "Accuracy",
"model": "VL-BERTLARGE",
"row": 9,
"task": "Visual Question Answering",
"value": "59.7"
}
]
},
{
"index": 1,
"records": [
{
"column": 1,
"dataset": "VQA v2 test-dev",
"metric": "Accuracy",
"model": "VL-BERTBASE",
"row": 7,
"task": "Visual Question Answering",
"value": "71.16"
},
{
"column": 1,
"dataset": "VQA v2 test-dev",
"metric": "Accuracy",
"model": "VL-BERTLARGE",
"row": 8,
"task": "Visual Question Answering",
"value": "71.79"
},
{
"column": 2,
"dataset": "VQA v2 test-std",
"metric": "Accuracy",
"model": "VL-BERTLARGE",
"row": 8,
"task": "Visual Question Answering",
"value": "72.22"
}
]
}
] |
1908.08788v2 | [
{
"index": 0,
"records": [
{
"column": 1,
"dataset": "ARSC",
"metric": "Accuracy",
"model": "MTM",
"row": 7,
"task": "Multi-Domain Sentiment Classification",
"value": "90.01"
}
]
}
] |
1908.09124v3 | [
{
"index": 3,
"records": [
{
"column": 8,
"dataset": "AgeDB-30",
"metric": "Accuracy",
"model": "Seesaw-shuffleFaceNet",
"row": 11,
"task": "Face Verification",
"value": "0.9685"
},
{
"column": 6,
"dataset": "Labeled Faces in the Wild",
"metric": "Accuracy",
"model": "Seesaw-shuffleFaceNet (mobi)",
"row": 12,
"task": "Face Verification",
"value": "99.65"
},
{
"column": 7,
"dataset": "CFP-FP",
"metric": "Accuracy",
"model": "Seesaw-shuffleFaceNet (mobi)",
"row": 12,
"task": "Face Verification",
"value": "0.9307"
}
]
}
] |
1908.09220v1 | [
{
"index": 0,
"records": [
{
"column": 8,
"dataset": "MPII Multi-Person",
"metric": "AP",
"model": "SPM",
"row": 9,
"task": "Multi-Person Pose Estimation",
"value": "78.5"
}
]
},
{
"index": 3,
"records": [
{
"column": 1,
"dataset": "COCO test-dev",
"metric": "AP",
"model": "SPM",
"row": 7,
"task": "Multi-Person Pose Estimation",
"value": "66.9"
},
{
"column": 2,
"dataset": "COCO test-dev",
"metric": "AP50",
"model": "SPM",
"row": 7,
"task": "Multi-Person Pose Estimation",
"value": "88.5"
},
{
"column": 3,
"dataset": "COCO test-dev",
"metric": "AP75",
"model": "SPM",
"row": 7,
"task": "Multi-Person Pose Estimation",
"value": "72.9"
},
{
"column": 4,
"dataset": "COCO test-dev",
"metric": "APM",
"model": "SPM",
"row": 7,
"task": "Multi-Person Pose Estimation",
"value": "62.6"
},
{
"column": 5,
"dataset": "COCO test-dev",
"metric": "APL",
"model": "SPM",
"row": 7,
"task": "Multi-Person Pose Estimation",
"value": "73.1"
}
]
}
] |
1908.09492v1 | [
{
"index": 1,
"records": [
{
"column": 4,
"dataset": "nuScenes",
"metric": "MAP",
"model": "MEGVII",
"row": 6,
"task": "3D Object Detection",
"value": "52.8"
},
{
"column": 10,
"dataset": "nuScenes",
"metric": "NDS",
"model": "MEGVII",
"row": 6,
"task": "3D Object Detection",
"value": "63.3"
}
]
}
] |
1908.09547v1 | [
{
"index": 0,
"records": [
{
"column": 21,
"dataset": "GTAV-to-Cityscapes Labels",
"metric": "mIoU",
"model": "PyCDA (ResNet-38)",
"row": 14,
"task": "Synthetic-to-Real Translation",
"value": "48"
}
]
},
{
"index": 1,
"records": [
{
"column": 19,
"dataset": "SYNTHIA-to-Cityscapes",
"metric": "mIoU",
"model": "PyCDA (ResNet-101)",
"row": 15,
"task": "Image-to-Image Translation",
"value": "53.3"
}
]
}
] |
1908.09822v2 | [
{
"index": 1,
"records": [
{
"column": 13,
"dataset": "VisDA2017",
"metric": "Mean Accuracy",
"model": "MRKLD + LRENT",
"row": 15,
"task": "Domain Adaptation",
"value": "78.1"
}
]
},
{
"index": 2,
"records": [
{
"column": 7,
"dataset": "Office-31",
"metric": "Average Accuracy",
"model": "MRKLD + LRENT",
"row": 13,
"task": "Domain Adaptation",
"value": "86.8"
}
]
},
{
"index": 3,
"records": [
{
"column": 21,
"dataset": "GTAV-to-Cityscapes Labels",
"metric": "mIoU",
"model": "MRKLD-SP-MST (ResNet-38)",
"row": 24,
"task": "Synthetic-to-Real Translation",
"value": "49.8"
}
]
},
{
"index": 4,
"records": [
{
"column": 19,
"dataset": "SYNTHIA-to-Cityscapes",
"metric": "mIoU",
"model": "LRENT (DeepLabv2)",
"row": 13,
"task": "Image-to-Image Translation",
"value": "48.7"
}
]
}
] |
1908.09895v1 | [
{
"index": 4,
"records": [
{
"column": 4,
"dataset": "BSD68 sigma15",
"metric": "PSNR",
"model": "Index Network",
"row": 24,
"task": "Grayscale Image Denoising",
"value": "31.23"
},
{
"column": 5,
"dataset": "BSD68 sigma25",
"metric": "PSNR",
"model": "Index Network",
"row": 24,
"task": "Grayscale Image Denoising",
"value": "29.06"
},
{
"column": 6,
"dataset": "BSD68 sigma50",
"metric": "PSNR",
"model": "Index Network",
"row": 24,
"task": "Grayscale Image Denoising",
"value": "26.34"
},
{
"column": 7,
"dataset": "Set12 sigma15",
"metric": "PSNR",
"model": "Index Network",
"row": 24,
"task": "Grayscale Image Denoising",
"value": "32.82"
},
{
"column": 8,
"dataset": "Set12 sigma30",
"metric": "PSNR",
"model": "Index Network",
"row": 24,
"task": "Grayscale Image Denoising",
"value": "30.43"
},
{
"column": 9,
"dataset": "Set12 sigma50",
"metric": "PSNR",
"model": "Index Network",
"row": 24,
"task": "Grayscale Image Denoising",
"value": "27.29"
}
]
},
{
"index": 5,
"records": [
{
"column": 4,
"dataset": "SUN-RGBD",
"metric": "Mean IoU",
"model": "Index Network",
"row": 22,
"task": "Scene Segmentation",
"value": "33.48"
}
]
},
{
"index": 6,
"records": [
{
"column": 4,
"dataset": "NYU-Depth V2",
"metric": "RMSE",
"model": "Index Network",
"row": 23,
"task": "Monocular Depth Estimation",
"value": "0.565"
},
{
"column": 5,
"dataset": "NYU Depth v2",
"metric": "Delta1",
"model": "Index Network",
"row": 23,
"task": "Monocular Depth Estimation",
"value": "0.787"
}
]
}
] |
1908.09995v1 | [
{
"index": 0,
"records": [
{
"column": 5,
"dataset": "Something-Something V1",
"metric": "Top 1 Accuracy",
"model": "TRG (Inception-V3)",
"row": 15,
"task": "Action Recognition In Videos",
"value": "49.7"
},
{
"column": 7,
"dataset": "Something-Something V2",
"metric": "Top-1 Accuracy",
"model": "TRG (Inception-V3)",
"row": 15,
"task": "Action Recognition In Videos",
"value": "61.3"
},
{
"column": 8,
"dataset": "Something-Something V2",
"metric": "Top-5 Accuracy",
"model": "TRG (Inception-V3)",
"row": 15,
"task": "Action Recognition In Videos",
"value": "91.4"
},
{
"column": 5,
"dataset": "Something-Something V1",
"metric": "Top 1 Accuracy",
"model": "TRG (ResNet-50)",
"row": 18,
"task": "Action Recognition In Videos",
"value": "49.5"
},
{
"column": 6,
"dataset": "Something-Something V1",
"metric": "Top 5 Accuracy",
"model": "TRG (ResNet-50)",
"row": 18,
"task": "Action Recognition In Videos",
"value": "86.1"
},
{
"column": 7,
"dataset": "Something-Something V2",
"metric": "Top-1 Accuracy",
"model": "TRG (ResNet-50)",
"row": 18,
"task": "Action Recognition In Videos",
"value": "62.2"
},
{
"column": 8,
"dataset": "Something-Something V2",
"metric": "Top-5 Accuracy",
"model": "TRG (ResNet-50)",
"row": 18,
"task": "Action Recognition In Videos",
"value": "90.3"
}
]
},
{
"index": 1,
"records": [
{
"column": 3,
"dataset": "Charades",
"metric": "MAP",
"model": "TRG (ResNet-101)",
"row": 22,
"task": "Action Classification",
"value": "40.2"
}
]
}
] |
1908.09999v1 | [
{
"index": 2,
"records": [
{
"column": 2,
"dataset": "NYU Hands",
"metric": "Average 3D Error",
"model": "A2J (Ours)",
"row": 15,
"task": "Hand Pose Estimation",
"value": "105.06"
}
]
},
{
"index": 3,
"records": [
{
"column": 2,
"dataset": "ICVL Hands",
"metric": "Average 3D Error",
"model": "A2J (Ours)",
"row": 15,
"task": "Hand Pose Estimation",
"value": "105.06"
}
]
},
{
"index": 4,
"records": [
{
"column": 8,
"dataset": "ITOP front-view",
"metric": "Mean mAP",
"model": "A2J (Ours)",
"row": 3,
"task": "Pose Estimation",
"value": "99.2"
}
]
},
{
"index": 6,
"records": [
{
"column": 2,
"dataset": "NYU-Depth V2",
"metric": "RMS",
"model": "A2J (Ours)",
"row": 4,
"task": "Depth Estimation",
"value": "0.0861"
}
]
}
] |
1908.10063v1 | [
{
"index": 2,
"records": [
{
"column": 2,
"dataset": "Financial PhraseBank",
"metric": "Accuracy",
"model": "FinBERT",
"row": 8,
"task": "Sentiment Analysis",
"value": "86"
},
{
"column": 3,
"dataset": "Financial PhraseBank",
"metric": "F1 score",
"model": "FinBERT",
"row": 8,
"task": "Sentiment Analysis",
"value": "84"
}
]
},
{
"index": 3,
"records": [
{
"column": 1,
"dataset": "FiQA",
"metric": "MSE",
"model": "FinBERT",
"row": 3,
"task": "Sentiment Analysis",
"value": "0.07"
},
{
"column": 2,
"dataset": "FiQA",
"metric": "R^2",
"model": "FinBERT",
"row": 3,
"task": "Sentiment Analysis",
"value": "0.55"
}
]
}
] |
1908.10357v2 | [
{
"index": 0,
"records": [
{
"column": 5,
"dataset": "COCO test-dev",
"metric": "AP",
"model": "HigherHRNet (HR-Net-48)",
"row": 13,
"task": "Multi-Person Pose Estimation",
"value": "70.5"
},
{
"column": 6,
"dataset": "COCO test-dev",
"metric": "AP50",
"model": "HigherHRNet (HR-Net-48)",
"row": 13,
"task": "Multi-Person Pose Estimation",
"value": "89.3"
},
{
"column": 7,
"dataset": "COCO test-dev",
"metric": "AP75",
"model": "HigherHRNet (HR-Net-48)",
"row": 13,
"task": "Multi-Person Pose Estimation",
"value": "77.2"
},
{
"column": 8,
"dataset": "COCO test-dev",
"metric": "APM",
"model": "HigherHRNet (HR-Net-48)",
"row": 13,
"task": "Multi-Person Pose Estimation",
"value": "66.6"
},
{
"column": 9,
"dataset": "COCO test-dev",
"metric": "APL",
"model": "HigherHRNet (HR-Net-48)",
"row": 13,
"task": "Multi-Person Pose Estimation",
"value": "75.8"
}
]
}
] |
1908.10419v1 | [
{
"index": 1,
"records": [
{
"column": 2,
"dataset": "RCV1",
"metric": "Micro F1",
"model": "HiLAP (bow-CNN)",
"row": 13,
"task": "Text Classification",
"value": "83.3"
},
{
"column": 3,
"dataset": "RCV1",
"metric": "Macro F1",
"model": "HiLAP (bow-CNN)",
"row": 13,
"task": "Text Classification",
"value": "60.1"
}
]
}
] |
1908.11046v2 | [
{
"index": 0,
"records": [
{
"column": 4,
"dataset": "Long-tail emerging entities",
"metric": "Precision",
"model": "Cross-BiLSTM-CNN",
"row": 6,
"task": "Named Entity Recognition",
"value": "58.28"
},
{
"column": 5,
"dataset": "Long-tail emerging entities",
"metric": "Recall",
"model": "Cross-BiLSTM-CNN",
"row": 6,
"task": "Named Entity Recognition",
"value": "33.92"
},
{
"column": 6,
"dataset": "Long-tail emerging entities",
"metric": "F1",
"model": "Cross-BiLSTM-CNN",
"row": 6,
"task": "Named Entity Recognition",
"value": "42.85"
},
{
"column": 1,
"dataset": "Ontonotes v5 (English)",
"metric": "Precision",
"model": "Att-BiLSTM-CNN",
"row": 7,
"task": "Named Entity Recognition",
"value": "88.71"
},
{
"column": 2,
"dataset": "Ontonotes v5 (English)",
"metric": "Recall",
"model": "Att-BiLSTM-CNN",
"row": 7,
"task": "Named Entity Recognition",
"value": "88.11"
},
{
"column": 3,
"dataset": "Ontonotes v5 (English)",
"metric": "F1",
"model": "Att-BiLSTM-CNN",
"row": 7,
"task": "Named Entity Recognition",
"value": "88.4"
}
]
}
] |
1908.11513v1 | [
{
"index": 0,
"records": [
{
"column": 1,
"dataset": "FB15k-237",
"metric": "MRR",
"model": "Meta-KGR (ConvE)",
"row": 8,
"task": "Link Prediction",
"value": "0.469"
},
{
"column": 2,
"dataset": "FB15k-237",
"metric": "Hits@1",
"model": "Meta-KGR (ConvE)",
"row": 8,
"task": "Link Prediction",
"value": "0.412"
},
{
"column": 3,
"dataset": "FB15k-237",
"metric": "Hits@10",
"model": "Meta-KGR (ConvE)",
"row": 8,
"task": "Link Prediction",
"value": "0.588"
},
{
"column": 4,
"dataset": "NELL-995",
"metric": "MRR",
"model": "Meta-KGR (ConvE)",
"row": 8,
"task": "Link Prediction",
"value": "0.253"
},
{
"column": 5,
"dataset": "NELL-995",
"metric": "Hits@1",
"model": "Meta-KGR (ConvE)",
"row": 8,
"task": "Link Prediction",
"value": "0.197"
},
{
"column": 6,
"dataset": "NELL-995",
"metric": "Hits@10",
"model": "Meta-KGR (ConvE)",
"row": 8,
"task": "Link Prediction",
"value": "0.347"
}
]
}
] |
1908.11540v1 | [
{
"index": 2,
"records": [
{
"column": 13,
"dataset": "IEMOCAP",
"metric": "Accuracy",
"model": "DialogueGCN",
"row": 10,
"task": "Emotion Recognition in Conversation",
"value": "65.25"
},
{
"column": 14,
"dataset": "IEMOCAP",
"metric": "F1",
"model": "DialogueGCN",
"row": 10,
"task": "Emotion Recognition in Conversation",
"value": "64.18%"
}
]
}
] |
1908.11561v1 | [
{
"index": 0,
"records": [
{
"column": 2,
"dataset": "SMS",
"metric": "Accuracy",
"model": "StoneSkipping",
"row": 17,
"task": "Chinese Spam Detection",
"value": "85.1"
},
{
"column": 3,
"dataset": "SMS",
"metric": "F1-Score",
"model": "StoneSkipping",
"row": 17,
"task": "Chinese Spam Detection",
"value": "83.2"
},
{
"column": 4,
"dataset": "Product Review",
"metric": "Accuracy",
"model": "StoneSkipping",
"row": 17,
"task": "Chinese Spam Detection",
"value": "85.4"
},
{
"column": 5,
"dataset": "Product Review",
"metric": "F1-Score",
"model": "StoneSkipping",
"row": 17,
"task": "Chinese Spam Detection",
"value": "82.2"
}
]
}
] |
1909.00105v1 | [
{
"index": 1,
"records": [
{
"column": 1,
"dataset": "Food.com",
"metric": "BPE Perplexity",
"model": "Prior Name",
"row": 5,
"task": "Recipe Generation",
"value": "9.516"
},
{
"column": 2,
"dataset": "Food.com",
"metric": "BLEU-1",
"model": "Prior Name",
"row": 5,
"task": "Recipe Generation",
"value": "28.046"
},
{
"column": 3,
"dataset": "Food.com",
"metric": "BLEU-4",
"model": "Prior Name",
"row": 5,
"task": "Recipe Generation",
"value": "3.211"
},
{
"column": 4,
"dataset": "Food.com",
"metric": "Rouge-L",
"model": "Prior Name",
"row": 5,
"task": "Recipe Generation",
"value": "24.794"
},
{
"column": 5,
"dataset": "Food.com",
"metric": "D-1",
"model": "Prior Name",
"row": 5,
"task": "Recipe Generation",
"value": "0.233"
},
{
"column": 6,
"dataset": "Food.com",
"metric": "D-2",
"model": "Prior Name",
"row": 5,
"task": "Recipe Generation",
"value": "2.08"
}
]
}
] |
1909.00166v1 | [
{
"index": 0,
"records": [
{
"column": 1,
"dataset": "DRIVE",
"metric": "F1 score",
"model": "BCDU-Net (d=3)",
"row": 8,
"task": "Retinal Vessel Segmentation",
"value": "0.8224"
},
{
"column": 5,
"dataset": "DRIVE",
"metric": "AUC",
"model": "BCDU-Net (d=3)",
"row": 8,
"task": "Retinal Vessel Segmentation",
"value": "0.9789"
}
]
},
{
"index": 1,
"records": [
{
"column": 1,
"dataset": "ISIC 2018",
"metric": "F1-Score",
"model": "BCDU-Net (d=3)",
"row": 6,
"task": "Lesion Segmentation",
"value": "0.851"
}
]
},
{
"index": 2,
"records": [
{
"column": 1,
"dataset": "LUNA",
"metric": "F1 score",
"model": "BCDU-Net (d=3)",
"row": 5,
"task": "Lung Nodule Segmentation",
"value": "0.9904"
},
{
"column": 5,
"dataset": "LUNA",
"metric": "AUC",
"model": "BCDU-Net (d=3)",
"row": 5,
"task": "Lung Nodule Segmentation",
"value": "0.9946"
}
]
}
] |
1909.00794v1 | [
{
"index": 5,
"records": [
{
"column": 1,
"dataset": "ICDAR 2015",
"metric": "Recall",
"model": "GNNets",
"row": 18,
"task": "Scene Text Detection",
"value": "86.71"
},
{
"column": 2,
"dataset": "ICDAR 2015",
"metric": "Precision",
"model": "GNNets",
"row": 18,
"task": "Scene Text Detection",
"value": "90.41"
},
{
"column": 3,
"dataset": "ICDAR 2015",
"metric": "F-Measure",
"model": "GNNets",
"row": 18,
"task": "Scene Text Detection",
"value": "88.52"
},
{
"column": 5,
"dataset": "ICDAR 2017 MLT",
"metric": "Recall",
"model": "GNNets",
"row": 18,
"task": "Scene Text Detection",
"value": "70.06"
},
{
"column": 6,
"dataset": "ICDAR 2017 MLT",
"metric": "Precision",
"model": "GNNets",
"row": 18,
"task": "Scene Text Detection",
"value": "79.63"
},
{
"column": 7,
"dataset": "ICDAR 2017 MLT",
"metric": "F-Measure",
"model": "GNNets",
"row": 18,
"task": "Scene Text Detection",
"value": "74.54"
}
]
}
] |
1909.01187v1 | [
{
"index": 2,
"records": [
{
"column": 1,
"dataset": "DiscoFuse",
"metric": "Exact",
"model": "LaserTaggerAR",
"row": 5,
"task": "Sentence Fusion",
"value": "53.8"
},
{
"column": 2,
"dataset": "DiscoFuse",
"metric": "SARI",
"model": "LaserTaggerAR",
"row": 5,
"task": "Sentence Fusion",
"value": "85.5"
}
]
},
{
"index": 3,
"records": [
{
"column": 1,
"dataset": "WikiSplit1.0",
"metric": "BLEU score",
"model": "LaserTaggerAR",
"row": 4,
"task": "Split and Rephrase",
"value": "76.3"
},
{
"column": 2,
"dataset": "WikiSplit1.0",
"metric": "Exact",
"model": "LaserTaggerAR",
"row": 4,
"task": "Split and Rephrase",
"value": "15.2"
},
{
"column": 3,
"dataset": "WikiSplit1.0",
"metric": "SARI",
"model": "LaserTaggerAR",
"row": 4,
"task": "Split and Rephrase",
"value": "61.7"
}
]
}
] |
1909.01259v2 | [
{
"index": 0,
"records": [
{
"column": 1,
"dataset": "20NEWS",
"metric": "Accuracy",
"model": "NABoE-full",
"row": 5,
"task": "Text Classification",
"value": "86.8"
},
{
"column": 2,
"dataset": "20NEWS",
"metric": "F-measure",
"model": "NABoE-full",
"row": 5,
"task": "Text Classification",
"value": "86.2"
},
{
"column": 3,
"dataset": "R8",
"metric": "Accuracy",
"model": "NABoE-full",
"row": 5,
"task": "Text Classification",
"value": "97.1"
},
{
"column": 4,
"dataset": "R8",
"metric": "F-measure",
"model": "NABoE-full",
"row": 5,
"task": "Text Classification",
"value": "91.7"
}
]
}
] |
1909.01804v1 | [
{
"index": 0,
"records": [
{
"column": 1,
"dataset": "CIFAR-10, 1000 Labels",
"metric": "Accuracy",
"model": "Dual Student (600)",
"row": 11,
"task": "Semi-Supervised Image Classification",
"value": "85.83"
},
{
"column": 2,
"dataset": "CIFAR-10, 2000 Labels",
"metric": "Accuracy",
"model": "Dual Student (600)",
"row": 11,
"task": "Semi-Supervised Image Classification",
"value": "89.28"
},
{
"column": 3,
"dataset": "CIFAR-10, 4000 Labels",
"metric": "Accuracy",
"model": "Dual Student (600)",
"row": 11,
"task": "Semi-Supervised Image Classification",
"value": "91.11"
}
]
},
{
"index": 1,
"records": [
{
"column": 1,
"dataset": "cifar-100, 10000 Labels",
"metric": "Accuracy",
"model": "Dual Student (480)",
"row": 9,
"task": "Semi-Supervised Image Classification",
"value": "67.23"
}
]
},
{
"index": 2,
"records": [
{
"column": 1,
"dataset": "SVHN, 250 Labels",
"metric": "Accuracy",
"model": "Dual Student",
"row": 3,
"task": "Semi-Supervised Image Classification",
"value": "95.76"
},
{
"column": 2,
"dataset": "SVHN, 500 Labels",
"metric": "Accuracy",
"model": "Dual Student",
"row": 3,
"task": "Semi-Supervised Image Classification",
"value": "96.04"
}
]
},
{
"index": 3,
"records": [
{
"column": 1,
"dataset": "ImageNet - 10% labeled data",
"metric": "Top 1 Accuracy",
"model": "Dual Student",
"row": 3,
"task": "Semi-Supervised Image Classification",
"value": "63.52"
},
{
"column": 2,
"dataset": "ImageNet - 10% labeled data",
"metric": "Top 5 Accuracy",
"model": "Dual Student",
"row": 3,
"task": "Semi-Supervised Image Classification",
"value": "83.58"
}
]
}
] |
1909.02480v3 | [
{
"index": 0,
"records": [
{
"column": 1,
"dataset": "WMT2014 English-German",
"metric": "BLEU score",
"model": "FlowSeq-base",
"row": 5,
"task": "Machine Translation",
"value": "18.55"
},
{
"column": 2,
"dataset": "WMT2014 German-English",
"metric": "BLEU score",
"model": "FlowSeq-base",
"row": 5,
"task": "Machine Translation",
"value": "23.36"
},
{
"column": 3,
"dataset": "WMT2016 English-Romanian",
"metric": "BLEU score",
"model": "FlowSeq-base",
"row": 5,
"task": "Machine Translation",
"value": "29.26"
},
{
"column": 4,
"dataset": "WMT2016 Romanian-English",
"metric": "BLEU score",
"model": "FlowSeq-base",
"row": 5,
"task": "Machine Translation",
"value": "30.16"
},
{
"column": 5,
"dataset": "IWSLT2015 German-English",
"metric": "BLEU score",
"model": "FlowSeq-base",
"row": 5,
"task": "Machine Translation",
"value": "24.75"
},
{
"column": 1,
"dataset": "WMT2014 English-German",
"metric": "BLEU score",
"model": "FlowSeq-large",
"row": 6,
"task": "Machine Translation",
"value": "20.85"
},
{
"column": 2,
"dataset": "WMT2014 German-English",
"metric": "BLEU score",
"model": "FlowSeq-large",
"row": 6,
"task": "Machine Translation",
"value": "25.4"
},
{
"column": 3,
"dataset": "WMT2016 English-Romanian",
"metric": "BLEU score",
"model": "FlowSeq-large",
"row": 6,
"task": "Machine Translation",
"value": "29.86"
},
{
"column": 4,
"dataset": "WMT2016 Romanian-English",
"metric": "BLEU score",
"model": "FlowSeq-large",
"row": 6,
"task": "Machine Translation",
"value": "30.69"
}
]
},
{
"index": 1,
"records": [
{
"column": 1,
"dataset": "WMT2014 English-German",
"metric": "BLEU score",
"model": "FlowSeq-large (IWD n = 15)",
"row": 11,
"task": "Machine Translation",
"value": "22.94"
},
{
"column": 2,
"dataset": "WMT2014 German-English",
"metric": "BLEU score",
"model": "FlowSeq-large (IWD n=15)",
"row": 11,
"task": "Machine Translation",
"value": "27.16"
},
{
"column": 3,
"dataset": "WMT2016 English-Romanian",
"metric": "BLEU score",
"model": "FlowSeq-large (IWD n = 15)",
"row": 11,
"task": "Machine Translation",
"value": "31.08"
},
{
"column": 4,
"dataset": "WMT2016 Romanian-English",
"metric": "BLEU score",
"model": "FlowSeq-large (IWD n = 15)",
"row": 11,
"task": "Machine Translation",
"value": "32.03"
},
{
"column": 1,
"dataset": "WMT2014 English-German",
"metric": "BLEU score",
"model": "FlowSeq-large (NPD n = 15)",
"row": 12,
"task": "Machine Translation",
"value": "23.14"
},
{
"column": 2,
"dataset": "WMT2014 German-English",
"metric": "BLEU score",
"model": "FlowSeq-large (NPD n = 15)",
"row": 12,
"task": "Machine Translation",
"value": "27.71"
},
{
"column": 3,
"dataset": "WMT2016 English-Romanian",
"metric": "BLEU score",
"model": "FlowSeq-large (NPD n=15)",
"row": 12,
"task": "Machine Translation",
"value": "31.97"
},
{
"column": 4,
"dataset": "WMT2016 Romanian-English",
"metric": "BLEU score",
"model": "FlowSeq-large (NPD n = 15)",
"row": 12,
"task": "Machine Translation",
"value": "32.46"
},
{
"column": 1,
"dataset": "WMT2014 English-German",
"metric": "BLEU score",
"model": "FlowSeq-large (NPD n = 30)",
"row": 13,
"task": "Machine Translation",
"value": "23.64"
},
{
"column": 2,
"dataset": "WMT2014 German-English",
"metric": "BLEU score",
"model": "FlowSeq-large (NPD n = 30)",
"row": 13,
"task": "Machine Translation",
"value": "28.29"
},
{
"column": 3,
"dataset": "WMT2016 English-Romanian",
"metric": "BLEU score",
"model": "FlowSeq-large (NPD n = 30)",
"row": 13,
"task": "Machine Translation",
"value": "32.35"
},
{
"column": 4,
"dataset": "WMT2016 Romanian-English",
"metric": "BLEU score",
"model": "FlowSeq-large (NPD n = 30)",
"row": 13,
"task": "Machine Translation",
"value": "32.91"
}
]
}
] |
1909.03252v1 | [
{
"index": 0,
"records": [
{
"column": 1,
"dataset": "THUMOS’14",
"metric": "mAP [email protected]",
"model": "P-GCN",
"row": 21,
"task": "Temporal Action Localization",
"value": "69.5"
},
{
"column": 2,
"dataset": "THUMOS’14",
"metric": "mAP [email protected]",
"model": "P-GCN",
"row": 21,
"task": "Temporal Action Localization",
"value": "67.8"
},
{
"column": 3,
"dataset": "THUMOS’14",
"metric": "mAP [email protected]",
"model": "P-GCN",
"row": 21,
"task": "Temporal Action Localization",
"value": "63.6"
},
{
"column": 4,
"dataset": "THUMOS’14",
"metric": "mAP [email protected]",
"model": "P-GCN",
"row": 21,
"task": "Temporal Action Localization",
"value": "57.8"
},
{
"column": 5,
"dataset": "THUMOS’14",
"metric": "mAP [email protected]",
"model": "P-GCN",
"row": 21,
"task": "Temporal Action Localization",
"value": "49.1"
}
]
},
{
"index": 1,
"records": [
{
"column": 1,
"dataset": "ActivityNet-1.3",
"metric": "mAP [email protected]",
"model": "P-GCN*",
"row": 10,
"task": "Temporal Action Localization",
"value": "48.26"
},
{
"column": 2,
"dataset": "ActivityNet-1.3",
"metric": "mAP [email protected]",
"model": "P-GCN*",
"row": 10,
"task": "Temporal Action Localization",
"value": "33.16"
},
{
"column": 3,
"dataset": "ActivityNet-1.3",
"metric": "mAP [email protected]",
"model": "P-GCN*",
"row": 10,
"task": "Temporal Action Localization",
"value": "3.27"
},
{
"column": 4,
"dataset": "ActivityNet-1.3",
"metric": "mAP",
"model": "P-GCN*",
"row": 10,
"task": "Temporal Action Localization",
"value": "31.11"
}
]
}
] |
1909.03573v1 | [
{
"index": 0,
"records": [
{
"column": 2,
"dataset": "Set5 - 3x upscaling",
"metric": "PSNR",
"model": "LCSCNet",
"row": 5,
"task": "Image Super-Resolution",
"value": "33.99"
},
{
"column": 3,
"dataset": "Set14 - 3x upscaling",
"metric": "PSNR",
"model": "LCSCNet",
"row": 5,
"task": "Image Super-Resolution",
"value": "29.87"
},
{
"column": 4,
"dataset": "BSD100 - 3x upscaling",
"metric": "PSNR",
"model": "LCSCNet",
"row": 5,
"task": "Image Super-Resolution",
"value": "28.87"
},
{
"column": 5,
"dataset": "Urban100 - 3x upscaling",
"metric": "PSNR",
"model": "LCSCNet",
"row": 5,
"task": "Image Super-Resolution",
"value": "27.24"
}
]
}
] |
Subsets and Splits