text
stringlengths
1
1.02k
class_index
int64
0
1.38k
source
stringclasses
431 values
# 1. get previous step value (=t-1) prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas alpha_prod_t = self.alphas_cumprod[timestep] alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod beta_prod_t = 1 - alpha_prod_t
1,369
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddim.py
# 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5) pred_epsilon = model_output elif self.config.prediction_type == "sample": pred_original_sample = model_output pred_epsilon = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5) elif self.config.prediction_type == "v_prediction": pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output pred_epsilon = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or" " `v_prediction`"
1,369
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddim.py
)
1,369
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddim.py
# 4. Clip or threshold "predicted x_0" if self.config.thresholding: pred_original_sample = self._threshold_sample(pred_original_sample) elif self.config.clip_sample: pred_original_sample = pred_original_sample.clamp( -self.config.clip_sample_range, self.config.clip_sample_range ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) variance = self._get_variance(timestep, prev_timestep) std_dev_t = eta * variance ** (0.5) if use_clipped_model_output: # the pred_epsilon is always re-derived from the clipped x_0 in Glide pred_epsilon = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5)
1,369
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddim.py
# 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * pred_epsilon # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction if eta > 0: if variance_noise is not None and generator is not None: raise ValueError( "Cannot pass both generator and variance_noise. Please make sure that either `generator` or" " `variance_noise` stays `None`." ) if variance_noise is None: variance_noise = randn_tensor( model_output.shape, generator=generator, device=model_output.device, dtype=model_output.dtype ) variance = std_dev_t * variance_noise
1,369
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddim.py
prev_sample = prev_sample + variance if not return_dict: return ( prev_sample, pred_original_sample, ) return DDIMSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample) # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.add_noise def add_noise( self, original_samples: torch.Tensor, noise: torch.Tensor, timesteps: torch.IntTensor, ) -> torch.Tensor: # Make sure alphas_cumprod and timestep have same device and dtype as original_samples # Move the self.alphas_cumprod to device to avoid redundant CPU to GPU data movement # for the subsequent add_noise calls self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device) alphas_cumprod = self.alphas_cumprod.to(dtype=original_samples.dtype) timesteps = timesteps.to(original_samples.device)
1,369
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddim.py
sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5 sqrt_alpha_prod = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape) < len(original_samples.shape): sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1) sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5 sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape): sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1) noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
1,369
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddim.py
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.get_velocity def get_velocity(self, sample: torch.Tensor, noise: torch.Tensor, timesteps: torch.IntTensor) -> torch.Tensor: # Make sure alphas_cumprod and timestep have same device and dtype as sample self.alphas_cumprod = self.alphas_cumprod.to(device=sample.device) alphas_cumprod = self.alphas_cumprod.to(dtype=sample.dtype) timesteps = timesteps.to(sample.device) sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5 sqrt_alpha_prod = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape) < len(sample.shape): sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1) sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5 sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape): sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
1,369
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddim.py
velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity def __len__(self): return self.config.num_train_timesteps
1,369
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddim.py
class FlowMatchHeunDiscreteSchedulerOutput(BaseOutput): """ Output class for the scheduler's `step` function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the denoising loop. """ prev_sample: torch.FloatTensor
1,370
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_flow_match_heun_discrete.py
class FlowMatchHeunDiscreteScheduler(SchedulerMixin, ConfigMixin): """ Heun scheduler. This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic methods the library implements for all schedulers such as loading and saving. Args: num_train_timesteps (`int`, defaults to 1000): The number of diffusion steps to train the model. timestep_spacing (`str`, defaults to `"linspace"`): The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://huggingface.co./papers/2305.08891) for more information. shift (`float`, defaults to 1.0): The shift value for the timestep schedule. """ _compatibles = [] order = 2
1,371
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_flow_match_heun_discrete.py
@register_to_config def __init__( self, num_train_timesteps: int = 1000, shift: float = 1.0, ): timesteps = np.linspace(1, num_train_timesteps, num_train_timesteps, dtype=np.float32)[::-1].copy() timesteps = torch.from_numpy(timesteps).to(dtype=torch.float32) sigmas = timesteps / num_train_timesteps sigmas = shift * sigmas / (1 + (shift - 1) * sigmas) self.timesteps = sigmas * num_train_timesteps self._step_index = None self._begin_index = None self.sigmas = sigmas.to("cpu") # to avoid too much CPU/GPU communication self.sigma_min = self.sigmas[-1].item() self.sigma_max = self.sigmas[0].item() @property def step_index(self): """ The index counter for current timestep. It will increase 1 after each scheduler step. """ return self._step_index
1,371
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_flow_match_heun_discrete.py
@property def begin_index(self): """ The index for the first timestep. It should be set from pipeline with `set_begin_index` method. """ return self._begin_index # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index def set_begin_index(self, begin_index: int = 0): """ Sets the begin index for the scheduler. This function should be run from pipeline before the inference. Args: begin_index (`int`): The begin index for the scheduler. """ self._begin_index = begin_index def scale_noise( self, sample: torch.FloatTensor, timestep: Union[float, torch.FloatTensor], noise: Optional[torch.FloatTensor] = None, ) -> torch.FloatTensor: """ Forward process in flow-matching
1,371
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_flow_match_heun_discrete.py
Args: sample (`torch.FloatTensor`): The input sample. timestep (`int`, *optional*): The current timestep in the diffusion chain. Returns: `torch.FloatTensor`: A scaled input sample. """ if self.step_index is None: self._init_step_index(timestep) sigma = self.sigmas[self.step_index] sample = sigma * noise + (1.0 - sigma) * sample return sample def _sigma_to_t(self, sigma): return sigma * self.config.num_train_timesteps def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None): """ Sets the discrete timesteps used for the diffusion chain (to be run before inference).
1,371
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_flow_match_heun_discrete.py
Args: num_inference_steps (`int`): The number of diffusion steps used when generating samples with a pre-trained model. device (`str` or `torch.device`, *optional*): The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. """ self.num_inference_steps = num_inference_steps timesteps = np.linspace( self._sigma_to_t(self.sigma_max), self._sigma_to_t(self.sigma_min), num_inference_steps ) sigmas = timesteps / self.config.num_train_timesteps sigmas = self.config.shift * sigmas / (1 + (self.config.shift - 1) * sigmas) sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32, device=device) timesteps = sigmas * self.config.num_train_timesteps timesteps = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2)]) self.timesteps = timesteps.to(device=device)
1,371
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_flow_match_heun_discrete.py
sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)]) self.sigmas = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2), sigmas[-1:]]) # empty dt and derivative self.prev_derivative = None self.dt = None self._step_index = None self._begin_index = None def index_for_timestep(self, timestep, schedule_timesteps=None): if schedule_timesteps is None: schedule_timesteps = self.timesteps indices = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) pos = 1 if len(indices) > 1 else 0 return indices[pos].item()
1,371
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_flow_match_heun_discrete.py
def _init_step_index(self, timestep): if self.begin_index is None: if isinstance(timestep, torch.Tensor): timestep = timestep.to(self.timesteps.device) self._step_index = self.index_for_timestep(timestep) else: self._step_index = self._begin_index @property def state_in_first_order(self): return self.dt is None
1,371
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_flow_match_heun_discrete.py
def step( self, model_output: torch.FloatTensor, timestep: Union[float, torch.FloatTensor], sample: torch.FloatTensor, s_churn: float = 0.0, s_tmin: float = 0.0, s_tmax: float = float("inf"), s_noise: float = 1.0, generator: Optional[torch.Generator] = None, return_dict: bool = True, ) -> Union[FlowMatchHeunDiscreteSchedulerOutput, Tuple]: """ Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion process from the learned model outputs (most often the predicted noise).
1,371
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_flow_match_heun_discrete.py
Args: model_output (`torch.FloatTensor`): The direct output from learned diffusion model. timestep (`float`): The current discrete timestep in the diffusion chain. sample (`torch.FloatTensor`): A current instance of a sample created by the diffusion process. s_churn (`float`): s_tmin (`float`): s_tmax (`float`): s_noise (`float`, defaults to 1.0): Scaling factor for noise added to the sample. generator (`torch.Generator`, *optional*): A random number generator. return_dict (`bool`): Whether or not to return a [`~schedulers.scheduling_Heun_discrete.HeunDiscreteSchedulerOutput`] or tuple.
1,371
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_flow_match_heun_discrete.py
Returns: [`~schedulers.scheduling_Heun_discrete.HeunDiscreteSchedulerOutput`] or `tuple`: If return_dict is `True`, [`~schedulers.scheduling_Heun_discrete.HeunDiscreteSchedulerOutput`] is returned, otherwise a tuple is returned where the first element is the sample tensor. """ if ( isinstance(timestep, int) or isinstance(timestep, torch.IntTensor) or isinstance(timestep, torch.LongTensor) ): raise ValueError( ( "Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to" " `HeunDiscreteScheduler.step()` is not supported. Make sure to pass" " one of the `scheduler.timesteps` as a timestep." ), ) if self.step_index is None: self._init_step_index(timestep)
1,371
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_flow_match_heun_discrete.py
# Upcast to avoid precision issues when computing prev_sample sample = sample.to(torch.float32) if self.state_in_first_order: sigma = self.sigmas[self.step_index] sigma_next = self.sigmas[self.step_index + 1] else: # 2nd order / Heun's method sigma = self.sigmas[self.step_index - 1] sigma_next = self.sigmas[self.step_index] gamma = min(s_churn / (len(self.sigmas) - 1), 2**0.5 - 1) if s_tmin <= sigma <= s_tmax else 0.0 sigma_hat = sigma * (gamma + 1) if gamma > 0: noise = randn_tensor( model_output.shape, dtype=model_output.dtype, device=model_output.device, generator=generator ) eps = noise * s_noise sample = sample + eps * (sigma_hat**2 - sigma**2) ** 0.5
1,371
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_flow_match_heun_discrete.py
if self.state_in_first_order: # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise denoised = sample - model_output * sigma # 2. convert to an ODE derivative for 1st order derivative = (sample - denoised) / sigma_hat # 3. Delta timestep dt = sigma_next - sigma_hat # store for 2nd order step self.prev_derivative = derivative self.dt = dt self.sample = sample else: # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise denoised = sample - model_output * sigma_next # 2. 2nd order / Heun's method derivative = (sample - denoised) / sigma_next derivative = 0.5 * (self.prev_derivative + derivative) # 3. take prev timestep & sample dt = self.dt sample = self.sample
1,371
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_flow_match_heun_discrete.py
# free dt and derivative # Note, this puts the scheduler in "first order mode" self.prev_derivative = None self.dt = None self.sample = None prev_sample = sample + derivative * dt # Cast sample back to model compatible dtype prev_sample = prev_sample.to(model_output.dtype) # upon completion increase step index by one self._step_index += 1 if not return_dict: return (prev_sample,) return FlowMatchHeunDiscreteSchedulerOutput(prev_sample=prev_sample) def __len__(self): return self.config.num_train_timesteps
1,371
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_flow_match_heun_discrete.py
class PNDMScheduler(SchedulerMixin, ConfigMixin): """ `PNDMScheduler` uses pseudo numerical methods for diffusion models such as the Runge-Kutta and linear multi-step method. This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic methods the library implements for all schedulers such as loading and saving.
1,372
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_pndm.py
Args: num_train_timesteps (`int`, defaults to 1000): The number of diffusion steps to train the model. beta_start (`float`, defaults to 0.0001): The starting `beta` value of inference. beta_end (`float`, defaults to 0.02): The final `beta` value. beta_schedule (`str`, defaults to `"linear"`): The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from `linear`, `scaled_linear`, or `squaredcos_cap_v2`. trained_betas (`np.ndarray`, *optional*): Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`. skip_prk_steps (`bool`, defaults to `False`): Allows the scheduler to skip the Runge-Kutta steps defined in the original paper as being required before PLMS steps. set_alpha_to_one (`bool`, defaults to `False`):
1,372
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_pndm.py
Each diffusion step uses the alphas product value at that step and at the previous one. For the final step there is no previous alpha. When this option is `True` the previous alpha product is fixed to `1`, otherwise it uses the alpha value at step 0. prediction_type (`str`, defaults to `epsilon`, *optional*): Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process) or `v_prediction` (see section 2.4 of [Imagen Video](https://imagen.research.google/video/paper.pdf) paper). timestep_spacing (`str`, defaults to `"leading"`): The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://huggingface.co./papers/2305.08891) for more information. steps_offset (`int`, defaults to 0): An offset added to the inference steps, as required by some model families. """
1,372
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_pndm.py
_compatibles = [e.name for e in KarrasDiffusionSchedulers] order = 1
1,372
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_pndm.py
@register_to_config def __init__( self, num_train_timesteps: int = 1000, beta_start: float = 0.0001, beta_end: float = 0.02, beta_schedule: str = "linear", trained_betas: Optional[Union[np.ndarray, List[float]]] = None, skip_prk_steps: bool = False, set_alpha_to_one: bool = False, prediction_type: str = "epsilon", timestep_spacing: str = "leading", steps_offset: int = 0, ): if trained_betas is not None: self.betas = torch.tensor(trained_betas, dtype=torch.float32) elif beta_schedule == "linear": self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
1,372
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_pndm.py
elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule self.betas = betas_for_alpha_bar(num_train_timesteps) else: raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
1,372
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_pndm.py
self.alphas = 1.0 - self.betas self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) self.final_alpha_cumprod = torch.tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0] # standard deviation of the initial noise distribution self.init_noise_sigma = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. self.pndm_order = 4 # running values self.cur_model_output = 0 self.counter = 0 self.cur_sample = None self.ets = [] # setable values self.num_inference_steps = None self._timesteps = np.arange(0, num_train_timesteps)[::-1].copy() self.prk_timesteps = None self.plms_timesteps = None self.timesteps = None
1,372
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_pndm.py
def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None): """ Sets the discrete timesteps used for the diffusion chain (to be run before inference). Args: num_inference_steps (`int`): The number of diffusion steps used when generating samples with a pre-trained model. device (`str` or `torch.device`, *optional*): The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. """
1,372
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_pndm.py
self.num_inference_steps = num_inference_steps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": self._timesteps = ( np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps).round().astype(np.int64) ) elif self.config.timestep_spacing == "leading": step_ratio = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 self._timesteps = (np.arange(0, num_inference_steps) * step_ratio).round() self._timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": step_ratio = self.config.num_train_timesteps / self.num_inference_steps
1,372
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_pndm.py
# creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 self._timesteps = np.round(np.arange(self.config.num_train_timesteps, 0, -step_ratio))[::-1].astype( np.int64 ) self._timesteps -= 1 else: raise ValueError( f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'." )
1,372
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_pndm.py
if self.config.skip_prk_steps: # for some models like stable diffusion the prk steps can/should be skipped to # produce better results. When using PNDM with `self.config.skip_prk_steps` the implementation # is based on crowsonkb's PLMS sampler implementation: https://github.com/CompVis/latent-diffusion/pull/51 self.prk_timesteps = np.array([]) self.plms_timesteps = np.concatenate([self._timesteps[:-1], self._timesteps[-2:-1], self._timesteps[-1:]])[ ::-1 ].copy() else: prk_timesteps = np.array(self._timesteps[-self.pndm_order :]).repeat(2) + np.tile( np.array([0, self.config.num_train_timesteps // num_inference_steps // 2]), self.pndm_order ) self.prk_timesteps = (prk_timesteps[:-1].repeat(2)[1:-1])[::-1].copy() self.plms_timesteps = self._timesteps[:-3][ ::-1
1,372
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_pndm.py
].copy() # we copy to avoid having negative strides which are not supported by torch.from_numpy
1,372
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_pndm.py
timesteps = np.concatenate([self.prk_timesteps, self.plms_timesteps]).astype(np.int64) self.timesteps = torch.from_numpy(timesteps).to(device) self.ets = [] self.counter = 0 self.cur_model_output = 0 def step( self, model_output: torch.Tensor, timestep: int, sample: torch.Tensor, return_dict: bool = True, ) -> Union[SchedulerOutput, Tuple]: """ Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion process from the learned model outputs (most often the predicted noise), and calls [`~PNDMScheduler.step_prk`] or [`~PNDMScheduler.step_plms`] depending on the internal variable `counter`.
1,372
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_pndm.py
Args: model_output (`torch.Tensor`): The direct output from learned diffusion model. timestep (`int`): The current discrete timestep in the diffusion chain. sample (`torch.Tensor`): A current instance of a sample created by the diffusion process. return_dict (`bool`): Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`. Returns: [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`: If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a tuple is returned where the first element is the sample tensor.
1,372
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_pndm.py
""" if self.counter < len(self.prk_timesteps) and not self.config.skip_prk_steps: return self.step_prk(model_output=model_output, timestep=timestep, sample=sample, return_dict=return_dict) else: return self.step_plms(model_output=model_output, timestep=timestep, sample=sample, return_dict=return_dict) def step_prk( self, model_output: torch.Tensor, timestep: int, sample: torch.Tensor, return_dict: bool = True, ) -> Union[SchedulerOutput, Tuple]: """ Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with the Runge-Kutta method. It performs four forward passes to approximate the solution to the differential equation.
1,372
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_pndm.py
Args: model_output (`torch.Tensor`): The direct output from learned diffusion model. timestep (`int`): The current discrete timestep in the diffusion chain. sample (`torch.Tensor`): A current instance of a sample created by the diffusion process. return_dict (`bool`): Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or tuple. Returns: [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`: If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a tuple is returned where the first element is the sample tensor. """ if self.num_inference_steps is None: raise ValueError( "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" )
1,372
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_pndm.py
diff_to_prev = 0 if self.counter % 2 else self.config.num_train_timesteps // self.num_inference_steps // 2 prev_timestep = timestep - diff_to_prev timestep = self.prk_timesteps[self.counter // 4 * 4] if self.counter % 4 == 0: self.cur_model_output += 1 / 6 * model_output self.ets.append(model_output) self.cur_sample = sample elif (self.counter - 1) % 4 == 0: self.cur_model_output += 1 / 3 * model_output elif (self.counter - 2) % 4 == 0: self.cur_model_output += 1 / 3 * model_output elif (self.counter - 3) % 4 == 0: model_output = self.cur_model_output + 1 / 6 * model_output self.cur_model_output = 0 # cur_sample should not be `None` cur_sample = self.cur_sample if self.cur_sample is not None else sample prev_sample = self._get_prev_sample(cur_sample, timestep, prev_timestep, model_output) self.counter += 1
1,372
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_pndm.py
if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=prev_sample) def step_plms( self, model_output: torch.Tensor, timestep: int, sample: torch.Tensor, return_dict: bool = True, ) -> Union[SchedulerOutput, Tuple]: """ Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with the linear multistep method. It performs one forward pass multiple times to approximate the solution.
1,372
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_pndm.py
Args: model_output (`torch.Tensor`): The direct output from learned diffusion model. timestep (`int`): The current discrete timestep in the diffusion chain. sample (`torch.Tensor`): A current instance of a sample created by the diffusion process. return_dict (`bool`): Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or tuple. Returns: [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`: If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a tuple is returned where the first element is the sample tensor. """ if self.num_inference_steps is None: raise ValueError( "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" )
1,372
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_pndm.py
if not self.config.skip_prk_steps and len(self.ets) < 3: raise ValueError( f"{self.__class__} can only be run AFTER scheduler has been run " "in 'prk' mode for at least 12 iterations " "See: https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/pipeline_pndm.py " "for more information." ) prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps if self.counter != 1: self.ets = self.ets[-3:] self.ets.append(model_output) else: prev_timestep = timestep timestep = timestep + self.config.num_train_timesteps // self.num_inference_steps
1,372
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_pndm.py
if len(self.ets) == 1 and self.counter == 0: model_output = model_output self.cur_sample = sample elif len(self.ets) == 1 and self.counter == 1: model_output = (model_output + self.ets[-1]) / 2 sample = self.cur_sample self.cur_sample = None elif len(self.ets) == 2: model_output = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets) == 3: model_output = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: model_output = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) prev_sample = self._get_prev_sample(sample, timestep, prev_timestep, model_output) self.counter += 1 if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=prev_sample)
1,372
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_pndm.py
def scale_model_input(self, sample: torch.Tensor, *args, **kwargs) -> torch.Tensor: """ Ensures interchangeability with schedulers that need to scale the denoising model input depending on the current timestep. Args: sample (`torch.Tensor`): The input sample. Returns: `torch.Tensor`: A scaled input sample. """ return sample def _get_prev_sample(self, sample, timestep, prev_timestep, model_output): # See formula (9) of PNDM paper https://arxiv.org/pdf/2202.09778.pdf # this function computes x_(t−δ) using the formula of (9) # Note that x_t needs to be added to both sides of the equation
1,372
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_pndm.py
# Notation (<variable name> -> <name in paper> # alpha_prod_t -> α_t # alpha_prod_t_prev -> α_(t−δ) # beta_prod_t -> (1 - α_t) # beta_prod_t_prev -> (1 - α_(t−δ)) # sample -> x_t # model_output -> e_θ(x_t, t) # prev_sample -> x_(t−δ) alpha_prod_t = self.alphas_cumprod[timestep] alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod beta_prod_t = 1 - alpha_prod_t beta_prod_t_prev = 1 - alpha_prod_t_prev if self.config.prediction_type == "v_prediction": model_output = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample elif self.config.prediction_type != "epsilon": raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `v_prediction`" )
1,372
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_pndm.py
# corresponds to (α_(t−δ) - α_t) divided by # denominator of x_t in formula (9) and plus 1 # Note: (α_(t−δ) - α_t) / (sqrt(α_t) * (sqrt(α_(t−δ)) + sqr(α_t))) = # sqrt(α_(t−δ)) / sqrt(α_t)) sample_coeff = (alpha_prod_t_prev / alpha_prod_t) ** (0.5) # corresponds to denominator of e_θ(x_t, t) in formula (9) model_output_denom_coeff = alpha_prod_t * beta_prod_t_prev ** (0.5) + ( alpha_prod_t * beta_prod_t * alpha_prod_t_prev ) ** (0.5) # full formula (9) prev_sample = ( sample_coeff * sample - (alpha_prod_t_prev - alpha_prod_t) * model_output / model_output_denom_coeff ) return prev_sample
1,372
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_pndm.py
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.add_noise def add_noise( self, original_samples: torch.Tensor, noise: torch.Tensor, timesteps: torch.IntTensor, ) -> torch.Tensor: # Make sure alphas_cumprod and timestep have same device and dtype as original_samples # Move the self.alphas_cumprod to device to avoid redundant CPU to GPU data movement # for the subsequent add_noise calls self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device) alphas_cumprod = self.alphas_cumprod.to(dtype=original_samples.dtype) timesteps = timesteps.to(original_samples.device) sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5 sqrt_alpha_prod = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape) < len(original_samples.shape): sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
1,372
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_pndm.py
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5 sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape): sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1) noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def __len__(self): return self.config.num_train_timesteps
1,372
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_pndm.py
class DPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin): """ `DPMSolverMultistepScheduler` is a fast dedicated high-order solver for diffusion ODEs. This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic methods the library implements for all schedulers such as loading and saving.
1,373
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep.py
Args: num_train_timesteps (`int`, defaults to 1000): The number of diffusion steps to train the model. beta_start (`float`, defaults to 0.0001): The starting `beta` value of inference. beta_end (`float`, defaults to 0.02): The final `beta` value. beta_schedule (`str`, defaults to `"linear"`): The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from `linear`, `scaled_linear`, or `squaredcos_cap_v2`. trained_betas (`np.ndarray`, *optional*): Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`. solver_order (`int`, defaults to 2): The DPMSolver order which can be `1` or `2` or `3`. It is recommended to use `solver_order=2` for guided sampling, and `solver_order=3` for unconditional sampling. prediction_type (`str`, defaults to `epsilon`, *optional*):
1,373
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep.py
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process), `sample` (directly predicts the noisy sample), `v_prediction` (see section 2.4 of [Imagen Video](https://imagen.research.google/video/paper.pdf) paper), or `flow_prediction`. thresholding (`bool`, defaults to `False`): Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such as Stable Diffusion. dynamic_thresholding_ratio (`float`, defaults to 0.995): The ratio for the dynamic thresholding method. Valid only when `thresholding=True`. sample_max_value (`float`, defaults to 1.0): The threshold value for dynamic thresholding. Valid only when `thresholding=True` and `algorithm_type="dpmsolver++"`. algorithm_type (`str`, defaults to `dpmsolver++`):
1,373
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep.py
Algorithm type for the solver; can be `dpmsolver`, `dpmsolver++`, `sde-dpmsolver` or `sde-dpmsolver++`. The `dpmsolver` type implements the algorithms in the [DPMSolver](https://huggingface.co./papers/2206.00927) paper, and the `dpmsolver++` type implements the algorithms in the [DPMSolver++](https://huggingface.co./papers/2211.01095) paper. It is recommended to use `dpmsolver++` or `sde-dpmsolver++` with `solver_order=2` for guided sampling like in Stable Diffusion. solver_type (`str`, defaults to `midpoint`): Solver type for the second-order solver; can be `midpoint` or `heun`. The solver type slightly affects the sample quality, especially for a small number of steps. It is recommended to use `midpoint` solvers. lower_order_final (`bool`, defaults to `True`): Whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps. This can
1,373
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep.py
stabilize the sampling of DPMSolver for steps < 15, especially for steps <= 10. euler_at_final (`bool`, defaults to `False`): Whether to use Euler's method in the final step. It is a trade-off between numerical stability and detail richness. This can stabilize the sampling of the SDE variant of DPMSolver for small number of inference steps, but sometimes may result in blurring. use_karras_sigmas (`bool`, *optional*, defaults to `False`): Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`, the sigmas are determined according to a sequence of noise levels {σi}. use_exponential_sigmas (`bool`, *optional*, defaults to `False`): Whether to use exponential sigmas for step sizes in the noise schedule during the sampling process. use_beta_sigmas (`bool`, *optional*, defaults to `False`):
1,373
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep.py
Whether to use beta sigmas for step sizes in the noise schedule during the sampling process. Refer to [Beta Sampling is All You Need](https://huggingface.co./papers/2407.12173) for more information. use_lu_lambdas (`bool`, *optional*, defaults to `False`): Whether to use the uniform-logSNR for step sizes proposed by Lu's DPM-Solver in the noise schedule during the sampling process. If `True`, the sigmas and time steps are determined according to a sequence of `lambda(t)`. use_flow_sigmas (`bool`, *optional*, defaults to `False`): Whether to use flow sigmas for step sizes in the noise schedule during the sampling process. flow_shift (`float`, *optional*, defaults to 1.0): The shift value for the timestep schedule for flow matching. final_sigmas_type (`str`, defaults to `"zero"`): The final `sigma` value for the noise schedule during the sampling process. If `"sigma_min"`, the final
1,373
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep.py
sigma is the same as the last sigma in the training schedule. If `zero`, the final sigma is set to 0. lambda_min_clipped (`float`, defaults to `-inf`): Clipping threshold for the minimum value of `lambda(t)` for numerical stability. This is critical for the cosine (`squaredcos_cap_v2`) noise schedule. variance_type (`str`, *optional*): Set to "learned" or "learned_range" for diffusion models that predict variance. If set, the model's output contains the predicted Gaussian variance. timestep_spacing (`str`, defaults to `"linspace"`): The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://huggingface.co./papers/2305.08891) for more information. steps_offset (`int`, defaults to 0): An offset added to the inference steps, as required by some model families.
1,373
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep.py
rescale_betas_zero_snr (`bool`, defaults to `False`): Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and dark samples instead of limiting it to samples with medium brightness. Loosely related to [`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506). """
1,373
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep.py
_compatibles = [e.name for e in KarrasDiffusionSchedulers] order = 1
1,373
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep.py
@register_to_config def __init__( self, num_train_timesteps: int = 1000, beta_start: float = 0.0001, beta_end: float = 0.02, beta_schedule: str = "linear", trained_betas: Optional[Union[np.ndarray, List[float]]] = None, solver_order: int = 2, prediction_type: str = "epsilon", thresholding: bool = False, dynamic_thresholding_ratio: float = 0.995, sample_max_value: float = 1.0, algorithm_type: str = "dpmsolver++", solver_type: str = "midpoint", lower_order_final: bool = True, euler_at_final: bool = False, use_karras_sigmas: Optional[bool] = False, use_exponential_sigmas: Optional[bool] = False, use_beta_sigmas: Optional[bool] = False, use_lu_lambdas: Optional[bool] = False, use_flow_sigmas: Optional[bool] = False, flow_shift: Optional[float] = 1.0, final_sigmas_type: Optional[str] = "zero", # "zero", "sigma_min"
1,373
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep.py
lambda_min_clipped: float = -float("inf"), variance_type: Optional[str] = None, timestep_spacing: str = "linspace", steps_offset: int = 0, rescale_betas_zero_snr: bool = False, ): if self.config.use_beta_sigmas and not is_scipy_available(): raise ImportError("Make sure to install scipy if you want to use beta sigmas.") if sum([self.config.use_beta_sigmas, self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1: raise ValueError( "Only one of `config.use_beta_sigmas`, `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used." ) if algorithm_type in ["dpmsolver", "sde-dpmsolver"]: deprecation_message = f"algorithm_type {algorithm_type} is deprecated and will be removed in a future version. Choose from `dpmsolver++` or `sde-dpmsolver++` instead" deprecate("algorithm_types dpmsolver and sde-dpmsolver", "1.0.0", deprecation_message)
1,373
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep.py
if trained_betas is not None: self.betas = torch.tensor(trained_betas, dtype=torch.float32) elif beta_schedule == "linear": self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2 elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule self.betas = betas_for_alpha_bar(num_train_timesteps) else: raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}") if rescale_betas_zero_snr: self.betas = rescale_zero_terminal_snr(self.betas) self.alphas = 1.0 - self.betas self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
1,373
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep.py
if rescale_betas_zero_snr: # Close to 0 without being 0 so first sigma is not inf # FP16 smallest positive subnormal works well here self.alphas_cumprod[-1] = 2**-24 # Currently we only support VP-type noise schedule self.alpha_t = torch.sqrt(self.alphas_cumprod) self.sigma_t = torch.sqrt(1 - self.alphas_cumprod) self.lambda_t = torch.log(self.alpha_t) - torch.log(self.sigma_t) self.sigmas = ((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 # standard deviation of the initial noise distribution self.init_noise_sigma = 1.0 # settings for DPM-Solver if algorithm_type not in ["dpmsolver", "dpmsolver++", "sde-dpmsolver", "sde-dpmsolver++"]: if algorithm_type == "deis": self.register_to_config(algorithm_type="dpmsolver++") else: raise NotImplementedError(f"{algorithm_type} is not implemented for {self.__class__}")
1,373
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep.py
if solver_type not in ["midpoint", "heun"]: if solver_type in ["logrho", "bh1", "bh2"]: self.register_to_config(solver_type="midpoint") else: raise NotImplementedError(f"{solver_type} is not implemented for {self.__class__}") if algorithm_type not in ["dpmsolver++", "sde-dpmsolver++"] and final_sigmas_type == "zero": raise ValueError( f"`final_sigmas_type` {final_sigmas_type} is not supported for `algorithm_type` {algorithm_type}. Please choose `sigma_min` instead." )
1,373
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep.py
# setable values self.num_inference_steps = None timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=np.float32)[::-1].copy() self.timesteps = torch.from_numpy(timesteps) self.model_outputs = [None] * solver_order self.lower_order_nums = 0 self._step_index = None self._begin_index = None self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication @property def step_index(self): """ The index counter for current timestep. It will increase 1 after each scheduler step. """ return self._step_index @property def begin_index(self): """ The index for the first timestep. It should be set from pipeline with `set_begin_index` method. """ return self._begin_index
1,373
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep.py
def set_begin_index(self, begin_index: int = 0): """ Sets the begin index for the scheduler. This function should be run from pipeline before the inference. Args: begin_index (`int`): The begin index for the scheduler. """ self._begin_index = begin_index def set_timesteps( self, num_inference_steps: int = None, device: Union[str, torch.device] = None, timesteps: Optional[List[int]] = None, ): """ Sets the discrete timesteps used for the diffusion chain (to be run before inference).
1,373
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep.py
Args: num_inference_steps (`int`): The number of diffusion steps used when generating samples with a pre-trained model. device (`str` or `torch.device`, *optional*): The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. timesteps (`List[int]`, *optional*): Custom timesteps used to support arbitrary timesteps schedule. If `None`, timesteps will be generated based on the `timestep_spacing` attribute. If `timesteps` is passed, `num_inference_steps` and `sigmas` must be `None`, and `timestep_spacing` attribute will be ignored. """ if num_inference_steps is None and timesteps is None: raise ValueError("Must pass exactly one of `num_inference_steps` or `timesteps`.") if num_inference_steps is not None and timesteps is not None:
1,373
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep.py
raise ValueError("Can only pass one of `num_inference_steps` or `custom_timesteps`.") if timesteps is not None and self.config.use_karras_sigmas: raise ValueError("Cannot use `timesteps` with `config.use_karras_sigmas = True`") if timesteps is not None and self.config.use_lu_lambdas: raise ValueError("Cannot use `timesteps` with `config.use_lu_lambdas = True`") if timesteps is not None and self.config.use_exponential_sigmas: raise ValueError("Cannot set `timesteps` with `config.use_exponential_sigmas = True`.") if timesteps is not None and self.config.use_beta_sigmas: raise ValueError("Cannot set `timesteps` with `config.use_beta_sigmas = True`.")
1,373
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep.py
if timesteps is not None: timesteps = np.array(timesteps).astype(np.int64) else: # Clipping the minimum of all lambda(t) for numerical stability. # This is critical for cosine (squaredcos_cap_v2) noise schedule. clipped_idx = torch.searchsorted(torch.flip(self.lambda_t, [0]), self.config.lambda_min_clipped) last_timestep = ((self.config.num_train_timesteps - clipped_idx).numpy()).item()
1,373
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep.py
# "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": timesteps = ( np.linspace(0, last_timestep - 1, num_inference_steps + 1) .round()[::-1][:-1] .copy() .astype(np.int64) ) elif self.config.timestep_spacing == "leading": step_ratio = last_timestep // (num_inference_steps + 1) # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 timesteps = ( (np.arange(0, num_inference_steps + 1) * step_ratio).round()[::-1][:-1].copy().astype(np.int64) ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing":
1,373
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep.py
step_ratio = self.config.num_train_timesteps / num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 timesteps = np.arange(last_timestep, 0, -step_ratio).round().copy().astype(np.int64) timesteps -= 1 else: raise ValueError( f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'." )
1,373
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep.py
sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) log_sigmas = np.log(sigmas)
1,373
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep.py
if self.config.use_karras_sigmas: sigmas = np.flip(sigmas).copy() sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps) timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round() elif self.config.use_lu_lambdas: lambdas = np.flip(log_sigmas.copy()) lambdas = self._convert_to_lu(in_lambdas=lambdas, num_inference_steps=num_inference_steps) sigmas = np.exp(lambdas) timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round() elif self.config.use_exponential_sigmas: sigmas = np.flip(sigmas).copy() sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=num_inference_steps) timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]) elif self.config.use_beta_sigmas: sigmas = np.flip(sigmas).copy()
1,373
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep.py
sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=num_inference_steps) timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]) elif self.config.use_flow_sigmas: alphas = np.linspace(1, 1 / self.config.num_train_timesteps, num_inference_steps + 1) sigmas = 1.0 - alphas sigmas = np.flip(self.config.flow_shift * sigmas / (1 + (self.config.flow_shift - 1) * sigmas))[:-1].copy() timesteps = (sigmas * self.config.num_train_timesteps).copy() else: sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
1,373
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep.py
if self.config.final_sigmas_type == "sigma_min": sigma_last = ((1 - self.alphas_cumprod[0]) / self.alphas_cumprod[0]) ** 0.5 elif self.config.final_sigmas_type == "zero": sigma_last = 0 else: raise ValueError( f"`final_sigmas_type` must be one of 'zero', or 'sigma_min', but got {self.config.final_sigmas_type}" ) sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32) self.sigmas = torch.from_numpy(sigmas) self.timesteps = torch.from_numpy(timesteps).to(device=device, dtype=torch.int64) self.num_inference_steps = len(timesteps) self.model_outputs = [ None, ] * self.config.solver_order self.lower_order_nums = 0 # add an index counter for schedulers that allow duplicated timesteps self._step_index = None self._begin_index = None self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
1,373
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep.py
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor: """ "Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing pixels from saturation at each step. We find that dynamic thresholding results in significantly better photorealism as well as better image-text alignment, especially when using very large guidance weights." https://arxiv.org/abs/2205.11487 """ dtype = sample.dtype batch_size, channels, *remaining_dims = sample.shape
1,373
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep.py
if dtype not in (torch.float32, torch.float64): sample = sample.float() # upcast for quantile calculation, and clamp not implemented for cpu half # Flatten sample for doing quantile calculation along each image sample = sample.reshape(batch_size, channels * np.prod(remaining_dims)) abs_sample = sample.abs() # "a certain percentile absolute pixel value" s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1) s = torch.clamp( s, min=1, max=self.config.sample_max_value ) # When clamped to min=1, equivalent to standard clipping to [-1, 1] s = s.unsqueeze(1) # (batch_size, 1) because clamp will broadcast along dim=0 sample = torch.clamp(sample, -s, s) / s # "we threshold xt0 to the range [-s, s] and then divide by s" sample = sample.reshape(batch_size, channels, *remaining_dims) sample = sample.to(dtype) return sample
1,373
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep.py
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t def _sigma_to_t(self, sigma, log_sigmas): # get log sigma log_sigma = np.log(np.maximum(sigma, 1e-10)) # get distribution dists = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2) high_idx = low_idx + 1 low = log_sigmas[low_idx] high = log_sigmas[high_idx] # interpolate sigmas w = (low - log_sigma) / (low - high) w = np.clip(w, 0, 1) # transform interpolation to time range t = (1 - w) * low_idx + w * high_idx t = t.reshape(sigma.shape) return t
1,373
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep.py
def _sigma_to_alpha_sigma_t(self, sigma): if self.config.use_flow_sigmas: alpha_t = 1 - sigma sigma_t = sigma else: alpha_t = 1 / ((sigma**2 + 1) ** 0.5) sigma_t = sigma * alpha_t return alpha_t, sigma_t # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps) -> torch.Tensor: """Constructs the noise schedule of Karras et al. (2022).""" # Hack to make sure that other schedulers which copy this function don't break # TODO: Add this logic to the other schedulers if hasattr(self.config, "sigma_min"): sigma_min = self.config.sigma_min else: sigma_min = None if hasattr(self.config, "sigma_max"): sigma_max = self.config.sigma_max else: sigma_max = None
1,373
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep.py
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item() sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item() rho = 7.0 # 7.0 is the value used in the paper ramp = np.linspace(0, 1, num_inference_steps) min_inv_rho = sigma_min ** (1 / rho) max_inv_rho = sigma_max ** (1 / rho) sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas def _convert_to_lu(self, in_lambdas: torch.Tensor, num_inference_steps) -> torch.Tensor: """Constructs the noise schedule of Lu et al. (2022).""" lambda_min: float = in_lambdas[-1].item() lambda_max: float = in_lambdas[0].item() rho = 1.0 # 1.0 is the value used in the paper ramp = np.linspace(0, 1, num_inference_steps) min_inv_rho = lambda_min ** (1 / rho) max_inv_rho = lambda_max ** (1 / rho) lambdas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return lambdas
1,373
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep.py
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_exponential def _convert_to_exponential(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor: """Constructs an exponential noise schedule.""" # Hack to make sure that other schedulers which copy this function don't break # TODO: Add this logic to the other schedulers if hasattr(self.config, "sigma_min"): sigma_min = self.config.sigma_min else: sigma_min = None if hasattr(self.config, "sigma_max"): sigma_max = self.config.sigma_max else: sigma_max = None sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item() sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item() sigmas = np.exp(np.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps)) return sigmas
1,373
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep.py
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_beta def _convert_to_beta( self, in_sigmas: torch.Tensor, num_inference_steps: int, alpha: float = 0.6, beta: float = 0.6 ) -> torch.Tensor: """From "Beta Sampling is All You Need" [arXiv:2407.12173] (Lee et. al, 2024)""" # Hack to make sure that other schedulers which copy this function don't break # TODO: Add this logic to the other schedulers if hasattr(self.config, "sigma_min"): sigma_min = self.config.sigma_min else: sigma_min = None if hasattr(self.config, "sigma_max"): sigma_max = self.config.sigma_max else: sigma_max = None sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item() sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
1,373
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep.py
sigmas = np.array( [ sigma_min + (ppf * (sigma_max - sigma_min)) for ppf in [ scipy.stats.beta.ppf(timestep, alpha, beta) for timestep in 1 - np.linspace(0, 1, num_inference_steps) ] ] ) return sigmas def convert_model_output( self, model_output: torch.Tensor, *args, sample: torch.Tensor = None, **kwargs, ) -> torch.Tensor: """ Convert the model output to the corresponding type the DPMSolver/DPMSolver++ algorithm needs. DPM-Solver is designed to discretize an integral of the noise prediction model, and DPM-Solver++ is designed to discretize an integral of the data prediction model. <Tip> The algorithm and model type are decoupled. You can use either DPMSolver or DPMSolver++ for both noise prediction and data prediction models. </Tip>
1,373
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep.py
Args: model_output (`torch.Tensor`): The direct output from the learned diffusion model. sample (`torch.Tensor`): A current instance of a sample created by the diffusion process. Returns: `torch.Tensor`: The converted model output. """ timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None) if sample is None: if len(args) > 1: sample = args[1] else: raise ValueError("missing `sample` as a required keyward argument") if timestep is not None: deprecate( "timesteps", "1.0.0", "Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`", )
1,373
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep.py
# DPM-Solver++ needs to solve an integral of the data prediction model. if self.config.algorithm_type in ["dpmsolver++", "sde-dpmsolver++"]: if self.config.prediction_type == "epsilon": # DPM-Solver and DPM-Solver++ only need the "mean" output. if self.config.variance_type in ["learned", "learned_range"]: model_output = model_output[:, :3] sigma = self.sigmas[self.step_index] alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma) x0_pred = (sample - sigma_t * model_output) / alpha_t elif self.config.prediction_type == "sample": x0_pred = model_output elif self.config.prediction_type == "v_prediction": sigma = self.sigmas[self.step_index] alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma) x0_pred = alpha_t * sample - sigma_t * model_output
1,373
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep.py
elif self.config.prediction_type == "flow_prediction": sigma_t = self.sigmas[self.step_index] x0_pred = sample - sigma_t * model_output else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, " "`v_prediction`, or `flow_prediction` for the DPMSolverMultistepScheduler." )
1,373
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep.py
if self.config.thresholding: x0_pred = self._threshold_sample(x0_pred) return x0_pred
1,373
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep.py
# DPM-Solver needs to solve an integral of the noise prediction model. elif self.config.algorithm_type in ["dpmsolver", "sde-dpmsolver"]: if self.config.prediction_type == "epsilon": # DPM-Solver and DPM-Solver++ only need the "mean" output. if self.config.variance_type in ["learned", "learned_range"]: epsilon = model_output[:, :3] else: epsilon = model_output elif self.config.prediction_type == "sample": sigma = self.sigmas[self.step_index] alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma) epsilon = (sample - alpha_t * model_output) / sigma_t elif self.config.prediction_type == "v_prediction": sigma = self.sigmas[self.step_index] alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma) epsilon = alpha_t * model_output + sigma_t * sample else:
1,373
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep.py
raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or" " `v_prediction` for the DPMSolverMultistepScheduler." )
1,373
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep.py
if self.config.thresholding: sigma = self.sigmas[self.step_index] alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma) x0_pred = (sample - sigma_t * epsilon) / alpha_t x0_pred = self._threshold_sample(x0_pred) epsilon = (sample - alpha_t * x0_pred) / sigma_t return epsilon def dpm_solver_first_order_update( self, model_output: torch.Tensor, *args, sample: torch.Tensor = None, noise: Optional[torch.Tensor] = None, **kwargs, ) -> torch.Tensor: """ One step for the first-order DPMSolver (equivalent to DDIM). Args: model_output (`torch.Tensor`): The direct output from the learned diffusion model. sample (`torch.Tensor`): A current instance of a sample created by the diffusion process.
1,373
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep.py
Returns: `torch.Tensor`: The sample tensor at the previous timestep. """ timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None) prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None) if sample is None: if len(args) > 2: sample = args[2] else: raise ValueError(" missing `sample` as a required keyward argument") if timestep is not None: deprecate( "timesteps", "1.0.0", "Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`", )
1,373
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep.py
if prev_timestep is not None: deprecate( "prev_timestep", "1.0.0", "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`", ) sigma_t, sigma_s = self.sigmas[self.step_index + 1], self.sigmas[self.step_index] alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t) alpha_s, sigma_s = self._sigma_to_alpha_sigma_t(sigma_s) lambda_t = torch.log(alpha_t) - torch.log(sigma_t) lambda_s = torch.log(alpha_s) - torch.log(sigma_s)
1,373
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep.py
h = lambda_t - lambda_s if self.config.algorithm_type == "dpmsolver++": x_t = (sigma_t / sigma_s) * sample - (alpha_t * (torch.exp(-h) - 1.0)) * model_output elif self.config.algorithm_type == "dpmsolver": x_t = (alpha_t / alpha_s) * sample - (sigma_t * (torch.exp(h) - 1.0)) * model_output elif self.config.algorithm_type == "sde-dpmsolver++": assert noise is not None x_t = ( (sigma_t / sigma_s * torch.exp(-h)) * sample + (alpha_t * (1 - torch.exp(-2.0 * h))) * model_output + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise ) elif self.config.algorithm_type == "sde-dpmsolver": assert noise is not None x_t = ( (alpha_t / alpha_s) * sample - 2.0 * (sigma_t * (torch.exp(h) - 1.0)) * model_output + sigma_t * torch.sqrt(torch.exp(2 * h) - 1.0) * noise ) return x_t
1,373
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep.py
def multistep_dpm_solver_second_order_update( self, model_output_list: List[torch.Tensor], *args, sample: torch.Tensor = None, noise: Optional[torch.Tensor] = None, **kwargs, ) -> torch.Tensor: """ One step for the second-order multistep DPMSolver. Args: model_output_list (`List[torch.Tensor]`): The direct outputs from learned diffusion model at current and latter timesteps. sample (`torch.Tensor`): A current instance of a sample created by the diffusion process.
1,373
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep.py
Returns: `torch.Tensor`: The sample tensor at the previous timestep. """ timestep_list = args[0] if len(args) > 0 else kwargs.pop("timestep_list", None) prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None) if sample is None: if len(args) > 2: sample = args[2] else: raise ValueError(" missing `sample` as a required keyward argument") if timestep_list is not None: deprecate( "timestep_list", "1.0.0", "Passing `timestep_list` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`", )
1,373
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep.py
if prev_timestep is not None: deprecate( "prev_timestep", "1.0.0", "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`", ) sigma_t, sigma_s0, sigma_s1 = ( self.sigmas[self.step_index + 1], self.sigmas[self.step_index], self.sigmas[self.step_index - 1], ) alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t) alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0) alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1) lambda_t = torch.log(alpha_t) - torch.log(sigma_t) lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0) lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1) m0, m1 = model_output_list[-1], model_output_list[-2]
1,373
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep.py
h, h_0 = lambda_t - lambda_s0, lambda_s0 - lambda_s1 r0 = h_0 / h D0, D1 = m0, (1.0 / r0) * (m0 - m1) if self.config.algorithm_type == "dpmsolver++": # See https://arxiv.org/abs/2211.01095 for detailed derivations if self.config.solver_type == "midpoint": x_t = ( (sigma_t / sigma_s0) * sample - (alpha_t * (torch.exp(-h) - 1.0)) * D0 - 0.5 * (alpha_t * (torch.exp(-h) - 1.0)) * D1 ) elif self.config.solver_type == "heun": x_t = ( (sigma_t / sigma_s0) * sample - (alpha_t * (torch.exp(-h) - 1.0)) * D0 + (alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0)) * D1 ) elif self.config.algorithm_type == "dpmsolver": # See https://arxiv.org/abs/2206.00927 for detailed derivations if self.config.solver_type == "midpoint": x_t = (
1,373
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep.py
(alpha_t / alpha_s0) * sample - (sigma_t * (torch.exp(h) - 1.0)) * D0 - 0.5 * (sigma_t * (torch.exp(h) - 1.0)) * D1 ) elif self.config.solver_type == "heun": x_t = ( (alpha_t / alpha_s0) * sample - (sigma_t * (torch.exp(h) - 1.0)) * D0 - (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1 ) elif self.config.algorithm_type == "sde-dpmsolver++": assert noise is not None if self.config.solver_type == "midpoint": x_t = ( (sigma_t / sigma_s0 * torch.exp(-h)) * sample + (alpha_t * (1 - torch.exp(-2.0 * h))) * D0 + 0.5 * (alpha_t * (1 - torch.exp(-2.0 * h))) * D1 + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise ) elif self.config.solver_type == "heun": x_t = (
1,373
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep.py
(sigma_t / sigma_s0 * torch.exp(-h)) * sample + (alpha_t * (1 - torch.exp(-2.0 * h))) * D0 + (alpha_t * ((1.0 - torch.exp(-2.0 * h)) / (-2.0 * h) + 1.0)) * D1 + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise ) elif self.config.algorithm_type == "sde-dpmsolver": assert noise is not None if self.config.solver_type == "midpoint": x_t = ( (alpha_t / alpha_s0) * sample - 2.0 * (sigma_t * (torch.exp(h) - 1.0)) * D0 - (sigma_t * (torch.exp(h) - 1.0)) * D1 + sigma_t * torch.sqrt(torch.exp(2 * h) - 1.0) * noise ) elif self.config.solver_type == "heun": x_t = ( (alpha_t / alpha_s0) * sample - 2.0 * (sigma_t * (torch.exp(h) - 1.0)) * D0
1,373
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep.py
- 2.0 * (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1 + sigma_t * torch.sqrt(torch.exp(2 * h) - 1.0) * noise ) return x_t
1,373
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep.py
def multistep_dpm_solver_third_order_update( self, model_output_list: List[torch.Tensor], *args, sample: torch.Tensor = None, noise: Optional[torch.Tensor] = None, **kwargs, ) -> torch.Tensor: """ One step for the third-order multistep DPMSolver. Args: model_output_list (`List[torch.Tensor]`): The direct outputs from learned diffusion model at current and latter timesteps. sample (`torch.Tensor`): A current instance of a sample created by diffusion process. Returns: `torch.Tensor`: The sample tensor at the previous timestep. """
1,373
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep.py