text
stringlengths 1
1.02k
| class_index
int64 0
271
| source
stringclasses 76
values |
---|---|---|
self._state_dict["shard_example_idx"] = 0 | 16 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
def shard_data_sources(self, num_shards: int, index: int, contiguous=True) -> "ArrowExamplesIterable":
"""Keep only the requested shard."""
rng = deepcopy(self.generator)
kwargs_with_shuffled_shards = _shuffle_gen_kwargs(rng, self.kwargs)
return ArrowExamplesIterable(self.generate_tables_fn, kwargs_with_shuffled_shards).shard_data_sources(
num_shards, index, contiguous=contiguous
) | 16 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
class RebatchedArrowExamplesIterable(_BaseExamplesIterable):
def __init__(self, ex_iterable: _BaseExamplesIterable, batch_size: Optional[int], drop_last_batch: bool = False):
super().__init__()
self.ex_iterable = ex_iterable
self.batch_size = batch_size
self.drop_last_batch = drop_last_batch
@property
def iter_arrow(self):
return self._iter_arrow
@property
def is_typed(self):
return self.ex_iterable.is_typed
@property
def features(self):
return self.ex_iterable.features
def _init_state_dict(self) -> dict:
self._state_dict = {
"ex_iterable": self.ex_iterable._init_state_dict(),
"previous_state": None,
"batch_idx": 0,
"num_chunks_since_previous_state": 0,
"cropped_chunk_length": 0,
}
return self._state_dict
def __iter__(self):
yield from self.ex_iterable | 17 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
def _iter_arrow(self) -> Iterator[Tuple[Key, pa.Table]]:
"""Iterate over sub-tables of size `batch_size`."""
if self._state_dict and self._state_dict["previous_state"]:
self.ex_iterable.load_state_dict(self._state_dict["previous_state"])
if self.ex_iterable.iter_arrow:
iterator = self.ex_iterable.iter_arrow()
else:
iterator = _convert_to_arrow(self.ex_iterable, batch_size=1)
if self.batch_size is None or self.batch_size <= 0:
if self._state_dict and self._state_dict["batch_idx"] > 0:
return
all_pa_table = pa.concat_tables([pa_table for _, pa_table in iterator])
if self._state_dict:
self._state_dict["batch_idx"] = 1
yield "all", all_pa_table
return
keys_buffer = []
chunks_buffer = []
chunks_buffer_size = 0
num_chunks_to_skip = self._state_dict["num_chunks_since_previous_state"] if self._state_dict else 0 | 17 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
chunk_length_to_crop = self._state_dict["cropped_chunk_length"] if self._state_dict else 0
if self._state_dict:
previous_state = self.ex_iterable.state_dict()
self._state_dict["previous_state"] = previous_state
for key, pa_table in iterator:
for num_chunks_since_previous_state, chunk in enumerate(pa_table.to_reader(max_chunksize=self.batch_size)):
if num_chunks_to_skip > 1:
num_chunks_to_skip -= 1
continue
elif num_chunks_to_skip == 1 and chunk_length_to_crop == 0:
num_chunks_to_skip -= 1
continue
elif num_chunks_to_skip == 1 and chunk_length_to_crop > 0:
chunk = chunk.slice(chunk_length_to_crop, len(chunk) - chunk_length_to_crop)
num_chunks_to_skip = 0
chunk_length_to_crop = 0
if len(chunk) == 0:
continue | 17 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
if chunks_buffer_size + len(chunk) < self.batch_size:
keys_buffer.append(key)
chunks_buffer.append(chunk)
chunks_buffer_size += len(chunk)
continue
elif chunks_buffer_size + len(chunk) == self.batch_size:
keys_buffer.append(key)
chunks_buffer.append(chunk)
new_key = "_".join(str(_key) for _key in keys_buffer)
if self._state_dict:
self._state_dict["batch_idx"] += 1
self._state_dict["num_chunks_since_previous_state"] += len(chunks_buffer)
self._state_dict["cropped_chunk_length"] = 0
yield new_key, pa.Table.from_batches(chunks_buffer)
keys_buffer = []
chunks_buffer = []
chunks_buffer_size = 0
if self._state_dict: | 17 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
self._state_dict["previous_state"] = previous_state
self._state_dict["num_chunks_since_previous_state"] = num_chunks_since_previous_state + 1
else:
cropped_chunk_length = self.batch_size - chunks_buffer_size
keys_buffer.append(f"{key}[:{cropped_chunk_length}]")
chunks_buffer.append(chunk.slice(0, cropped_chunk_length))
new_key = "_".join(str(_key) for _key in keys_buffer)
if self._state_dict:
self._state_dict["batch_idx"] += 1
self._state_dict["num_chunks_since_previous_state"] += len(chunks_buffer)
self._state_dict["cropped_chunk_length"] = cropped_chunk_length
yield new_key, pa.Table.from_batches(chunks_buffer)
keys_buffer = [f"{key}[{cropped_chunk_length}:]"] | 17 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
chunks_buffer = [chunk.slice(cropped_chunk_length, len(chunk) - cropped_chunk_length)]
chunks_buffer_size = len(chunk) - cropped_chunk_length
if self._state_dict:
self._state_dict["previous_state"] = previous_state
self._state_dict["num_chunks_since_previous_state"] = num_chunks_since_previous_state
if self._state_dict:
previous_state = self.ex_iterable.state_dict()
if not self.drop_last_batch and chunks_buffer:
new_key = "_".join(str(_key) for _key in keys_buffer)
if self._state_dict:
self._state_dict["previous_state"] = previous_state
self._state_dict["batch_idx"] += 1
self._state_dict["num_chunks_since_previous_state"] = 0
self._state_dict["cropped_chunk_length"] = 0
yield new_key, pa.Table.from_batches(chunks_buffer) | 17 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
def shuffle_data_sources(self, generator: np.random.Generator) -> "RebatchedArrowExamplesIterable":
return RebatchedArrowExamplesIterable(
self.ex_iterable.shuffle_data_sources(generator), self.batch_size, self.drop_last_batch
)
def shard_data_sources(self, num_shards: int, index: int, contiguous=True) -> "RebatchedArrowExamplesIterable":
return RebatchedArrowExamplesIterable(
self.ex_iterable.shard_data_sources(num_shards, index, contiguous=contiguous),
self.batch_size,
self.drop_last_batch,
)
@property
def num_shards(self) -> int:
return self.ex_iterable.num_shards | 17 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
class SelectColumnsIterable(_BaseExamplesIterable):
def __init__(self, ex_iterable: _BaseExamplesIterable, column_names: List[str]):
super().__init__()
self.ex_iterable = ex_iterable
self.column_names = column_names
@property
def iter_arrow(self):
if self.ex_iterable.iter_arrow:
return self._iter_arrow
@property
def is_typed(self):
return self.ex_iterable.is_typed
@property
def features(self):
return self.ex_iterable.features
def _init_state_dict(self) -> dict:
self._state_dict = self.ex_iterable._init_state_dict()
return self._state_dict
def __iter__(self):
for idx, row in self.ex_iterable:
yield idx, {c: row[c] for c in self.column_names} | 18 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
def _iter_arrow(self) -> Iterator[Tuple[Key, pa.Table]]:
for idx, pa_table in self.ex_iterable.iter_arrow():
if len(pa_table) > 0: # empty tables have no schema
yield idx, pa_table.select(self.column_names)
def shuffle_data_sources(self, generator: np.random.Generator) -> "SelectColumnsIterable":
return SelectColumnsIterable(self.ex_iterable.shuffle_data_sources(generator), self.column_names)
def shard_data_sources(self, num_shards: int, index: int, contiguous=True) -> "SelectColumnsIterable":
return SelectColumnsIterable(
self.ex_iterable.shard_data_sources(num_shards, index, contiguous=contiguous), self.column_names
)
@property
def num_shards(self) -> int:
return self.ex_iterable.num_shards | 18 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
class StepExamplesIterable(_BaseExamplesIterable):
def __init__(self, ex_iterable: _BaseExamplesIterable, step: int, offset: int):
super().__init__()
self.ex_iterable = ex_iterable
self.step = step
self.offset = offset
# TODO(QL): implement iter_arrow
@property
def is_typed(self):
return self.ex_iterable.is_typed
@property
def features(self):
return self.ex_iterable.features
def _init_state_dict(self) -> dict:
self._state_dict = self.ex_iterable._init_state_dict()
return self._state_dict
def __iter__(self):
ex_iterator = iter(self.ex_iterable)
while True:
batch = list(islice(ex_iterator, self.step))
if len(batch) > self.offset:
yield batch[self.offset]
else:
break | 19 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
def shuffle_data_sources(self, generator: np.random.Generator) -> "StepExamplesIterable":
return StepExamplesIterable(
self.ex_iterable.shuffle_data_sources(generator), step=self.step, offset=self.offset
)
def shard_data_sources(self, num_shards: int, index: int, contiguous=True) -> "StepExamplesIterable":
return StepExamplesIterable(
self.ex_iterable.shard_data_sources(num_shards, index, contiguous=contiguous),
step=self.step,
offset=self.offset,
)
@property
def num_shards(self) -> int:
return self.ex_iterable.num_shards | 19 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
class CyclingMultiSourcesExamplesIterable(_BaseExamplesIterable):
def __init__(
self,
ex_iterables: List[_BaseExamplesIterable],
stopping_strategy: Literal["first_exhausted", "all_exhausted"] = "first_exhausted",
):
super().__init__()
self.ex_iterables = ex_iterables
self.stopping_strategy = stopping_strategy
# if undersampling ("first_exhausted"), we stop as soon as one dataset is exhausted
# if oversampling ("all_exhausted"), we stop as soons as every dataset is exhausted, i.e as soon as every samples of every dataset has been visited at least once
self.bool_strategy_func = np.all if (stopping_strategy == "all_exhausted") else np.any
# TODO(QL): implement iter_arrow
@property
def is_typed(self):
return self.ex_iterables[0].is_typed
@property
def features(self):
return self.ex_iterables[0].features | 20 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
def _get_indices_iterator(self):
# this is an infinite iterator to keep track of which iterator we want to pick examples from
ex_iterable_idx = self._state_dict["ex_iterable_idx"] if self._state_dict else 0
for next_ex_iterable_idx in islice(cycle(range(len(self.ex_iterables))), ex_iterable_idx + 1, None):
if self._state_dict:
self._state_dict["ex_iterable_idx"] = next_ex_iterable_idx
yield ex_iterable_idx
ex_iterable_idx = next_ex_iterable_idx
def _init_state_dict(self) -> dict:
self._state_dict = {
"ex_iterable_idx": 0,
"ex_iterables": [ex_iterable._init_state_dict() for ex_iterable in self.ex_iterables],
"previous_states": [None] * len(self.ex_iterables),
"is_exhausted": [False] * len(self.ex_iterables),
}
return self._state_dict | 20 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
def __iter__(self):
# we use this to buffer one example of each iterator to know if an iterator is exhausted
nexts = [None] * len(self.ex_iterables)
# because of that, we need to rewind 1 example when reloading the state dict
if self._state_dict:
for i in range(len(self.ex_iterables)):
if self._state_dict["previous_states"][i] is not None:
self.ex_iterables[i].load_state_dict(self._state_dict["previous_states"][i])
iterators = [iter(ex_iterable) for ex_iterable in self.ex_iterables]
indices_iterator = self._get_indices_iterator() | 20 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
is_exhausted = (
np.array(self._state_dict["is_exhausted"]) if self._state_dict else np.full(len(self.ex_iterables), False)
)
for i in indices_iterator:
# if the stopping criteria is met, break the main for loop
if self.bool_strategy_func(is_exhausted):
break
# let's pick one example from the iterator at index i
if nexts[i] is None:
nexts[i] = next(iterators[i], False)
result = nexts[i]
if self._state_dict:
self._state_dict["previous_states"][i] = deepcopy(self._state_dict["ex_iterables"][i])
nexts[i] = next(iterators[i], False) | 20 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
# the iterator is exhausted
if nexts[i] is False:
is_exhausted[i] = True
if self._state_dict:
self._state_dict["is_exhausted"][i] = True
# we reset it in case the stopping crtieria isn't met yet
nexts[i] = None
if self._state_dict:
self._state_dict["ex_iterables"][i] = self.ex_iterables[i]._init_state_dict()
self._state_dict["previous_states"][i] = None
iterators[i] = iter(self.ex_iterables[i])
if result is not False:
yield result
def shuffle_data_sources(self, generator: np.random.Generator) -> "CyclingMultiSourcesExamplesIterable":
"""Shuffle each underlying examples iterable."""
ex_iterables = [ex_iterable.shuffle_data_sources(generator) for ex_iterable in self.ex_iterables]
return CyclingMultiSourcesExamplesIterable(ex_iterables, self.stopping_strategy) | 20 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
@property
def num_shards(self) -> int:
return min(ex_iterable.num_shards for ex_iterable in self.ex_iterables)
def shard_data_sources(
self, num_shards: int, index: int, contiguous=True
) -> "CyclingMultiSourcesExamplesIterable":
"""Either keep only the requested shard, or propagate the request to the underlying iterable."""
return CyclingMultiSourcesExamplesIterable(
[iterable.shard_data_sources(num_shards, index, contiguous=contiguous) for iterable in self.ex_iterables],
stopping_strategy=self.stopping_strategy,
) | 20 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
class VerticallyConcatenatedMultiSourcesExamplesIterable(_BaseExamplesIterable):
"""
VerticallyConcatenatedMultiSourcesExamplesIterable simply chains the input iterables.
It doesn't require the examples iterables to always yield the same columns.
Instead, this is handled by the `IterableDataset` class or `FormattedExamplesIterable`.
For information, `IterableDataset` merges the features of all the datasets to concatenate into one.
We use `IterableDataset._resolve_features` to obtain the features of all the datasets to concatenate.
Then for each example, `IterableDataset` and `FormattedExamplesIterable` automatically fill missing columns with None.
This is done with `_apply_feature_types_on_example`.
"""
def __init__(self, ex_iterables: List[_BaseExamplesIterable]):
super().__init__()
self.ex_iterables = ex_iterables
@property
def is_typed(self):
return self.ex_iterables[0].is_typed | 21 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
@property
def features(self):
return self.ex_iterables[0].features
@property
def iter_arrow(self):
if all(ex_iterable.iter_arrow is not None for ex_iterable in self.ex_iterables):
return self._iter_arrow
def _init_state_dict(self) -> dict:
self._state_dict = {
"ex_iterable_idx": 0,
"ex_iterables": [ex_iterable._init_state_dict() for ex_iterable in self.ex_iterables],
}
return self._state_dict
def __iter__(self):
ex_iterable_idx_start = self._state_dict["ex_iterable_idx"] if self._state_dict else 0
for ex_iterable in islice(self.ex_iterables, ex_iterable_idx_start, None):
yield from ex_iterable
if self._state_dict:
self._state_dict["ex_iterable_idx"] += 1 | 21 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
def _iter_arrow(self):
ex_iterable_idx_start = self._state_dict["ex_iterable_idx"] if self._state_dict else 0
for ex_iterable in islice(self.ex_iterables, ex_iterable_idx_start, None):
yield from ex_iterable.iter_arrow()
if self._state_dict:
self._state_dict["ex_iterable_idx"] += 1
def shuffle_data_sources(
self, generator: np.random.Generator
) -> "VerticallyConcatenatedMultiSourcesExamplesIterable":
"""Shuffle the list of examples iterable, as well as each underlying examples iterable."""
rng = deepcopy(generator)
ex_iterables = list(self.ex_iterables)
rng.shuffle(ex_iterables)
ex_iterables = [ex_iterable.shuffle_data_sources(generator) for ex_iterable in ex_iterables]
return VerticallyConcatenatedMultiSourcesExamplesIterable(ex_iterables)
@property
def num_shards(self) -> int:
return min(ex_iterable.num_shards for ex_iterable in self.ex_iterables) | 21 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
def shard_data_sources(
self, num_shards: int, index: int, contiguous=True
) -> "VerticallyConcatenatedMultiSourcesExamplesIterable":
"""Either keep only the requested shard, or propagate the request to the underlying iterable."""
return VerticallyConcatenatedMultiSourcesExamplesIterable(
[iterable.shard_data_sources(num_shards, index, contiguous=contiguous) for iterable in self.ex_iterables]
) | 21 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
class HorizontallyConcatenatedMultiSourcesExamplesIterable(_BaseExamplesIterable):
"""
HorizontallyConcatenatedMultiSourcesExamplesIterable merges examples together for the input list of iterables.
It also checks that there are no duplicate columns (otherwise we don't know which one to keep).
This check is done once when yielding the first example.
However it doesn't fill missing columns with None.
Instead, this is handled by the `IterableDataset` class or `FormattedExamplesIterable`.
For information, `IterableDataset` merges the features of all the datasets to concatenate into one.
We use `IterableDataset._resolve_features` to obtain the features of all the datasets to concatenate.
Then for each example, `IterableDataset` and `FormattedExamplesIterable` automatically fill missing columns with None.
This is done with `_apply_feature_types_on_example`.
""" | 22 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
def __init__(self, ex_iterables: List[_BaseExamplesIterable]):
super().__init__()
self.ex_iterables = ex_iterables
# TODO(QL): implement iter_arrow
@property
def is_typed(self):
return self.ex_iterables[0].is_typed
@property
def features(self):
return self.ex_iterables[0].features
def _init_state_dict(self) -> dict:
self._state_dict = {"ex_iterables": [ex_iterable._init_state_dict() for ex_iterable in self.ex_iterables]}
return self._state_dict | 22 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
def __iter__(self):
ex_iterators = [iter(ex_iterable) for ex_iterable in self.ex_iterables]
for i in itertools.count():
keys = []
examples = []
for ex_iterator in list(ex_iterators):
try:
key, example = next(ex_iterator)
keys.append(key)
examples.append(example)
except StopIteration:
ex_iterators.remove(ex_iterator)
if ex_iterators:
if i == 0:
_check_column_names([column_name for example in examples for column_name in example])
new_example = {}
for example in examples:
new_example.update(example)
new_key = "_".join(str(key) for key in keys)
yield new_key, new_example
else:
break | 22 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
def shuffle_data_sources(
self, generator: np.random.Generator
) -> "HorizontallyConcatenatedMultiSourcesExamplesIterable":
"""Doesn't shuffle the wrapped examples iterable since it would break the alignment between them."""
return self
@property
def num_shards(self) -> int:
return 1
def shard_data_sources(
self, num_shards: int, index: int, contiguous=True
) -> "HorizontallyConcatenatedMultiSourcesExamplesIterable":
"""Either keep only the requested shard, or propagate the request to the underlying iterable."""
return HorizontallyConcatenatedMultiSourcesExamplesIterable(
[iterable.shard_data_sources(num_shards, index, contiguous=contiguous) for iterable in self.ex_iterables]
) | 22 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
class RandomlyCyclingMultiSourcesExamplesIterable(CyclingMultiSourcesExamplesIterable):
def __init__(
self,
ex_iterables: List[_BaseExamplesIterable],
generator: np.random.Generator,
probabilities: Optional[List[float]] = None,
stopping_strategy: Literal["first_exhausted", "all_exhausted"] = "first_exhausted",
):
super().__init__(ex_iterables, stopping_strategy)
self.generator = deepcopy(generator)
self.probabilities = probabilities
# TODO(QL): implement iter_arrow
@property
def is_typed(self):
return self.ex_iterables[0].is_typed
@property
def features(self):
return self.ex_iterables[0].features | 23 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
def _get_indices_iterator(self):
rng = deepcopy(self.generator)
num_sources = len(self.ex_iterables)
random_batch_size = 1000
# this is an infinite iterator that randomly samples the index of the source to pick examples from
index_offset = self._state_dict["bit_generator_index_offset"] if self._state_dict else 0
if self._state_dict:
rng.bit_generator.state = self._state_dict["bit_generator_state"]
if self.probabilities is None:
while True:
for i in islice(rng.integers(0, num_sources, size=random_batch_size), index_offset, None):
index_offset = (index_offset + 1) % random_batch_size
if self._state_dict:
self._state_dict["bit_generator_index_offset"] = index_offset
if index_offset == 0:
self._state_dict["bit_generator_state"] = rng.bit_generator.state
yield int(i)
else: | 23 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
while True:
for i in islice(
rng.choice(num_sources, size=random_batch_size, p=self.probabilities), index_offset, None
):
index_offset = (index_offset + 1) % random_batch_size
if self._state_dict:
self._state_dict["bit_generator_index_offset"] = index_offset
if index_offset == 0:
self._state_dict["bit_generator_state"] = rng.bit_generator.state
yield int(i) | 23 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
def _init_state_dict(self) -> dict:
self._state_dict = {
"bit_generator_state": self.generator.bit_generator.state,
"bit_generator_index_offset": 0,
"ex_iterables": [ex_iterable._init_state_dict() for ex_iterable in self.ex_iterables],
"previous_states": [None] * len(self.ex_iterables),
"is_exhausted": [False] * len(self.ex_iterables),
}
return self._state_dict
def shuffle_data_sources(self, generator: np.random.Generator) -> "RandomlyCyclingMultiSourcesExamplesIterable":
"""Shuffle the data sources of each wrapped examples iterable."""
ex_iterables = [ex_iterable.shuffle_data_sources(generator) for ex_iterable in self.ex_iterables]
return RandomlyCyclingMultiSourcesExamplesIterable(
ex_iterables,
generator=generator,
probabilities=self.probabilities,
stopping_strategy=self.stopping_strategy,
) | 23 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
def shard_data_sources(
self, num_shards: int, index: int, contiguous=True
) -> "RandomlyCyclingMultiSourcesExamplesIterable":
"""Either keep only the requested shard, or propagate the request to the underlying iterable."""
return RandomlyCyclingMultiSourcesExamplesIterable(
[iterable.shard_data_sources(num_shards, index, contiguous=contiguous) for iterable in self.ex_iterables],
self.generator,
self.probabilities,
self.stopping_strategy,
) | 23 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
class MappedExamplesIterable(_BaseExamplesIterable):
def __init__(
self,
ex_iterable: _BaseExamplesIterable,
function: Callable,
with_indices: bool = False,
input_columns: Optional[List[str]] = None,
batched: bool = False,
batch_size: Optional[int] = 1000,
drop_last_batch: bool = False,
remove_columns: Optional[List[str]] = None,
fn_kwargs: Optional[dict] = None,
formatting: Optional["FormattingConfig"] = None,
features: Optional[Features] = None,
):
super().__init__()
self.ex_iterable = ex_iterable
self.function = function
self.batched = batched
self.batch_size = batch_size
self.drop_last_batch = drop_last_batch
self.remove_columns = remove_columns
self.with_indices = with_indices
self.input_columns = input_columns
self.fn_kwargs = fn_kwargs or {}
self.formatting = formatting # required for iter_arrow | 24 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
self._features = features
# sanity checks
if formatting and formatting.format_type == "arrow":
# batch_size should match for iter_arrow
if not isinstance(ex_iterable, RebatchedArrowExamplesIterable):
raise ValueError(
"The Arrow-formatted MappedExamplesIterable has underlying iterable"
f"that is a {type(ex_iterable).__name__} instead of a RebatchedArrowExamplesIterable."
)
elif ex_iterable.batch_size != (batch_size if batched else 1):
raise ValueError(
f"The Arrow-formatted MappedExamplesIterable has batch_size={batch_size if batched else 1} which is"
f"different from {ex_iterable.batch_size=} from its underlying iterable."
) | 24 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
@property
def iter_arrow(self):
if self.formatting and self.formatting.format_type == "arrow":
return self._iter_arrow
@property
def is_typed(self):
return self.features is not None # user has extracted features
@property
def features(self):
return self._features
def _init_state_dict(self) -> dict:
self._state_dict = {
"ex_iterable": self.ex_iterable._init_state_dict(),
"previous_state": None,
"num_examples_since_previous_state": 0,
"previous_state_example_idx": 0,
}
return self._state_dict
def __iter__(self):
if self.formatting and self.formatting.format_type == "arrow":
formatter = PythonFormatter()
for key, pa_table in self._iter_arrow(max_chunksize=1):
yield key, formatter.format_row(pa_table)
else:
yield from self._iter() | 24 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
def _iter(self):
current_idx = self._state_dict["previous_state_example_idx"] if self._state_dict else 0
if self._state_dict and self._state_dict["previous_state"]:
self.ex_iterable.load_state_dict(self._state_dict["previous_state"])
num_examples_to_skip = self._state_dict["num_examples_since_previous_state"]
else:
num_examples_to_skip = 0
iterator = iter(self.ex_iterable)
if self.formatting:
formatter = get_formatter(self.formatting.format_type)
format_dict = (
formatter.recursive_tensorize if isinstance(formatter, TensorFormatter) else cast_to_python_objects
)
else:
format_dict = None | 24 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
if self.batched:
if self._state_dict:
self._state_dict["previous_state"] = self.ex_iterable.state_dict()
self._state_dict["num_examples_since_previous_state"] = 0
self._state_dict["previous_state_example_idx"] = current_idx
for key, example in iterator:
# If `batched`, first build the batch, if `batch_size` is None or <=0, then the batch is the whole dataset
iterator_batch = (
iterator
if self.batch_size is None or self.batch_size <= 0
else islice(iterator, self.batch_size - 1)
)
key_examples_list = [(key, example)] + list(iterator_batch)
keys, examples = zip(*key_examples_list)
if (
self.drop_last_batch
and self.batch_size is not None
and self.batch_size > 0
and len(examples) < self.batch_size | 24 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
): # ignore last batch
return
batch = _examples_to_batch(examples)
batch = format_dict(batch) if format_dict else batch
# then apply the transform
inputs = batch
function_args = [inputs] if self.input_columns is None else [inputs[col] for col in self.input_columns]
if self.with_indices:
function_args.append([current_idx + i for i in range(len(key_examples_list))])
inputs_to_merge = dict(batch)
processed_inputs = self.function(*function_args, **self.fn_kwargs)
# this logic mimics the one in Dataset.map
if self.remove_columns:
for c in self.remove_columns:
if c in inputs_to_merge:
del inputs_to_merge[c]
if processed_inputs is inputs and c in processed_inputs: | 24 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
del processed_inputs[c]
transformed_batch = {**inputs_to_merge, **processed_inputs}
if transformed_batch:
first_col = next(iter(transformed_batch))
bad_cols = [
col
for col in transformed_batch
if len(transformed_batch[col]) != len(transformed_batch[first_col])
]
if bad_cols:
raise ValueError(
f"Column lengths mismatch: columns {bad_cols} have length {[len(transformed_batch[col]) for col in bad_cols]} "
f"while {first_col} has length {len(transformed_batch[first_col])}."
)
if self.features:
for c in self.features.keys():
if c not in transformed_batch: | 24 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
transformed_batch[c] = [None] * len(transformed_batch[first_col])
transformed_batch = self.features.decode_batch(transformed_batch)
# the new key is the concatenation of the examples keys from the batch
new_key = "_".join(str(key) for key in keys)
# yield one example at a time from the transformed batch
for example in _batch_to_examples(transformed_batch):
current_idx += 1
if self._state_dict:
self._state_dict["num_examples_since_previous_state"] += 1
if num_examples_to_skip > 0:
num_examples_to_skip -= 1
continue
yield new_key, example
if self._state_dict:
self._state_dict["previous_state"] = self.ex_iterable.state_dict()
self._state_dict["num_examples_since_previous_state"] = 0 | 24 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
self._state_dict["previous_state_example_idx"] = current_idx
else:
for key, example in iterator:
# If not batched, we can apply the transform and yield the example directly
# first copy the example, since we might drop some keys
example = dict(example)
example = format_dict(example) if format_dict else example
# then apply the transform
inputs = example
function_args = [inputs] if self.input_columns is None else [inputs[col] for col in self.input_columns]
if self.with_indices:
function_args.append(current_idx)
processed_inputs = self.function(*function_args, **self.fn_kwargs)
inputs_to_merge = dict(example)
# this logic mimics the one in Dataset.map
if self.remove_columns:
for c in self.remove_columns: | 24 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
if c in inputs_to_merge:
del inputs_to_merge[c]
if processed_inputs is inputs and c in processed_inputs:
del processed_inputs[c]
transformed_example = {**inputs_to_merge, **processed_inputs}
if self.features:
for c in self.features.keys():
if c not in transformed_example:
transformed_example[c] = None
transformed_example = self.features.decode_example(transformed_example)
current_idx += 1
if self._state_dict:
self._state_dict["previous_state_example_idx"] += 1
yield key, transformed_example | 24 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
def _iter_arrow(self, max_chunksize: Optional[int] = None) -> Iterator[Tuple[Key, pa.Table]]:
if self.ex_iterable.iter_arrow:
iterator = self.ex_iterable.iter_arrow()
else:
iterator = _convert_to_arrow(
self.ex_iterable,
batch_size=self.batch_size if self.batched else 1,
drop_last_batch=self.drop_last_batch,
)
if self._state_dict and self._state_dict["previous_state"]:
self.ex_iterable.load_state_dict(self._state_dict["previous_state"])
num_examples_to_skip = self._state_dict["num_examples_since_previous_state"]
else:
num_examples_to_skip = 0
if self._state_dict and max_chunksize is not None:
self._state_dict["previous_state"] = self.ex_iterable.state_dict()
self._state_dict["num_examples_since_previous_state"] = 0
current_idx = self._state_dict["previous_state_example_idx"] if self._state_dict else 0 | 24 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
for key, pa_table in iterator:
if (
self.batched
and self.batch_size is not None
and len(pa_table) < self.batch_size
and self.drop_last_batch
):
return
# first build the batch
function_args = [pa_table] if self.input_columns is None else [pa_table[col] for col in self.input_columns]
if self.with_indices:
if self.batched:
function_args.append([current_idx + i for i in range(len(pa_table))])
else:
function_args.append(current_idx)
# then apply the transform
output_table = self.function(*function_args, **self.fn_kwargs)
if not isinstance(output_table, pa.Table):
raise TypeError(
f"Provided `function` which is applied to pyarrow tables returns a variable of type " | 24 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
f"{type(output_table)}. Make sure provided `function` returns a a pyarrow table to update the dataset."
)
# we don't need to merge results for consistency with Dataset.map which merges iif both input and output are dicts
# then remove the unwanted columns
if self.remove_columns:
for column in self.remove_columns:
if column in output_table.column_names:
output_table = output_table.remove_column(output_table.column_names.index(column))
# return output
if max_chunksize is None:
current_idx += len(pa_table)
if self._state_dict:
self._state_dict["previous_state_example_idx"] += len(pa_table)
yield key, output_table
else:
for i, pa_subtable in enumerate(output_table.to_reader(max_chunksize=max_chunksize)):
current_idx += 1 | 24 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
if self._state_dict:
self._state_dict["num_examples_since_previous_state"] += 1
if num_examples_to_skip > 0:
num_examples_to_skip -= 1
continue
yield f"{key}_{i}", pa_subtable
if self._state_dict:
self._state_dict["previous_state"] = self.ex_iterable.state_dict()
self._state_dict["num_examples_since_previous_state"] = 0
self._state_dict["previous_state_example_idx"] += len(pa_table) | 24 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
def shuffle_data_sources(self, generator: np.random.Generator) -> "MappedExamplesIterable":
"""Shuffle the wrapped examples iterable."""
return MappedExamplesIterable(
self.ex_iterable.shuffle_data_sources(generator),
function=self.function,
with_indices=self.with_indices,
input_columns=self.input_columns,
batched=self.batched,
batch_size=self.batch_size,
drop_last_batch=self.drop_last_batch,
remove_columns=self.remove_columns,
fn_kwargs=self.fn_kwargs,
formatting=self.formatting,
features=self.features,
) | 24 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
def shard_data_sources(self, num_shards: int, index: int, contiguous=True) -> "MappedExamplesIterable":
"""Keep only the requested shard."""
return MappedExamplesIterable(
self.ex_iterable.shard_data_sources(num_shards, index, contiguous=contiguous),
function=self.function,
with_indices=self.with_indices,
input_columns=self.input_columns,
batched=self.batched,
batch_size=self.batch_size,
drop_last_batch=self.drop_last_batch,
remove_columns=self.remove_columns,
fn_kwargs=self.fn_kwargs,
formatting=self.formatting,
features=self.features,
)
@property
def num_shards(self) -> int:
return self.ex_iterable.num_shards | 24 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
class FilteredExamplesIterable(_BaseExamplesIterable):
def __init__(
self,
ex_iterable: _BaseExamplesIterable,
function: Callable,
with_indices: bool = False,
input_columns: Optional[List[str]] = None,
batched: bool = False,
batch_size: Optional[int] = 1000,
fn_kwargs: Optional[dict] = None,
formatting: Optional["FormattingConfig"] = None,
):
super().__init__()
self.ex_iterable = ex_iterable
self.function = function
self.batched = batched
self.batch_size = batch_size
self.with_indices = with_indices
self.input_columns = input_columns
self.fn_kwargs = fn_kwargs or {}
self.formatting = formatting # required for iter_arrow
# sanity checks
if formatting and formatting.format_type == "arrow":
# batch_size should match for iter_arrow
if not isinstance(ex_iterable, RebatchedArrowExamplesIterable): | 25 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
raise ValueError(
"The Arrow-formatted FilteredExamplesIterable has underlying iterable"
f"that is a {type(ex_iterable).__name__} instead of a RebatchedArrowExamplesIterable."
)
elif ex_iterable.batch_size != (batch_size if batched else 1):
raise ValueError(
f"The Arrow-formatted FilteredExamplesIterable has batch_size={batch_size if batched else 1} which is"
f"different from {ex_iterable.batch_size=} from its underlying iterable."
) | 25 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
@property
def iter_arrow(self):
if self.formatting and self.formatting.format_type == "arrow":
return self._iter_arrow
@property
def is_typed(self):
return self.ex_iterable.is_typed
@property
def features(self):
return self.ex_iterable.features
def _init_state_dict(self) -> dict:
self._state_dict = {
"ex_iterable": self.ex_iterable._init_state_dict(),
"previous_state": None,
"num_examples_since_previous_state": 0,
"previous_state_example_idx": 0,
}
return self._state_dict
def __iter__(self):
if self.formatting and self.formatting.format_type == "arrow":
formatter = PythonFormatter()
for key, pa_table in self._iter_arrow(max_chunksize=1):
yield key, formatter.format_row(pa_table)
else:
yield from self._iter() | 25 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
def _iter(self):
current_idx = self._state_dict["previous_state_example_idx"] if self._state_dict else 0
if self._state_dict and self._state_dict["previous_state"]:
self.ex_iterable.load_state_dict(self._state_dict["previous_state"])
num_examples_to_skip = self._state_dict["num_examples_since_previous_state"]
else:
num_examples_to_skip = 0
iterator = iter(self.ex_iterable)
if self.formatting:
formatter = get_formatter(self.formatting.format_type)
format_dict = (
formatter.recursive_tensorize if isinstance(formatter, TensorFormatter) else cast_to_python_objects
)
else:
format_dict = None | 25 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
if self.batched:
if self._state_dict:
self._state_dict["previous_state"] = self.ex_iterable.state_dict()
self._state_dict["num_examples_since_previous_state"] = 0
self._state_dict["previous_state_example_idx"] = current_idx
for key, example in iterator:
# If `batched`, first build the batch, if `batch_size` is None or <=0, then the batch is the whole dataset
iterator_batch = (
iterator
if self.batch_size is None or self.batch_size <= 0
else islice(iterator, self.batch_size - 1)
)
key_examples_list = [(key, example)] + list(iterator_batch)
keys, examples = zip(*key_examples_list)
batch = _examples_to_batch(examples)
batch = format_dict(batch) if format_dict else batch
# then compute the mask for the batch
inputs = batch | 25 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
function_args = [inputs] if self.input_columns is None else [inputs[col] for col in self.input_columns]
if self.with_indices:
function_args.append([current_idx + i for i in range(len(key_examples_list))])
mask = self.function(*function_args, **self.fn_kwargs)
# yield one example at a time from the batch
for key_example, to_keep in zip(key_examples_list, mask):
current_idx += 1
if self._state_dict:
self._state_dict["num_examples_since_previous_state"] += 1
if num_examples_to_skip > 0:
num_examples_to_skip -= 1
continue
if to_keep:
yield key_example
if self._state_dict:
self._state_dict["previous_state"] = self.ex_iterable.state_dict() | 25 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
self._state_dict["num_examples_since_previous_state"] = 0
self._state_dict["previous_state_example_idx"] = current_idx
else:
for key, example in iterator:
# If not batched, we can apply the filtering function direcly
example = dict(example)
inputs = format_dict(example) if format_dict else example
function_args = [inputs] if self.input_columns is None else [inputs[col] for col in self.input_columns]
if self.with_indices:
function_args.append(current_idx)
to_keep = self.function(*function_args, **self.fn_kwargs)
current_idx += 1
if self._state_dict:
self._state_dict["previous_state_example_idx"] += 1
if to_keep:
yield key, example | 25 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
def _iter_arrow(self, max_chunksize: Optional[int] = None):
if self.ex_iterable.iter_arrow:
iterator = self.ex_iterable.iter_arrow()
else:
iterator = _convert_to_arrow(self.ex_iterable, batch_size=self.batch_size if self.batched else 1) | 25 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
if self._state_dict and self._state_dict["previous_state"]:
self.ex_iterable.load_state_dict(self._state_dict["previous_state"])
num_examples_to_skip = self._state_dict["num_examples_since_previous_state"]
else:
num_examples_to_skip = 0
if self._state_dict and max_chunksize is not None:
self._state_dict["previous_state"] = self.ex_iterable.state_dict()
self._state_dict["num_examples_since_previous_state"] = 0
current_idx = self._state_dict["previous_state_example_idx"] if self._state_dict else 0
for key, pa_table in iterator:
if (
self.batched
and self.batch_size is not None
and len(pa_table) < self.batch_size
and self.drop_last_batch
):
return | 25 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
function_args = [pa_table] if self.input_columns is None else [pa_table[col] for col in self.input_columns]
if self.with_indices:
if self.batched:
function_args.append([current_idx + i for i in range(len(pa_table))])
else:
function_args.append(current_idx)
# then apply the transform
mask = self.function(*function_args, **self.fn_kwargs)
# return output
if self.batched:
output_table = pa_table.filter(mask)
elif mask.as_py() if isinstance(mask, pa.BooleanScalar) else mask:
output_table = pa_table
else:
output_table = pa_table.slice(0, 0) | 25 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
if max_chunksize is None:
current_idx += len(pa_table)
if self._state_dict:
self._state_dict["previous_state_example_idx"] += len(pa_table)
if len(output_table) > 0:
yield key, output_table
else:
for i, pa_subtable in enumerate(output_table.to_reader(max_chunksize=max_chunksize)):
current_idx += 1
if self._state_dict:
self._state_dict["num_examples_since_previous_state"] += 1
if num_examples_to_skip > 0:
num_examples_to_skip -= 1
continue
yield f"{key}_{i}", pa_subtable
if self._state_dict:
self._state_dict["previous_state"] = self.ex_iterable.state_dict()
self._state_dict["num_examples_since_previous_state"] = 0 | 25 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
self._state_dict["previous_state_example_idx"] += len(pa_table) | 25 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
def shuffle_data_sources(self, seed: Optional[int]) -> "FilteredExamplesIterable":
"""Shuffle the wrapped examples iterable."""
return FilteredExamplesIterable(
self.ex_iterable.shuffle_data_sources(seed),
function=self.function,
with_indices=self.with_indices,
input_columns=self.input_columns,
batched=self.batched,
batch_size=self.batch_size,
formatting=self.formatting,
) | 25 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
def shard_data_sources(self, num_shards: int, index: int, contiguous=True) -> "FilteredExamplesIterable":
"""Keep only the requested shard."""
return FilteredExamplesIterable(
self.ex_iterable.shard_data_sources(num_shards, index, contiguous=contiguous),
function=self.function,
with_indices=self.with_indices,
input_columns=self.input_columns,
batched=self.batched,
batch_size=self.batch_size,
formatting=self.formatting,
)
@property
def num_shards(self) -> int:
return self.ex_iterable.num_shards | 25 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
class BufferShuffledExamplesIterable(_BaseExamplesIterable):
def __init__(self, ex_iterable: _BaseExamplesIterable, buffer_size: int, generator: np.random.Generator):
super().__init__()
self.ex_iterable = ex_iterable
self.buffer_size = buffer_size
self.generator = generator
# TODO(QL): implement iter_arrow
@property
def is_typed(self):
return self.ex_iterable.is_typed
@property
def features(self):
return self.ex_iterable.features
def _init_state_dict(self) -> dict:
self._state_dict = self.ex_iterable._init_state_dict()
self._original_state_dict = self.state_dict()
return self._state_dict | 26 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
def load_state_dict(self, state_dict: dict) -> dict:
if self._state_dict:
if state_dict != self._original_state_dict:
logger.warning(
"Loading a state dict of a shuffle buffer of a dataset without the buffer content."
"The shuffle buffer will be refilled before starting to yield new examples."
)
return super().load_state_dict(state_dict)
@staticmethod
def _iter_random_indices(rng: np.random.Generator, buffer_size: int, random_batch_size=1000) -> Iterator[int]:
while True:
yield from (int(i) for i in rng.integers(0, buffer_size, size=random_batch_size)) | 26 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
def __iter__(self):
buffer_size = self.buffer_size
rng = deepcopy(self.generator)
indices_iterator = self._iter_random_indices(rng, buffer_size)
# this is the shuffle buffer that we keep in memory
mem_buffer = []
for x in self.ex_iterable:
if len(mem_buffer) == buffer_size: # if the buffer is full, pick and example from it
i = next(indices_iterator)
yield mem_buffer[i]
mem_buffer[i] = x # replace the picked example by a new one
else: # otherwise, keep filling the buffer
mem_buffer.append(x)
# when we run out of examples, we shuffle the remaining examples in the buffer and yield them
rng.shuffle(mem_buffer)
yield from mem_buffer | 26 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
def shuffle_data_sources(self, generator: np.random.Generator) -> "BufferShuffledExamplesIterable":
"""Shuffle the wrapped examples iterable as well as the shuffling buffer."""
return BufferShuffledExamplesIterable(
self.ex_iterable.shuffle_data_sources(generator), buffer_size=self.buffer_size, generator=generator
)
def shard_data_sources(self, num_shards: int, index: int, contiguous=True) -> "BufferShuffledExamplesIterable":
"""Keep only the requested shard."""
return BufferShuffledExamplesIterable(
self.ex_iterable.shard_data_sources(num_shards, index, contiguous=contiguous),
buffer_size=self.buffer_size,
generator=self.generator,
)
@property
def num_shards(self) -> int:
return self.ex_iterable.num_shards | 26 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
class SkipExamplesIterable(_BaseExamplesIterable):
def __init__(
self,
ex_iterable: _BaseExamplesIterable,
n: int,
block_sources_order_when_shuffling: bool = True,
split_when_sharding: bool = True,
):
super().__init__()
self.ex_iterable = ex_iterable
self.n = n
self.block_sources_order_when_shuffling = block_sources_order_when_shuffling
self.split_when_sharding = split_when_sharding
# TODO(QL): implement iter_arrow
@property
def is_typed(self):
return self.ex_iterable.is_typed
@property
def features(self):
return self.ex_iterable.features
def _init_state_dict(self) -> dict:
self._state_dict = {"skipped": False, "ex_iterable": self.ex_iterable._init_state_dict()}
return self._state_dict | 27 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
def __iter__(self):
ex_iterable_idx_start = 0 if self._state_dict and self._state_dict["skipped"] else self.n
if self._state_dict:
self._state_dict["skipped"] = True
yield from islice(self.ex_iterable, ex_iterable_idx_start, None)
@staticmethod
def split_number(num, n):
quotient = num // n
remainder = num % n
result = [quotient] * n
for i in range(remainder):
result[i] += 1
return result | 27 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
def shuffle_data_sources(self, generator: np.random.Generator) -> "SkipExamplesIterable":
"""May not shuffle the wrapped examples iterable since it would skip examples from other shards instead."""
if self.block_sources_order_when_shuffling:
return self
else:
return SkipExamplesIterable(
self.ex_iterable.shuffle_data_sources(generator),
n=self.n,
block_sources_order_when_shuffling=self.block_sources_order_when_shuffling,
split_when_sharding=self.split_when_sharding,
) | 27 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
def shard_data_sources(self, num_shards: int, index: int, contiguous=True) -> "SkipExamplesIterable":
"""Keep only the requested shard."""
if self.split_when_sharding:
return SkipExamplesIterable(
self.ex_iterable.shard_data_sources(num_shards, index, contiguous=contiguous),
n=self.split_number(self.n, num_shards)[index],
block_sources_order_when_shuffling=self.block_sources_order_when_shuffling,
split_when_sharding=self.split_when_sharding,
)
else:
return self
@property
def num_shards(self) -> int:
return self.ex_iterable.num_shards | 27 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
class TakeExamplesIterable(_BaseExamplesIterable):
def __init__(
self,
ex_iterable: _BaseExamplesIterable,
n: int,
block_sources_order_when_shuffling: bool = True,
split_when_sharding: bool = True,
):
super().__init__()
self.ex_iterable = ex_iterable
self.n = n
self.block_sources_order_when_shuffling = block_sources_order_when_shuffling
self.split_when_sharding = split_when_sharding
# TODO(QL): implement iter_arrow
@property
def is_typed(self):
return self.ex_iterable.is_typed
@property
def features(self):
return self.ex_iterable.features
def _init_state_dict(self) -> dict:
self._state_dict = {"num_taken": 0, "ex_iterable": self.ex_iterable._init_state_dict()}
return self._state_dict | 28 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
def __iter__(self):
ex_iterable_num_taken = self._state_dict["num_taken"] if self._state_dict else 0
for key_example in islice(self.ex_iterable, self.n - ex_iterable_num_taken):
if self._state_dict:
self._state_dict["num_taken"] += 1
yield key_example
@staticmethod
def split_number(num, n):
quotient = num // n
remainder = num % n
result = [quotient] * n
for i in range(remainder):
result[i] += 1
return result | 28 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
def shuffle_data_sources(self, generator: np.random.Generator) -> "TakeExamplesIterable":
"""May not shuffle the wrapped examples iterable since it would take examples from other shards instead."""
if self.block_sources_order_when_shuffling:
return self
else:
return TakeExamplesIterable(
self.ex_iterable.shuffle_data_sources(generator),
n=self.n,
block_sources_order_when_shuffling=self.block_sources_order_when_shuffling,
split_when_sharding=self.split_when_sharding,
) | 28 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
def shard_data_sources(self, num_shards: int, index: int, contiguous=True) -> "TakeExamplesIterable":
"""Keep only the requested shard."""
if self.split_when_sharding:
return TakeExamplesIterable(
self.ex_iterable.shard_data_sources(num_shards, index, contiguous=contiguous),
n=self.split_number(self.n, num_shards)[index],
block_sources_order_when_shuffling=self.block_sources_order_when_shuffling,
split_when_sharding=self.split_when_sharding,
)
else:
return TakeExamplesIterable(
self.ex_iterable.shard_data_sources(num_shards, index, contiguous=contiguous),
n=self.n,
block_sources_order_when_shuffling=self.block_sources_order_when_shuffling,
split_when_sharding=self.split_when_sharding,
)
@property
def num_shards(self) -> int:
return self.ex_iterable.num_shards | 28 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
class FormattingConfig:
format_type: Optional[str]
def __post_init__(self):
if self.format_type == "pandas":
raise NotImplementedError(
"The 'pandas' formatting is not implemented for iterable datasets. You can use 'numpy' or 'arrow' instead."
) | 29 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
class FormattedExamplesIterable(_BaseExamplesIterable):
def __init__(
self,
ex_iterable: _BaseExamplesIterable,
formatting: Optional[FormattingConfig],
features: Optional[Features],
token_per_repo_id: Dict[str, Union[str, bool, None]],
):
super().__init__()
self.ex_iterable = ex_iterable
self._features = features
self.formatting = formatting
self.token_per_repo_id = token_per_repo_id
@property
def iter_arrow(self):
if self.ex_iterable.iter_arrow and (not self.formatting or self.formatting.format_type == "arrow"):
return self._iter_arrow
@property
def is_typed(self):
return self.ex_iterable.is_typed or self._features is not None
@property
def features(self):
return self._features
def _init_state_dict(self) -> dict:
self._state_dict = self.ex_iterable._init_state_dict()
return self._state_dict | 30 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
def __iter__(self):
if not self.formatting or self.formatting.format_type == "arrow":
formatter = PythonFormatter()
else:
formatter = get_formatter(
self.formatting.format_type,
features=self._features if not self.ex_iterable.is_typed else None,
token_per_repo_id=self.token_per_repo_id,
)
if self.ex_iterable.iter_arrow:
# feature casting (inc column addition) handled within self._iter_arrow()
for key, pa_table in self._iter_arrow():
batch = formatter.format_batch(pa_table)
for example in _batch_to_examples(batch):
yield key, example
else:
format_dict = (
formatter.recursive_tensorize
if isinstance(formatter, TensorFormatter)
else cast_to_python_objects # cast in case features is None
)
for key, example in self.ex_iterable: | 30 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
# don't apply feature types if already applied by ex_iterable (e.g. in case of chained with_format)
if self.features and not self.ex_iterable.is_typed:
example = _apply_feature_types_on_example(
example, self.features, token_per_repo_id=self.token_per_repo_id
)
yield key, format_dict(example) | 30 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
def _iter_arrow(self) -> Iterator[Tuple[Key, pa.Table]]:
if not self.features:
yield from self.ex_iterable._iter_arrow()
for key, pa_table in self.ex_iterable._iter_arrow():
columns = set(pa_table.column_names)
schema = self.features.arrow_schema
# add missing columns
for column_name in self.features:
if column_name not in columns:
col = pa.NullArray.from_buffers(pa.null(), len(pa_table), [None])
pa_table = pa_table.append_column(column_name, col)
if pa_table.schema != schema:
pa_table = cast_table_to_features(pa_table, self.features)
yield key, pa_table | 30 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
def shuffle_data_sources(self, generator: np.random.Generator) -> "FormattedExamplesIterable":
"""Shuffle the wrapped examples iterable."""
return FormattedExamplesIterable(
self.ex_iterable.shuffle_data_sources(generator),
features=self.features,
token_per_repo_id=self.token_per_repo_id,
formatting=self.formatting,
)
def shard_data_sources(self, num_shards: int, index: int, contiguous=True) -> "FormattedExamplesIterable":
"""Keep only the requested shard."""
return FormattedExamplesIterable(
self.ex_iterable.shard_data_sources(num_shards, index, contiguous=contiguous),
features=self.features,
token_per_repo_id=self.token_per_repo_id,
formatting=self.formatting,
)
@property
def num_shards(self) -> int:
return self.ex_iterable.num_shards | 30 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
class ShufflingConfig:
generator: np.random.Generator
_original_seed: Optional[int] = None | 31 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
class DistributedConfig:
rank: int
world_size: int | 32 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
class IterableDataset(DatasetInfoMixin):
"""A Dataset backed by an iterable."""
def __init__(
self,
ex_iterable: _BaseExamplesIterable,
info: Optional[DatasetInfo] = None,
split: Optional[NamedSplit] = None,
formatting: Optional[FormattingConfig] = None,
shuffling: Optional[ShufflingConfig] = None,
distributed: Optional[DistributedConfig] = None,
token_per_repo_id: Optional[Dict[str, Union[str, bool, None]]] = None,
):
if distributed and distributed.world_size > 1 and shuffling and shuffling._original_seed is None:
raise RuntimeError(
"The dataset doesn't have a fixed random seed across nodes to shuffle and split the list of dataset shards by node. "
"Please pass e.g. `seed=42` in `.shuffle()` to make all the nodes use the same seed. "
)
info = info.copy() if info is not None else DatasetInfo()
DatasetInfoMixin.__init__(self, info=info, split=split) | 33 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
self._ex_iterable = copy.copy(ex_iterable)
self._formatting = formatting
self._shuffling = shuffling
self._distributed = distributed
self._token_per_repo_id: Dict[str, Union[str, bool, None]] = token_per_repo_id or {}
self._epoch: Union[int, "torch.Tensor"] = _maybe_share_with_torch_persistent_workers(0)
self._starting_state_dict: Optional[dict] = None
self._prepared_ex_iterable = self._prepare_ex_iterable_for_iteration()
self._state_dict = self._prepared_ex_iterable._init_state_dict()
_maybe_add_torch_iterable_dataset_parent_class(self.__class__)
def state_dict(self) -> dict:
"""Get the current state_dict of the dataset.
It corresponds to the state at the latest example it yielded.
Resuming returns exactly where the checkpoint was saved except in two cases: | 33 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
1. examples from shuffle buffers are lost when resuming and the buffers are refilled with new data
2. combinations of `.with_format(arrow)` and batched `.map()` may skip one batch.
Returns:
`dict`
Example:
```py
>>> from datasets import Dataset, concatenate_datasets
>>> ds = Dataset.from_dict({"a": range(6)}).to_iterable_dataset(num_shards=3)
>>> for idx, example in enumerate(ds):
... print(example)
... if idx == 2:
... state_dict = ds.state_dict()
... print("checkpoint")
... break
>>> ds.load_state_dict(state_dict)
>>> print(f"restart from checkpoint")
>>> for example in ds:
... print(example)
```
which returns:
```
{'a': 0}
{'a': 1}
{'a': 2}
checkpoint
restart from checkpoint
{'a': 3}
{'a': 4}
{'a': 5}
``` | 33 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
```py
>>> from torchdata.stateful_dataloader import StatefulDataLoader
>>> ds = load_dataset("deepmind/code_contests", streaming=True, split="train")
>>> dataloader = StatefulDataLoader(ds, batch_size=32, num_workers=4)
>>> # checkpoint
>>> state_dict = dataloader.state_dict() # uses ds.state_dict() under the hood
>>> # resume from checkpoint
>>> dataloader.load_state_dict(state_dict) # uses ds.load_state_dict() under the hood
```
"""
return copy.deepcopy(self._state_dict)
def load_state_dict(self, state_dict: dict) -> None:
"""Load the state_dict of the dataset.
The iteration will restart at the next example from when the state was saved.
Resuming returns exactly where the checkpoint was saved except in two cases: | 33 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
1. examples from shuffle buffers are lost when resuming and the buffers are refilled with new data
2. combinations of `.with_format(arrow)` and batched `.map()` may skip one batch.
Example:
```py
>>> from datasets import Dataset, concatenate_datasets
>>> ds = Dataset.from_dict({"a": range(6)}).to_iterable_dataset(num_shards=3)
>>> for idx, example in enumerate(ds):
... print(example)
... if idx == 2:
... state_dict = ds.state_dict()
... print("checkpoint")
... break
>>> ds.load_state_dict(state_dict)
>>> print(f"restart from checkpoint")
>>> for example in ds:
... print(example)
```
which returns:
```
{'a': 0}
{'a': 1}
{'a': 2}
checkpoint
restart from checkpoint
{'a': 3}
{'a': 4}
{'a': 5}
``` | 33 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
```py
>>> from torchdata.stateful_dataloader import StatefulDataLoader
>>> ds = load_dataset("deepmind/code_contests", streaming=True, split="train")
>>> dataloader = StatefulDataLoader(ds, batch_size=32, num_workers=4)
>>> # checkpoint
>>> state_dict = dataloader.state_dict() # uses ds.state_dict() under the hood
>>> # resume from checkpoint
>>> dataloader.load_state_dict(state_dict) # uses ds.load_state_dict() under the hood
```
"""
self._prepared_ex_iterable.load_state_dict(state_dict)
self._starting_state_dict = state_dict
def __repr__(self):
return f"IterableDataset({{\n features: {list(self._info.features.keys()) if self._info.features is not None else 'Unknown'},\n num_shards: {self.num_shards}\n}})"
def __getstate__(self):
return self.__dict__ | 33 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
def __setstate__(self, d):
self.__dict__ = d
# Re-add torch shared memory, since shared memory is not always kept when pickling
self._epoch = _maybe_share_with_torch_persistent_workers(self._epoch)
# Re-add torch iterable dataset as a parent class, since dynamically added parent classes are not kept when pickling
_maybe_add_torch_iterable_dataset_parent_class(self.__class__)
def _head(self, n=5):
return _examples_to_batch(list(self.take(n)))
@property
def epoch(self) -> int:
return int(self._epoch) | 33 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
def _effective_generator(self):
if self._shuffling and self.epoch == 0:
return self._shuffling.generator
elif self._shuffling:
# Create effective seed using self.epoch (we subtract in order to avoir overflow in long_scalars)
effective_seed = deepcopy(self._shuffling.generator).integers(0, 1 << 63) - self.epoch
effective_seed = (1 << 63) + effective_seed if effective_seed < 0 else effective_seed
return np.random.default_rng(effective_seed)
else:
raise ValueError("This dataset is not shuffled")
@property
def num_shards(self) -> int:
if self._distributed and self._ex_iterable.num_shards % self._distributed.world_size == 0:
return self._ex_iterable.num_shards // self._distributed.world_size
return self._ex_iterable.num_shards
@property
def n_shards(self) -> int: # backward compatibility
return self.num_shards | 33 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
def _iter_pytorch(self):
ex_iterable = self._prepare_ex_iterable_for_iteration()
# Fix for fsspec when using multiprocess to avoid hanging in the ML training loop. (only required for fsspec >= 0.9.0)
# See https://github.com/fsspec/gcsfs/issues/379
fsspec.asyn.reset_lock()
# check if there aren't too many workers
import torch.utils.data | 33 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
worker_info = torch.utils.data.get_worker_info()
if self._is_main_process() and ex_iterable.num_shards < worker_info.num_workers:
logger.warning(
f"Too many dataloader workers: {worker_info.num_workers} (max is dataset.num_shards={ex_iterable.num_shards}). "
f"Stopping {worker_info.num_workers - ex_iterable.num_shards} dataloader workers."
)
logger.info(
f"To parallelize data loading, we give each process some shards (or data sources) to process. "
f"Therefore it's unnecessary to have a number of workers greater than dataset.num_shards={ex_iterable.num_shards}. "
f"To enable more parallelism, please split the dataset in more files than {ex_iterable.num_shards}."
)
# split workload
_log_prefix = f"node#{self._distributed.rank} " if self._distributed else ""
shards_indices = ex_iterable.split_shard_indices_by_worker( | 33 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
num_shards=worker_info.num_workers, index=worker_info.id, contiguous=False
)
if shards_indices:
logger.debug(
f"{_log_prefix}dataloader worker#{worker_info.id}, ': Starting to iterate over {len(shards_indices)}/{ex_iterable.num_shards} shards."
)
ex_iterable = ex_iterable.shard_data_sources(
num_shards=worker_info.num_workers, index=worker_info.id, contiguous=False
)
self._state_dict = ex_iterable._init_state_dict()
if self._starting_state_dict:
ex_iterable.load_state_dict(self._starting_state_dict) | 33 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
if self._formatting:
formatter = get_formatter(self._formatting.format_type, features=self.features)
format_dict = (
formatter.recursive_tensorize if isinstance(formatter, TensorFormatter) else cast_to_python_objects
)
else:
format_dict = None | 33 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
if self._formatting and (ex_iterable.iter_arrow or self._formatting == "arrow"):
if ex_iterable.iter_arrow:
iterator = ex_iterable.iter_arrow()
else:
iterator = _convert_to_arrow(ex_iterable, batch_size=1)
for key, pa_table in iterator:
yield formatter.format_row(pa_table)
return
else:
for key, example in ex_iterable:
if self.features and not ex_iterable.is_typed:
# `IterableDataset` automatically fills missing columns with None.
# This is done with `_apply_feature_types_on_example`.
example = _apply_feature_types_on_example(
example, self.features, token_per_repo_id=self._token_per_repo_id
)
yield format_dict(example) if format_dict else example
logger.debug( | 33 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
f"{_log_prefix}dataloader worker#{worker_info.id}, ': Finished iterating over {len(shards_indices)}/{ex_iterable.num_shards} shards."
)
else:
logger.debug(
f"{_log_prefix}dataloader worker#{worker_info.id}, ': Stopping... Number of dataset shards < num_workers ({ex_iterable.num_shards}<{worker_info.num_workers})."
) | 33 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
def _is_main_process(self):
if self._distributed and self._distributed.rank > 0:
return False
if "torch" in sys.modules:
import torch.utils.data
worker_info = torch.utils.data.get_worker_info()
if worker_info is not None and worker_info.id > 0:
return False
return True
def _prepare_ex_iterable_for_iteration(
self, batch_size: int = 1, drop_last_batch: bool = False
) -> _BaseExamplesIterable:
ex_iterable = self._ex_iterable
if self._formatting and (ex_iterable.iter_arrow or self._formatting.format_type == "arrow"):
ex_iterable = RebatchedArrowExamplesIterable(
ex_iterable, batch_size=batch_size, drop_last_batch=drop_last_batch
)
if self._shuffling:
ex_iterable = ex_iterable.shuffle_data_sources(self._effective_generator())
else:
ex_iterable = ex_iterable | 33 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
if self._distributed:
rank = self._distributed.rank
world_size = self._distributed.world_size
if ex_iterable.num_shards % world_size == 0:
if self._is_main_process():
num_shards_per_node = ex_iterable.num_shards // world_size
plural = "s" if num_shards_per_node > 1 else ""
logger.info(
f"Assigning {num_shards_per_node} shard{plural} (or data source{plural}) of the dataset to each node."
)
ex_iterable = ex_iterable.shard_data_sources(num_shards=world_size, index=rank, contiguous=False)
else:
if self._is_main_process():
logger.info(
f"Assigning 1 out of {world_size} examples of the dataset to each node. The others are skipped during the iteration."
)
logger.info( | 33 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
f"It is more optimized to distribute the dataset shards (or data sources) across nodes. "
f"You can do that by using a dataset with number of shards that is a factor of world_size={world_size}. "
f"The current dataset has {ex_iterable.num_shards} which is not a factor of {world_size}"
)
ex_iterable = StepExamplesIterable(ex_iterable, step=world_size, offset=rank) | 33 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |
self._state_dict = ex_iterable._init_state_dict()
if self._starting_state_dict:
ex_iterable.load_state_dict(self._starting_state_dict)
return ex_iterable
def __iter__(self):
if "torch" in sys.modules:
import torch.utils.data
worker_info = torch.utils.data.get_worker_info()
if isinstance(self, torch.utils.data.IterableDataset) and worker_info is not None:
# We're a torch.utils.data.IterableDataset in a PyTorch worker process
yield from self._iter_pytorch()
return
ex_iterable = self._prepare_ex_iterable_for_iteration()
if self._formatting:
formatter = get_formatter(self._formatting.format_type, features=self.features)
format_dict = (
formatter.recursive_tensorize if isinstance(formatter, TensorFormatter) else cast_to_python_objects
)
else:
format_dict = None | 33 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/iterable_dataset.py |