text
stringlengths
1
1.02k
class_index
int64
0
271
source
stringclasses
76 values
Returns: `pa.StructArray`: Array in the Video arrow storage type, that is `pa.struct({"bytes": pa.binary(), "path": pa.string()})`. """ if pa.types.is_string(storage.type): bytes_array = pa.array([None] * len(storage), type=pa.binary()) storage = pa.StructArray.from_arrays([bytes_array, storage], ["bytes", "path"], mask=storage.is_null()) elif pa.types.is_binary(storage.type): path_array = pa.array([None] * len(storage), type=pa.string()) storage = pa.StructArray.from_arrays([storage, path_array], ["bytes", "path"], mask=storage.is_null()) elif pa.types.is_struct(storage.type): if storage.type.get_field_index("bytes") >= 0: bytes_array = storage.field("bytes") else: bytes_array = pa.array([None] * len(storage), type=pa.binary()) if storage.type.get_field_index("path") >= 0: path_array = storage.field("path")
162
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/features/video.py
else: path_array = pa.array([None] * len(storage), type=pa.string()) storage = pa.StructArray.from_arrays([bytes_array, path_array], ["bytes", "path"], mask=storage.is_null()) elif pa.types.is_list(storage.type): bytes_array = pa.array( [encode_np_array(np.array(arr))["bytes"] if arr is not None else None for arr in storage.to_pylist()], type=pa.binary(), ) path_array = pa.array([None] * len(storage), type=pa.string()) storage = pa.StructArray.from_arrays( [bytes_array, path_array], ["bytes", "path"], mask=bytes_array.is_null() ) return array_cast(storage, self.pa_type)
162
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/features/video.py
class Image: """Image [`Feature`] to read image data from an image file. Input: The Image feature accepts as input: - A `str`: Absolute path to the image file (i.e. random access is allowed). - A `dict` with the keys: - `path`: String with relative path of the image file to the archive file. - `bytes`: Bytes of the image file. This is useful for archived files with sequential access. - An `np.ndarray`: NumPy array representing an image. - A `PIL.Image.Image`: PIL image object. Args: mode (`str`, *optional*): The mode to convert the image to. If `None`, the native mode of the image is used. decode (`bool`, defaults to `True`): Whether to decode the image data. If `False`, returns the underlying dictionary in the format `{"path": image_path, "bytes": image_bytes}`. Examples:
163
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/features/image.py
```py >>> from datasets import load_dataset, Image >>> ds = load_dataset("beans", split="train") >>> ds.features["image"] Image(decode=True, id=None) >>> ds[0]["image"] <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=500x500 at 0x15E52E7F0> >>> ds = ds.cast_column('image', Image(decode=False)) {'bytes': None, 'path': '/root/.cache/huggingface/datasets/downloads/extracted/b0a21163f78769a2cf11f58dfc767fb458fc7cea5c05dccc0144a2c0f0bc1292/train/healthy/healthy_train.85.jpg'} ``` """ mode: Optional[str] = None decode: bool = True id: Optional[str] = None # Automatically constructed dtype: ClassVar[str] = "PIL.Image.Image" pa_type: ClassVar[Any] = pa.struct({"bytes": pa.binary(), "path": pa.string()}) _type: str = field(default="Image", init=False, repr=False) def __call__(self): return self.pa_type
163
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/features/image.py
def encode_example(self, value: Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"]) -> dict: """Encode example into a format for Arrow. Args: value (`str`, `np.ndarray`, `PIL.Image.Image` or `dict`): Data passed as input to Image feature. Returns: `dict` with "path" and "bytes" fields """ if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'.") if isinstance(value, list): value = np.array(value)
163
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/features/image.py
if isinstance(value, str): return {"path": value, "bytes": None} elif isinstance(value, bytes): return {"path": None, "bytes": value} elif isinstance(value, np.ndarray): # convert the image array to PNG/TIFF bytes return encode_np_array(value) elif isinstance(value, PIL.Image.Image): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(value) elif value.get("path") is not None and os.path.isfile(value["path"]): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get("path")} elif value.get("bytes") is not None or value.get("path") is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get("bytes"), "path": value.get("path")} else: raise ValueError(
163
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/features/image.py
f"An image sample should have one of 'path' or 'bytes' but they are missing or None in {value}." )
163
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/features/image.py
def decode_example(self, value: dict, token_per_repo_id=None) -> "PIL.Image.Image": """Decode example image file into image data. Args: value (`str` or `dict`): A string with the absolute image file path, a dictionary with keys: - `path`: String with absolute or relative image file path. - `bytes`: The bytes of the image file. token_per_repo_id (`dict`, *optional*): To access and decode image files from private repositories on the Hub, you can pass a dictionary repo_id (`str`) -> token (`bool` or `str`). Returns: `PIL.Image.Image` """ if not self.decode: raise RuntimeError("Decoding is disabled for this feature. Please use Image(decode=True) instead.")
163
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/features/image.py
if config.PIL_AVAILABLE: import PIL.Image import PIL.ImageOps else: raise ImportError("To support decoding images, please install 'Pillow'.") if token_per_repo_id is None: token_per_repo_id = {}
163
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/features/image.py
path, bytes_ = value["path"], value["bytes"] if bytes_ is None: if path is None: raise ValueError(f"An image should have one of 'path' or 'bytes' but both are None in {value}.") else: if is_local_path(path): image = PIL.Image.open(path) else: source_url = path.split("::")[-1] pattern = ( config.HUB_DATASETS_URL if source_url.startswith(config.HF_ENDPOINT) else config.HUB_DATASETS_HFFS_URL ) try: repo_id = string_to_dict(source_url, pattern)["repo_id"] token = token_per_repo_id.get(repo_id) except ValueError: token = None download_config = DownloadConfig(token=token)
163
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/features/image.py
with xopen(path, "rb", download_config=download_config) as f: bytes_ = BytesIO(f.read()) image = PIL.Image.open(bytes_) else: image = PIL.Image.open(BytesIO(bytes_)) image.load() # to avoid "Too many open files" errors if image.getexif().get(PIL.Image.ExifTags.Base.Orientation) is not None: image = PIL.ImageOps.exif_transpose(image) if self.mode and self.mode != image.mode: image = image.convert(self.mode) return image
163
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/features/image.py
def flatten(self) -> Union["FeatureType", Dict[str, "FeatureType"]]: """If in the decodable state, return the feature itself, otherwise flatten the feature into a dictionary.""" from .features import Value return ( self if self.decode else { "bytes": Value("binary"), "path": Value("string"), } ) def cast_storage(self, storage: Union[pa.StringArray, pa.StructArray, pa.ListArray]) -> pa.StructArray: """Cast an Arrow array to the Image arrow storage type. The Arrow types that can be converted to the Image pyarrow storage type are:
163
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/features/image.py
- `pa.string()` - it must contain the "path" data - `pa.binary()` - it must contain the image bytes - `pa.struct({"bytes": pa.binary()})` - `pa.struct({"path": pa.string()})` - `pa.struct({"bytes": pa.binary(), "path": pa.string()})` - order doesn't matter - `pa.list(*)` - it must contain the image array data Args: storage (`Union[pa.StringArray, pa.StructArray, pa.ListArray]`): PyArrow array to cast.
163
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/features/image.py
Returns: `pa.StructArray`: Array in the Image arrow storage type, that is `pa.struct({"bytes": pa.binary(), "path": pa.string()})`. """ if pa.types.is_string(storage.type): bytes_array = pa.array([None] * len(storage), type=pa.binary()) storage = pa.StructArray.from_arrays([bytes_array, storage], ["bytes", "path"], mask=storage.is_null()) elif pa.types.is_binary(storage.type): path_array = pa.array([None] * len(storage), type=pa.string()) storage = pa.StructArray.from_arrays([storage, path_array], ["bytes", "path"], mask=storage.is_null()) elif pa.types.is_struct(storage.type): if storage.type.get_field_index("bytes") >= 0: bytes_array = storage.field("bytes") else: bytes_array = pa.array([None] * len(storage), type=pa.binary()) if storage.type.get_field_index("path") >= 0: path_array = storage.field("path")
163
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/features/image.py
else: path_array = pa.array([None] * len(storage), type=pa.string()) storage = pa.StructArray.from_arrays([bytes_array, path_array], ["bytes", "path"], mask=storage.is_null()) elif pa.types.is_list(storage.type): bytes_array = pa.array( [encode_np_array(np.array(arr))["bytes"] if arr is not None else None for arr in storage.to_pylist()], type=pa.binary(), ) path_array = pa.array([None] * len(storage), type=pa.string()) storage = pa.StructArray.from_arrays( [bytes_array, path_array], ["bytes", "path"], mask=bytes_array.is_null() ) return array_cast(storage, self.pa_type)
163
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/features/image.py
def embed_storage(self, storage: pa.StructArray) -> pa.StructArray: """Embed image files into the Arrow array. Args: storage (`pa.StructArray`): PyArrow array to embed. Returns: `pa.StructArray`: Array in the Image arrow storage type, that is `pa.struct({"bytes": pa.binary(), "path": pa.string()})`. """ @no_op_if_value_is_null def path_to_bytes(path): with xopen(path, "rb") as f: bytes_ = f.read() return bytes_
163
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/features/image.py
bytes_array = pa.array( [ (path_to_bytes(x["path"]) if x["bytes"] is None else x["bytes"]) if x is not None else None for x in storage.to_pylist() ], type=pa.binary(), ) path_array = pa.array( [os.path.basename(path) if path is not None else None for path in storage.field("path").to_pylist()], type=pa.string(), ) storage = pa.StructArray.from_arrays([bytes_array, path_array], ["bytes", "path"], mask=bytes_array.is_null()) return array_cast(storage, self.pa_type)
163
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/features/image.py
class WebDataset(datasets.GeneratorBasedBuilder): DEFAULT_WRITER_BATCH_SIZE = 100 IMAGE_EXTENSIONS: List[str] # definition at the bottom of the script AUDIO_EXTENSIONS: List[str] # definition at the bottom of the script VIDEO_EXTENSIONS: List[str] # definition at the bottom of the script DECODERS: Dict[str, Callable[[Any], Any]] # definition at the bottom of the script NUM_EXAMPLES_FOR_FEATURES_INFERENCE = 5
164
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/packaged_modules/webdataset/webdataset.py
@classmethod def _get_pipeline_from_tar(cls, tar_path, tar_iterator): current_example = {} fs: fsspec.AbstractFileSystem = fsspec.filesystem("memory") streaming_download_manager = datasets.StreamingDownloadManager() for filename, f in tar_iterator: example_key, field_name = base_plus_ext(filename) if example_key is None: continue if current_example and current_example["__key__"] != example_key: # reposition some keys in last position current_example["__key__"] = current_example.pop("__key__") current_example["__url__"] = current_example.pop("__url__") yield current_example current_example = {} current_example["__key__"] = example_key current_example["__url__"] = tar_path current_example[field_name.lower()] = f.read()
164
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/packaged_modules/webdataset/webdataset.py
if field_name.split(".")[-1] in SINGLE_FILE_COMPRESSION_EXTENSION_TO_PROTOCOL: fs.write_bytes(filename, current_example[field_name.lower()]) extracted_file_path = streaming_download_manager.extract(f"memory://{filename}") with fsspec.open(extracted_file_path) as f: current_example[field_name.lower()] = f.read() fs.delete(filename) data_extension = xbasename(extracted_file_path).split(".")[-1] else: data_extension = field_name.split(".")[-1] if data_extension in cls.DECODERS: current_example[field_name] = cls.DECODERS[data_extension](current_example[field_name]) if current_example: yield current_example
164
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/packaged_modules/webdataset/webdataset.py
def _info(self) -> datasets.DatasetInfo: return datasets.DatasetInfo()
164
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/packaged_modules/webdataset/webdataset.py
def _split_generators(self, dl_manager): """We handle string, list and dicts in datafiles""" # Download the data files if not self.config.data_files: raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}") data_files = dl_manager.download(self.config.data_files) splits = [] for split_name, tar_paths in data_files.items(): if isinstance(tar_paths, str): tar_paths = [tar_paths] tar_iterators = [dl_manager.iter_archive(tar_path) for tar_path in tar_paths] splits.append( datasets.SplitGenerator( name=split_name, gen_kwargs={"tar_paths": tar_paths, "tar_iterators": tar_iterators} ) ) if not self.info.features: # Get one example to get the feature types pipeline = self._get_pipeline_from_tar(tar_paths[0], tar_iterators[0])
164
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/packaged_modules/webdataset/webdataset.py
first_examples = list(islice(pipeline, self.NUM_EXAMPLES_FOR_FEATURES_INFERENCE)) if any(example.keys() != first_examples[0].keys() for example in first_examples): raise ValueError( "The TAR archives of the dataset should be in WebDataset format, " "but the files in the archive don't share the same prefix or the same types." ) pa_tables = [ pa.Table.from_pylist(cast_to_python_objects([example], only_1d_for_numpy=True)) for example in first_examples ] inferred_arrow_schema = pa.concat_tables(pa_tables, promote_options="default").schema features = datasets.Features.from_arrow_schema(inferred_arrow_schema)
164
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/packaged_modules/webdataset/webdataset.py
# Set Image types for field_name in first_examples[0]: extension = field_name.rsplit(".", 1)[-1] if extension in self.IMAGE_EXTENSIONS: features[field_name] = datasets.Image() # Set Audio types for field_name in first_examples[0]: extension = field_name.rsplit(".", 1)[-1] if extension in self.AUDIO_EXTENSIONS: features[field_name] = datasets.Audio() # Set Video types for field_name in first_examples[0]: extension = field_name.rsplit(".", 1)[-1] if extension in self.VIDEO_EXTENSIONS: features[field_name] = datasets.Video() self.info.features = features return splits
164
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/packaged_modules/webdataset/webdataset.py
def _generate_examples(self, tar_paths, tar_iterators): image_field_names = [ field_name for field_name, feature in self.info.features.items() if isinstance(feature, datasets.Image) ] audio_field_names = [ field_name for field_name, feature in self.info.features.items() if isinstance(feature, datasets.Audio) ] all_field_names = list(self.info.features.keys()) for tar_idx, (tar_path, tar_iterator) in enumerate(zip(tar_paths, tar_iterators)): for example_idx, example in enumerate(self._get_pipeline_from_tar(tar_path, tar_iterator)): for field_name in all_field_names: if field_name not in example: example[field_name] = None for field_name in image_field_names + audio_field_names: if example[field_name] is not None: example[field_name] = {
164
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/packaged_modules/webdataset/webdataset.py
"path": example["__key__"] + "." + field_name, "bytes": example[field_name], } yield f"{tar_idx}_{example_idx}", example
164
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/packaged_modules/webdataset/webdataset.py
class FolderBasedBuilderConfig(datasets.BuilderConfig): """BuilderConfig for AutoFolder.""" features: Optional[datasets.Features] = None drop_labels: bool = None drop_metadata: bool = None def __post_init__(self): super().__post_init__()
165
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/packaged_modules/folder_based_builder/folder_based_builder.py
class FolderBasedBuilder(datasets.GeneratorBasedBuilder): """ Base class for generic data loaders for vision and image data. Abstract class attributes to be overridden by a child class: BASE_FEATURE: feature object to decode data (i.e. datasets.Image, datasets.Audio, ...) BASE_COLUMN_NAME: string key name of a base feature (i.e. "image", "audio", ...) BUILDER_CONFIG_CLASS: builder config inherited from `folder_based_builder.FolderBasedBuilderConfig` EXTENSIONS: list of allowed extensions (only files with these extensions and METADATA_FILENAME files will be included in a dataset) """ BASE_FEATURE: Type[FeatureType] BASE_COLUMN_NAME: str BUILDER_CONFIG_CLASS: FolderBasedBuilderConfig EXTENSIONS: List[str] METADATA_FILENAMES: List[str] = ["metadata.csv", "metadata.jsonl"] def _info(self): return datasets.DatasetInfo(features=self.config.features)
166
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/packaged_modules/folder_based_builder/folder_based_builder.py
def _split_generators(self, dl_manager): if not self.config.data_files: raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}") dl_manager.download_config.extract_on_the_fly = True # Do an early pass if: # * `drop_labels` is None (default) or False, to infer the class labels # * `drop_metadata` is None (default) or False, to find the metadata files do_analyze = not self.config.drop_labels or not self.config.drop_metadata labels, path_depths = set(), set() metadata_files = collections.defaultdict(set)
166
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/packaged_modules/folder_based_builder/folder_based_builder.py
def analyze(files_or_archives, downloaded_files_or_dirs, split): if len(downloaded_files_or_dirs) == 0: return # The files are separated from the archives at this point, so check the first sample # to see if it's a file or a directory and iterate accordingly if os.path.isfile(downloaded_files_or_dirs[0]): original_files, downloaded_files = files_or_archives, downloaded_files_or_dirs for original_file, downloaded_file in zip(original_files, downloaded_files): original_file, downloaded_file = str(original_file), str(downloaded_file) _, original_file_ext = os.path.splitext(original_file) if original_file_ext.lower() in self.EXTENSIONS: if not self.config.drop_labels: labels.add(os.path.basename(os.path.dirname(original_file)))
166
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/packaged_modules/folder_based_builder/folder_based_builder.py
path_depths.add(count_path_segments(original_file)) elif os.path.basename(original_file) in self.METADATA_FILENAMES: metadata_files[split].add((original_file, downloaded_file)) else: original_file_name = os.path.basename(original_file) logger.debug( f"The file '{original_file_name}' was ignored: it is not an image, and is not {self.METADATA_FILENAMES} either." ) else: archives, downloaded_dirs = files_or_archives, downloaded_files_or_dirs for archive, downloaded_dir in zip(archives, downloaded_dirs): archive, downloaded_dir = str(archive), str(downloaded_dir) for downloaded_dir_file in dl_manager.iter_files(downloaded_dir): _, downloaded_dir_file_ext = os.path.splitext(downloaded_dir_file)
166
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/packaged_modules/folder_based_builder/folder_based_builder.py
if downloaded_dir_file_ext in self.EXTENSIONS: if not self.config.drop_labels: labels.add(os.path.basename(os.path.dirname(downloaded_dir_file))) path_depths.add(count_path_segments(downloaded_dir_file)) elif os.path.basename(downloaded_dir_file) in self.METADATA_FILENAMES: metadata_files[split].add((None, downloaded_dir_file)) else: archive_file_name = os.path.basename(archive) original_file_name = os.path.basename(downloaded_dir_file) logger.debug( f"The file '{original_file_name}' from the archive '{archive_file_name}' was ignored: it is not an {self.BASE_COLUMN_NAME}, and is not {self.METADATA_FILENAMES} either." )
166
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/packaged_modules/folder_based_builder/folder_based_builder.py
data_files = self.config.data_files splits = [] for split_name, files in data_files.items(): if isinstance(files, str): files = [files] files, archives = self._split_files_and_archives(files) downloaded_files = dl_manager.download(files) downloaded_dirs = dl_manager.download_and_extract(archives) if do_analyze: # drop_metadata is None or False, drop_labels is None or False logger.info(f"Searching for labels and/or metadata files in {split_name} data files...") analyze(files, downloaded_files, split_name) analyze(archives, downloaded_dirs, split_name)
166
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/packaged_modules/folder_based_builder/folder_based_builder.py
if metadata_files: # add metadata if `metadata_files` are found and `drop_metadata` is None (default) or False add_metadata = not self.config.drop_metadata # if `metadata_files` are found, add labels only if # `drop_labels` is set up to False explicitly (not-default behavior) add_labels = self.config.drop_labels is False else: # if `metadata_files` are not found, don't add metadata add_metadata = False # if `metadata_files` are not found and `drop_labels` is None (default) - # add labels if files are on the same level in directory hierarchy and there is more than one label add_labels = ( (len(labels) > 1 and len(path_depths) == 1) if self.config.drop_labels is None else not self.config.drop_labels
166
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/packaged_modules/folder_based_builder/folder_based_builder.py
)
166
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/packaged_modules/folder_based_builder/folder_based_builder.py
if add_labels: logger.info("Adding the labels inferred from data directories to the dataset's features...") if add_metadata: logger.info("Adding metadata to the dataset...") else: add_labels, add_metadata, metadata_files = False, False, {} splits.append( datasets.SplitGenerator( name=split_name, gen_kwargs={ "files": list(zip(files, downloaded_files)) + [(None, dl_manager.iter_files(downloaded_dir)) for downloaded_dir in downloaded_dirs], "metadata_files": metadata_files, "split_name": split_name, "add_labels": add_labels, "add_metadata": add_metadata, }, ) )
166
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/packaged_modules/folder_based_builder/folder_based_builder.py
if add_metadata: # Verify that: # * all metadata files have the same set of features # * the `file_name` key is one of the metadata keys and is of type string features_per_metadata_file: List[Tuple[str, datasets.Features]] = [] # Check that all metadata files share the same format metadata_ext = { os.path.splitext(original_metadata_file)[-1] for original_metadata_file, _ in itertools.chain.from_iterable(metadata_files.values()) } if len(metadata_ext) > 1: raise ValueError(f"Found metadata files with different extensions: {list(metadata_ext)}") metadata_ext = metadata_ext.pop()
166
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/packaged_modules/folder_based_builder/folder_based_builder.py
for _, downloaded_metadata_file in itertools.chain.from_iterable(metadata_files.values()): pa_metadata_table = self._read_metadata(downloaded_metadata_file, metadata_ext=metadata_ext) features_per_metadata_file.append( (downloaded_metadata_file, datasets.Features.from_arrow_schema(pa_metadata_table.schema)) ) for downloaded_metadata_file, metadata_features in features_per_metadata_file: if metadata_features != features_per_metadata_file[0][1]: raise ValueError( f"Metadata files {downloaded_metadata_file} and {features_per_metadata_file[0][0]} have different features: {features_per_metadata_file[0]} != {metadata_features}" ) metadata_features = features_per_metadata_file[0][1] if "file_name" not in metadata_features: raise ValueError("`file_name` must be present as dictionary key in metadata files")
166
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/packaged_modules/folder_based_builder/folder_based_builder.py
if metadata_features["file_name"] != datasets.Value("string"): raise ValueError("`file_name` key must be a string") del metadata_features["file_name"] else: metadata_features = None
166
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/packaged_modules/folder_based_builder/folder_based_builder.py
# Normally, we would do this in _info, but we need to know the labels and/or metadata # before building the features if self.config.features is None: if add_labels: self.info.features = datasets.Features( { self.BASE_COLUMN_NAME: self.BASE_FEATURE(), "label": datasets.ClassLabel(names=sorted(labels)), } ) else: self.info.features = datasets.Features({self.BASE_COLUMN_NAME: self.BASE_FEATURE()})
166
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/packaged_modules/folder_based_builder/folder_based_builder.py
if add_metadata: # Warn if there are duplicated keys in metadata compared to the existing features # (`BASE_COLUMN_NAME`, optionally "label") duplicated_keys = set(self.info.features) & set(metadata_features) if duplicated_keys: logger.warning( f"Ignoring metadata columns {list(duplicated_keys)} as they are already present in " f"the features dictionary." ) # skip metadata duplicated keys self.info.features.update( { feature: metadata_features[feature] for feature in metadata_features if feature not in duplicated_keys } ) return splits
166
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/packaged_modules/folder_based_builder/folder_based_builder.py
def _split_files_and_archives(self, data_files): files, archives = [], [] for data_file in data_files: _, data_file_ext = os.path.splitext(data_file) if data_file_ext.lower() in self.EXTENSIONS: files.append(data_file) elif os.path.basename(data_file) in self.METADATA_FILENAMES: files.append(data_file) else: archives.append(data_file) return files, archives def _read_metadata(self, metadata_file, metadata_ext: str = ""): if metadata_ext == ".csv": # Use `pd.read_csv` (although slower) instead of `pyarrow.csv.read_csv` for reading CSV files for consistency with the CSV packaged module return pa.Table.from_pandas(pd.read_csv(metadata_file)) else: with open(metadata_file, "rb") as f: return paj.read_json(f)
166
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/packaged_modules/folder_based_builder/folder_based_builder.py
def _generate_examples(self, files, metadata_files, split_name, add_metadata, add_labels): split_metadata_files = metadata_files.get(split_name, []) sample_empty_metadata = ( {k: None for k in self.info.features if k != self.BASE_COLUMN_NAME} if self.info.features else {} ) last_checked_dir = None metadata_dir = None metadata_dict = None downloaded_metadata_file = None metadata_ext = "" if split_metadata_files: metadata_ext = { os.path.splitext(original_metadata_file)[-1] for original_metadata_file, _ in split_metadata_files } metadata_ext = metadata_ext.pop()
166
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/packaged_modules/folder_based_builder/folder_based_builder.py
file_idx = 0 for original_file, downloaded_file_or_dir in files: if original_file is not None: _, original_file_ext = os.path.splitext(original_file) if original_file_ext.lower() in self.EXTENSIONS: if add_metadata: # If the file is a file of a needed type, and we've just entered a new directory, # find the nereast metadata file (by counting path segments) for the directory current_dir = os.path.dirname(original_file) if last_checked_dir is None or last_checked_dir != current_dir: last_checked_dir = current_dir metadata_file_candidates = [ ( os.path.relpath(original_file, os.path.dirname(metadata_file_candidate)), metadata_file_candidate,
166
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/packaged_modules/folder_based_builder/folder_based_builder.py
downloaded_metadata_file, ) for metadata_file_candidate, downloaded_metadata_file in split_metadata_files if metadata_file_candidate is not None # ignore metadata_files that are inside archives and not os.path.relpath( original_file, os.path.dirname(metadata_file_candidate) ).startswith("..") ] if metadata_file_candidates: _, metadata_file, downloaded_metadata_file = min( metadata_file_candidates, key=lambda x: count_path_segments(x[0]) ) pa_metadata_table = self._read_metadata(
166
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/packaged_modules/folder_based_builder/folder_based_builder.py
downloaded_metadata_file, metadata_ext=metadata_ext ) pa_file_name_array = pa_metadata_table["file_name"] pa_metadata_table = pa_metadata_table.drop(["file_name"]) metadata_dir = os.path.dirname(metadata_file) metadata_dict = { os.path.normpath(file_name).replace("\\", "/"): sample_metadata for file_name, sample_metadata in zip( pa_file_name_array.to_pylist(), pa_metadata_table.to_pylist() ) } else: raise ValueError(
166
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/packaged_modules/folder_based_builder/folder_based_builder.py
f"One or several metadata{metadata_ext} were found, but not in the same directory or in a parent directory of {downloaded_file_or_dir}." ) if metadata_dir is not None and downloaded_metadata_file is not None: file_relpath = os.path.relpath(original_file, metadata_dir) file_relpath = file_relpath.replace("\\", "/") if file_relpath not in metadata_dict: raise ValueError( f"{self.BASE_COLUMN_NAME} at {file_relpath} doesn't have metadata in {downloaded_metadata_file}." ) sample_metadata = metadata_dict[file_relpath] else: raise ValueError(
166
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/packaged_modules/folder_based_builder/folder_based_builder.py
f"One or several metadata{metadata_ext} were found, but not in the same directory or in a parent directory of {downloaded_file_or_dir}." ) else: sample_metadata = {} if add_labels: sample_label = {"label": os.path.basename(os.path.dirname(original_file))} else: sample_label = {} yield ( file_idx, { **sample_empty_metadata, self.BASE_COLUMN_NAME: downloaded_file_or_dir, **sample_metadata, **sample_label, }, ) file_idx += 1 else: for downloaded_dir_file in downloaded_file_or_dir:
166
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/packaged_modules/folder_based_builder/folder_based_builder.py
_, downloaded_dir_file_ext = os.path.splitext(downloaded_dir_file) if downloaded_dir_file_ext.lower() in self.EXTENSIONS: if add_metadata: current_dir = os.path.dirname(downloaded_dir_file) if last_checked_dir is None or last_checked_dir != current_dir: last_checked_dir = current_dir metadata_file_candidates = [ ( os.path.relpath( downloaded_dir_file, os.path.dirname(downloaded_metadata_file) ), metadata_file_candidate, downloaded_metadata_file, )
166
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/packaged_modules/folder_based_builder/folder_based_builder.py
for metadata_file_candidate, downloaded_metadata_file in split_metadata_files if metadata_file_candidate is None # ignore metadata_files that are not inside archives and not os.path.relpath( downloaded_dir_file, os.path.dirname(downloaded_metadata_file) ).startswith("..") ] if metadata_file_candidates: _, metadata_file, downloaded_metadata_file = min( metadata_file_candidates, key=lambda x: count_path_segments(x[0]) ) pa_metadata_table = self._read_metadata( downloaded_metadata_file, metadata_ext=metadata_ext
166
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/packaged_modules/folder_based_builder/folder_based_builder.py
) pa_file_name_array = pa_metadata_table["file_name"] pa_metadata_table = pa_metadata_table.drop(["file_name"]) metadata_dir = os.path.dirname(downloaded_metadata_file) metadata_dict = { os.path.normpath(file_name).replace("\\", "/"): sample_metadata for file_name, sample_metadata in zip( pa_file_name_array.to_pylist(), pa_metadata_table.to_pylist() ) } else: raise ValueError( f"One or several metadata{metadata_ext} were found, but not in the same directory or in a parent directory of {downloaded_dir_file}."
166
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/packaged_modules/folder_based_builder/folder_based_builder.py
) if metadata_dir is not None and downloaded_metadata_file is not None: downloaded_dir_file_relpath = os.path.relpath(downloaded_dir_file, metadata_dir) downloaded_dir_file_relpath = downloaded_dir_file_relpath.replace("\\", "/") if downloaded_dir_file_relpath not in metadata_dict: raise ValueError( f"{self.BASE_COLUMN_NAME} at {downloaded_dir_file_relpath} doesn't have metadata in {downloaded_metadata_file}." ) sample_metadata = metadata_dict[downloaded_dir_file_relpath] else: raise ValueError(
166
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/packaged_modules/folder_based_builder/folder_based_builder.py
f"One or several metadata{metadata_ext} were found, but not in the same directory or in a parent directory of {downloaded_dir_file}." ) else: sample_metadata = {} if add_labels: sample_label = {"label": os.path.basename(os.path.dirname(downloaded_dir_file))} else: sample_label = {} yield ( file_idx, { **sample_empty_metadata, self.BASE_COLUMN_NAME: downloaded_dir_file, **sample_metadata, **sample_label, }, ) file_idx += 1
166
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/packaged_modules/folder_based_builder/folder_based_builder.py
class Cache(datasets.ArrowBasedBuilder): def __init__( self, cache_dir: Optional[str] = None, dataset_name: Optional[str] = None, config_name: Optional[str] = None, version: Optional[str] = "0.0.0", hash: Optional[str] = None, base_path: Optional[str] = None, info: Optional[datasets.DatasetInfo] = None, features: Optional[datasets.Features] = None, token: Optional[Union[bool, str]] = None, repo_id: Optional[str] = None, data_files: Optional[Union[str, list, dict, datasets.data_files.DataFilesDict]] = None, data_dir: Optional[str] = None, storage_options: Optional[dict] = None, writer_batch_size: Optional[int] = None, **config_kwargs, ): if repo_id is None and dataset_name is None: raise ValueError("repo_id or dataset_name is required for the Cache dataset builder") if data_files is not None: config_kwargs["data_files"] = data_files
167
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/packaged_modules/cache/cache.py
if data_dir is not None: config_kwargs["data_dir"] = data_dir if hash == "auto" and version == "auto": config_name, version, hash = _find_hash_in_cache( dataset_name=repo_id or dataset_name, config_name=config_name, cache_dir=cache_dir, config_kwargs=config_kwargs, custom_features=features, ) elif hash == "auto" or version == "auto": raise NotImplementedError("Pass both hash='auto' and version='auto' instead") super().__init__( cache_dir=cache_dir, dataset_name=dataset_name, config_name=config_name, version=version, hash=hash, base_path=base_path, info=info, token=token, repo_id=repo_id, storage_options=storage_options, writer_batch_size=writer_batch_size, )
167
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/packaged_modules/cache/cache.py
def _info(self) -> datasets.DatasetInfo: return datasets.DatasetInfo() def download_and_prepare(self, output_dir: Optional[str] = None, *args, **kwargs): if not os.path.exists(self.cache_dir): raise ValueError(f"Cache directory for {self.dataset_name} doesn't exist at {self.cache_dir}") if output_dir is not None and output_dir != self.cache_dir: shutil.copytree(self.cache_dir, output_dir)
167
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/packaged_modules/cache/cache.py
def _split_generators(self, dl_manager): # used to stream from cache if isinstance(self.info.splits, datasets.SplitDict): split_infos: List[datasets.SplitInfo] = list(self.info.splits.values()) else: raise ValueError(f"Missing splits info for {self.dataset_name} in cache directory {self.cache_dir}") return [ datasets.SplitGenerator( name=split_info.name, gen_kwargs={ "files": filenames_for_dataset_split( self.cache_dir, dataset_name=self.dataset_name, split=split_info.name, filetype_suffix="arrow", shard_lengths=split_info.shard_lengths, ) }, ) for split_info in split_infos ]
167
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/packaged_modules/cache/cache.py
def _generate_tables(self, files): # used to stream from cache for file_idx, file in enumerate(files): with open(file, "rb") as f: try: for batch_idx, record_batch in enumerate(pa.ipc.open_stream(f)): pa_table = pa.Table.from_batches([record_batch]) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield f"{file_idx}_{batch_idx}", pa_table except ValueError as e: logger.error(f"Failed to read file '{file}' with error {type(e)}: {e}") raise
167
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/packaged_modules/cache/cache.py
class ArrowConfig(datasets.BuilderConfig): """BuilderConfig for Arrow.""" features: Optional[datasets.Features] = None def __post_init__(self): super().__post_init__()
168
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/packaged_modules/arrow/arrow.py
class Arrow(datasets.ArrowBasedBuilder): BUILDER_CONFIG_CLASS = ArrowConfig def _info(self): return datasets.DatasetInfo(features=self.config.features)
169
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/packaged_modules/arrow/arrow.py
def _split_generators(self, dl_manager): """We handle string, list and dicts in datafiles""" if not self.config.data_files: raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}") dl_manager.download_config.extract_on_the_fly = True data_files = dl_manager.download_and_extract(self.config.data_files) splits = [] for split_name, files in data_files.items(): if isinstance(files, str): files = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive files = [dl_manager.iter_files(file) for file in files] # Infer features if they are stored in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(files): with open(file, "rb") as f: try: reader = pa.ipc.open_stream(f)
169
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/packaged_modules/arrow/arrow.py
except (OSError, pa.lib.ArrowInvalid): reader = pa.ipc.open_file(f) self.info.features = datasets.Features.from_arrow_schema(reader.schema) break splits.append(datasets.SplitGenerator(name=split_name, gen_kwargs={"files": files})) return splits
169
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/packaged_modules/arrow/arrow.py
def _cast_table(self, pa_table: pa.Table) -> pa.Table: if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example pa_table = table_cast(pa_table, self.info.features.arrow_schema) return pa_table
169
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/packaged_modules/arrow/arrow.py
def _generate_tables(self, files): for file_idx, file in enumerate(itertools.chain.from_iterable(files)): with open(file, "rb") as f: try: try: batches = pa.ipc.open_stream(f) except (OSError, pa.lib.ArrowInvalid): reader = pa.ipc.open_file(f) batches = (reader.get_batch(i) for i in range(reader.num_record_batches)) for batch_idx, record_batch in enumerate(batches): pa_table = pa.Table.from_batches([record_batch]) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield f"{file_idx}_{batch_idx}", self._cast_table(pa_table)
169
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/packaged_modules/arrow/arrow.py
except ValueError as e: logger.error(f"Failed to read file '{file}' with error {type(e)}: {e}") raise
169
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/packaged_modules/arrow/arrow.py
class ImageFolderConfig(folder_based_builder.FolderBasedBuilderConfig): """BuilderConfig for ImageFolder.""" drop_labels: bool = None drop_metadata: bool = None def __post_init__(self): super().__post_init__()
170
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/packaged_modules/imagefolder/imagefolder.py
class ImageFolder(folder_based_builder.FolderBasedBuilder): BASE_FEATURE = datasets.Image BASE_COLUMN_NAME = "image" BUILDER_CONFIG_CLASS = ImageFolderConfig EXTENSIONS: List[str] # definition at the bottom of the script
171
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/packaged_modules/imagefolder/imagefolder.py
class XmlConfig(datasets.BuilderConfig): """BuilderConfig for xml files.""" features: Optional[datasets.Features] = None encoding: str = "utf-8" encoding_errors: Optional[str] = None
172
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/packaged_modules/xml/xml.py
class Xml(datasets.ArrowBasedBuilder): BUILDER_CONFIG_CLASS = XmlConfig def _info(self): return datasets.DatasetInfo(features=self.config.features) def _split_generators(self, dl_manager): """The `data_files` kwarg in load_dataset() can be a str, List[str], Dict[str,str], or Dict[str,List[str]].
173
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/packaged_modules/xml/xml.py
If str or List[str], then the dataset returns only the 'train' split. If dict, then keys should be from the `datasets.Split` enum. """ if not self.config.data_files: raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}") dl_manager.download_config.extract_on_the_fly = True data_files = dl_manager.download_and_extract(self.config.data_files) splits = [] for split_name, files in data_files.items(): if isinstance(files, str): files = [files] files = [dl_manager.iter_files(file) for file in files] splits.append(datasets.SplitGenerator(name=split_name, gen_kwargs={"files": files})) return splits
173
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/packaged_modules/xml/xml.py
def _cast_table(self, pa_table: pa.Table) -> pa.Table: if self.config.features is not None: schema = self.config.features.arrow_schema if all(not require_storage_cast(feature) for feature in self.config.features.values()): # cheaper cast pa_table = pa_table.cast(schema) else: # more expensive cast; allows str <-> int/float or str to Audio for example pa_table = table_cast(pa_table, schema) return pa_table else: return pa_table.cast(pa.schema({"xml": pa.string()}))
173
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/packaged_modules/xml/xml.py
def _generate_tables(self, files): pa_table_names = list(self.config.features) if self.config.features is not None else ["xml"] for file_idx, file in enumerate(itertools.chain.from_iterable(files)): # open in text mode, by default translates universal newlines ("\n", "\r\n" and "\r") into "\n" with open(file, encoding=self.config.encoding, errors=self.config.encoding_errors) as f: xml = f.read() pa_table = pa.Table.from_arrays([pa.array([xml])], names=pa_table_names) yield file_idx, self._cast_table(pa_table)
173
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/packaged_modules/xml/xml.py
class GeneratorConfig(datasets.BuilderConfig): generator: Optional[Callable] = None gen_kwargs: Optional[dict] = None features: Optional[datasets.Features] = None split: datasets.NamedSplit = datasets.Split.TRAIN def __post_init__(self): super().__post_init__() if self.generator is None: raise ValueError("generator must be specified") if self.gen_kwargs is None: self.gen_kwargs = {}
174
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/packaged_modules/generator/generator.py
class Generator(datasets.GeneratorBasedBuilder): BUILDER_CONFIG_CLASS = GeneratorConfig def _info(self): return datasets.DatasetInfo(features=self.config.features) def _split_generators(self, dl_manager): return [datasets.SplitGenerator(name=self.config.split, gen_kwargs=self.config.gen_kwargs)] def _generate_examples(self, **gen_kwargs): for idx, ex in enumerate(self.config.generator(**gen_kwargs)): yield idx, ex
175
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/packaged_modules/generator/generator.py
class JsonConfig(datasets.BuilderConfig): """BuilderConfig for JSON.""" features: Optional[datasets.Features] = None encoding: str = "utf-8" encoding_errors: Optional[str] = None field: Optional[str] = None use_threads: bool = True # deprecated block_size: Optional[int] = None # deprecated chunksize: int = 10 << 20 # 10MB newlines_in_values: Optional[bool] = None def __post_init__(self): super().__post_init__()
176
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/packaged_modules/json/json.py
class Json(datasets.ArrowBasedBuilder): BUILDER_CONFIG_CLASS = JsonConfig def _info(self): if self.config.block_size is not None: logger.warning("The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead") self.config.chunksize = self.config.block_size if self.config.use_threads is not True: logger.warning( "The JSON loader parameter `use_threads` is deprecated and doesn't have any effect anymore." ) if self.config.newlines_in_values is not None: raise ValueError("The JSON loader parameter `newlines_in_values` is no longer supported") return datasets.DatasetInfo(features=self.config.features)
177
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/packaged_modules/json/json.py
def _split_generators(self, dl_manager): """We handle string, list and dicts in datafiles""" if not self.config.data_files: raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}") dl_manager.download_config.extract_on_the_fly = True data_files = dl_manager.download_and_extract(self.config.data_files) splits = [] for split_name, files in data_files.items(): if isinstance(files, str): files = [files] files = [dl_manager.iter_files(file) for file in files] splits.append(datasets.SplitGenerator(name=split_name, gen_kwargs={"files": files})) return splits
177
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/packaged_modules/json/json.py
def _cast_table(self, pa_table: pa.Table) -> pa.Table: if self.config.features is not None: # adding missing columns for column_name in set(self.config.features) - set(pa_table.column_names): type = self.config.features.arrow_schema.field(column_name).type pa_table = pa_table.append_column(column_name, pa.array([None] * len(pa_table), type=type)) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example pa_table = table_cast(pa_table, self.config.features.arrow_schema) return pa_table
177
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/packaged_modules/json/json.py
def _generate_tables(self, files): for file_idx, file in enumerate(itertools.chain.from_iterable(files)): # If the file is one json object and if we need to look at the items in one specific field if self.config.field is not None: with open(file, encoding=self.config.encoding, errors=self.config.encoding_errors) as f: dataset = ujson_loads(f.read()) # We keep only the field we are interested in dataset = dataset[self.config.field] df = pandas_read_json(io.StringIO(ujson_dumps(dataset))) if df.columns.tolist() == [0]: df.columns = list(self.config.features) if self.config.features else ["text"] pa_table = pa.Table.from_pandas(df, preserve_index=False) yield file_idx, self._cast_table(pa_table)
177
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/packaged_modules/json/json.py
# If the file has one json object per line else: with open(file, "rb") as f: batch_idx = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small block_size = max(self.config.chunksize // 32, 16 << 10) encoding_errors = ( self.config.encoding_errors if self.config.encoding_errors is not None else "strict" ) while True: batch = f.read(self.config.chunksize) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(f)
177
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/packaged_modules/json/json.py
# PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": batch = batch.decode(self.config.encoding, errors=encoding_errors).encode("utf-8") try: while True: try: pa_table = paj.read_json( io.BytesIO(batch), read_options=paj.ReadOptions(block_size=block_size) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(e, pa.ArrowInvalid) and "straddling" not in str(e) or block_size > len(batch) ): raise
177
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/packaged_modules/json/json.py
else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( f"Batch of {len(batch)} bytes couldn't be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}." ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( file, encoding=self.config.encoding, errors=self.config.encoding_errors ) as f: df = pandas_read_json(f) except ValueError:
177
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/packaged_modules/json/json.py
logger.error(f"Failed to load JSON from file '{file}' with error {type(e)}: {e}") raise e if df.columns.tolist() == [0]: df.columns = list(self.config.features) if self.config.features else ["text"] try: pa_table = pa.Table.from_pandas(df, preserve_index=False) except pa.ArrowInvalid as e: logger.error( f"Failed to convert pandas DataFrame to Arrow Table from file '{file}' with error {type(e)}: {e}" ) raise ValueError( f"Failed to convert pandas DataFrame to Arrow Table from file {file}." ) from None yield file_idx, self._cast_table(pa_table) break
177
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/packaged_modules/json/json.py
yield (file_idx, batch_idx), self._cast_table(pa_table) batch_idx += 1
177
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/packaged_modules/json/json.py
class CsvConfig(datasets.BuilderConfig): """BuilderConfig for CSV."""
178
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/packaged_modules/csv/csv.py
sep: str = "," delimiter: Optional[str] = None header: Optional[Union[int, List[int], str]] = "infer" names: Optional[List[str]] = None column_names: Optional[List[str]] = None index_col: Optional[Union[int, str, List[int], List[str]]] = None usecols: Optional[Union[List[int], List[str]]] = None prefix: Optional[str] = None mangle_dupe_cols: bool = True engine: Optional[Literal["c", "python", "pyarrow"]] = None converters: Dict[Union[int, str], Callable[[Any], Any]] = None true_values: Optional[list] = None false_values: Optional[list] = None skipinitialspace: bool = False skiprows: Optional[Union[int, List[int]]] = None nrows: Optional[int] = None na_values: Optional[Union[str, List[str]]] = None keep_default_na: bool = True na_filter: bool = True verbose: bool = False skip_blank_lines: bool = True thousands: Optional[str] = None decimal: str = "." lineterminator: Optional[str] = None quotechar: str = '"'
178
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/packaged_modules/csv/csv.py
quoting: int = 0 escapechar: Optional[str] = None comment: Optional[str] = None encoding: Optional[str] = None dialect: Optional[str] = None error_bad_lines: bool = True warn_bad_lines: bool = True skipfooter: int = 0 doublequote: bool = True memory_map: bool = False float_precision: Optional[str] = None chunksize: int = 10_000 features: Optional[datasets.Features] = None encoding_errors: Optional[str] = "strict" on_bad_lines: Literal["error", "warn", "skip"] = "error" date_format: Optional[str] = None
178
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/packaged_modules/csv/csv.py
def __post_init__(self): super().__post_init__() if self.delimiter is not None: self.sep = self.delimiter if self.column_names is not None: self.names = self.column_names
178
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/packaged_modules/csv/csv.py
@property def pd_read_csv_kwargs(self): pd_read_csv_kwargs = { "sep": self.sep, "header": self.header, "names": self.names, "index_col": self.index_col, "usecols": self.usecols, "prefix": self.prefix, "mangle_dupe_cols": self.mangle_dupe_cols, "engine": self.engine, "converters": self.converters, "true_values": self.true_values, "false_values": self.false_values, "skipinitialspace": self.skipinitialspace, "skiprows": self.skiprows, "nrows": self.nrows, "na_values": self.na_values, "keep_default_na": self.keep_default_na, "na_filter": self.na_filter, "verbose": self.verbose, "skip_blank_lines": self.skip_blank_lines, "thousands": self.thousands, "decimal": self.decimal, "lineterminator": self.lineterminator,
178
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/packaged_modules/csv/csv.py
"quotechar": self.quotechar, "quoting": self.quoting, "escapechar": self.escapechar, "comment": self.comment, "encoding": self.encoding, "dialect": self.dialect, "error_bad_lines": self.error_bad_lines, "warn_bad_lines": self.warn_bad_lines, "skipfooter": self.skipfooter, "doublequote": self.doublequote, "memory_map": self.memory_map, "float_precision": self.float_precision, "chunksize": self.chunksize, "encoding_errors": self.encoding_errors, "on_bad_lines": self.on_bad_lines, "date_format": self.date_format, }
178
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/packaged_modules/csv/csv.py
# some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig(), pd_read_csv_parameter): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter]
178
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/packaged_modules/csv/csv.py
# Remove 2.2 deprecated arguments if datasets.config.PANDAS_VERSION.release >= (2, 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_DEPRECATED_2_2_0_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig(), pd_read_csv_parameter): del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs
178
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/packaged_modules/csv/csv.py
class Csv(datasets.ArrowBasedBuilder): BUILDER_CONFIG_CLASS = CsvConfig def _info(self): return datasets.DatasetInfo(features=self.config.features) def _split_generators(self, dl_manager): """We handle string, list and dicts in datafiles""" if not self.config.data_files: raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}") dl_manager.download_config.extract_on_the_fly = True data_files = dl_manager.download_and_extract(self.config.data_files) splits = [] for split_name, files in data_files.items(): if isinstance(files, str): files = [files] files = [dl_manager.iter_files(file) for file in files] splits.append(datasets.SplitGenerator(name=split_name, gen_kwargs={"files": files})) return splits
179
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/packaged_modules/csv/csv.py
def _cast_table(self, pa_table: pa.Table) -> pa.Table: if self.config.features is not None: schema = self.config.features.arrow_schema if all(not require_storage_cast(feature) for feature in self.config.features.values()): # cheaper cast pa_table = pa.Table.from_arrays([pa_table[field.name] for field in schema], schema=schema) else: # more expensive cast; allows str <-> int/float or str to Audio for example pa_table = table_cast(pa_table, schema) return pa_table
179
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/packaged_modules/csv/csv.py
def _generate_tables(self, files): schema = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str dtype = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(feature) else object for name, dtype, feature in zip(schema.names, schema.types, self.config.features.values()) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(files)): csv_file_reader = pd.read_csv(file, iterator=True, dtype=dtype, **self.config.pd_read_csv_kwargs) try: for batch_idx, df in enumerate(csv_file_reader): pa_table = pa.Table.from_pandas(df) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
179
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/packaged_modules/csv/csv.py
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(pa_table) except ValueError as e: logger.error(f"Failed to read file '{file}' with error {type(e)}: {e}") raise
179
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/packaged_modules/csv/csv.py
class TextConfig(datasets.BuilderConfig): """BuilderConfig for text files.""" features: Optional[datasets.Features] = None encoding: str = "utf-8" encoding_errors: Optional[str] = None chunksize: int = 10 << 20 # 10MB keep_linebreaks: bool = False sample_by: str = "line"
180
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/packaged_modules/text/text.py
class Text(datasets.ArrowBasedBuilder): BUILDER_CONFIG_CLASS = TextConfig def _info(self): return datasets.DatasetInfo(features=self.config.features) def _split_generators(self, dl_manager): """The `data_files` kwarg in load_dataset() can be a str, List[str], Dict[str,str], or Dict[str,List[str]].
181
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/packaged_modules/text/text.py
If str or List[str], then the dataset returns only the 'train' split. If dict, then keys should be from the `datasets.Split` enum. """ if not self.config.data_files: raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}") dl_manager.download_config.extract_on_the_fly = True data_files = dl_manager.download_and_extract(self.config.data_files) splits = [] for split_name, files in data_files.items(): if isinstance(files, str): files = [files] files = [dl_manager.iter_files(file) for file in files] splits.append(datasets.SplitGenerator(name=split_name, gen_kwargs={"files": files})) return splits
181
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/packaged_modules/text/text.py
def _cast_table(self, pa_table: pa.Table) -> pa.Table: if self.config.features is not None: schema = self.config.features.arrow_schema if all(not require_storage_cast(feature) for feature in self.config.features.values()): # cheaper cast pa_table = pa_table.cast(schema) else: # more expensive cast; allows str <-> int/float or str to Audio for example pa_table = table_cast(pa_table, schema) return pa_table else: return pa_table.cast(pa.schema({"text": pa.string()}))
181
/Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/packaged_modules/text/text.py