text
stringlengths 24
253k
| type
stringclasses 1
value | start
int64 67
146k
| end
int64 223
278k
| depth
int64 0
1
| filepath
stringlengths 74
128
| parent_class
stringclasses 1
value | class_index
int64 0
271
|
---|---|---|---|---|---|---|---|
class DatasetInfoMixin:
"""This base class exposes some attributes of DatasetInfo
at the base level of the Dataset for easy access.
"""
def __init__(self, info: DatasetInfo, split: Optional[NamedSplit]):
self._info = info
self._split = split
@property
def info(self):
"""[`~datasets.DatasetInfo`] object containing all the metadata in the dataset."""
return self._info
@property
def split(self):
"""[`~datasets.NamedSplit`] object corresponding to a named dataset split."""
return self._split
@property
def builder_name(self) -> str:
return self._info.builder_name
@property
def citation(self) -> str:
return self._info.citation
@property
def config_name(self) -> str:
return self._info.config_name
@property
def dataset_size(self) -> Optional[int]:
return self._info.dataset_size
@property
def description(self) -> str:
return self._info.description
@property
def download_checksums(self) -> Optional[dict]:
return self._info.download_checksums
@property
def download_size(self) -> Optional[int]:
return self._info.download_size
@property
def features(self) -> Optional[Features]:
return self._info.features.copy() if self._info.features is not None else None
@property
def homepage(self) -> Optional[str]:
return self._info.homepage
@property
def license(self) -> Optional[str]:
return self._info.license
@property
def size_in_bytes(self) -> Optional[int]:
return self._info.size_in_bytes
@property
def supervised_keys(self):
return self._info.supervised_keys
@property
def version(self):
return self._info.version | class_definition | 4,179 | 5,999 | 0 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/arrow_dataset.py | null | 0 |
class TensorflowDatasetMixin:
_TF_DATASET_REFS = set()
@staticmethod
def _get_output_signature(
dataset: "Dataset",
collate_fn: Callable,
collate_fn_args: dict,
cols_to_retain: Optional[List[str]] = None,
batch_size: Optional[int] = None,
num_test_batches: int = 20,
):
"""Private method used by `to_tf_dataset()` to find the shapes and dtypes of samples from this dataset
after being passed through the collate_fn. Tensorflow needs an exact signature for tf.numpy_function, so
the only way to do this is to run test batches - the collator may add or rename columns, so we can't figure
it out just by inspecting the dataset.
Args:
dataset (`Dataset`): Dataset to load samples from.
collate_fn(`bool`): Shuffle the dataset order when loading. Recommended True for training, False for
validation/evaluation.
collate_fn(`Callable`): A function or callable object (such as a `DataCollator`) that will collate
lists of samples into a batch.
collate_fn_args (`Dict`): A `dict` of keyword arguments to be passed to the
`collate_fn`.
batch_size (`int`, optional): The size of batches loaded from the dataset. Used for shape inference.
Can be None, which indicates that batch sizes can be variable.
num_test_batches (`int`): The number of batches to load from the dataset for shape inference.
Returns:
`dict`: Dict mapping column names to tf.Tensorspec objects
`dict`: Dict mapping column names to np.dtype objects
"""
if config.TF_AVAILABLE:
import tensorflow as tf
else:
raise ImportError("Called a Tensorflow-specific function but Tensorflow is not installed.")
if len(dataset) == 0:
raise ValueError("Unable to get the output signature because the dataset is empty.")
if batch_size is not None:
batch_size = min(len(dataset), batch_size)
test_batch_size = 1
if cols_to_retain is not None:
cols_to_retain = list(set(cols_to_retain + ["label_ids", "label", "labels"]))
test_batches = []
for _ in range(num_test_batches):
indices = sample(range(len(dataset)), test_batch_size)
test_batch = dataset[indices]
if cols_to_retain is not None:
test_batch = {key: value for key, value in test_batch.items() if key in cols_to_retain}
test_batch = [{key: value[i] for key, value in test_batch.items()} for i in range(test_batch_size)]
test_batch = collate_fn(test_batch, **collate_fn_args)
test_batches.append(test_batch)
tf_columns_to_signatures = {}
np_columns_to_dtypes = {}
for column in test_batches[0].keys():
raw_arrays = [batch[column] for batch in test_batches]
# In case the collate_fn returns something strange
np_arrays = []
for array in raw_arrays:
if isinstance(array, np.ndarray):
np_arrays.append(array)
elif isinstance(array, tf.Tensor):
np_arrays.append(array.numpy())
else:
np_arrays.append(np.array(array))
if np.issubdtype(np_arrays[0].dtype, np.integer) or np_arrays[0].dtype == bool:
tf_dtype = tf.int64
np_dtype = np.int64
elif np.issubdtype(np_arrays[0].dtype, np.number):
tf_dtype = tf.float32
np_dtype = np.float32
elif np_arrays[0].dtype.kind == "U": # Unicode strings
np_dtype = np.str_
tf_dtype = tf.string
else:
raise RuntimeError(
f"Unrecognized array dtype {np_arrays[0].dtype}. \n"
"Nested types and image/audio types are not supported yet."
)
shapes = [array.shape for array in np_arrays]
static_shape = []
for dim in range(len(shapes[0])):
sizes = {shape[dim] for shape in shapes}
if dim == 0:
static_shape.append(batch_size)
continue
if len(sizes) == 1: # This dimension looks constant
static_shape.append(sizes.pop())
else: # Use None for variable dimensions
static_shape.append(None)
tf_columns_to_signatures[column] = tf.TensorSpec(shape=static_shape, dtype=tf_dtype)
np_columns_to_dtypes[column] = np_dtype
return tf_columns_to_signatures, np_columns_to_dtypes
def to_tf_dataset(
self,
batch_size: Optional[int] = None,
columns: Optional[Union[str, List[str]]] = None,
shuffle: bool = False,
collate_fn: Optional[Callable] = None,
drop_remainder: bool = False,
collate_fn_args: Optional[Dict[str, Any]] = None,
label_cols: Optional[Union[str, List[str]]] = None,
prefetch: bool = True,
num_workers: int = 0,
num_test_batches: int = 20,
):
"""Create a `tf.data.Dataset` from the underlying Dataset. This `tf.data.Dataset` will load and collate batches from
the Dataset, and is suitable for passing to methods like `model.fit()` or `model.predict()`. The dataset will yield
`dicts` for both inputs and labels unless the `dict` would contain only a single key, in which case a raw
`tf.Tensor` is yielded instead.
Args:
batch_size (`int`, *optional*):
Size of batches to load from the dataset. Defaults to `None`, which implies that the dataset won't be
batched, but the returned dataset can be batched later with `tf_dataset.batch(batch_size)`.
columns (`List[str]` or `str`, *optional*):
Dataset column(s) to load in the `tf.data.Dataset`.
Column names that are created by the `collate_fn` and that do not exist in the original dataset can be used.
shuffle(`bool`, defaults to `False`):
Shuffle the dataset order when loading. Recommended `True` for training, `False` for
validation/evaluation.
drop_remainder(`bool`, defaults to `False`):
Drop the last incomplete batch when loading. Ensures
that all batches yielded by the dataset will have the same length on the batch dimension.
collate_fn(`Callable`, *optional*):
A function or callable object (such as a `DataCollator`) that will collate
lists of samples into a batch.
collate_fn_args (`Dict`, *optional*):
An optional `dict` of keyword arguments to be passed to the
`collate_fn`.
label_cols (`List[str]` or `str`, defaults to `None`):
Dataset column(s) to load as labels.
Note that many models compute loss internally rather than letting Keras do it, in which case
passing the labels here is optional, as long as they're in the input `columns`.
prefetch (`bool`, defaults to `True`):
Whether to run the dataloader in a separate thread and maintain
a small buffer of batches for training. Improves performance by allowing data to be loaded in the
background while the model is training.
num_workers (`int`, defaults to `0`):
Number of workers to use for loading the dataset.
num_test_batches (`int`, defaults to `20`):
Number of batches to use to infer the output signature of the dataset.
The higher this number, the more accurate the signature will be, but the longer it will take to
create the dataset.
Returns:
`tf.data.Dataset`
Example:
```py
>>> ds_train = ds["train"].to_tf_dataset(
... columns=['input_ids', 'token_type_ids', 'attention_mask', 'label'],
... shuffle=True,
... batch_size=16,
... collate_fn=data_collator,
... )
```
"""
if config.TF_AVAILABLE:
import tensorflow as tf
else:
raise ImportError("Called a Tensorflow-specific function but Tensorflow is not installed.")
if (isinstance(columns, list) and len(columns) == 1) or (
isinstance(label_cols, list) and len(label_cols) == 1
):
warnings.warn(
"The output of `to_tf_dataset` will change when a passing single element list for `labels` or "
"`columns` in the next datasets version. To return a tuple structure rather than dict, pass a "
"single string.\n"
"Old behaviour: columns=['a'], labels=['labels'] -> (tf.Tensor, tf.Tensor) \n"
" : columns='a', labels='labels' -> (tf.Tensor, tf.Tensor) \n"
"New behaviour: columns=['a'],labels=['labels'] -> ({'a': tf.Tensor}, {'labels': tf.Tensor}) \n"
" : columns='a', labels='labels' -> (tf.Tensor, tf.Tensor) ",
FutureWarning,
)
if isinstance(tf.distribute.get_strategy(), tf.distribute.TPUStrategy):
logger.warning(
"Note that to_tf_dataset() loads the data with a generator rather than a full tf.data "
"pipeline and is not compatible with remote TPU connections. If you encounter errors, please "
"try using a TPU VM or, if your data can fit in memory, loading it into memory as a dict of "
"Tensors instead of streaming with to_tf_dataset()."
)
if collate_fn is None:
# Set a very simple default collator that just stacks things together
collate_fn = minimal_tf_collate_fn
if collate_fn_args is None:
collate_fn_args = {}
if label_cols and not columns:
raise ValueError("Cannot specify label_cols without specifying columns!")
if label_cols is None:
label_cols = []
elif isinstance(label_cols, str):
label_cols = [label_cols]
if len(set(label_cols)) < len(label_cols):
raise ValueError("List of label_cols contains duplicates.")
if columns:
if isinstance(columns, str):
columns = [columns]
if len(set(columns)) < len(columns):
raise ValueError("List of columns contains duplicates.")
cols_to_retain = list(set(columns + label_cols))
else:
cols_to_retain = None # Indicates keeping all valid columns
columns = []
if self.format["type"] not in ["custom", "numpy"]:
dataset = self.with_format("numpy")
else:
dataset = self
# TODO(Matt, QL): deprecate the retention of label_ids and label
output_signature, columns_to_np_types = dataset._get_output_signature(
dataset,
collate_fn=collate_fn,
collate_fn_args=collate_fn_args,
cols_to_retain=cols_to_retain,
batch_size=batch_size if drop_remainder else None,
num_test_batches=num_test_batches,
)
if "labels" in output_signature:
if ("label_ids" in columns or "label" in columns) and "labels" not in columns:
columns = [col for col in columns if col not in ["label_ids", "label"]] + ["labels"]
if ("label_ids" in label_cols or "label" in label_cols) and "labels" not in label_cols:
label_cols = [col for col in label_cols if col not in ["label_ids", "label"]] + ["labels"]
for col in columns:
if col not in output_signature:
raise ValueError(f"Column {col} not found in dataset!")
for col in label_cols:
if col not in output_signature:
raise ValueError(f"Label column {col} not found in dataset!")
if num_workers == 0:
tf_dataset = dataset_to_tf(
dataset=dataset,
cols_to_retain=cols_to_retain,
collate_fn=collate_fn,
collate_fn_args=collate_fn_args,
columns_to_np_types=columns_to_np_types,
output_signature=output_signature,
shuffle=shuffle,
batch_size=batch_size,
drop_remainder=drop_remainder,
)
elif num_workers > 0:
if batch_size is None:
raise NotImplementedError(
"`batch_size` must be specified when using multiple workers, as unbatched multiprocessing "
"is not supported yet. Please provide a `batch_size` if `num_workers` is greater than 0."
)
tf_dataset = multiprocess_dataset_to_tf(
dataset=dataset,
cols_to_retain=cols_to_retain,
collate_fn=collate_fn,
collate_fn_args=collate_fn_args,
columns_to_np_types=columns_to_np_types,
output_signature=output_signature,
shuffle=shuffle,
batch_size=batch_size,
drop_remainder=drop_remainder,
num_workers=num_workers,
)
else:
raise ValueError("num_workers must be >= 0")
def split_features_and_labels(input_batch):
# TODO(Matt, QL): deprecate returning the dict content when there's only one key
features = {key: tensor for key, tensor in input_batch.items() if key in columns}
labels = {key: tensor for key, tensor in input_batch.items() if key in label_cols}
if len(features) == 1:
features = list(features.values())[0]
if len(labels) == 1:
labels = list(labels.values())[0]
if isinstance(labels, dict) and len(labels) == 0:
return features
else:
return features, labels
if cols_to_retain is not None:
tf_dataset = tf_dataset.map(split_features_and_labels)
if prefetch:
tf_dataset = tf_dataset.prefetch(tf.data.experimental.AUTOTUNE)
# Remove a reference to the open Arrow file on delete
def cleanup_callback(ref):
dataset.__del__()
self._TF_DATASET_REFS.remove(ref)
self._TF_DATASET_REFS.add(weakref.ref(tf_dataset, cleanup_callback))
return tf_dataset | class_definition | 6,002 | 20,798 | 0 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/arrow_dataset.py | null | 1 |
class DatasetTransformationNotAllowedError(Exception):
pass | class_definition | 20,801 | 20,864 | 0 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/arrow_dataset.py | null | 2 |
class NonExistentDatasetError(Exception):
"""Used when we expect the existence of a dataset"""
pass | class_definition | 24,928 | 25,036 | 0 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/arrow_dataset.py | null | 3 |
"class Dataset(DatasetInfoMixin, IndexableMixin, TensorflowDatasetMixin):\n \"\"\"A Dataset backe(...TRUNCATED) | class_definition | 25,039 | 277,916 | 0 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/arrow_dataset.py | null | 4 |
class NumExamplesMismatchError(Exception):
pass | class_definition | 146,059 | 146,118 | 1 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/arrow_dataset.py | Dataset | 5 |
class Url(str):
pass | class_definition | 928 | 952 | 0 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/data_files.py | null | 6 |
class EmptyDatasetError(FileNotFoundError):
pass | class_definition | 955 | 1,007 | 0 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/data_files.py | null | 7 |
"class DataFilesList(List[str]):\n \"\"\"\n List of data files (absolute local paths or URLs).(...TRUNCATED) | class_definition | 22,243 | 25,785 | 0 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/data_files.py | null | 8 |
"class DataFilesDict(Dict[str, DataFilesList]):\n \"\"\"\n Dict of split_name -> list of data (...TRUNCATED) | class_definition | 25,788 | 29,225 | 0 | /Users/nielsrogge/Documents/python_projecten/datasets/src/datasets/data_files.py | null | 9 |
End of preview. Expand
in Dataset Viewer.
README.md exists but content is empty.
- Downloads last month
- 8