Datasets:
File size: 7,579 Bytes
605bdce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
from utils import *
parser = argparse.ArgumentParser(description='Choose your model(s) & language(s)')
parser.add_argument('--model',type=str,
help='Provide the model you want to use. Check and choose from the key values of the MODEL_PATHS variable. If you want to test on multiple models, provide multiple model names with ", " between each (e.g., "gpt-4-0125-preview, aya-101").')
parser.add_argument('--language',type=str,default=None,
help='Provide the language you want to test on. Check and choose from the first values of the LANG_COUNTRY variable. If you want to test on multiple languages, provide multiple languages with ", " between each (e.g., "English, Korean").')
parser.add_argument('--country',type=str,default=None,
help='Provide the country you want to test on. Check and choose from the second values of the LANG_COUNTRY variable. If you want to test on multiple countries, provide multiple countries with ", " between each (e.g., "UK, South Korea"). Make sure you have the same number of countries and languages provided. The language-country pair do not have to be identical with the pairs within the LANG_COUNTRY variable.')
parser.add_argument('--question_dir',type=str,default=None,
help='Provide the directory name with (translated) questions.')
parser.add_argument('--question_file',type=str,default=None,
help='Provide the csv file name with (translated) questions.')
parser.add_argument('--question_col',type=str,default=None,
help='Provide the column name from the given csv file name with (translated) questions.')
parser.add_argument('--prompt_dir',type=str,default=None,
help='Provide the directory where the propmts are saved.')
parser.add_argument('--prompt_file',type=str,default=None,
help='Provide the name of the csv file where the propmts are saved.')
parser.add_argument('--prompt_no',type=str,default=None,
help='Provide the propmt id (ex. inst-1, inst-2, pers-1, etc.)')
parser.add_argument('--id_col',type=str,default="ID",
help='Provide the column name from the given csv file name with question IDs.')
parser.add_argument('--output_dir',type=str,default='./model_inference_results',
help='Provide the directory for the output files to be saved.')
parser.add.argument('--output_file',type=str,default=None,
help='Provide the name of the output file.')
parser.add_argument('--model_cache_dir',type=str,default='.cache',
help='Provide the directory saving model caches.')
parser.add_argument("--gpt_azure", type=str2bool, nargs='?',
const=True, default=False,
help="Whether you are using the AzureOpenAI for GPT-models' response generation.")
parser.add_argument('--temperature',type=int,default=0,
help='Provide generation temperature for GPT models.')
parser.add_argument('--top_p',type=int,default=0,
help='Provide generation top_p for GPT models.')
args = parser.parse_args()
def make_prompt(question,prompt_no,language,country,prompt_sheet):
prompt = prompt_sheet[prompt_sheet['id']==prompt_no]
if language == 'English':
prompt = prompt['English'].values[0]
else:
prompt = prompt['Translation'].values[0]
return prompt.replace('{q}',question)
def generate_response(model_name,model_path,tokenizer,model,language,country,q_df,q_col,id_col,output_dir,prompt_no=None):
replace_country_flag = False
if language != COUNTRY_LANG[country] and language == 'English':
replace_country_flag = True
if q_col == None:
if language == COUNTRY_LANG[country]:
q_col = 'Translation'
elif language == 'English':
q_col = 'Question'
if prompt_no is not None:
prompt_sheet = import_google_sheet(PROMPT_SHEET_ID,PROMPT_COUNTRY_SHEET[country])
output_filename = os.path.join(output_dir,f"{model_name}-{country}_{language}_{prompt_no}_result.csv")
else:
output_filename = os.path.join(output_dir,f"{model_name}-{country}_{language}_result.csv")
print(q_df[[id_col,q_col]])
guid_list = set()
if os.path.exists(output_filename):
already = pd.read_csv(output_filename)
guid_list = set(already[id_col])
print(already)
else:
write_csv_row([id_col,q_col,'prompt','response','prompt_no'],output_filename)
pb = tqdm(q_df.iterrows(),desc=model_name,total=len(q_df))
for _,d in pb:
q = d[q_col]
guid = d[id_col]
pb.set_postfix({'ID':guid})
if guid in guid_list:
continue
if replace_country_flag:
q = replace_country_name(q,country.replace('_',' '))
if prompt_no is not None:
prompt = make_prompt(q,prompt_no,language,country,prompt_sheet)
else:
prompt = q
print(prompt)
response = get_model_response(model_path,prompt,model,tokenizer,temperature=args.temperature,top_p=args.top_p,gpt_azure=args.gpt_azure)
print(response)
write_csv_row([guid,q,prompt,response,prompt_no],output_filename)
del guid_list
def get_response_from_all():
models = args.model
languages = args.language
countries = args.country
question_dir = args.question_dir
question_file = args.question_file
question_col = args.question_col
prompt_no = args.prompt_no
id_col = args.id_col
output_dir = args.output_dir
azure = args.gpt_azure
if not os.path.exists(output_dir):
os.mkdir(output_dir)
if args.gpus:
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpus
if ',' in languages:
languages = languages.split(',')
if ',' in countries:
countries = countries.split(',')
if ', ' in models:
models = models.split(',')
if type(languages) == type(countries) and isinstance(languages,list):
if len(languages) != len(countries):
print("ERROR: Same number of languages and countries necessary. If multiple languages and countries are given, each element of the two lists should be in pairs.")
exit()
def get_questions(language,country):
questions_df = pd.read_csv(os.path.join(question_dir,f'{country}_full_final_questions.csv'),encoding='utf-8')
return questions_df
def generate_response_per_model(model_name):
model_path = MODEL_PATHS[model_name]
tokenizer,model = get_tokenizer_model(model_name,model_path,args.model_cache_dir)
if isinstance(languages,str):
questions = get_questions(languages,countries)
generate_response(model_name,model_path,tokenizer,model,languages,countries,questions,question_col,id_col,output_dir,prompt_no=prompt_no)
else:
for l,c in zip(languages,countries):
questions = get_questions(l,c)
generate_response(model_name,model_path,tokenizer,model,l,c,questions,question_col,id_col,output_dir,prompt_no=prompt_no)
if isinstance(models,str):
generate_response_per_model(models)
else:
for m in models:
generate_response_per_model(m)
if __name__ == "__main__":
get_response_from_all() |