Datasets:
metadata
language:
- en
tags:
- nbfi
- tabular_classification
- binary_classification
pretty_name: NBFI
size_categories:
- 1K<n<10K
task_categories:
- tabular-classification
configs:
- default
license: cc
NBFI
The NBFI dataset from the Kaggle. Client default prediction.
Configuration | Task | Description |
---|---|---|
default | Binary classification | Has the client defaulted? |
Usage
from datasets import load_dataset
dataset = load_dataset("mstz/nbfi")["train"]
Features
Feature | Type |
---|---|
income |
float32 |
owns_a_car |
bool |
owns_a_bike |
bool |
has_an_active_loan |
bool |
owns_a_house |
bool |
nr_children |
int8 |
credit |
float32 |
loan_annuity |
float32 |
accompanied_by |
string |
income_type |
string |
education_level |
float32 |
marital_status |
float32 |
is_male |
bool |
type_of_contract |
string |
type_of_housing |
string |
residence_density |
float32 |
age_in_days |
int32 |
consecutive_days_of_employment |
int16 |
nr_days_since_last_registration_change |
int32 |
nr_days_since_last_document_change |
int32 |
owned_a_house_for_nr_days |
int32 |
has_provided_a_mobile_number |
bool |
has_provided_a_home_number |
bool |
was_reachable_at_work |
bool |
job |
string |
nr_family_members |
int8 |
city_rating |
int8 |
weekday_of_application |
int8 |
hour_of_application |
float32 |
same_residence_and_home |
bool |
same_work_and_home |
bool |
score_1 |
float32 |
score_2 |
float32 |
score_3 |
float32 |
nr_defaults_in_social_circle |
int8 |
inquiries_in_last_year |
float32 |