Datasets:
File size: 2,017 Bytes
f786df2 831a492 7a4211e 831a492 0c704a0 7a4211e 831a492 7a4211e 0c704a0 831a492 56e1e07 f786df2 7a4211e d27c8cf 56e1e07 831a492 56e1e07 831a492 fe18bda 831a492 7a4211e 831a492 56e1e07 d27c8cf 56e1e07 0c704a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
---
language:
- en
tags:
- acute_inflammation
- tabular_classification
- binary_classification
- multiclass_classification
- UCI
pretty_name: Acute Inflammation
size_categories:
- 100<n<1K
task_categories:
- tabular-classification
configs:
- inflammation
- nephritis
- bladder
---
# Acute Inflammation
The [Acute Inflammation dataset](https://archive.ics.uci.edu/ml/datasets/Acute+Inflammations) from the [UCI ML repository](https://archive-beta.ics.uci.edu).
Predict whether the patient has an acute inflammation.
# Configurations and tasks
| **Configuration** | **Task** | Description |
|-------------------|---------------------------|---------------------------------------------------------------|
| inflammation | Binary classification | Does the patient have an acute inflammation? |
| nephritis | Binary classification | Does the patient have a nephritic pelvis? |
| bladder | Binary classification | Does the patient have bladder inflammation? |
nephritis
# Usage
```python
from datasets import load_dataset
dataset = load_dataset("mstz/acute_inflammation", "inflammation")["train"]
```
# Features
Target feature changes according to the selected configuration and is always in last position in the dataset.
| **Feature** | **Type** |
|---------------------------------------|---------------|
| `temperature` | `[float64]` |
| `has_nausea` | `[bool]` |
| `has_lumbar_pain` | `[bool]` |
| `has_urine_pushing` | `[bool]` |
| `has_micturition_pains` | `[bool]` |
| `has_burnt_urethra` | `[bool]` |
| `has_inflammed_bladder` | `[bool]` |
| `has_nephritis_of_renal_pelvis` | `[bool]` |
| `has_acute_inflammation` | `[int8]` | |