Datasets:
Upload 3 files
Browse files- README.md +54 -1
- acute inflammation.py +99 -0
- diagnosis.data +0 -0
README.md
CHANGED
@@ -1,3 +1,56 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
tags:
|
5 |
+
- adult
|
6 |
+
- tabular_classification
|
7 |
+
- binary_classification
|
8 |
+
- multiclass_classification
|
9 |
+
pretty_name: Adult
|
10 |
+
size_categories:
|
11 |
+
- 10K<n<100K
|
12 |
+
task_categories: # Full list at https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Types.ts
|
13 |
+
- tabular-classification
|
14 |
+
configs:
|
15 |
+
- encoding
|
16 |
+
- income
|
17 |
+
- income-no race
|
18 |
+
- race
|
19 |
---
|
20 |
+
# Adult
|
21 |
+
The [Adult dataset](https://archive.ics.uci.edu/ml/datasets/Adult) from the [UCI ML repository](https://archive.ics.uci.edu/ml/datasets).
|
22 |
+
Census dataset including personal characteristic of a person, and their income threshold.
|
23 |
+
|
24 |
+
# Configurations and tasks
|
25 |
+
| **Configuration** | **Task** | Description |
|
26 |
+
|-------------------|---------------------------|---------------------------------------------------------------|
|
27 |
+
| encoding | | Encoding dictionary |
|
28 |
+
| income | Binary classification | Classify the person's income as over or under the threshold. |
|
29 |
+
| income-no race | Binary classification | As `income`, but the `race` feature is removed. |
|
30 |
+
| race | Multiclass classification | Predict the race of the individual. |
|
31 |
+
|
32 |
+
# Usage
|
33 |
+
```
|
34 |
+
from datasets import load_dataset
|
35 |
+
from sklearn.tree import DecisionTreeClassifier
|
36 |
+
|
37 |
+
dataset = load_dataset("mstz/adult", "income")["train"]
|
38 |
+
```
|
39 |
+
|
40 |
+
# Features
|
41 |
+
|**Feature** |**Type** | **Description** |
|
42 |
+
|-------------------|-----------|-----------------------------------------------------------|
|
43 |
+
|`age` |`[int64]` | Age of the person |
|
44 |
+
|`capital_gain` |`[float64]`| Capital gained by the person |
|
45 |
+
|`capital_loss` |`[float64]`| Capital lost by the person |
|
46 |
+
|`education` |`[int8]` | Education level: the higher, the more educated the person |
|
47 |
+
|`final_weight` |`[int64]` | |
|
48 |
+
|`hours_per_week` |`[int64]` | Hours worked per week |
|
49 |
+
|`marital_status` |`[string]` | Marital status of the person |
|
50 |
+
|`native_country` |`[string]` | Native country of the person |
|
51 |
+
|`occupation` |`[string]` | Job of the person |
|
52 |
+
|`race` |`[string]` | Race of the person |
|
53 |
+
|`relationship` |`[string]` | |
|
54 |
+
|`sex` |`[int8]` | Sex of the person |
|
55 |
+
|`workclass` |`[string]` | Type of job of the person |
|
56 |
+
|`over_threshold` |`int8` |`1` for income `>= 50k$`, `0` otherwise |
|
acute inflammation.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Acute_Inflamamtion"""
|
2 |
+
|
3 |
+
from typing import List
|
4 |
+
|
5 |
+
import datasets
|
6 |
+
|
7 |
+
import pandas
|
8 |
+
|
9 |
+
|
10 |
+
VERSION = datasets.Version("1.0.0")
|
11 |
+
_BASE_FEATURE_NAMES = [
|
12 |
+
"temperature",
|
13 |
+
"has_nausea",
|
14 |
+
"has_lumbar_pain",
|
15 |
+
"has_urine_pushing",
|
16 |
+
"has_micturition_pains",
|
17 |
+
"has_burnt_urethra",
|
18 |
+
"has_inflammed_bladder",
|
19 |
+
"has_nephritis_of_renal_pelvis"
|
20 |
+
]
|
21 |
+
|
22 |
+
DESCRIPTION = "Acute_Inflamamtion dataset from the UCI ML repository."
|
23 |
+
_HOMEPAGE = "https://archive.ics.uci.edu/ml/datasets/Acute_Inflamamtion"
|
24 |
+
_URLS = ("https://huggingface.co/datasets/mstz/acute_inflamamtion/raw/diagnosis.data")
|
25 |
+
_CITATION = """
|
26 |
+
@misc{misc_acute_inflammations_184,
|
27 |
+
author = {Czerniak,Jacek},
|
28 |
+
title = {{Acute Inflammations}},
|
29 |
+
year = {2009},
|
30 |
+
howpublished = {UCI Machine Learning Repository},
|
31 |
+
note = {{DOI}: \\url{10.24432/C5V59S}}
|
32 |
+
}"""
|
33 |
+
|
34 |
+
# Dataset info
|
35 |
+
urls_per_split = {
|
36 |
+
"train": "https://huggingface.co/datasets/mstz/acute_inflamamtion/raw/main/diagnosis.data"
|
37 |
+
}
|
38 |
+
features_types_per_config = {
|
39 |
+
"inflammation": {
|
40 |
+
"temperature": datasets.Value("float64"),
|
41 |
+
"has_nausea": datasets.Value("bool"),
|
42 |
+
"has_lumbar_pain": datasets.Value("bool"),
|
43 |
+
"has_urine_pushing": datasets.Value("bool"),
|
44 |
+
"has_micturition_pains": datasets.Value("bool"),
|
45 |
+
"has_burnt_urethra": datasets.Value("bool"),
|
46 |
+
"has_inflammed_bladder": datasets.Value("bool"),
|
47 |
+
"has_nephritis_of_renal_pelvis": datasets.Value("int8")
|
48 |
+
}
|
49 |
+
}
|
50 |
+
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
|
51 |
+
|
52 |
+
|
53 |
+
class Acute_InflamamtionConfig(datasets.BuilderConfig):
|
54 |
+
def __init__(self, **kwargs):
|
55 |
+
super(Acute_InflamamtionConfig, self).__init__(version=VERSION, **kwargs)
|
56 |
+
self.features = features_per_config[kwargs["name"]]
|
57 |
+
|
58 |
+
|
59 |
+
class Acute_Inflamamtion(datasets.GeneratorBasedBuilder):
|
60 |
+
# dataset versions
|
61 |
+
DEFAULT_CONFIG = "inflammation"
|
62 |
+
BUILDER_CONFIGS = [
|
63 |
+
Acute_InflamamtionConfig(name="inflammation",
|
64 |
+
description="Binary classification of inflammation.")
|
65 |
+
]
|
66 |
+
|
67 |
+
|
68 |
+
def _info(self):
|
69 |
+
info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
|
70 |
+
features=features_per_config[self.config.name])
|
71 |
+
|
72 |
+
return info
|
73 |
+
|
74 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
75 |
+
downloads = dl_manager.download_and_extract(urls_per_split)
|
76 |
+
|
77 |
+
return [
|
78 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]})
|
79 |
+
]
|
80 |
+
|
81 |
+
def _generate_examples(self, filepath: str):
|
82 |
+
data = pandas.read_csv(filepath)
|
83 |
+
data = self.preprocess(data, config=self.config.name)
|
84 |
+
|
85 |
+
for row_id, row in data.iterrows():
|
86 |
+
data_row = dict(row)
|
87 |
+
|
88 |
+
yield row_id, data_row
|
89 |
+
|
90 |
+
def preprocess(self, data: pandas.DataFrame, config: str = DEFAULT_CONFIG) -> pandas.DataFrame:
|
91 |
+
data.columns = _BASE_FEATURE_NAMES
|
92 |
+
boolean_features = ["has_nausea", "has_lumbar_pain", "has_urine_pushing",
|
93 |
+
"has_micturition_pains", "has_burnt_urethra", "has_inflammed_bladder"]
|
94 |
+
for f in boolean_features:
|
95 |
+
data.loc[:, f] = data[f].apply(lambda x: True if x == "yes" else False)
|
96 |
+
|
97 |
+
data = data.astype({f: "bool" for f in boolean_features})
|
98 |
+
|
99 |
+
return data
|
diagnosis.data
ADDED
Binary file (7.28 kB). View file
|
|