Datasets:

Modalities:
Text
Formats:
json
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
query
stringlengths
11
11
pos
stringlengths
7
16
neg
stringlengths
7
16
EP1512883A1
EP0403447A1
DE3620993A1
EP1512883A1
GB986327A
EP1336763A2
EP1512883A1
DE10236621A1
WO0001979A1
EP1512883A1
DE10236621A1
DE3526156A1
EP1512883A1
EP0403447A1
US6100681A
EP1733650A1
US6557938B1
KR20040051195A
EP1733650A1
US2002149245A1
US6426226B1
EP1733650A1
US5016490A
JP2004360522A
EP1733650A1
DE2454240A1
US5466045A
EP1733650A1
US5277080A
US5107720A
EP1718347A2
EP0790823A1
US5731087A
EP1718347A2
WO03039612A1
EP1385480A1
EP1718347A2
WO0101957A1
WO2006125441A1
EP1718347A2
EP0593284A1
US2005277593A1
EP1718347A2
US2003125800A1
WO9421308A1
EP1769180A1
DE4237949A1
US6220418B1
EP1769180A1
US3791564A
US4809836A
EP1769180A1
EP1213242A1
DE102004043205A1
EP1769180A1
EP1213242A1
EP1941330A1
EP1769180A1
DE4237949A1
EP1464867A1
EP1850699A1
US2002113476A1
WO2006042176A1
EP1850699A1
EP1097864A1
WO9836967A1
EP1850699A1
EP1097864A1
EP0869061A2
EP1850699A1
US2002113476A1
EP1158970A1
EP1850699A1
GB866533A
US2004143359A1
EP1850096A1
US2002144555A1
WO2005036575A2
EP1850096A1
EP0740776A1
US6942145B1
EP1850096A1
EP0740776A1
US2005192508A1
EP1850096A1
US2002144555A1
US4161685A
EP1850096A1
US5231508A
US4056748A
EP1734187A1
US4856173A
DE10346105A1
EP1734187A1
EP1763611A1
US2006172643A1
EP1734187A1
DE4115935A1
US2001050538A1
EP1734187A1
DE4115935A1
WO2005056941A1
EP1734187A1
EP1606453A1
DE2331445A1
EP1935212A1
US2004149736A1
US2005112085A1
EP1935212A1
US2003094450A1
US6859282B1
EP1935212A1
WO9941950A2
WO03049495A1
EP1935212A1
WO0119141A1
US5951900A
EP1935212A1
EP0192333A1
US4246884A
EP1969532A1
WO2004100058A1
US5574431A
EP1969532A1
WO9916019A1
US2003169033A1
EP1969532A1
US2004012496A1
US2004263969A1
EP1969532A1
US2004012496A1
US2003065984A1
EP1969532A1
WO2004100058A1
US6025780A
EP1955925A1
US5704446A
EP1980169A2
EP1955925A1
JP2004196128A
JPH0781588A
EP1955925A1
JP2002255054A
JP2000128003A
EP1955925A1
US2002017421A1
EP1945426A1
EP1955925A1
EP1256507A2
US2003226446A1
EP1845200A1
DE3913255A1
US2006144669A1
EP1845200A1
GB1147492A
FR2827624A1
EP1845200A1
EP1548198A1
FR2824348A1
EP1845200A1
EP1548198A1
EP1217185A2
EP1845200A1
US6220388B1
US5633066A
EP1982203A1
WO03096037A1
EP0386924A2
EP1982203A1
WO03096037A1
EP2006642A2
EP1982203A1
WO03096037A1
US2007105499A1
EP1982203A1
WO03096037A1
WO2006131429A2
EP1982203A1
WO0191053A1
US4820975A
EP1971198A1
US5704202A
WO2008002641A2
EP1971198A1
US5878559A
US4805388A
EP1971198A1
US5878559A
US5787696A
EP1971198A1
US5704202A
US2007213020A1
EP1971198A1
US5661964A
WO2004108667A2
EP1979055A2
JPH0488027A
US6858673B1
EP1979055A2
WO2004073644A2
EP0452925A2
EP1979055A2
WO8912392A1
EP1459728A1
EP1979055A2
EP1241178A1
US2008078787A1
EP1979055A2
US2002064539A1
US2005118319A1
EP2035326A1
WO03011747A1
US2008018300A1
EP2035326A1
EP1373129A2
US2005104240A1
EP2035326A1
DE10330610A1
EP0819935A1
EP2035326A1
US5830372A
DE202004006249U1
EP2035326A1
US2006063293A1
WO9850763A1
EP1971080A1
WO9729560A1
US5113498A
EP1971080A1
WO9729560A1
US6480510B1
EP1971080A1
WO9729560A1
US2004140197A1
EP1971080A1
WO9729560A1
DE10215640A1
EP1971080A1
US6901439B1
EP1487032A1
EP2128563A1
DE10038816A1
EP1540285A1
EP2128563A1
EP1207368A2
US2004220758A1
EP2128563A1
EP1207368A2
US2009246521A1
EP2128563A1
DE10038816A1
EP0953822A1
EP2128563A1
EP0782692A1
EP1074902A1
EP2008872A1
FR2753939A1
FR2679844A1
EP2008872A1
WO9718973A1
EP1747813A1
EP2008872A1
DE3135476A1
US6946012B1
EP2008872A1
FR2753938A1
US2003183321A1
EP2008872A1
FR2753938A1
FR2434054A1
EP2134143A1
EP1814362A1
US2007213071A1
EP2134143A1
US6442341B1
US4255646A
EP2134143A1
EP0899985A1
US6762658B1
EP2134143A1
DE10012675A1
US4371777A
EP2134143A1
EP1445244A2
US2009061889A1
EP2002702A1
EP0887004A2
WO2008005407A2
EP2002702A1
JPS62246505A
US2006161227A1
EP2002702A1
JPS62246505A
US4251952A
EP2002702A1
EP0887004A2
US4583320A
EP2002702A1
US4780987A
US2005198766A1

PaECTER Dataset

The dataset contains publication numbers of patents used to train, validate, and test our models PaECTER and PAT SPECTER. These publication numbers were taken from the EPO's PATSTAT database (2023 Spring version). We used the titles and abstracts of these patents as provided in PATSTAT for training and other purposes.

The combined training and validation dataset comprises 300,000 EPO/PCT patents as focal (query) patents. Each focal patent is associated with 5 triplets, each including one positive (pos) and one negative (neg) citation:

  • Training set: Consists of 255,000 focal patents, resulting in 1,275,000 rows (5 triplets per focal patent).
  • Validation set: Comprises 45,000 focal patents, resulting in 225,000 rows.

The test dataset contains 1000 rows. Each row represents a focal patent, its 5 positive citations, and 25 randomly selected unrelated patents as negative citations.

For more details, please refer to our paper, PaECTER: Patent-level Representation Learning using Citation-informed Transformers

Citing & Authors

@misc{ghosh2024paecter,
      title={PaECTER: Patent-level Representation Learning using Citation-informed Transformers}, 
      author={Mainak Ghosh and Sebastian Erhardt and Michael E. Rose and Erik Buunk and Dietmar Harhoff},
      year={2024},
      eprint={2402.19411},
      archivePrefix={arXiv},
      primaryClass={cs.IR}
}
Downloads last month
34

Models trained or fine-tuned on mpi-inno-comp/paecter_dataset