Datasets:

The viewer is disabled because this dataset repo requires arbitrary Python code execution. Please consider removing the loading script and relying on automated data support (you can use convert_to_parquet from the datasets library). If this is not possible, please open a discussion for direct help.

YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co./docs/hub/datasets-cards)

A dataset for benchmarking keyphrase extraction and generation techniques from abstracts of English scientific papers. For more details about the dataset please refer the original paper - http://memray.me/uploads/acl17-keyphrase-generation.pdf.

Data source - https://github.com/memray/seq2seq-keyphrase

Dataset Summary

Dataset Structure

Dataset Statistics

Data Fields

  • id: unique identifier of the document.
  • document: Whitespace separated list of words in the document.
  • doc_bio_tags: BIO tags for each word in the document. B stands for the beginning of a keyphrase and I stands for inside the keyphrase. O stands for outside the keyphrase and represents the word that isn't a part of the keyphrase at all.
  • extractive_keyphrases: List of all the present keyphrases.
  • abstractive_keyphrase: List of all the absent keyphrases.

Data Splits

Split No. of datapoints
Train 530,809
Test 20,000
Validation 20,000

Usage

Full Dataset

from datasets import load_dataset

# get entire dataset
dataset = load_dataset("midas/kp20k", "raw")

# sample from the train split
print("Sample from training dataset split")
train_sample = dataset["train"][0]
print("Fields in the sample: ", [key for key in train_sample.keys()])
print("Tokenized Document: ", train_sample["document"])
print("Document BIO Tags: ", train_sample["doc_bio_tags"])
print("Extractive/present Keyphrases: ", train_sample["extractive_keyphrases"])
print("Abstractive/absent Keyphrases: ", train_sample["abstractive_keyphrases"])
print("\n-----------\n")

# sample from the validation split
print("Sample from validation dataset split")
validation_sample = dataset["validation"][0]
print("Fields in the sample: ", [key for key in validation_sample.keys()])
print("Tokenized Document: ", validation_sample["document"])
print("Document BIO Tags: ", validation_sample["doc_bio_tags"])
print("Extractive/present Keyphrases: ", validation_sample["extractive_keyphrases"])
print("Abstractive/absent Keyphrases: ", validation_sample["abstractive_keyphrases"])
print("\n-----------\n")

# sample from the test split
print("Sample from test dataset split")
test_sample = dataset["test"][0]
print("Fields in the sample: ", [key for key in test_sample.keys()])
print("Tokenized Document: ", test_sample["document"])
print("Document BIO Tags: ", test_sample["doc_bio_tags"])
print("Extractive/present Keyphrases: ", test_sample["extractive_keyphrases"])
print("Abstractive/absent Keyphrases: ", test_sample["abstractive_keyphrases"])
print("\n-----------\n")

Output


Keyphrase Extraction

from datasets import load_dataset

# get the dataset only for keyphrase extraction
dataset = load_dataset("midas/kp20k", "extraction")

print("Samples for Keyphrase Extraction")

# sample from the train split
print("Sample from training data split")
train_sample = dataset["train"][0]
print("Fields in the sample: ", [key for key in train_sample.keys()])
print("Tokenized Document: ", train_sample["document"])
print("Document BIO Tags: ", train_sample["doc_bio_tags"])
print("\n-----------\n")

# sample from the validation split
print("Sample from validation data split")
validation_sample = dataset["validation"][0]
print("Fields in the sample: ", [key for key in validation_sample.keys()])
print("Tokenized Document: ", validation_sample["document"])
print("Document BIO Tags: ", validation_sample["doc_bio_tags"])
print("\n-----------\n")

# sample from the test split
print("Sample from test data split")
test_sample = dataset["test"][0]
print("Fields in the sample: ", [key for key in test_sample.keys()])
print("Tokenized Document: ", test_sample["document"])
print("Document BIO Tags: ", test_sample["doc_bio_tags"])
print("\n-----------\n")

Keyphrase Generation

# get the dataset only for keyphrase generation
dataset = load_dataset("midas/kp20k", "generation")

print("Samples for Keyphrase Generation")

# sample from the train split
print("Sample from training data split")
train_sample = dataset["train"][0]
print("Fields in the sample: ", [key for key in train_sample.keys()])
print("Tokenized Document: ", train_sample["document"])
print("Extractive/present Keyphrases: ", train_sample["extractive_keyphrases"])
print("Abstractive/absent Keyphrases: ", train_sample["abstractive_keyphrases"])
print("\n-----------\n")

# sample from the validation split
print("Sample from validation data split")
validation_sample = dataset["validation"][0]
print("Fields in the sample: ", [key for key in validation_sample.keys()])
print("Tokenized Document: ", validation_sample["document"])
print("Extractive/present Keyphrases: ", validation_sample["extractive_keyphrases"])
print("Abstractive/absent Keyphrases: ", validation_sample["abstractive_keyphrases"])
print("\n-----------\n")

# sample from the test split
print("Sample from test data split")
test_sample = dataset["test"][0]
print("Fields in the sample: ", [key for key in test_sample.keys()])
print("Tokenized Document: ", test_sample["document"])
print("Extractive/present Keyphrases: ", test_sample["extractive_keyphrases"])
print("Abstractive/absent Keyphrases: ", test_sample["abstractive_keyphrases"])
print("\n-----------\n")

Citation Information

Please cite the works below if you use this dataset in your work.

@InProceedings{meng-EtAl:2017:Long,
  author    = {Meng, Rui  and  Zhao, Sanqiang  and  Han, Shuguang  and  He, Daqing  and  Brusilovsky, Peter  and  Chi, Yu},
  title     = {Deep Keyphrase Generation},
  booktitle = {Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)},
  month     = {July},
  year      = {2017},
  address   = {Vancouver, Canada},
  publisher = {Association for Computational Linguistics},
  pages     = {582--592},
  url       = {http://aclweb.org/anthology/P17-1054}
}

@article{mahata2022ldkp,
  title={LDKP: A Dataset for Identifying Keyphrases from Long Scientific Documents},
  author={Mahata, Debanjan and Agarwal, Navneet and Gautam, Dibya and Kumar, Amardeep and Parekh, Swapnil and Singla, Yaman Kumar and Acharya, Anish and Shah, Rajiv Ratn},
  journal={arXiv preprint arXiv:2203.15349},
  year={2022}
}

Contributions

Thanks to @debanjanbhucs, @dibyaaaaax, @UmaGunturi and @ad6398 for adding this dataset

Downloads last month
53