|
""" Slovene corpus for coreference resolution coref149. """ |
|
|
|
|
|
import os |
|
import xml.etree.ElementTree as ET |
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@article{coref149, |
|
author={Žitnik, Slavko and Bajec, Marko}, |
|
title={Odkrivanje koreferenčnosti v slovenskem jeziku na označenih besedilih iz coref149}, |
|
journal={Slovenščina 2.0: empirične, aplikativne in interdisciplinarne raziskave}, |
|
number={1}, |
|
volume={6}, |
|
year={2018}, |
|
month={Jun.}, |
|
pages={37–67}, |
|
doi={10.4312/slo2.0.2018.1.37-67} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
Slovene corpus for coreference resolution. Contains manually annotated coreferences. |
|
""" |
|
|
|
_HOMEPAGE = "http://hdl.handle.net/11356/1182" |
|
|
|
_LICENSE = "Creative Commons - Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)" |
|
|
|
_URLS = { |
|
"coref149": "https://www.clarin.si/repository/xmlui/bitstream/handle/11356/1182/coref149_v1.0.zip" |
|
} |
|
|
|
|
|
class Coref149(datasets.GeneratorBasedBuilder): |
|
"""Slovene corpus for coreference resolution.""" |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"id_doc": datasets.Value("string"), |
|
"words": datasets.Sequence(datasets.Sequence(datasets.Value("string"))), |
|
"mentions": [{ |
|
"id_mention": datasets.Value("string"), |
|
"mention_data": { |
|
"idx_sent": datasets.Value("uint32"), |
|
"word_indices": datasets.Sequence(datasets.Value("uint32")), |
|
"global_word_indices": datasets.Sequence(datasets.Value("uint32")) |
|
} |
|
}], |
|
"coref_clusters": datasets.Sequence(datasets.Sequence(datasets.Value("string"))) |
|
} |
|
) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
urls = _URLS["coref149"] |
|
data_dir = dl_manager.download_and_extract(urls) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"data_dir": data_dir |
|
} |
|
) |
|
] |
|
|
|
def _generate_examples(self, data_dir): |
|
TC_NAMESPACE = "{http://www.dspin.de/data/textcorpus}" |
|
all_files = sorted([fname for fname in os.listdir(data_dir) if fname.endswith(".tcf")], |
|
key=lambda _fname: int(_fname.split(".")[-2])) |
|
|
|
for idx_file, curr_fname in enumerate(all_files): |
|
curr_doc = ET.parse(os.path.join(data_dir, curr_fname)) |
|
root = curr_doc.getroot() |
|
id_doc = curr_fname.split(os.path.sep)[-1] |
|
|
|
token_tags = root.findall(f".//{TC_NAMESPACE}token") |
|
id2tok, id2idx, id2globidx, id2sentidx = {}, {}, {}, {} |
|
for idx_global, token in enumerate(token_tags): |
|
id_token = token.attrib["ID"] |
|
text_token = token.text.strip() |
|
|
|
id2tok[id_token] = text_token |
|
id2globidx[id_token] = idx_global |
|
|
|
sent_tags = root.findall(f".//{TC_NAMESPACE}sentence") |
|
words = [] |
|
for idx_sent, sent in enumerate(sent_tags): |
|
token_ids = sent.attrib["tokenIDs"].split(" ") |
|
for local_position, _id_tok in enumerate(token_ids): |
|
id2sentidx[_id_tok] = idx_sent |
|
id2idx[_id_tok] = local_position |
|
words.append([id2tok[_id] for _id in token_ids]) |
|
|
|
mentions, clusters = [], [] |
|
for ent in root.findall(f".//{TC_NAMESPACE}entity"): |
|
curr_cluster = [] |
|
for ref in ent.findall(f"{TC_NAMESPACE}reference"): |
|
id_mention = f"{id_doc}.{ref.attrib['ID']}" |
|
curr_cluster.append(id_mention) |
|
curr_mention = { |
|
"id_mention": id_mention, |
|
"mention_data": { |
|
"idx_sent": None, |
|
"word_indices": [], |
|
"global_word_indices": [] |
|
} |
|
} |
|
|
|
for id_token in ref.attrib['tokenIDs'].split(" "): |
|
curr_mention["mention_data"]["idx_sent"] = id2sentidx[id_token] |
|
curr_mention["mention_data"]["word_indices"].append(id2idx[id_token]) |
|
curr_mention["mention_data"]["global_word_indices"].append(id2globidx[id_token]) |
|
|
|
mentions.append(curr_mention) |
|
|
|
clusters.append(curr_cluster) |
|
|
|
yield idx_file, { |
|
"id_doc": id_doc, |
|
"words": words, |
|
"mentions": mentions, |
|
"coref_clusters": clusters |
|
} |
|
|