Matej Klemen
commited on
Commit
•
293de77
1
Parent(s):
49813b1
Add first dataset script
Browse files- README.md +28 -0
- coref149.py +135 -0
README.md
CHANGED
@@ -1,3 +1,31 @@
|
|
1 |
---
|
2 |
license: cc-by-nc-sa-4.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
1 |
---
|
2 |
license: cc-by-nc-sa-4.0
|
3 |
+
dataset_info:
|
4 |
+
features:
|
5 |
+
- name: id_doc
|
6 |
+
dtype: string
|
7 |
+
- name: words
|
8 |
+
sequence:
|
9 |
+
sequence: string
|
10 |
+
- name: mentions
|
11 |
+
list:
|
12 |
+
- name: id_mention
|
13 |
+
dtype: string
|
14 |
+
- name: mention_data
|
15 |
+
struct:
|
16 |
+
- name: idx_sent
|
17 |
+
dtype: uint32
|
18 |
+
- name: word_indices
|
19 |
+
sequence: uint32
|
20 |
+
- name: global_word_indices
|
21 |
+
sequence: uint32
|
22 |
+
- name: coref_clusters
|
23 |
+
sequence:
|
24 |
+
sequence: string
|
25 |
+
splits:
|
26 |
+
- name: train
|
27 |
+
num_bytes: 413196
|
28 |
+
num_examples: 149
|
29 |
+
download_size: 463706
|
30 |
+
dataset_size: 413196
|
31 |
---
|
coref149.py
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" Slovene corpus for coreference resolution coref149. """
|
2 |
+
|
3 |
+
|
4 |
+
import os
|
5 |
+
import xml.etree.ElementTree as ET
|
6 |
+
import datasets
|
7 |
+
|
8 |
+
|
9 |
+
_CITATION = """\
|
10 |
+
@article{coref149,
|
11 |
+
author={Žitnik, Slavko and Bajec, Marko},
|
12 |
+
title={Odkrivanje koreferenčnosti v slovenskem jeziku na označenih besedilih iz coref149},
|
13 |
+
journal={Slovenščina 2.0: empirične, aplikativne in interdisciplinarne raziskave},
|
14 |
+
number={1},
|
15 |
+
volume={6},
|
16 |
+
year={2018},
|
17 |
+
month={Jun.},
|
18 |
+
pages={37–67},
|
19 |
+
doi={10.4312/slo2.0.2018.1.37-67}
|
20 |
+
}
|
21 |
+
"""
|
22 |
+
|
23 |
+
_DESCRIPTION = """\
|
24 |
+
Slovene corpus for coreference resolution. Contains manually annotated coreferences.
|
25 |
+
"""
|
26 |
+
|
27 |
+
_HOMEPAGE = "http://hdl.handle.net/11356/1182"
|
28 |
+
|
29 |
+
_LICENSE = "Creative Commons - Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)"
|
30 |
+
|
31 |
+
_URLS = {
|
32 |
+
"coref149": "https://www.clarin.si/repository/xmlui/bitstream/handle/11356/1182/coref149_v1.0.zip"
|
33 |
+
}
|
34 |
+
|
35 |
+
|
36 |
+
class Coref149(datasets.GeneratorBasedBuilder):
|
37 |
+
"""Slovene corpus for coreference resolution."""
|
38 |
+
|
39 |
+
VERSION = datasets.Version("1.0.0")
|
40 |
+
|
41 |
+
def _info(self):
|
42 |
+
features = datasets.Features(
|
43 |
+
{
|
44 |
+
"id_doc": datasets.Value("string"),
|
45 |
+
"words": datasets.Sequence(datasets.Sequence(datasets.Value("string"))),
|
46 |
+
"mentions": [{
|
47 |
+
"id_mention": datasets.Value("string"),
|
48 |
+
"mention_data": {
|
49 |
+
"idx_sent": datasets.Value("uint32"),
|
50 |
+
"word_indices": datasets.Sequence(datasets.Value("uint32")),
|
51 |
+
"global_word_indices": datasets.Sequence(datasets.Value("uint32"))
|
52 |
+
}
|
53 |
+
}],
|
54 |
+
"coref_clusters": datasets.Sequence(datasets.Sequence(datasets.Value("string")))
|
55 |
+
}
|
56 |
+
)
|
57 |
+
|
58 |
+
return datasets.DatasetInfo(
|
59 |
+
description=_DESCRIPTION,
|
60 |
+
features=features,
|
61 |
+
homepage=_HOMEPAGE,
|
62 |
+
license=_LICENSE,
|
63 |
+
citation=_CITATION,
|
64 |
+
)
|
65 |
+
|
66 |
+
def _split_generators(self, dl_manager):
|
67 |
+
urls = _URLS["coref149"]
|
68 |
+
data_dir = dl_manager.download_and_extract(urls)
|
69 |
+
return [
|
70 |
+
datasets.SplitGenerator(
|
71 |
+
name=datasets.Split.TRAIN,
|
72 |
+
gen_kwargs={
|
73 |
+
"data_dir": data_dir
|
74 |
+
}
|
75 |
+
)
|
76 |
+
]
|
77 |
+
|
78 |
+
def _generate_examples(self, data_dir):
|
79 |
+
TC_NAMESPACE = "{http://www.dspin.de/data/textcorpus}"
|
80 |
+
all_files = sorted([fname for fname in os.listdir(data_dir) if fname.endswith(".tcf")],
|
81 |
+
key=lambda _fname: int(_fname.split(".")[-2]))
|
82 |
+
|
83 |
+
for idx_file, curr_fname in enumerate(all_files):
|
84 |
+
curr_doc = ET.parse(os.path.join(data_dir, curr_fname))
|
85 |
+
root = curr_doc.getroot()
|
86 |
+
id_doc = curr_fname.split(os.path.sep)[-1]
|
87 |
+
|
88 |
+
token_tags = root.findall(f".//{TC_NAMESPACE}token")
|
89 |
+
id2tok, id2idx, id2globidx, id2sentidx = {}, {}, {}, {}
|
90 |
+
for idx_global, token in enumerate(token_tags):
|
91 |
+
id_token = token.attrib["ID"]
|
92 |
+
text_token = token.text.strip()
|
93 |
+
|
94 |
+
id2tok[id_token] = text_token
|
95 |
+
id2globidx[id_token] = idx_global
|
96 |
+
|
97 |
+
sent_tags = root.findall(f".//{TC_NAMESPACE}sentence")
|
98 |
+
words = []
|
99 |
+
for idx_sent, sent in enumerate(sent_tags):
|
100 |
+
token_ids = sent.attrib["tokenIDs"].split(" ")
|
101 |
+
for local_position, _id_tok in enumerate(token_ids):
|
102 |
+
id2sentidx[_id_tok] = idx_sent
|
103 |
+
id2idx[_id_tok] = local_position
|
104 |
+
words.append([id2tok[_id] for _id in token_ids])
|
105 |
+
|
106 |
+
mentions, clusters = [], []
|
107 |
+
for ent in root.findall(f".//{TC_NAMESPACE}entity"):
|
108 |
+
curr_cluster = []
|
109 |
+
for ref in ent.findall(f"{TC_NAMESPACE}reference"):
|
110 |
+
id_mention = f"{id_doc}.{ref.attrib['ID']}"
|
111 |
+
curr_cluster.append(id_mention)
|
112 |
+
curr_mention = {
|
113 |
+
"id_mention": id_mention,
|
114 |
+
"mention_data": {
|
115 |
+
"idx_sent": None,
|
116 |
+
"word_indices": [],
|
117 |
+
"global_word_indices": []
|
118 |
+
}
|
119 |
+
}
|
120 |
+
|
121 |
+
for id_token in ref.attrib['tokenIDs'].split(" "):
|
122 |
+
curr_mention["mention_data"]["idx_sent"] = id2sentidx[id_token]
|
123 |
+
curr_mention["mention_data"]["word_indices"].append(id2idx[id_token])
|
124 |
+
curr_mention["mention_data"]["global_word_indices"].append(id2globidx[id_token])
|
125 |
+
|
126 |
+
mentions.append(curr_mention)
|
127 |
+
|
128 |
+
clusters.append(curr_cluster)
|
129 |
+
|
130 |
+
yield idx_file, {
|
131 |
+
"id_doc": id_doc,
|
132 |
+
"words": words,
|
133 |
+
"mentions": mentions,
|
134 |
+
"coref_clusters": clusters
|
135 |
+
}
|