mario-dg's picture
Update README.md
4faef02 verified
---
language:
- en
size_categories:
- 10K<n<100K
task_categories:
- object-detection
pretty_name: BF Microscopy SCC
dataset_info:
features:
- name: image
dtype: image
- name: label
dtype:
class_label:
names:
'0': test
'1': train
'2': val
- name: width
dtype: int64
- name: height
dtype: int64
- name: objects
struct:
- name: bbox
sequence:
sequence: float64
- name: categories
sequence: int64
- name: well_edge
dtype: bool
splits:
- name: train
num_bytes: 6536105243.092
num_examples: 27161
- name: validation
num_bytes: 790399669.192
num_examples: 3302
- name: test
num_bytes: 377694309.42
num_examples: 1580
download_size: 7699271022
dataset_size: 7704199221.704
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
tags:
- biology
---
# Brightfield Microscopy SCC Dataset
## Dataset Description
The Brightfield Microscopy SCC Dataset contains brightfield microscopy images that have been sliced from 4K resolution images. The cells in the images are labeled with bounding boxes. This dataset is used for training unconditional diffusion models and cell detection models.
## Dataset Structure
The dataset is organized into the following splits:
- `train`: 27,161 examples
- `validation`: 3,302 examples
- `test`: 1,580 examples
The total size of the dataset is 7.7 GB, with a download size of 7.7 GB.
### Data Fields
- `image`: The brightfield microscopy image (image)
- `label`: The split the image belongs to (class label)
- `0`: test
- `1`: train
- `2`: val
- `width`: The width of the image (int64)
- `height`: The height of the image (int64)
- `objects`: A struct containing:
- `bbox`: A sequence of sequences representing the bounding box coordinates (float64)
- `categories`: A sequence of integers representing the object categories (int64)
- `well_edge`: Whether this image contains elements of a microtiter plate well edge (bool)