Dataset Preview
Full Screen Viewer
Full Screen
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code: DatasetGenerationCastError Exception: DatasetGenerationCastError Message: An error occurred while generating the dataset All the data files must have the same columns, but at some point there are 5 new columns ({'track_id', 'polyphony_rate', 'program', 'end_time', 'num_notes'}) and 2 missing columns ({'time_signature', 'global_tempo'}). This happened while the csv dataset builder was generating data using hf://datasets/lzqlzzq/midiset/track_features.csv (at revision e2cd65669eb14047f082ca40874972f8b25edfac) Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations) Traceback: Traceback (most recent call last): File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1870, in _prepare_split_single writer.write_table(table) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 622, in write_table pa_table = table_cast(pa_table, self._schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2292, in table_cast return cast_table_to_schema(table, schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2240, in cast_table_to_schema raise CastError( datasets.table.CastError: Couldn't cast midi_id: string track_id: int64 program: int64 num_notes: int64 end_time: double polyphony_rate: double -- schema metadata -- pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 962 to {'midi_id': Value(dtype='string', id=None), 'global_tempo': Value(dtype='float64', id=None), 'time_signature': Value(dtype='string', id=None)} because column names don't match During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1420, in compute_config_parquet_and_info_response parquet_operations = convert_to_parquet(builder) File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1052, in convert_to_parquet builder.download_and_prepare( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 924, in download_and_prepare self._download_and_prepare( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1000, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1741, in _prepare_split for job_id, done, content in self._prepare_split_single( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1872, in _prepare_split_single raise DatasetGenerationCastError.from_cast_error( datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset All the data files must have the same columns, but at some point there are 5 new columns ({'track_id', 'polyphony_rate', 'program', 'end_time', 'num_notes'}) and 2 missing columns ({'time_signature', 'global_tempo'}). This happened while the csv dataset builder was generating data using hf://datasets/lzqlzzq/midiset/track_features.csv (at revision e2cd65669eb14047f082ca40874972f8b25edfac) Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
midi_id
string | global_tempo
float64 | time_signature
string |
---|---|---|
000000/6819561392665023488 | 138 | null |
000000/2082347145784761397 | 118 | (4, 4) |
000000/1710301504502468975 | 90 | (4, 4) |
000000/8447082837283840882 | null | null |
000000/9747101262370999714 | 120 | (4, 4) |
000000/14289236458061141112 | 120 | (4, 2) |
000000/1939154233717887883 | 112 | (3, 2) |
000000/9222765079466901230 | 130 | (4, 4) |
000000/10423517713641539983 | 132 | (4, 4) |
000000/3672234968391614075 | 112 | (4, 4) |
000000/5826149401124392126 | 72 | (4, 4) |
000000/3722725725407270218 | 164 | (2, 4) |
000000/430561863398445019 | 168 | (4, 4) |
000000/16791727662655930059 | 200 | (4, 4) |
000000/7969815293962456708 | 160 | (4, 4) |
000000/4287804287229987715 | 90 | (4, 4) |
000000/8079641048619876776 | 100 | (3, 4) |
000000/7089709603546667478 | 81 | (3, 4) |
000000/783604498143419463 | 150 | null |
000000/7325716987695433964 | 160 | (4, 4) |
000000/1706480402320366821 | 165 | (4, 4) |
000000/7730776832025307577 | 130 | (4, 4) |
000000/17540898942732843977 | 107 | (3, 4) |
000000/17758353612807823622 | 120 | (4, 4) |
000000/12887664479836818744 | 110 | (4, 4) |
000000/17877660433880837652 | 92 | (4, 4) |
000000/9705442813380667911 | 140 | null |
000000/15223234699189320076 | 143 | (4, 4) |
000000/2280323122759672540 | 164 | (4, 4) |
000000/14588097100310184779 | 100 | (4, 4) |
000000/8387733265033280753 | 296 | (4, 4) |
000000/11934027031232880709 | null | null |
000000/4485084663858539115 | 134 | (4, 4) |
000000/9969263920803281742 | 140 | (4, 4) |
000000/8901984271038381845 | 138 | (4, 4) |
000000/6362095606332304029 | 92 | (4, 4) |
000000/9724993332930166167 | 120 | (4, 4) |
000000/11116243485040695983 | 100 | (4, 4) |
000000/11416798984713677446 | 65 | (4, 4) |
000000/11152259876051115505 | 140 | (4, 4) |
000000/7556929243083351250 | 64 | (6, 4) |
000000/8619823004194199884 | 112 | (4, 4) |
000000/3615665356732674088 | 83 | (4, 4) |
000000/16342772138895109533 | 132 | (4, 4) |
000000/14352743388944112965 | 106 | (4, 4) |
000000/7494069819465512622 | 160 | (4, 4) |
000000/15968724663664137104 | 73 | (4, 4) |
000000/8308222138553276243 | 120 | (4, 4) |
000000/17274016859033413838 | 78 | (4, 4) |
000000/17504430192638926915 | 100 | (4, 4) |
000000/2089205162626765932 | 73 | (3, 4) |
000000/3260999254265525344 | 120 | null |
000000/15928796547859029722 | 191 | (4, 4) |
000000/9243850495388933994 | 130 | (4, 4) |
000000/12500174283468008691 | 132 | (4, 4) |
000000/9696733752079304956 | 98 | (4, 4) |
000000/7849426830866122137 | 105 | (2, 4) |
000000/12122146461722365984 | 54 | null |
000000/15797973377661935525 | 122 | (2, 2) |
000000/16124529735598744983 | 79 | (4, 4) |
000000/14611009458517799325 | 184 | (4, 4) |
000000/2201149999883778546 | 108 | (2, 4) |
000000/15574387847323042309 | 105 | (4, 4) |
000000/3899221371840072780 | 100 | (6, 4) |
000000/9650890036491462535 | 100 | (4, 4) |
000000/13924054423613685049 | 72 | (4, 4) |
000000/15356196827961402903 | 84 | (4, 4) |
000000/4954665775114799650 | 130 | (4, 4) |
000000/14859685871824653911 | 120 | (1, 8) |
000000/5755224701096652472 | 90 | (4, 4) |
000000/6582789927737577925 | 107 | (4, 4) |
000000/3322038266994031002 | 199 | (4, 4) |
000000/8670867528785451582 | 150 | (1, 8) |
000000/2584160358588604368 | 145 | (4, 4) |
000000/5408828988890655856 | 120 | null |
000000/2405162134673870186 | 120 | (1, 8) |
000000/13374542789429492145 | 86 | (4, 4) |
000000/5610087951202724158 | 100 | null |
000000/11535324247959457517 | 120 | (4, 4) |
000000/13281110275131532495 | 75 | (4, 4) |
000000/16281745970956204592 | 218 | (1, 4) |
000000/6071994167816901300 | 170 | (4, 4) |
000000/6490692050125673212 | 112 | (4, 4) |
000000/2186671676279339751 | 120 | (1, 4) |
000000/8597386406904632346 | 230 | (6, 8) |
000000/12066717189116497969 | 110 | (4, 4) |
000000/14101547644971895573 | 190 | (2, 2) |
000000/16896877671599026629 | 64 | (4, 4) |
000000/6765995032493287325 | 113 | null |
000000/7347481392432806788 | 100 | (4, 4) |
000000/11808233957481483393 | 71 | (2, 4) |
000000/16091553737212263093 | 100 | (4, 4) |
000000/17463273681826534231 | 136 | null |
000000/3453908653469936778 | 113 | (4, 4) |
000000/11373827843149954981 | 95 | (4, 4) |
000000/8131737523854279471 | 100 | (4, 4) |
000000/1646831218421748436 | 120 | (4, 4) |
000000/1800721839658225684 | 94 | (4, 4) |
000000/2957007943516234922 | 80 | (4, 4) |
000000/9741182030631859449 | 105 | (4, 4) |
End of preview.
midiset
A clean and large scale MIDI dataset curated by professional composer and algorithm.
Feature
- Large-scale: 384696 unique MIDIs
- Clean: No invalid MIDI, and filtered by pitch class entropy
Acknowledgments
- Los Angeles MIDI Dataset: https://github.com/asigalov61/Los-Angeles-MIDI-Dataset
- Bread MIDI Dataset: https://huggingface.co./datasets/breadlicker45/bread-midi-dataset
- Downloads last month
- 31