prompt
stringlengths 94
42.6k
| completion
stringlengths 6
120
| api
stringlengths 14
68
|
---|---|---|
import io
import numpy as np
import megengine.core.tensor.megbrain_graph as G
import megengine.functional as F
import megengine.module as M
import megengine.utils.network_node as N
from megengine.jit.tracing import trace
from megengine.tensor import Tensor
from megengine.utils.comp_graph_tools import GraphInference
from megengine.utils.network import Network as Net
from megengine.utils.network import as_oprnode, set_symbolic_shape
from megengine.utils.network_node import Host2DeviceCopy, VarNode
def test_metadata():
x = Tensor(0)
@trace(symbolic=True, capture_as_const=True)
def fwd(x):
return x * 2
fwd(x)
orig_model = io.BytesIO()
fwd.dump(orig_model, user_info="test", optimize_for_inference=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": "test",
"graph_modified": False, # False: tracing.dump
"optimized_for_inference": False,
}
orig_model.seek(0)
graph.dump(
orig_model,
user_info={"str": "x", "tensor": x, "module": M.Module, "none": None},
optimize_for_inference=True,
enable_nchw4=True,
enable_ioc16=True,
)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": {"str": "x", "tensor": x, "module": M.Module, "none": None},
"graph_modified": True, # True: Network.dump
"optimized_for_inference": True,
"enable_nchw4": True,
"enable_ioc16": True,
}
orig_model.seek(0)
fwd.dump(orig_model, enable_metadata=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata is None
def test_replace_var():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out = F.mul(vara, varb)
out = F.relu(out)
opnode = list(graph.opr_filter.has_input(vara))
repl_dict = {opnode[0].outputs[0]: out}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [6, 16])
def test_replace_opr():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out1 = F.sub(vara, varb)
out1 = F.relu(out1)
out1 = graph.add_dep_oprs(out1)
orig_opr = graph.opr_filter.has_input(vara).as_unique()
repl_dict = {orig_opr: out1[0].owner}
graph.replace_oprs(repl_dict)
modified_model1 = io.BytesIO()
graph.dump(modified_model1)
modified_model1.seek(0)
load_graph = GraphInference(modified_model1)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [0, 0])
def test_splice_network():
x = F.ones((2,))
y = F.ones((2,))
@trace(symbolic=True, capture_as_const=True)
def fun1(a, b):
return (a + b) * 2
@trace(symbolic=True, capture_as_const=True)
def fun2(a):
return a * 2 - 1
model = io.BytesIO()
fun1(x, y)
fun2(x)
fun1.dump(
model,
arg_names=["net1_i0", "net1_i1"],
output_names=["net1_o0"],
optimize_for_inference=False,
)
model.seek(0)
net1 = Net.load(model)
model.seek(0)
fun2.dump(
model,
arg_names=["net2_i0"],
output_names=["net2_o0"],
optimize_for_inference=False,
)
model.seek(0)
net2 = Net.load(model)
net1.add_output(*net2.output_vars)
var = net1.var_filter.name("net1_i0").as_unique()
repl_var = net2.var_filter.name("net2_o0").as_unique()
net1.replace_vars({var: repl_var})
assert "net1_i0" not in [var.name for var in net1.all_vars]
assert "net2_i0" in [var.name for var in net1.all_vars]
model.seek(0)
net1.dump(model, keep_var_name=2, optimize_for_inference=False)
model.seek(0)
net = Net.load(model)
assert "net1_i0" not in [var.name for var in net.all_vars]
assert "net2_i0" in [var.name for var in net.all_vars]
def test_modify_params():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
param_const = graph.params_filter.as_unique()
param_const.set_value(3)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [12, 18])
def test_make_const():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
const_b = graph.make_const(np.array([0.0, 0.0]), name="b")
varb = graph.var_filter.name("b").as_unique()
repl_dict = {varb: const_b}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = | GraphInference(modified_model) | megengine.utils.comp_graph_tools.GraphInference |
import io
import numpy as np
import megengine.core.tensor.megbrain_graph as G
import megengine.functional as F
import megengine.module as M
import megengine.utils.network_node as N
from megengine.jit.tracing import trace
from megengine.tensor import Tensor
from megengine.utils.comp_graph_tools import GraphInference
from megengine.utils.network import Network as Net
from megengine.utils.network import as_oprnode, set_symbolic_shape
from megengine.utils.network_node import Host2DeviceCopy, VarNode
def test_metadata():
x = Tensor(0)
@trace(symbolic=True, capture_as_const=True)
def fwd(x):
return x * 2
fwd(x)
orig_model = io.BytesIO()
fwd.dump(orig_model, user_info="test", optimize_for_inference=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": "test",
"graph_modified": False, # False: tracing.dump
"optimized_for_inference": False,
}
orig_model.seek(0)
graph.dump(
orig_model,
user_info={"str": "x", "tensor": x, "module": M.Module, "none": None},
optimize_for_inference=True,
enable_nchw4=True,
enable_ioc16=True,
)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": {"str": "x", "tensor": x, "module": M.Module, "none": None},
"graph_modified": True, # True: Network.dump
"optimized_for_inference": True,
"enable_nchw4": True,
"enable_ioc16": True,
}
orig_model.seek(0)
fwd.dump(orig_model, enable_metadata=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata is None
def test_replace_var():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out = F.mul(vara, varb)
out = F.relu(out)
opnode = list(graph.opr_filter.has_input(vara))
repl_dict = {opnode[0].outputs[0]: out}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [6, 16])
def test_replace_opr():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out1 = F.sub(vara, varb)
out1 = F.relu(out1)
out1 = graph.add_dep_oprs(out1)
orig_opr = graph.opr_filter.has_input(vara).as_unique()
repl_dict = {orig_opr: out1[0].owner}
graph.replace_oprs(repl_dict)
modified_model1 = io.BytesIO()
graph.dump(modified_model1)
modified_model1.seek(0)
load_graph = GraphInference(modified_model1)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [0, 0])
def test_splice_network():
x = F.ones((2,))
y = F.ones((2,))
@trace(symbolic=True, capture_as_const=True)
def fun1(a, b):
return (a + b) * 2
@trace(symbolic=True, capture_as_const=True)
def fun2(a):
return a * 2 - 1
model = io.BytesIO()
fun1(x, y)
fun2(x)
fun1.dump(
model,
arg_names=["net1_i0", "net1_i1"],
output_names=["net1_o0"],
optimize_for_inference=False,
)
model.seek(0)
net1 = Net.load(model)
model.seek(0)
fun2.dump(
model,
arg_names=["net2_i0"],
output_names=["net2_o0"],
optimize_for_inference=False,
)
model.seek(0)
net2 = Net.load(model)
net1.add_output(*net2.output_vars)
var = net1.var_filter.name("net1_i0").as_unique()
repl_var = net2.var_filter.name("net2_o0").as_unique()
net1.replace_vars({var: repl_var})
assert "net1_i0" not in [var.name for var in net1.all_vars]
assert "net2_i0" in [var.name for var in net1.all_vars]
model.seek(0)
net1.dump(model, keep_var_name=2, optimize_for_inference=False)
model.seek(0)
net = Net.load(model)
assert "net1_i0" not in [var.name for var in net.all_vars]
assert "net2_i0" in [var.name for var in net.all_vars]
def test_modify_params():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
param_const = graph.params_filter.as_unique()
param_const.set_value(3)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [12, 18])
def test_make_const():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
const_b = graph.make_const(np.array([0.0, 0.0]), name="b")
varb = graph.var_filter.name("b").as_unique()
repl_dict = {varb: const_b}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a)
np.testing.assert_equal(out["o"], [2, 4])
def test_add_input():
a = | Tensor([1, 2]) | megengine.tensor.Tensor |
import io
import numpy as np
import megengine.core.tensor.megbrain_graph as G
import megengine.functional as F
import megengine.module as M
import megengine.utils.network_node as N
from megengine.jit.tracing import trace
from megengine.tensor import Tensor
from megengine.utils.comp_graph_tools import GraphInference
from megengine.utils.network import Network as Net
from megengine.utils.network import as_oprnode, set_symbolic_shape
from megengine.utils.network_node import Host2DeviceCopy, VarNode
def test_metadata():
x = Tensor(0)
@trace(symbolic=True, capture_as_const=True)
def fwd(x):
return x * 2
fwd(x)
orig_model = io.BytesIO()
fwd.dump(orig_model, user_info="test", optimize_for_inference=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": "test",
"graph_modified": False, # False: tracing.dump
"optimized_for_inference": False,
}
orig_model.seek(0)
graph.dump(
orig_model,
user_info={"str": "x", "tensor": x, "module": M.Module, "none": None},
optimize_for_inference=True,
enable_nchw4=True,
enable_ioc16=True,
)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": {"str": "x", "tensor": x, "module": M.Module, "none": None},
"graph_modified": True, # True: Network.dump
"optimized_for_inference": True,
"enable_nchw4": True,
"enable_ioc16": True,
}
orig_model.seek(0)
fwd.dump(orig_model, enable_metadata=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata is None
def test_replace_var():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out = F.mul(vara, varb)
out = F.relu(out)
opnode = list(graph.opr_filter.has_input(vara))
repl_dict = {opnode[0].outputs[0]: out}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [6, 16])
def test_replace_opr():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out1 = F.sub(vara, varb)
out1 = F.relu(out1)
out1 = graph.add_dep_oprs(out1)
orig_opr = graph.opr_filter.has_input(vara).as_unique()
repl_dict = {orig_opr: out1[0].owner}
graph.replace_oprs(repl_dict)
modified_model1 = io.BytesIO()
graph.dump(modified_model1)
modified_model1.seek(0)
load_graph = GraphInference(modified_model1)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [0, 0])
def test_splice_network():
x = F.ones((2,))
y = F.ones((2,))
@trace(symbolic=True, capture_as_const=True)
def fun1(a, b):
return (a + b) * 2
@trace(symbolic=True, capture_as_const=True)
def fun2(a):
return a * 2 - 1
model = io.BytesIO()
fun1(x, y)
fun2(x)
fun1.dump(
model,
arg_names=["net1_i0", "net1_i1"],
output_names=["net1_o0"],
optimize_for_inference=False,
)
model.seek(0)
net1 = Net.load(model)
model.seek(0)
fun2.dump(
model,
arg_names=["net2_i0"],
output_names=["net2_o0"],
optimize_for_inference=False,
)
model.seek(0)
net2 = Net.load(model)
net1.add_output(*net2.output_vars)
var = net1.var_filter.name("net1_i0").as_unique()
repl_var = net2.var_filter.name("net2_o0").as_unique()
net1.replace_vars({var: repl_var})
assert "net1_i0" not in [var.name for var in net1.all_vars]
assert "net2_i0" in [var.name for var in net1.all_vars]
model.seek(0)
net1.dump(model, keep_var_name=2, optimize_for_inference=False)
model.seek(0)
net = Net.load(model)
assert "net1_i0" not in [var.name for var in net.all_vars]
assert "net2_i0" in [var.name for var in net.all_vars]
def test_modify_params():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
param_const = graph.params_filter.as_unique()
param_const.set_value(3)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [12, 18])
def test_make_const():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
const_b = graph.make_const(np.array([0.0, 0.0]), name="b")
varb = graph.var_filter.name("b").as_unique()
repl_dict = {varb: const_b}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a)
np.testing.assert_equal(out["o"], [2, 4])
def test_add_input():
a = Tensor([1, 2])
b = | Tensor([3, 4]) | megengine.tensor.Tensor |
import io
import numpy as np
import megengine.core.tensor.megbrain_graph as G
import megengine.functional as F
import megengine.module as M
import megengine.utils.network_node as N
from megengine.jit.tracing import trace
from megengine.tensor import Tensor
from megengine.utils.comp_graph_tools import GraphInference
from megengine.utils.network import Network as Net
from megengine.utils.network import as_oprnode, set_symbolic_shape
from megengine.utils.network_node import Host2DeviceCopy, VarNode
def test_metadata():
x = Tensor(0)
@trace(symbolic=True, capture_as_const=True)
def fwd(x):
return x * 2
fwd(x)
orig_model = io.BytesIO()
fwd.dump(orig_model, user_info="test", optimize_for_inference=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": "test",
"graph_modified": False, # False: tracing.dump
"optimized_for_inference": False,
}
orig_model.seek(0)
graph.dump(
orig_model,
user_info={"str": "x", "tensor": x, "module": M.Module, "none": None},
optimize_for_inference=True,
enable_nchw4=True,
enable_ioc16=True,
)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": {"str": "x", "tensor": x, "module": M.Module, "none": None},
"graph_modified": True, # True: Network.dump
"optimized_for_inference": True,
"enable_nchw4": True,
"enable_ioc16": True,
}
orig_model.seek(0)
fwd.dump(orig_model, enable_metadata=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata is None
def test_replace_var():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out = F.mul(vara, varb)
out = F.relu(out)
opnode = list(graph.opr_filter.has_input(vara))
repl_dict = {opnode[0].outputs[0]: out}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [6, 16])
def test_replace_opr():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out1 = F.sub(vara, varb)
out1 = F.relu(out1)
out1 = graph.add_dep_oprs(out1)
orig_opr = graph.opr_filter.has_input(vara).as_unique()
repl_dict = {orig_opr: out1[0].owner}
graph.replace_oprs(repl_dict)
modified_model1 = io.BytesIO()
graph.dump(modified_model1)
modified_model1.seek(0)
load_graph = GraphInference(modified_model1)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [0, 0])
def test_splice_network():
x = F.ones((2,))
y = F.ones((2,))
@trace(symbolic=True, capture_as_const=True)
def fun1(a, b):
return (a + b) * 2
@trace(symbolic=True, capture_as_const=True)
def fun2(a):
return a * 2 - 1
model = io.BytesIO()
fun1(x, y)
fun2(x)
fun1.dump(
model,
arg_names=["net1_i0", "net1_i1"],
output_names=["net1_o0"],
optimize_for_inference=False,
)
model.seek(0)
net1 = Net.load(model)
model.seek(0)
fun2.dump(
model,
arg_names=["net2_i0"],
output_names=["net2_o0"],
optimize_for_inference=False,
)
model.seek(0)
net2 = Net.load(model)
net1.add_output(*net2.output_vars)
var = net1.var_filter.name("net1_i0").as_unique()
repl_var = net2.var_filter.name("net2_o0").as_unique()
net1.replace_vars({var: repl_var})
assert "net1_i0" not in [var.name for var in net1.all_vars]
assert "net2_i0" in [var.name for var in net1.all_vars]
model.seek(0)
net1.dump(model, keep_var_name=2, optimize_for_inference=False)
model.seek(0)
net = Net.load(model)
assert "net1_i0" not in [var.name for var in net.all_vars]
assert "net2_i0" in [var.name for var in net.all_vars]
def test_modify_params():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
param_const = graph.params_filter.as_unique()
param_const.set_value(3)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [12, 18])
def test_make_const():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
const_b = graph.make_const(np.array([0.0, 0.0]), name="b")
varb = graph.var_filter.name("b").as_unique()
repl_dict = {varb: const_b}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a)
np.testing.assert_equal(out["o"], [2, 4])
def test_add_input():
a = Tensor([1, 2])
b = Tensor([3, 4])
@ | trace(symbolic=True, capture_as_const=True) | megengine.jit.tracing.trace |
import io
import numpy as np
import megengine.core.tensor.megbrain_graph as G
import megengine.functional as F
import megengine.module as M
import megengine.utils.network_node as N
from megengine.jit.tracing import trace
from megengine.tensor import Tensor
from megengine.utils.comp_graph_tools import GraphInference
from megengine.utils.network import Network as Net
from megengine.utils.network import as_oprnode, set_symbolic_shape
from megengine.utils.network_node import Host2DeviceCopy, VarNode
def test_metadata():
x = Tensor(0)
@trace(symbolic=True, capture_as_const=True)
def fwd(x):
return x * 2
fwd(x)
orig_model = io.BytesIO()
fwd.dump(orig_model, user_info="test", optimize_for_inference=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": "test",
"graph_modified": False, # False: tracing.dump
"optimized_for_inference": False,
}
orig_model.seek(0)
graph.dump(
orig_model,
user_info={"str": "x", "tensor": x, "module": M.Module, "none": None},
optimize_for_inference=True,
enable_nchw4=True,
enable_ioc16=True,
)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": {"str": "x", "tensor": x, "module": M.Module, "none": None},
"graph_modified": True, # True: Network.dump
"optimized_for_inference": True,
"enable_nchw4": True,
"enable_ioc16": True,
}
orig_model.seek(0)
fwd.dump(orig_model, enable_metadata=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata is None
def test_replace_var():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out = F.mul(vara, varb)
out = F.relu(out)
opnode = list(graph.opr_filter.has_input(vara))
repl_dict = {opnode[0].outputs[0]: out}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [6, 16])
def test_replace_opr():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out1 = F.sub(vara, varb)
out1 = F.relu(out1)
out1 = graph.add_dep_oprs(out1)
orig_opr = graph.opr_filter.has_input(vara).as_unique()
repl_dict = {orig_opr: out1[0].owner}
graph.replace_oprs(repl_dict)
modified_model1 = io.BytesIO()
graph.dump(modified_model1)
modified_model1.seek(0)
load_graph = GraphInference(modified_model1)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [0, 0])
def test_splice_network():
x = F.ones((2,))
y = F.ones((2,))
@trace(symbolic=True, capture_as_const=True)
def fun1(a, b):
return (a + b) * 2
@trace(symbolic=True, capture_as_const=True)
def fun2(a):
return a * 2 - 1
model = io.BytesIO()
fun1(x, y)
fun2(x)
fun1.dump(
model,
arg_names=["net1_i0", "net1_i1"],
output_names=["net1_o0"],
optimize_for_inference=False,
)
model.seek(0)
net1 = Net.load(model)
model.seek(0)
fun2.dump(
model,
arg_names=["net2_i0"],
output_names=["net2_o0"],
optimize_for_inference=False,
)
model.seek(0)
net2 = Net.load(model)
net1.add_output(*net2.output_vars)
var = net1.var_filter.name("net1_i0").as_unique()
repl_var = net2.var_filter.name("net2_o0").as_unique()
net1.replace_vars({var: repl_var})
assert "net1_i0" not in [var.name for var in net1.all_vars]
assert "net2_i0" in [var.name for var in net1.all_vars]
model.seek(0)
net1.dump(model, keep_var_name=2, optimize_for_inference=False)
model.seek(0)
net = Net.load(model)
assert "net1_i0" not in [var.name for var in net.all_vars]
assert "net2_i0" in [var.name for var in net.all_vars]
def test_modify_params():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
param_const = graph.params_filter.as_unique()
param_const.set_value(3)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [12, 18])
def test_make_const():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
const_b = graph.make_const(np.array([0.0, 0.0]), name="b")
varb = graph.var_filter.name("b").as_unique()
repl_dict = {varb: const_b}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a)
np.testing.assert_equal(out["o"], [2, 4])
def test_add_input():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = | Net.load(orig_model) | megengine.utils.network.Network.load |
import io
import numpy as np
import megengine.core.tensor.megbrain_graph as G
import megengine.functional as F
import megengine.module as M
import megengine.utils.network_node as N
from megengine.jit.tracing import trace
from megengine.tensor import Tensor
from megengine.utils.comp_graph_tools import GraphInference
from megengine.utils.network import Network as Net
from megengine.utils.network import as_oprnode, set_symbolic_shape
from megengine.utils.network_node import Host2DeviceCopy, VarNode
def test_metadata():
x = Tensor(0)
@trace(symbolic=True, capture_as_const=True)
def fwd(x):
return x * 2
fwd(x)
orig_model = io.BytesIO()
fwd.dump(orig_model, user_info="test", optimize_for_inference=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": "test",
"graph_modified": False, # False: tracing.dump
"optimized_for_inference": False,
}
orig_model.seek(0)
graph.dump(
orig_model,
user_info={"str": "x", "tensor": x, "module": M.Module, "none": None},
optimize_for_inference=True,
enable_nchw4=True,
enable_ioc16=True,
)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": {"str": "x", "tensor": x, "module": M.Module, "none": None},
"graph_modified": True, # True: Network.dump
"optimized_for_inference": True,
"enable_nchw4": True,
"enable_ioc16": True,
}
orig_model.seek(0)
fwd.dump(orig_model, enable_metadata=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata is None
def test_replace_var():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out = F.mul(vara, varb)
out = F.relu(out)
opnode = list(graph.opr_filter.has_input(vara))
repl_dict = {opnode[0].outputs[0]: out}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [6, 16])
def test_replace_opr():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out1 = F.sub(vara, varb)
out1 = F.relu(out1)
out1 = graph.add_dep_oprs(out1)
orig_opr = graph.opr_filter.has_input(vara).as_unique()
repl_dict = {orig_opr: out1[0].owner}
graph.replace_oprs(repl_dict)
modified_model1 = io.BytesIO()
graph.dump(modified_model1)
modified_model1.seek(0)
load_graph = GraphInference(modified_model1)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [0, 0])
def test_splice_network():
x = F.ones((2,))
y = F.ones((2,))
@trace(symbolic=True, capture_as_const=True)
def fun1(a, b):
return (a + b) * 2
@trace(symbolic=True, capture_as_const=True)
def fun2(a):
return a * 2 - 1
model = io.BytesIO()
fun1(x, y)
fun2(x)
fun1.dump(
model,
arg_names=["net1_i0", "net1_i1"],
output_names=["net1_o0"],
optimize_for_inference=False,
)
model.seek(0)
net1 = Net.load(model)
model.seek(0)
fun2.dump(
model,
arg_names=["net2_i0"],
output_names=["net2_o0"],
optimize_for_inference=False,
)
model.seek(0)
net2 = Net.load(model)
net1.add_output(*net2.output_vars)
var = net1.var_filter.name("net1_i0").as_unique()
repl_var = net2.var_filter.name("net2_o0").as_unique()
net1.replace_vars({var: repl_var})
assert "net1_i0" not in [var.name for var in net1.all_vars]
assert "net2_i0" in [var.name for var in net1.all_vars]
model.seek(0)
net1.dump(model, keep_var_name=2, optimize_for_inference=False)
model.seek(0)
net = Net.load(model)
assert "net1_i0" not in [var.name for var in net.all_vars]
assert "net2_i0" in [var.name for var in net.all_vars]
def test_modify_params():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
param_const = graph.params_filter.as_unique()
param_const.set_value(3)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [12, 18])
def test_make_const():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
const_b = graph.make_const(np.array([0.0, 0.0]), name="b")
varb = graph.var_filter.name("b").as_unique()
repl_dict = {varb: const_b}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a)
np.testing.assert_equal(out["o"], [2, 4])
def test_add_input():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
inp_c = graph.make_input_node((2,), np.int32, name="c")
varo = graph.var_filter.name("o").as_unique()
out = | F.add(varo, inp_c) | megengine.functional.add |
import io
import numpy as np
import megengine.core.tensor.megbrain_graph as G
import megengine.functional as F
import megengine.module as M
import megengine.utils.network_node as N
from megengine.jit.tracing import trace
from megengine.tensor import Tensor
from megengine.utils.comp_graph_tools import GraphInference
from megengine.utils.network import Network as Net
from megengine.utils.network import as_oprnode, set_symbolic_shape
from megengine.utils.network_node import Host2DeviceCopy, VarNode
def test_metadata():
x = Tensor(0)
@trace(symbolic=True, capture_as_const=True)
def fwd(x):
return x * 2
fwd(x)
orig_model = io.BytesIO()
fwd.dump(orig_model, user_info="test", optimize_for_inference=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": "test",
"graph_modified": False, # False: tracing.dump
"optimized_for_inference": False,
}
orig_model.seek(0)
graph.dump(
orig_model,
user_info={"str": "x", "tensor": x, "module": M.Module, "none": None},
optimize_for_inference=True,
enable_nchw4=True,
enable_ioc16=True,
)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": {"str": "x", "tensor": x, "module": M.Module, "none": None},
"graph_modified": True, # True: Network.dump
"optimized_for_inference": True,
"enable_nchw4": True,
"enable_ioc16": True,
}
orig_model.seek(0)
fwd.dump(orig_model, enable_metadata=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata is None
def test_replace_var():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out = F.mul(vara, varb)
out = F.relu(out)
opnode = list(graph.opr_filter.has_input(vara))
repl_dict = {opnode[0].outputs[0]: out}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [6, 16])
def test_replace_opr():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out1 = F.sub(vara, varb)
out1 = F.relu(out1)
out1 = graph.add_dep_oprs(out1)
orig_opr = graph.opr_filter.has_input(vara).as_unique()
repl_dict = {orig_opr: out1[0].owner}
graph.replace_oprs(repl_dict)
modified_model1 = io.BytesIO()
graph.dump(modified_model1)
modified_model1.seek(0)
load_graph = GraphInference(modified_model1)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [0, 0])
def test_splice_network():
x = F.ones((2,))
y = F.ones((2,))
@trace(symbolic=True, capture_as_const=True)
def fun1(a, b):
return (a + b) * 2
@trace(symbolic=True, capture_as_const=True)
def fun2(a):
return a * 2 - 1
model = io.BytesIO()
fun1(x, y)
fun2(x)
fun1.dump(
model,
arg_names=["net1_i0", "net1_i1"],
output_names=["net1_o0"],
optimize_for_inference=False,
)
model.seek(0)
net1 = Net.load(model)
model.seek(0)
fun2.dump(
model,
arg_names=["net2_i0"],
output_names=["net2_o0"],
optimize_for_inference=False,
)
model.seek(0)
net2 = Net.load(model)
net1.add_output(*net2.output_vars)
var = net1.var_filter.name("net1_i0").as_unique()
repl_var = net2.var_filter.name("net2_o0").as_unique()
net1.replace_vars({var: repl_var})
assert "net1_i0" not in [var.name for var in net1.all_vars]
assert "net2_i0" in [var.name for var in net1.all_vars]
model.seek(0)
net1.dump(model, keep_var_name=2, optimize_for_inference=False)
model.seek(0)
net = Net.load(model)
assert "net1_i0" not in [var.name for var in net.all_vars]
assert "net2_i0" in [var.name for var in net.all_vars]
def test_modify_params():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
param_const = graph.params_filter.as_unique()
param_const.set_value(3)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [12, 18])
def test_make_const():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
const_b = graph.make_const(np.array([0.0, 0.0]), name="b")
varb = graph.var_filter.name("b").as_unique()
repl_dict = {varb: const_b}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a)
np.testing.assert_equal(out["o"], [2, 4])
def test_add_input():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
inp_c = graph.make_input_node((2,), np.int32, name="c")
varo = graph.var_filter.name("o").as_unique()
out = F.add(varo, inp_c)
out.name = "o1"
graph.remove_output(varo)
graph.add_output(out)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = | GraphInference(modified_model) | megengine.utils.comp_graph_tools.GraphInference |
import io
import numpy as np
import megengine.core.tensor.megbrain_graph as G
import megengine.functional as F
import megengine.module as M
import megengine.utils.network_node as N
from megengine.jit.tracing import trace
from megengine.tensor import Tensor
from megengine.utils.comp_graph_tools import GraphInference
from megengine.utils.network import Network as Net
from megengine.utils.network import as_oprnode, set_symbolic_shape
from megengine.utils.network_node import Host2DeviceCopy, VarNode
def test_metadata():
x = Tensor(0)
@trace(symbolic=True, capture_as_const=True)
def fwd(x):
return x * 2
fwd(x)
orig_model = io.BytesIO()
fwd.dump(orig_model, user_info="test", optimize_for_inference=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": "test",
"graph_modified": False, # False: tracing.dump
"optimized_for_inference": False,
}
orig_model.seek(0)
graph.dump(
orig_model,
user_info={"str": "x", "tensor": x, "module": M.Module, "none": None},
optimize_for_inference=True,
enable_nchw4=True,
enable_ioc16=True,
)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": {"str": "x", "tensor": x, "module": M.Module, "none": None},
"graph_modified": True, # True: Network.dump
"optimized_for_inference": True,
"enable_nchw4": True,
"enable_ioc16": True,
}
orig_model.seek(0)
fwd.dump(orig_model, enable_metadata=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata is None
def test_replace_var():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out = F.mul(vara, varb)
out = F.relu(out)
opnode = list(graph.opr_filter.has_input(vara))
repl_dict = {opnode[0].outputs[0]: out}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [6, 16])
def test_replace_opr():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out1 = F.sub(vara, varb)
out1 = F.relu(out1)
out1 = graph.add_dep_oprs(out1)
orig_opr = graph.opr_filter.has_input(vara).as_unique()
repl_dict = {orig_opr: out1[0].owner}
graph.replace_oprs(repl_dict)
modified_model1 = io.BytesIO()
graph.dump(modified_model1)
modified_model1.seek(0)
load_graph = GraphInference(modified_model1)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [0, 0])
def test_splice_network():
x = F.ones((2,))
y = F.ones((2,))
@trace(symbolic=True, capture_as_const=True)
def fun1(a, b):
return (a + b) * 2
@trace(symbolic=True, capture_as_const=True)
def fun2(a):
return a * 2 - 1
model = io.BytesIO()
fun1(x, y)
fun2(x)
fun1.dump(
model,
arg_names=["net1_i0", "net1_i1"],
output_names=["net1_o0"],
optimize_for_inference=False,
)
model.seek(0)
net1 = Net.load(model)
model.seek(0)
fun2.dump(
model,
arg_names=["net2_i0"],
output_names=["net2_o0"],
optimize_for_inference=False,
)
model.seek(0)
net2 = Net.load(model)
net1.add_output(*net2.output_vars)
var = net1.var_filter.name("net1_i0").as_unique()
repl_var = net2.var_filter.name("net2_o0").as_unique()
net1.replace_vars({var: repl_var})
assert "net1_i0" not in [var.name for var in net1.all_vars]
assert "net2_i0" in [var.name for var in net1.all_vars]
model.seek(0)
net1.dump(model, keep_var_name=2, optimize_for_inference=False)
model.seek(0)
net = Net.load(model)
assert "net1_i0" not in [var.name for var in net.all_vars]
assert "net2_i0" in [var.name for var in net.all_vars]
def test_modify_params():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
param_const = graph.params_filter.as_unique()
param_const.set_value(3)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [12, 18])
def test_make_const():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
const_b = graph.make_const(np.array([0.0, 0.0]), name="b")
varb = graph.var_filter.name("b").as_unique()
repl_dict = {varb: const_b}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a)
np.testing.assert_equal(out["o"], [2, 4])
def test_add_input():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
inp_c = graph.make_input_node((2,), np.int32, name="c")
varo = graph.var_filter.name("o").as_unique()
out = F.add(varo, inp_c)
out.name = "o1"
graph.remove_output(varo)
graph.add_output(out)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b, a)
np.testing.assert_equal(out["o1"], ((a + b) * 2 + a).numpy())
def test_add_remove_output():
a = | Tensor([1.0, 2.0]) | megengine.tensor.Tensor |
import io
import numpy as np
import megengine.core.tensor.megbrain_graph as G
import megengine.functional as F
import megengine.module as M
import megengine.utils.network_node as N
from megengine.jit.tracing import trace
from megengine.tensor import Tensor
from megengine.utils.comp_graph_tools import GraphInference
from megengine.utils.network import Network as Net
from megengine.utils.network import as_oprnode, set_symbolic_shape
from megengine.utils.network_node import Host2DeviceCopy, VarNode
def test_metadata():
x = Tensor(0)
@trace(symbolic=True, capture_as_const=True)
def fwd(x):
return x * 2
fwd(x)
orig_model = io.BytesIO()
fwd.dump(orig_model, user_info="test", optimize_for_inference=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": "test",
"graph_modified": False, # False: tracing.dump
"optimized_for_inference": False,
}
orig_model.seek(0)
graph.dump(
orig_model,
user_info={"str": "x", "tensor": x, "module": M.Module, "none": None},
optimize_for_inference=True,
enable_nchw4=True,
enable_ioc16=True,
)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": {"str": "x", "tensor": x, "module": M.Module, "none": None},
"graph_modified": True, # True: Network.dump
"optimized_for_inference": True,
"enable_nchw4": True,
"enable_ioc16": True,
}
orig_model.seek(0)
fwd.dump(orig_model, enable_metadata=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata is None
def test_replace_var():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out = F.mul(vara, varb)
out = F.relu(out)
opnode = list(graph.opr_filter.has_input(vara))
repl_dict = {opnode[0].outputs[0]: out}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [6, 16])
def test_replace_opr():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out1 = F.sub(vara, varb)
out1 = F.relu(out1)
out1 = graph.add_dep_oprs(out1)
orig_opr = graph.opr_filter.has_input(vara).as_unique()
repl_dict = {orig_opr: out1[0].owner}
graph.replace_oprs(repl_dict)
modified_model1 = io.BytesIO()
graph.dump(modified_model1)
modified_model1.seek(0)
load_graph = GraphInference(modified_model1)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [0, 0])
def test_splice_network():
x = F.ones((2,))
y = F.ones((2,))
@trace(symbolic=True, capture_as_const=True)
def fun1(a, b):
return (a + b) * 2
@trace(symbolic=True, capture_as_const=True)
def fun2(a):
return a * 2 - 1
model = io.BytesIO()
fun1(x, y)
fun2(x)
fun1.dump(
model,
arg_names=["net1_i0", "net1_i1"],
output_names=["net1_o0"],
optimize_for_inference=False,
)
model.seek(0)
net1 = Net.load(model)
model.seek(0)
fun2.dump(
model,
arg_names=["net2_i0"],
output_names=["net2_o0"],
optimize_for_inference=False,
)
model.seek(0)
net2 = Net.load(model)
net1.add_output(*net2.output_vars)
var = net1.var_filter.name("net1_i0").as_unique()
repl_var = net2.var_filter.name("net2_o0").as_unique()
net1.replace_vars({var: repl_var})
assert "net1_i0" not in [var.name for var in net1.all_vars]
assert "net2_i0" in [var.name for var in net1.all_vars]
model.seek(0)
net1.dump(model, keep_var_name=2, optimize_for_inference=False)
model.seek(0)
net = Net.load(model)
assert "net1_i0" not in [var.name for var in net.all_vars]
assert "net2_i0" in [var.name for var in net.all_vars]
def test_modify_params():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
param_const = graph.params_filter.as_unique()
param_const.set_value(3)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [12, 18])
def test_make_const():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
const_b = graph.make_const(np.array([0.0, 0.0]), name="b")
varb = graph.var_filter.name("b").as_unique()
repl_dict = {varb: const_b}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a)
np.testing.assert_equal(out["o"], [2, 4])
def test_add_input():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
inp_c = graph.make_input_node((2,), np.int32, name="c")
varo = graph.var_filter.name("o").as_unique()
out = F.add(varo, inp_c)
out.name = "o1"
graph.remove_output(varo)
graph.add_output(out)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b, a)
np.testing.assert_equal(out["o1"], ((a + b) * 2 + a).numpy())
def test_add_remove_output():
a = Tensor([1.0, 2.0])
b = | Tensor([3.0, 4.0]) | megengine.tensor.Tensor |
import io
import numpy as np
import megengine.core.tensor.megbrain_graph as G
import megengine.functional as F
import megengine.module as M
import megengine.utils.network_node as N
from megengine.jit.tracing import trace
from megengine.tensor import Tensor
from megengine.utils.comp_graph_tools import GraphInference
from megengine.utils.network import Network as Net
from megengine.utils.network import as_oprnode, set_symbolic_shape
from megengine.utils.network_node import Host2DeviceCopy, VarNode
def test_metadata():
x = Tensor(0)
@trace(symbolic=True, capture_as_const=True)
def fwd(x):
return x * 2
fwd(x)
orig_model = io.BytesIO()
fwd.dump(orig_model, user_info="test", optimize_for_inference=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": "test",
"graph_modified": False, # False: tracing.dump
"optimized_for_inference": False,
}
orig_model.seek(0)
graph.dump(
orig_model,
user_info={"str": "x", "tensor": x, "module": M.Module, "none": None},
optimize_for_inference=True,
enable_nchw4=True,
enable_ioc16=True,
)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": {"str": "x", "tensor": x, "module": M.Module, "none": None},
"graph_modified": True, # True: Network.dump
"optimized_for_inference": True,
"enable_nchw4": True,
"enable_ioc16": True,
}
orig_model.seek(0)
fwd.dump(orig_model, enable_metadata=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata is None
def test_replace_var():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out = F.mul(vara, varb)
out = F.relu(out)
opnode = list(graph.opr_filter.has_input(vara))
repl_dict = {opnode[0].outputs[0]: out}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [6, 16])
def test_replace_opr():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out1 = F.sub(vara, varb)
out1 = F.relu(out1)
out1 = graph.add_dep_oprs(out1)
orig_opr = graph.opr_filter.has_input(vara).as_unique()
repl_dict = {orig_opr: out1[0].owner}
graph.replace_oprs(repl_dict)
modified_model1 = io.BytesIO()
graph.dump(modified_model1)
modified_model1.seek(0)
load_graph = GraphInference(modified_model1)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [0, 0])
def test_splice_network():
x = F.ones((2,))
y = F.ones((2,))
@trace(symbolic=True, capture_as_const=True)
def fun1(a, b):
return (a + b) * 2
@trace(symbolic=True, capture_as_const=True)
def fun2(a):
return a * 2 - 1
model = io.BytesIO()
fun1(x, y)
fun2(x)
fun1.dump(
model,
arg_names=["net1_i0", "net1_i1"],
output_names=["net1_o0"],
optimize_for_inference=False,
)
model.seek(0)
net1 = Net.load(model)
model.seek(0)
fun2.dump(
model,
arg_names=["net2_i0"],
output_names=["net2_o0"],
optimize_for_inference=False,
)
model.seek(0)
net2 = Net.load(model)
net1.add_output(*net2.output_vars)
var = net1.var_filter.name("net1_i0").as_unique()
repl_var = net2.var_filter.name("net2_o0").as_unique()
net1.replace_vars({var: repl_var})
assert "net1_i0" not in [var.name for var in net1.all_vars]
assert "net2_i0" in [var.name for var in net1.all_vars]
model.seek(0)
net1.dump(model, keep_var_name=2, optimize_for_inference=False)
model.seek(0)
net = Net.load(model)
assert "net1_i0" not in [var.name for var in net.all_vars]
assert "net2_i0" in [var.name for var in net.all_vars]
def test_modify_params():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
param_const = graph.params_filter.as_unique()
param_const.set_value(3)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [12, 18])
def test_make_const():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
const_b = graph.make_const(np.array([0.0, 0.0]), name="b")
varb = graph.var_filter.name("b").as_unique()
repl_dict = {varb: const_b}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a)
np.testing.assert_equal(out["o"], [2, 4])
def test_add_input():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
inp_c = graph.make_input_node((2,), np.int32, name="c")
varo = graph.var_filter.name("o").as_unique()
out = F.add(varo, inp_c)
out.name = "o1"
graph.remove_output(varo)
graph.add_output(out)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b, a)
np.testing.assert_equal(out["o1"], ((a + b) * 2 + a).numpy())
def test_add_remove_output():
a = Tensor([1.0, 2.0])
b = Tensor([3.0, 4.0])
@ | trace(symbolic=True, capture_as_const=True) | megengine.jit.tracing.trace |
import io
import numpy as np
import megengine.core.tensor.megbrain_graph as G
import megengine.functional as F
import megengine.module as M
import megengine.utils.network_node as N
from megengine.jit.tracing import trace
from megengine.tensor import Tensor
from megengine.utils.comp_graph_tools import GraphInference
from megengine.utils.network import Network as Net
from megengine.utils.network import as_oprnode, set_symbolic_shape
from megengine.utils.network_node import Host2DeviceCopy, VarNode
def test_metadata():
x = Tensor(0)
@trace(symbolic=True, capture_as_const=True)
def fwd(x):
return x * 2
fwd(x)
orig_model = io.BytesIO()
fwd.dump(orig_model, user_info="test", optimize_for_inference=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": "test",
"graph_modified": False, # False: tracing.dump
"optimized_for_inference": False,
}
orig_model.seek(0)
graph.dump(
orig_model,
user_info={"str": "x", "tensor": x, "module": M.Module, "none": None},
optimize_for_inference=True,
enable_nchw4=True,
enable_ioc16=True,
)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": {"str": "x", "tensor": x, "module": M.Module, "none": None},
"graph_modified": True, # True: Network.dump
"optimized_for_inference": True,
"enable_nchw4": True,
"enable_ioc16": True,
}
orig_model.seek(0)
fwd.dump(orig_model, enable_metadata=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata is None
def test_replace_var():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out = F.mul(vara, varb)
out = F.relu(out)
opnode = list(graph.opr_filter.has_input(vara))
repl_dict = {opnode[0].outputs[0]: out}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [6, 16])
def test_replace_opr():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out1 = F.sub(vara, varb)
out1 = F.relu(out1)
out1 = graph.add_dep_oprs(out1)
orig_opr = graph.opr_filter.has_input(vara).as_unique()
repl_dict = {orig_opr: out1[0].owner}
graph.replace_oprs(repl_dict)
modified_model1 = io.BytesIO()
graph.dump(modified_model1)
modified_model1.seek(0)
load_graph = GraphInference(modified_model1)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [0, 0])
def test_splice_network():
x = F.ones((2,))
y = F.ones((2,))
@trace(symbolic=True, capture_as_const=True)
def fun1(a, b):
return (a + b) * 2
@trace(symbolic=True, capture_as_const=True)
def fun2(a):
return a * 2 - 1
model = io.BytesIO()
fun1(x, y)
fun2(x)
fun1.dump(
model,
arg_names=["net1_i0", "net1_i1"],
output_names=["net1_o0"],
optimize_for_inference=False,
)
model.seek(0)
net1 = Net.load(model)
model.seek(0)
fun2.dump(
model,
arg_names=["net2_i0"],
output_names=["net2_o0"],
optimize_for_inference=False,
)
model.seek(0)
net2 = Net.load(model)
net1.add_output(*net2.output_vars)
var = net1.var_filter.name("net1_i0").as_unique()
repl_var = net2.var_filter.name("net2_o0").as_unique()
net1.replace_vars({var: repl_var})
assert "net1_i0" not in [var.name for var in net1.all_vars]
assert "net2_i0" in [var.name for var in net1.all_vars]
model.seek(0)
net1.dump(model, keep_var_name=2, optimize_for_inference=False)
model.seek(0)
net = Net.load(model)
assert "net1_i0" not in [var.name for var in net.all_vars]
assert "net2_i0" in [var.name for var in net.all_vars]
def test_modify_params():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
param_const = graph.params_filter.as_unique()
param_const.set_value(3)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [12, 18])
def test_make_const():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
const_b = graph.make_const(np.array([0.0, 0.0]), name="b")
varb = graph.var_filter.name("b").as_unique()
repl_dict = {varb: const_b}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a)
np.testing.assert_equal(out["o"], [2, 4])
def test_add_input():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
inp_c = graph.make_input_node((2,), np.int32, name="c")
varo = graph.var_filter.name("o").as_unique()
out = F.add(varo, inp_c)
out.name = "o1"
graph.remove_output(varo)
graph.add_output(out)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b, a)
np.testing.assert_equal(out["o1"], ((a + b) * 2 + a).numpy())
def test_add_remove_output():
a = Tensor([1.0, 2.0])
b = Tensor([3.0, 4.0])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2, (a - b)
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model,
arg_names=["a", "b"],
output_names=["o1", "o2"],
optimize_for_inference=False,
)
orig_model.seek(0)
net = | Net.load(orig_model) | megengine.utils.network.Network.load |
import io
import numpy as np
import megengine.core.tensor.megbrain_graph as G
import megengine.functional as F
import megengine.module as M
import megengine.utils.network_node as N
from megengine.jit.tracing import trace
from megengine.tensor import Tensor
from megengine.utils.comp_graph_tools import GraphInference
from megengine.utils.network import Network as Net
from megengine.utils.network import as_oprnode, set_symbolic_shape
from megengine.utils.network_node import Host2DeviceCopy, VarNode
def test_metadata():
x = Tensor(0)
@trace(symbolic=True, capture_as_const=True)
def fwd(x):
return x * 2
fwd(x)
orig_model = io.BytesIO()
fwd.dump(orig_model, user_info="test", optimize_for_inference=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": "test",
"graph_modified": False, # False: tracing.dump
"optimized_for_inference": False,
}
orig_model.seek(0)
graph.dump(
orig_model,
user_info={"str": "x", "tensor": x, "module": M.Module, "none": None},
optimize_for_inference=True,
enable_nchw4=True,
enable_ioc16=True,
)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": {"str": "x", "tensor": x, "module": M.Module, "none": None},
"graph_modified": True, # True: Network.dump
"optimized_for_inference": True,
"enable_nchw4": True,
"enable_ioc16": True,
}
orig_model.seek(0)
fwd.dump(orig_model, enable_metadata=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata is None
def test_replace_var():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out = F.mul(vara, varb)
out = F.relu(out)
opnode = list(graph.opr_filter.has_input(vara))
repl_dict = {opnode[0].outputs[0]: out}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [6, 16])
def test_replace_opr():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out1 = F.sub(vara, varb)
out1 = F.relu(out1)
out1 = graph.add_dep_oprs(out1)
orig_opr = graph.opr_filter.has_input(vara).as_unique()
repl_dict = {orig_opr: out1[0].owner}
graph.replace_oprs(repl_dict)
modified_model1 = io.BytesIO()
graph.dump(modified_model1)
modified_model1.seek(0)
load_graph = GraphInference(modified_model1)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [0, 0])
def test_splice_network():
x = F.ones((2,))
y = F.ones((2,))
@trace(symbolic=True, capture_as_const=True)
def fun1(a, b):
return (a + b) * 2
@trace(symbolic=True, capture_as_const=True)
def fun2(a):
return a * 2 - 1
model = io.BytesIO()
fun1(x, y)
fun2(x)
fun1.dump(
model,
arg_names=["net1_i0", "net1_i1"],
output_names=["net1_o0"],
optimize_for_inference=False,
)
model.seek(0)
net1 = Net.load(model)
model.seek(0)
fun2.dump(
model,
arg_names=["net2_i0"],
output_names=["net2_o0"],
optimize_for_inference=False,
)
model.seek(0)
net2 = Net.load(model)
net1.add_output(*net2.output_vars)
var = net1.var_filter.name("net1_i0").as_unique()
repl_var = net2.var_filter.name("net2_o0").as_unique()
net1.replace_vars({var: repl_var})
assert "net1_i0" not in [var.name for var in net1.all_vars]
assert "net2_i0" in [var.name for var in net1.all_vars]
model.seek(0)
net1.dump(model, keep_var_name=2, optimize_for_inference=False)
model.seek(0)
net = Net.load(model)
assert "net1_i0" not in [var.name for var in net.all_vars]
assert "net2_i0" in [var.name for var in net.all_vars]
def test_modify_params():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
param_const = graph.params_filter.as_unique()
param_const.set_value(3)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [12, 18])
def test_make_const():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
const_b = graph.make_const(np.array([0.0, 0.0]), name="b")
varb = graph.var_filter.name("b").as_unique()
repl_dict = {varb: const_b}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a)
np.testing.assert_equal(out["o"], [2, 4])
def test_add_input():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
inp_c = graph.make_input_node((2,), np.int32, name="c")
varo = graph.var_filter.name("o").as_unique()
out = F.add(varo, inp_c)
out.name = "o1"
graph.remove_output(varo)
graph.add_output(out)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b, a)
np.testing.assert_equal(out["o1"], ((a + b) * 2 + a).numpy())
def test_add_remove_output():
a = Tensor([1.0, 2.0])
b = Tensor([3.0, 4.0])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2, (a - b)
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model,
arg_names=["a", "b"],
output_names=["o1", "o2"],
optimize_for_inference=False,
)
orig_model.seek(0)
net = Net.load(orig_model)
var_a = net.var_filter.name("a").as_unique()
var_b = net.var_filter.name("b").as_unique()
y1 = (var_a + var_b) * 3
y2 = | F.sigmoid(var_a + var_b) | megengine.functional.sigmoid |
import io
import numpy as np
import megengine.core.tensor.megbrain_graph as G
import megengine.functional as F
import megengine.module as M
import megengine.utils.network_node as N
from megengine.jit.tracing import trace
from megengine.tensor import Tensor
from megengine.utils.comp_graph_tools import GraphInference
from megengine.utils.network import Network as Net
from megengine.utils.network import as_oprnode, set_symbolic_shape
from megengine.utils.network_node import Host2DeviceCopy, VarNode
def test_metadata():
x = Tensor(0)
@trace(symbolic=True, capture_as_const=True)
def fwd(x):
return x * 2
fwd(x)
orig_model = io.BytesIO()
fwd.dump(orig_model, user_info="test", optimize_for_inference=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": "test",
"graph_modified": False, # False: tracing.dump
"optimized_for_inference": False,
}
orig_model.seek(0)
graph.dump(
orig_model,
user_info={"str": "x", "tensor": x, "module": M.Module, "none": None},
optimize_for_inference=True,
enable_nchw4=True,
enable_ioc16=True,
)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": {"str": "x", "tensor": x, "module": M.Module, "none": None},
"graph_modified": True, # True: Network.dump
"optimized_for_inference": True,
"enable_nchw4": True,
"enable_ioc16": True,
}
orig_model.seek(0)
fwd.dump(orig_model, enable_metadata=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata is None
def test_replace_var():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out = F.mul(vara, varb)
out = F.relu(out)
opnode = list(graph.opr_filter.has_input(vara))
repl_dict = {opnode[0].outputs[0]: out}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [6, 16])
def test_replace_opr():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out1 = F.sub(vara, varb)
out1 = F.relu(out1)
out1 = graph.add_dep_oprs(out1)
orig_opr = graph.opr_filter.has_input(vara).as_unique()
repl_dict = {orig_opr: out1[0].owner}
graph.replace_oprs(repl_dict)
modified_model1 = io.BytesIO()
graph.dump(modified_model1)
modified_model1.seek(0)
load_graph = GraphInference(modified_model1)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [0, 0])
def test_splice_network():
x = F.ones((2,))
y = F.ones((2,))
@trace(symbolic=True, capture_as_const=True)
def fun1(a, b):
return (a + b) * 2
@trace(symbolic=True, capture_as_const=True)
def fun2(a):
return a * 2 - 1
model = io.BytesIO()
fun1(x, y)
fun2(x)
fun1.dump(
model,
arg_names=["net1_i0", "net1_i1"],
output_names=["net1_o0"],
optimize_for_inference=False,
)
model.seek(0)
net1 = Net.load(model)
model.seek(0)
fun2.dump(
model,
arg_names=["net2_i0"],
output_names=["net2_o0"],
optimize_for_inference=False,
)
model.seek(0)
net2 = Net.load(model)
net1.add_output(*net2.output_vars)
var = net1.var_filter.name("net1_i0").as_unique()
repl_var = net2.var_filter.name("net2_o0").as_unique()
net1.replace_vars({var: repl_var})
assert "net1_i0" not in [var.name for var in net1.all_vars]
assert "net2_i0" in [var.name for var in net1.all_vars]
model.seek(0)
net1.dump(model, keep_var_name=2, optimize_for_inference=False)
model.seek(0)
net = Net.load(model)
assert "net1_i0" not in [var.name for var in net.all_vars]
assert "net2_i0" in [var.name for var in net.all_vars]
def test_modify_params():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
param_const = graph.params_filter.as_unique()
param_const.set_value(3)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [12, 18])
def test_make_const():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
const_b = graph.make_const(np.array([0.0, 0.0]), name="b")
varb = graph.var_filter.name("b").as_unique()
repl_dict = {varb: const_b}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a)
np.testing.assert_equal(out["o"], [2, 4])
def test_add_input():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
inp_c = graph.make_input_node((2,), np.int32, name="c")
varo = graph.var_filter.name("o").as_unique()
out = F.add(varo, inp_c)
out.name = "o1"
graph.remove_output(varo)
graph.add_output(out)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b, a)
np.testing.assert_equal(out["o1"], ((a + b) * 2 + a).numpy())
def test_add_remove_output():
a = Tensor([1.0, 2.0])
b = Tensor([3.0, 4.0])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2, (a - b)
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model,
arg_names=["a", "b"],
output_names=["o1", "o2"],
optimize_for_inference=False,
)
orig_model.seek(0)
net = Net.load(orig_model)
var_a = net.var_filter.name("a").as_unique()
var_b = net.var_filter.name("b").as_unique()
y1 = (var_a + var_b) * 3
y2 = F.sigmoid(var_a + var_b)
net.remove_output(*net.output_vars)
y1.name = "new_o1"
y2.name = "new_o2"
net.add_output(y1, y2)
modified_model = io.BytesIO()
net.dump(modified_model)
modified_model.seek(0)
g = | GraphInference(modified_model) | megengine.utils.comp_graph_tools.GraphInference |
import io
import numpy as np
import megengine.core.tensor.megbrain_graph as G
import megengine.functional as F
import megengine.module as M
import megengine.utils.network_node as N
from megengine.jit.tracing import trace
from megengine.tensor import Tensor
from megengine.utils.comp_graph_tools import GraphInference
from megengine.utils.network import Network as Net
from megengine.utils.network import as_oprnode, set_symbolic_shape
from megengine.utils.network_node import Host2DeviceCopy, VarNode
def test_metadata():
x = Tensor(0)
@trace(symbolic=True, capture_as_const=True)
def fwd(x):
return x * 2
fwd(x)
orig_model = io.BytesIO()
fwd.dump(orig_model, user_info="test", optimize_for_inference=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": "test",
"graph_modified": False, # False: tracing.dump
"optimized_for_inference": False,
}
orig_model.seek(0)
graph.dump(
orig_model,
user_info={"str": "x", "tensor": x, "module": M.Module, "none": None},
optimize_for_inference=True,
enable_nchw4=True,
enable_ioc16=True,
)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": {"str": "x", "tensor": x, "module": M.Module, "none": None},
"graph_modified": True, # True: Network.dump
"optimized_for_inference": True,
"enable_nchw4": True,
"enable_ioc16": True,
}
orig_model.seek(0)
fwd.dump(orig_model, enable_metadata=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata is None
def test_replace_var():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out = F.mul(vara, varb)
out = F.relu(out)
opnode = list(graph.opr_filter.has_input(vara))
repl_dict = {opnode[0].outputs[0]: out}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [6, 16])
def test_replace_opr():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out1 = F.sub(vara, varb)
out1 = F.relu(out1)
out1 = graph.add_dep_oprs(out1)
orig_opr = graph.opr_filter.has_input(vara).as_unique()
repl_dict = {orig_opr: out1[0].owner}
graph.replace_oprs(repl_dict)
modified_model1 = io.BytesIO()
graph.dump(modified_model1)
modified_model1.seek(0)
load_graph = GraphInference(modified_model1)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [0, 0])
def test_splice_network():
x = F.ones((2,))
y = F.ones((2,))
@trace(symbolic=True, capture_as_const=True)
def fun1(a, b):
return (a + b) * 2
@trace(symbolic=True, capture_as_const=True)
def fun2(a):
return a * 2 - 1
model = io.BytesIO()
fun1(x, y)
fun2(x)
fun1.dump(
model,
arg_names=["net1_i0", "net1_i1"],
output_names=["net1_o0"],
optimize_for_inference=False,
)
model.seek(0)
net1 = Net.load(model)
model.seek(0)
fun2.dump(
model,
arg_names=["net2_i0"],
output_names=["net2_o0"],
optimize_for_inference=False,
)
model.seek(0)
net2 = Net.load(model)
net1.add_output(*net2.output_vars)
var = net1.var_filter.name("net1_i0").as_unique()
repl_var = net2.var_filter.name("net2_o0").as_unique()
net1.replace_vars({var: repl_var})
assert "net1_i0" not in [var.name for var in net1.all_vars]
assert "net2_i0" in [var.name for var in net1.all_vars]
model.seek(0)
net1.dump(model, keep_var_name=2, optimize_for_inference=False)
model.seek(0)
net = Net.load(model)
assert "net1_i0" not in [var.name for var in net.all_vars]
assert "net2_i0" in [var.name for var in net.all_vars]
def test_modify_params():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
param_const = graph.params_filter.as_unique()
param_const.set_value(3)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [12, 18])
def test_make_const():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
const_b = graph.make_const(np.array([0.0, 0.0]), name="b")
varb = graph.var_filter.name("b").as_unique()
repl_dict = {varb: const_b}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a)
np.testing.assert_equal(out["o"], [2, 4])
def test_add_input():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
inp_c = graph.make_input_node((2,), np.int32, name="c")
varo = graph.var_filter.name("o").as_unique()
out = F.add(varo, inp_c)
out.name = "o1"
graph.remove_output(varo)
graph.add_output(out)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b, a)
np.testing.assert_equal(out["o1"], ((a + b) * 2 + a).numpy())
def test_add_remove_output():
a = Tensor([1.0, 2.0])
b = Tensor([3.0, 4.0])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2, (a - b)
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model,
arg_names=["a", "b"],
output_names=["o1", "o2"],
optimize_for_inference=False,
)
orig_model.seek(0)
net = Net.load(orig_model)
var_a = net.var_filter.name("a").as_unique()
var_b = net.var_filter.name("b").as_unique()
y1 = (var_a + var_b) * 3
y2 = F.sigmoid(var_a + var_b)
net.remove_output(*net.output_vars)
y1.name = "new_o1"
y2.name = "new_o2"
net.add_output(y1, y2)
modified_model = io.BytesIO()
net.dump(modified_model)
modified_model.seek(0)
g = GraphInference(modified_model)
out = g.run(a.numpy(), b.numpy())
np.testing.assert_equal(out["new_o1"], ((a + b) * 3).numpy())
np.testing.assert_equal(out["new_o2"], (F.sigmoid((a + b))).numpy())
def test_query():
class Model(M.Module):
def __init__(self):
super().__init__()
self.conv1 = M.Conv2d(3, 32, 3)
self.conv2 = M.Conv2d(32, 32, 3)
self.conv3 = M.Conv2d(32, 32, 3)
def forward(self, data):
x = self.conv1(data)
x = self.conv2(x)
x = self.conv3(x)
return x
n = Model()
@ | trace(symbolic=True, capture_as_const=True) | megengine.jit.tracing.trace |
import io
import numpy as np
import megengine.core.tensor.megbrain_graph as G
import megengine.functional as F
import megengine.module as M
import megengine.utils.network_node as N
from megengine.jit.tracing import trace
from megengine.tensor import Tensor
from megengine.utils.comp_graph_tools import GraphInference
from megengine.utils.network import Network as Net
from megengine.utils.network import as_oprnode, set_symbolic_shape
from megengine.utils.network_node import Host2DeviceCopy, VarNode
def test_metadata():
x = Tensor(0)
@trace(symbolic=True, capture_as_const=True)
def fwd(x):
return x * 2
fwd(x)
orig_model = io.BytesIO()
fwd.dump(orig_model, user_info="test", optimize_for_inference=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": "test",
"graph_modified": False, # False: tracing.dump
"optimized_for_inference": False,
}
orig_model.seek(0)
graph.dump(
orig_model,
user_info={"str": "x", "tensor": x, "module": M.Module, "none": None},
optimize_for_inference=True,
enable_nchw4=True,
enable_ioc16=True,
)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": {"str": "x", "tensor": x, "module": M.Module, "none": None},
"graph_modified": True, # True: Network.dump
"optimized_for_inference": True,
"enable_nchw4": True,
"enable_ioc16": True,
}
orig_model.seek(0)
fwd.dump(orig_model, enable_metadata=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata is None
def test_replace_var():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out = F.mul(vara, varb)
out = F.relu(out)
opnode = list(graph.opr_filter.has_input(vara))
repl_dict = {opnode[0].outputs[0]: out}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [6, 16])
def test_replace_opr():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out1 = F.sub(vara, varb)
out1 = F.relu(out1)
out1 = graph.add_dep_oprs(out1)
orig_opr = graph.opr_filter.has_input(vara).as_unique()
repl_dict = {orig_opr: out1[0].owner}
graph.replace_oprs(repl_dict)
modified_model1 = io.BytesIO()
graph.dump(modified_model1)
modified_model1.seek(0)
load_graph = GraphInference(modified_model1)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [0, 0])
def test_splice_network():
x = F.ones((2,))
y = F.ones((2,))
@trace(symbolic=True, capture_as_const=True)
def fun1(a, b):
return (a + b) * 2
@trace(symbolic=True, capture_as_const=True)
def fun2(a):
return a * 2 - 1
model = io.BytesIO()
fun1(x, y)
fun2(x)
fun1.dump(
model,
arg_names=["net1_i0", "net1_i1"],
output_names=["net1_o0"],
optimize_for_inference=False,
)
model.seek(0)
net1 = Net.load(model)
model.seek(0)
fun2.dump(
model,
arg_names=["net2_i0"],
output_names=["net2_o0"],
optimize_for_inference=False,
)
model.seek(0)
net2 = Net.load(model)
net1.add_output(*net2.output_vars)
var = net1.var_filter.name("net1_i0").as_unique()
repl_var = net2.var_filter.name("net2_o0").as_unique()
net1.replace_vars({var: repl_var})
assert "net1_i0" not in [var.name for var in net1.all_vars]
assert "net2_i0" in [var.name for var in net1.all_vars]
model.seek(0)
net1.dump(model, keep_var_name=2, optimize_for_inference=False)
model.seek(0)
net = Net.load(model)
assert "net1_i0" not in [var.name for var in net.all_vars]
assert "net2_i0" in [var.name for var in net.all_vars]
def test_modify_params():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
param_const = graph.params_filter.as_unique()
param_const.set_value(3)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [12, 18])
def test_make_const():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
const_b = graph.make_const(np.array([0.0, 0.0]), name="b")
varb = graph.var_filter.name("b").as_unique()
repl_dict = {varb: const_b}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a)
np.testing.assert_equal(out["o"], [2, 4])
def test_add_input():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
inp_c = graph.make_input_node((2,), np.int32, name="c")
varo = graph.var_filter.name("o").as_unique()
out = F.add(varo, inp_c)
out.name = "o1"
graph.remove_output(varo)
graph.add_output(out)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b, a)
np.testing.assert_equal(out["o1"], ((a + b) * 2 + a).numpy())
def test_add_remove_output():
a = Tensor([1.0, 2.0])
b = Tensor([3.0, 4.0])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2, (a - b)
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model,
arg_names=["a", "b"],
output_names=["o1", "o2"],
optimize_for_inference=False,
)
orig_model.seek(0)
net = Net.load(orig_model)
var_a = net.var_filter.name("a").as_unique()
var_b = net.var_filter.name("b").as_unique()
y1 = (var_a + var_b) * 3
y2 = F.sigmoid(var_a + var_b)
net.remove_output(*net.output_vars)
y1.name = "new_o1"
y2.name = "new_o2"
net.add_output(y1, y2)
modified_model = io.BytesIO()
net.dump(modified_model)
modified_model.seek(0)
g = GraphInference(modified_model)
out = g.run(a.numpy(), b.numpy())
np.testing.assert_equal(out["new_o1"], ((a + b) * 3).numpy())
np.testing.assert_equal(out["new_o2"], (F.sigmoid((a + b))).numpy())
def test_query():
class Model(M.Module):
def __init__(self):
super().__init__()
self.conv1 = M.Conv2d(3, 32, 3)
self.conv2 = M.Conv2d(32, 32, 3)
self.conv3 = M.Conv2d(32, 32, 3)
def forward(self, data):
x = self.conv1(data)
x = self.conv2(x)
x = self.conv3(x)
return x
n = Model()
@trace(symbolic=True, capture_as_const=True)
def fwd(data):
return n(data)
fwd(Tensor(np.random.random((1, 3, 224, 224))))
orig_model = io.BytesIO()
fwd.dump(
orig_model,
arg_names=["data"],
output_names="o",
keep_opr_name=True,
keep_var_name=True,
optimize_for_inference=False,
)
orig_model.seek(0)
graph = | Net.load(orig_model) | megengine.utils.network.Network.load |
import io
import numpy as np
import megengine.core.tensor.megbrain_graph as G
import megengine.functional as F
import megengine.module as M
import megengine.utils.network_node as N
from megengine.jit.tracing import trace
from megengine.tensor import Tensor
from megengine.utils.comp_graph_tools import GraphInference
from megengine.utils.network import Network as Net
from megengine.utils.network import as_oprnode, set_symbolic_shape
from megengine.utils.network_node import Host2DeviceCopy, VarNode
def test_metadata():
x = Tensor(0)
@trace(symbolic=True, capture_as_const=True)
def fwd(x):
return x * 2
fwd(x)
orig_model = io.BytesIO()
fwd.dump(orig_model, user_info="test", optimize_for_inference=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": "test",
"graph_modified": False, # False: tracing.dump
"optimized_for_inference": False,
}
orig_model.seek(0)
graph.dump(
orig_model,
user_info={"str": "x", "tensor": x, "module": M.Module, "none": None},
optimize_for_inference=True,
enable_nchw4=True,
enable_ioc16=True,
)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": {"str": "x", "tensor": x, "module": M.Module, "none": None},
"graph_modified": True, # True: Network.dump
"optimized_for_inference": True,
"enable_nchw4": True,
"enable_ioc16": True,
}
orig_model.seek(0)
fwd.dump(orig_model, enable_metadata=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata is None
def test_replace_var():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out = F.mul(vara, varb)
out = F.relu(out)
opnode = list(graph.opr_filter.has_input(vara))
repl_dict = {opnode[0].outputs[0]: out}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [6, 16])
def test_replace_opr():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out1 = F.sub(vara, varb)
out1 = F.relu(out1)
out1 = graph.add_dep_oprs(out1)
orig_opr = graph.opr_filter.has_input(vara).as_unique()
repl_dict = {orig_opr: out1[0].owner}
graph.replace_oprs(repl_dict)
modified_model1 = io.BytesIO()
graph.dump(modified_model1)
modified_model1.seek(0)
load_graph = GraphInference(modified_model1)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [0, 0])
def test_splice_network():
x = F.ones((2,))
y = F.ones((2,))
@trace(symbolic=True, capture_as_const=True)
def fun1(a, b):
return (a + b) * 2
@trace(symbolic=True, capture_as_const=True)
def fun2(a):
return a * 2 - 1
model = io.BytesIO()
fun1(x, y)
fun2(x)
fun1.dump(
model,
arg_names=["net1_i0", "net1_i1"],
output_names=["net1_o0"],
optimize_for_inference=False,
)
model.seek(0)
net1 = Net.load(model)
model.seek(0)
fun2.dump(
model,
arg_names=["net2_i0"],
output_names=["net2_o0"],
optimize_for_inference=False,
)
model.seek(0)
net2 = Net.load(model)
net1.add_output(*net2.output_vars)
var = net1.var_filter.name("net1_i0").as_unique()
repl_var = net2.var_filter.name("net2_o0").as_unique()
net1.replace_vars({var: repl_var})
assert "net1_i0" not in [var.name for var in net1.all_vars]
assert "net2_i0" in [var.name for var in net1.all_vars]
model.seek(0)
net1.dump(model, keep_var_name=2, optimize_for_inference=False)
model.seek(0)
net = Net.load(model)
assert "net1_i0" not in [var.name for var in net.all_vars]
assert "net2_i0" in [var.name for var in net.all_vars]
def test_modify_params():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
param_const = graph.params_filter.as_unique()
param_const.set_value(3)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [12, 18])
def test_make_const():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
const_b = graph.make_const(np.array([0.0, 0.0]), name="b")
varb = graph.var_filter.name("b").as_unique()
repl_dict = {varb: const_b}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a)
np.testing.assert_equal(out["o"], [2, 4])
def test_add_input():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
inp_c = graph.make_input_node((2,), np.int32, name="c")
varo = graph.var_filter.name("o").as_unique()
out = F.add(varo, inp_c)
out.name = "o1"
graph.remove_output(varo)
graph.add_output(out)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b, a)
np.testing.assert_equal(out["o1"], ((a + b) * 2 + a).numpy())
def test_add_remove_output():
a = Tensor([1.0, 2.0])
b = Tensor([3.0, 4.0])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2, (a - b)
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model,
arg_names=["a", "b"],
output_names=["o1", "o2"],
optimize_for_inference=False,
)
orig_model.seek(0)
net = Net.load(orig_model)
var_a = net.var_filter.name("a").as_unique()
var_b = net.var_filter.name("b").as_unique()
y1 = (var_a + var_b) * 3
y2 = F.sigmoid(var_a + var_b)
net.remove_output(*net.output_vars)
y1.name = "new_o1"
y2.name = "new_o2"
net.add_output(y1, y2)
modified_model = io.BytesIO()
net.dump(modified_model)
modified_model.seek(0)
g = GraphInference(modified_model)
out = g.run(a.numpy(), b.numpy())
np.testing.assert_equal(out["new_o1"], ((a + b) * 3).numpy())
np.testing.assert_equal(out["new_o2"], (F.sigmoid((a + b))).numpy())
def test_query():
class Model(M.Module):
def __init__(self):
super().__init__()
self.conv1 = M.Conv2d(3, 32, 3)
self.conv2 = M.Conv2d(32, 32, 3)
self.conv3 = M.Conv2d(32, 32, 3)
def forward(self, data):
x = self.conv1(data)
x = self.conv2(x)
x = self.conv3(x)
return x
n = Model()
@trace(symbolic=True, capture_as_const=True)
def fwd(data):
return n(data)
fwd(Tensor(np.random.random((1, 3, 224, 224))))
orig_model = io.BytesIO()
fwd.dump(
orig_model,
arg_names=["data"],
output_names="o",
keep_opr_name=True,
keep_var_name=True,
optimize_for_inference=False,
)
orig_model.seek(0)
graph = Net.load(orig_model)
r = graph.data_providers_filter.as_count()
assert r == 1
opr = graph.get_opr_by_type(Host2DeviceCopy)
assert isinstance(opr, Host2DeviceCopy)
r1 = graph.params_filter.as_count()
assert r1 == 6
r2 = graph.opr_filter.type(N.ConvolutionForward).as_count()
assert r2 == 3
r3 = graph.opr_filter.not_type(N.ConvolutionForward).as_count()
assert r3 == len(graph.all_oprs) - r2
var = graph.var_filter.name("data").as_unique()
r4 = graph.opr_filter.has_input(var).as_count()
assert r4 == 1
r5 = graph.opr_filter.name("data").as_count()
assert r5 == 1
opr = graph.get_opr_by_name("data")
assert isinstance(opr, Host2DeviceCopy)
var = graph.get_var_by_name("data")
assert isinstance(var, VarNode)
r6 = graph.var_filter.name("*bias").as_count()
assert r6 == 3
def test_optimize_for_inference():
@ | trace(symbolic=True, capture_as_const=True) | megengine.jit.tracing.trace |
import io
import numpy as np
import megengine.core.tensor.megbrain_graph as G
import megengine.functional as F
import megengine.module as M
import megengine.utils.network_node as N
from megengine.jit.tracing import trace
from megengine.tensor import Tensor
from megengine.utils.comp_graph_tools import GraphInference
from megengine.utils.network import Network as Net
from megengine.utils.network import as_oprnode, set_symbolic_shape
from megengine.utils.network_node import Host2DeviceCopy, VarNode
def test_metadata():
x = Tensor(0)
@trace(symbolic=True, capture_as_const=True)
def fwd(x):
return x * 2
fwd(x)
orig_model = io.BytesIO()
fwd.dump(orig_model, user_info="test", optimize_for_inference=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": "test",
"graph_modified": False, # False: tracing.dump
"optimized_for_inference": False,
}
orig_model.seek(0)
graph.dump(
orig_model,
user_info={"str": "x", "tensor": x, "module": M.Module, "none": None},
optimize_for_inference=True,
enable_nchw4=True,
enable_ioc16=True,
)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": {"str": "x", "tensor": x, "module": M.Module, "none": None},
"graph_modified": True, # True: Network.dump
"optimized_for_inference": True,
"enable_nchw4": True,
"enable_ioc16": True,
}
orig_model.seek(0)
fwd.dump(orig_model, enable_metadata=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata is None
def test_replace_var():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out = F.mul(vara, varb)
out = F.relu(out)
opnode = list(graph.opr_filter.has_input(vara))
repl_dict = {opnode[0].outputs[0]: out}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [6, 16])
def test_replace_opr():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out1 = F.sub(vara, varb)
out1 = F.relu(out1)
out1 = graph.add_dep_oprs(out1)
orig_opr = graph.opr_filter.has_input(vara).as_unique()
repl_dict = {orig_opr: out1[0].owner}
graph.replace_oprs(repl_dict)
modified_model1 = io.BytesIO()
graph.dump(modified_model1)
modified_model1.seek(0)
load_graph = GraphInference(modified_model1)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [0, 0])
def test_splice_network():
x = F.ones((2,))
y = F.ones((2,))
@trace(symbolic=True, capture_as_const=True)
def fun1(a, b):
return (a + b) * 2
@trace(symbolic=True, capture_as_const=True)
def fun2(a):
return a * 2 - 1
model = io.BytesIO()
fun1(x, y)
fun2(x)
fun1.dump(
model,
arg_names=["net1_i0", "net1_i1"],
output_names=["net1_o0"],
optimize_for_inference=False,
)
model.seek(0)
net1 = Net.load(model)
model.seek(0)
fun2.dump(
model,
arg_names=["net2_i0"],
output_names=["net2_o0"],
optimize_for_inference=False,
)
model.seek(0)
net2 = Net.load(model)
net1.add_output(*net2.output_vars)
var = net1.var_filter.name("net1_i0").as_unique()
repl_var = net2.var_filter.name("net2_o0").as_unique()
net1.replace_vars({var: repl_var})
assert "net1_i0" not in [var.name for var in net1.all_vars]
assert "net2_i0" in [var.name for var in net1.all_vars]
model.seek(0)
net1.dump(model, keep_var_name=2, optimize_for_inference=False)
model.seek(0)
net = Net.load(model)
assert "net1_i0" not in [var.name for var in net.all_vars]
assert "net2_i0" in [var.name for var in net.all_vars]
def test_modify_params():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
param_const = graph.params_filter.as_unique()
param_const.set_value(3)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [12, 18])
def test_make_const():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
const_b = graph.make_const(np.array([0.0, 0.0]), name="b")
varb = graph.var_filter.name("b").as_unique()
repl_dict = {varb: const_b}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a)
np.testing.assert_equal(out["o"], [2, 4])
def test_add_input():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
inp_c = graph.make_input_node((2,), np.int32, name="c")
varo = graph.var_filter.name("o").as_unique()
out = F.add(varo, inp_c)
out.name = "o1"
graph.remove_output(varo)
graph.add_output(out)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b, a)
np.testing.assert_equal(out["o1"], ((a + b) * 2 + a).numpy())
def test_add_remove_output():
a = Tensor([1.0, 2.0])
b = Tensor([3.0, 4.0])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2, (a - b)
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model,
arg_names=["a", "b"],
output_names=["o1", "o2"],
optimize_for_inference=False,
)
orig_model.seek(0)
net = Net.load(orig_model)
var_a = net.var_filter.name("a").as_unique()
var_b = net.var_filter.name("b").as_unique()
y1 = (var_a + var_b) * 3
y2 = F.sigmoid(var_a + var_b)
net.remove_output(*net.output_vars)
y1.name = "new_o1"
y2.name = "new_o2"
net.add_output(y1, y2)
modified_model = io.BytesIO()
net.dump(modified_model)
modified_model.seek(0)
g = GraphInference(modified_model)
out = g.run(a.numpy(), b.numpy())
np.testing.assert_equal(out["new_o1"], ((a + b) * 3).numpy())
np.testing.assert_equal(out["new_o2"], (F.sigmoid((a + b))).numpy())
def test_query():
class Model(M.Module):
def __init__(self):
super().__init__()
self.conv1 = M.Conv2d(3, 32, 3)
self.conv2 = M.Conv2d(32, 32, 3)
self.conv3 = M.Conv2d(32, 32, 3)
def forward(self, data):
x = self.conv1(data)
x = self.conv2(x)
x = self.conv3(x)
return x
n = Model()
@trace(symbolic=True, capture_as_const=True)
def fwd(data):
return n(data)
fwd(Tensor(np.random.random((1, 3, 224, 224))))
orig_model = io.BytesIO()
fwd.dump(
orig_model,
arg_names=["data"],
output_names="o",
keep_opr_name=True,
keep_var_name=True,
optimize_for_inference=False,
)
orig_model.seek(0)
graph = Net.load(orig_model)
r = graph.data_providers_filter.as_count()
assert r == 1
opr = graph.get_opr_by_type(Host2DeviceCopy)
assert isinstance(opr, Host2DeviceCopy)
r1 = graph.params_filter.as_count()
assert r1 == 6
r2 = graph.opr_filter.type(N.ConvolutionForward).as_count()
assert r2 == 3
r3 = graph.opr_filter.not_type(N.ConvolutionForward).as_count()
assert r3 == len(graph.all_oprs) - r2
var = graph.var_filter.name("data").as_unique()
r4 = graph.opr_filter.has_input(var).as_count()
assert r4 == 1
r5 = graph.opr_filter.name("data").as_count()
assert r5 == 1
opr = graph.get_opr_by_name("data")
assert isinstance(opr, Host2DeviceCopy)
var = graph.get_var_by_name("data")
assert isinstance(var, VarNode)
r6 = graph.var_filter.name("*bias").as_count()
assert r6 == 3
def test_optimize_for_inference():
@trace(symbolic=True, capture_as_const=True)
def f(x):
return F.exp(x)
orig_model = io.BytesIO()
f(Tensor(5.0))
f.dump(orig_model, optimize_for_inference=False)
orig_model.seek(0)
optimize_model = io.BytesIO()
net = | Net.load(orig_model) | megengine.utils.network.Network.load |
import io
import numpy as np
import megengine.core.tensor.megbrain_graph as G
import megengine.functional as F
import megengine.module as M
import megengine.utils.network_node as N
from megengine.jit.tracing import trace
from megengine.tensor import Tensor
from megengine.utils.comp_graph_tools import GraphInference
from megengine.utils.network import Network as Net
from megengine.utils.network import as_oprnode, set_symbolic_shape
from megengine.utils.network_node import Host2DeviceCopy, VarNode
def test_metadata():
x = Tensor(0)
@trace(symbolic=True, capture_as_const=True)
def fwd(x):
return x * 2
fwd(x)
orig_model = io.BytesIO()
fwd.dump(orig_model, user_info="test", optimize_for_inference=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": "test",
"graph_modified": False, # False: tracing.dump
"optimized_for_inference": False,
}
orig_model.seek(0)
graph.dump(
orig_model,
user_info={"str": "x", "tensor": x, "module": M.Module, "none": None},
optimize_for_inference=True,
enable_nchw4=True,
enable_ioc16=True,
)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": {"str": "x", "tensor": x, "module": M.Module, "none": None},
"graph_modified": True, # True: Network.dump
"optimized_for_inference": True,
"enable_nchw4": True,
"enable_ioc16": True,
}
orig_model.seek(0)
fwd.dump(orig_model, enable_metadata=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata is None
def test_replace_var():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out = F.mul(vara, varb)
out = F.relu(out)
opnode = list(graph.opr_filter.has_input(vara))
repl_dict = {opnode[0].outputs[0]: out}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [6, 16])
def test_replace_opr():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out1 = F.sub(vara, varb)
out1 = F.relu(out1)
out1 = graph.add_dep_oprs(out1)
orig_opr = graph.opr_filter.has_input(vara).as_unique()
repl_dict = {orig_opr: out1[0].owner}
graph.replace_oprs(repl_dict)
modified_model1 = io.BytesIO()
graph.dump(modified_model1)
modified_model1.seek(0)
load_graph = GraphInference(modified_model1)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [0, 0])
def test_splice_network():
x = F.ones((2,))
y = F.ones((2,))
@trace(symbolic=True, capture_as_const=True)
def fun1(a, b):
return (a + b) * 2
@trace(symbolic=True, capture_as_const=True)
def fun2(a):
return a * 2 - 1
model = io.BytesIO()
fun1(x, y)
fun2(x)
fun1.dump(
model,
arg_names=["net1_i0", "net1_i1"],
output_names=["net1_o0"],
optimize_for_inference=False,
)
model.seek(0)
net1 = Net.load(model)
model.seek(0)
fun2.dump(
model,
arg_names=["net2_i0"],
output_names=["net2_o0"],
optimize_for_inference=False,
)
model.seek(0)
net2 = Net.load(model)
net1.add_output(*net2.output_vars)
var = net1.var_filter.name("net1_i0").as_unique()
repl_var = net2.var_filter.name("net2_o0").as_unique()
net1.replace_vars({var: repl_var})
assert "net1_i0" not in [var.name for var in net1.all_vars]
assert "net2_i0" in [var.name for var in net1.all_vars]
model.seek(0)
net1.dump(model, keep_var_name=2, optimize_for_inference=False)
model.seek(0)
net = Net.load(model)
assert "net1_i0" not in [var.name for var in net.all_vars]
assert "net2_i0" in [var.name for var in net.all_vars]
def test_modify_params():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
param_const = graph.params_filter.as_unique()
param_const.set_value(3)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [12, 18])
def test_make_const():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
const_b = graph.make_const(np.array([0.0, 0.0]), name="b")
varb = graph.var_filter.name("b").as_unique()
repl_dict = {varb: const_b}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a)
np.testing.assert_equal(out["o"], [2, 4])
def test_add_input():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
inp_c = graph.make_input_node((2,), np.int32, name="c")
varo = graph.var_filter.name("o").as_unique()
out = F.add(varo, inp_c)
out.name = "o1"
graph.remove_output(varo)
graph.add_output(out)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b, a)
np.testing.assert_equal(out["o1"], ((a + b) * 2 + a).numpy())
def test_add_remove_output():
a = Tensor([1.0, 2.0])
b = Tensor([3.0, 4.0])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2, (a - b)
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model,
arg_names=["a", "b"],
output_names=["o1", "o2"],
optimize_for_inference=False,
)
orig_model.seek(0)
net = Net.load(orig_model)
var_a = net.var_filter.name("a").as_unique()
var_b = net.var_filter.name("b").as_unique()
y1 = (var_a + var_b) * 3
y2 = F.sigmoid(var_a + var_b)
net.remove_output(*net.output_vars)
y1.name = "new_o1"
y2.name = "new_o2"
net.add_output(y1, y2)
modified_model = io.BytesIO()
net.dump(modified_model)
modified_model.seek(0)
g = GraphInference(modified_model)
out = g.run(a.numpy(), b.numpy())
np.testing.assert_equal(out["new_o1"], ((a + b) * 3).numpy())
np.testing.assert_equal(out["new_o2"], (F.sigmoid((a + b))).numpy())
def test_query():
class Model(M.Module):
def __init__(self):
super().__init__()
self.conv1 = M.Conv2d(3, 32, 3)
self.conv2 = M.Conv2d(32, 32, 3)
self.conv3 = M.Conv2d(32, 32, 3)
def forward(self, data):
x = self.conv1(data)
x = self.conv2(x)
x = self.conv3(x)
return x
n = Model()
@trace(symbolic=True, capture_as_const=True)
def fwd(data):
return n(data)
fwd(Tensor(np.random.random((1, 3, 224, 224))))
orig_model = io.BytesIO()
fwd.dump(
orig_model,
arg_names=["data"],
output_names="o",
keep_opr_name=True,
keep_var_name=True,
optimize_for_inference=False,
)
orig_model.seek(0)
graph = Net.load(orig_model)
r = graph.data_providers_filter.as_count()
assert r == 1
opr = graph.get_opr_by_type(Host2DeviceCopy)
assert isinstance(opr, Host2DeviceCopy)
r1 = graph.params_filter.as_count()
assert r1 == 6
r2 = graph.opr_filter.type(N.ConvolutionForward).as_count()
assert r2 == 3
r3 = graph.opr_filter.not_type(N.ConvolutionForward).as_count()
assert r3 == len(graph.all_oprs) - r2
var = graph.var_filter.name("data").as_unique()
r4 = graph.opr_filter.has_input(var).as_count()
assert r4 == 1
r5 = graph.opr_filter.name("data").as_count()
assert r5 == 1
opr = graph.get_opr_by_name("data")
assert isinstance(opr, Host2DeviceCopy)
var = graph.get_var_by_name("data")
assert isinstance(var, VarNode)
r6 = graph.var_filter.name("*bias").as_count()
assert r6 == 3
def test_optimize_for_inference():
@trace(symbolic=True, capture_as_const=True)
def f(x):
return F.exp(x)
orig_model = io.BytesIO()
f(Tensor(5.0))
f.dump(orig_model, optimize_for_inference=False)
orig_model.seek(0)
optimize_model = io.BytesIO()
net = Net.load(orig_model)
net.dump(optimize_model, enable_io16xc32=True)
optimize_model.seek(0)
res = | G.load_graph(optimize_model) | megengine.core.tensor.megbrain_graph.load_graph |
import io
import numpy as np
import megengine.core.tensor.megbrain_graph as G
import megengine.functional as F
import megengine.module as M
import megengine.utils.network_node as N
from megengine.jit.tracing import trace
from megengine.tensor import Tensor
from megengine.utils.comp_graph_tools import GraphInference
from megengine.utils.network import Network as Net
from megengine.utils.network import as_oprnode, set_symbolic_shape
from megengine.utils.network_node import Host2DeviceCopy, VarNode
def test_metadata():
x = Tensor(0)
@trace(symbolic=True, capture_as_const=True)
def fwd(x):
return x * 2
fwd(x)
orig_model = io.BytesIO()
fwd.dump(orig_model, user_info="test", optimize_for_inference=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": "test",
"graph_modified": False, # False: tracing.dump
"optimized_for_inference": False,
}
orig_model.seek(0)
graph.dump(
orig_model,
user_info={"str": "x", "tensor": x, "module": M.Module, "none": None},
optimize_for_inference=True,
enable_nchw4=True,
enable_ioc16=True,
)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": {"str": "x", "tensor": x, "module": M.Module, "none": None},
"graph_modified": True, # True: Network.dump
"optimized_for_inference": True,
"enable_nchw4": True,
"enable_ioc16": True,
}
orig_model.seek(0)
fwd.dump(orig_model, enable_metadata=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata is None
def test_replace_var():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out = F.mul(vara, varb)
out = F.relu(out)
opnode = list(graph.opr_filter.has_input(vara))
repl_dict = {opnode[0].outputs[0]: out}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [6, 16])
def test_replace_opr():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out1 = F.sub(vara, varb)
out1 = F.relu(out1)
out1 = graph.add_dep_oprs(out1)
orig_opr = graph.opr_filter.has_input(vara).as_unique()
repl_dict = {orig_opr: out1[0].owner}
graph.replace_oprs(repl_dict)
modified_model1 = io.BytesIO()
graph.dump(modified_model1)
modified_model1.seek(0)
load_graph = GraphInference(modified_model1)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [0, 0])
def test_splice_network():
x = F.ones((2,))
y = F.ones((2,))
@trace(symbolic=True, capture_as_const=True)
def fun1(a, b):
return (a + b) * 2
@trace(symbolic=True, capture_as_const=True)
def fun2(a):
return a * 2 - 1
model = io.BytesIO()
fun1(x, y)
fun2(x)
fun1.dump(
model,
arg_names=["net1_i0", "net1_i1"],
output_names=["net1_o0"],
optimize_for_inference=False,
)
model.seek(0)
net1 = Net.load(model)
model.seek(0)
fun2.dump(
model,
arg_names=["net2_i0"],
output_names=["net2_o0"],
optimize_for_inference=False,
)
model.seek(0)
net2 = Net.load(model)
net1.add_output(*net2.output_vars)
var = net1.var_filter.name("net1_i0").as_unique()
repl_var = net2.var_filter.name("net2_o0").as_unique()
net1.replace_vars({var: repl_var})
assert "net1_i0" not in [var.name for var in net1.all_vars]
assert "net2_i0" in [var.name for var in net1.all_vars]
model.seek(0)
net1.dump(model, keep_var_name=2, optimize_for_inference=False)
model.seek(0)
net = Net.load(model)
assert "net1_i0" not in [var.name for var in net.all_vars]
assert "net2_i0" in [var.name for var in net.all_vars]
def test_modify_params():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
param_const = graph.params_filter.as_unique()
param_const.set_value(3)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [12, 18])
def test_make_const():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
const_b = graph.make_const(np.array([0.0, 0.0]), name="b")
varb = graph.var_filter.name("b").as_unique()
repl_dict = {varb: const_b}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a)
np.testing.assert_equal(out["o"], [2, 4])
def test_add_input():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
inp_c = graph.make_input_node((2,), np.int32, name="c")
varo = graph.var_filter.name("o").as_unique()
out = F.add(varo, inp_c)
out.name = "o1"
graph.remove_output(varo)
graph.add_output(out)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b, a)
np.testing.assert_equal(out["o1"], ((a + b) * 2 + a).numpy())
def test_add_remove_output():
a = Tensor([1.0, 2.0])
b = Tensor([3.0, 4.0])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2, (a - b)
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model,
arg_names=["a", "b"],
output_names=["o1", "o2"],
optimize_for_inference=False,
)
orig_model.seek(0)
net = Net.load(orig_model)
var_a = net.var_filter.name("a").as_unique()
var_b = net.var_filter.name("b").as_unique()
y1 = (var_a + var_b) * 3
y2 = F.sigmoid(var_a + var_b)
net.remove_output(*net.output_vars)
y1.name = "new_o1"
y2.name = "new_o2"
net.add_output(y1, y2)
modified_model = io.BytesIO()
net.dump(modified_model)
modified_model.seek(0)
g = GraphInference(modified_model)
out = g.run(a.numpy(), b.numpy())
np.testing.assert_equal(out["new_o1"], ((a + b) * 3).numpy())
np.testing.assert_equal(out["new_o2"], (F.sigmoid((a + b))).numpy())
def test_query():
class Model(M.Module):
def __init__(self):
super().__init__()
self.conv1 = M.Conv2d(3, 32, 3)
self.conv2 = M.Conv2d(32, 32, 3)
self.conv3 = M.Conv2d(32, 32, 3)
def forward(self, data):
x = self.conv1(data)
x = self.conv2(x)
x = self.conv3(x)
return x
n = Model()
@trace(symbolic=True, capture_as_const=True)
def fwd(data):
return n(data)
fwd(Tensor(np.random.random((1, 3, 224, 224))))
orig_model = io.BytesIO()
fwd.dump(
orig_model,
arg_names=["data"],
output_names="o",
keep_opr_name=True,
keep_var_name=True,
optimize_for_inference=False,
)
orig_model.seek(0)
graph = Net.load(orig_model)
r = graph.data_providers_filter.as_count()
assert r == 1
opr = graph.get_opr_by_type(Host2DeviceCopy)
assert isinstance(opr, Host2DeviceCopy)
r1 = graph.params_filter.as_count()
assert r1 == 6
r2 = graph.opr_filter.type(N.ConvolutionForward).as_count()
assert r2 == 3
r3 = graph.opr_filter.not_type(N.ConvolutionForward).as_count()
assert r3 == len(graph.all_oprs) - r2
var = graph.var_filter.name("data").as_unique()
r4 = graph.opr_filter.has_input(var).as_count()
assert r4 == 1
r5 = graph.opr_filter.name("data").as_count()
assert r5 == 1
opr = graph.get_opr_by_name("data")
assert isinstance(opr, Host2DeviceCopy)
var = graph.get_var_by_name("data")
assert isinstance(var, VarNode)
r6 = graph.var_filter.name("*bias").as_count()
assert r6 == 3
def test_optimize_for_inference():
@trace(symbolic=True, capture_as_const=True)
def f(x):
return F.exp(x)
orig_model = io.BytesIO()
f(Tensor(5.0))
f.dump(orig_model, optimize_for_inference=False)
orig_model.seek(0)
optimize_model = io.BytesIO()
net = Net.load(orig_model)
net.dump(optimize_model, enable_io16xc32=True)
optimize_model.seek(0)
res = G.load_graph(optimize_model)
computing_input = res.output_vars_list[0].owner.inputs[0]
assert computing_input.dtype == np.float16
def test_reset_batchsize():
@ | trace(symbolic=True, capture_as_const=True) | megengine.jit.tracing.trace |
import io
import numpy as np
import megengine.core.tensor.megbrain_graph as G
import megengine.functional as F
import megengine.module as M
import megengine.utils.network_node as N
from megengine.jit.tracing import trace
from megengine.tensor import Tensor
from megengine.utils.comp_graph_tools import GraphInference
from megengine.utils.network import Network as Net
from megengine.utils.network import as_oprnode, set_symbolic_shape
from megengine.utils.network_node import Host2DeviceCopy, VarNode
def test_metadata():
x = Tensor(0)
@trace(symbolic=True, capture_as_const=True)
def fwd(x):
return x * 2
fwd(x)
orig_model = io.BytesIO()
fwd.dump(orig_model, user_info="test", optimize_for_inference=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": "test",
"graph_modified": False, # False: tracing.dump
"optimized_for_inference": False,
}
orig_model.seek(0)
graph.dump(
orig_model,
user_info={"str": "x", "tensor": x, "module": M.Module, "none": None},
optimize_for_inference=True,
enable_nchw4=True,
enable_ioc16=True,
)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": {"str": "x", "tensor": x, "module": M.Module, "none": None},
"graph_modified": True, # True: Network.dump
"optimized_for_inference": True,
"enable_nchw4": True,
"enable_ioc16": True,
}
orig_model.seek(0)
fwd.dump(orig_model, enable_metadata=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata is None
def test_replace_var():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out = F.mul(vara, varb)
out = F.relu(out)
opnode = list(graph.opr_filter.has_input(vara))
repl_dict = {opnode[0].outputs[0]: out}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [6, 16])
def test_replace_opr():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out1 = F.sub(vara, varb)
out1 = F.relu(out1)
out1 = graph.add_dep_oprs(out1)
orig_opr = graph.opr_filter.has_input(vara).as_unique()
repl_dict = {orig_opr: out1[0].owner}
graph.replace_oprs(repl_dict)
modified_model1 = io.BytesIO()
graph.dump(modified_model1)
modified_model1.seek(0)
load_graph = GraphInference(modified_model1)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [0, 0])
def test_splice_network():
x = F.ones((2,))
y = F.ones((2,))
@trace(symbolic=True, capture_as_const=True)
def fun1(a, b):
return (a + b) * 2
@trace(symbolic=True, capture_as_const=True)
def fun2(a):
return a * 2 - 1
model = io.BytesIO()
fun1(x, y)
fun2(x)
fun1.dump(
model,
arg_names=["net1_i0", "net1_i1"],
output_names=["net1_o0"],
optimize_for_inference=False,
)
model.seek(0)
net1 = Net.load(model)
model.seek(0)
fun2.dump(
model,
arg_names=["net2_i0"],
output_names=["net2_o0"],
optimize_for_inference=False,
)
model.seek(0)
net2 = Net.load(model)
net1.add_output(*net2.output_vars)
var = net1.var_filter.name("net1_i0").as_unique()
repl_var = net2.var_filter.name("net2_o0").as_unique()
net1.replace_vars({var: repl_var})
assert "net1_i0" not in [var.name for var in net1.all_vars]
assert "net2_i0" in [var.name for var in net1.all_vars]
model.seek(0)
net1.dump(model, keep_var_name=2, optimize_for_inference=False)
model.seek(0)
net = Net.load(model)
assert "net1_i0" not in [var.name for var in net.all_vars]
assert "net2_i0" in [var.name for var in net.all_vars]
def test_modify_params():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
param_const = graph.params_filter.as_unique()
param_const.set_value(3)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [12, 18])
def test_make_const():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
const_b = graph.make_const(np.array([0.0, 0.0]), name="b")
varb = graph.var_filter.name("b").as_unique()
repl_dict = {varb: const_b}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a)
np.testing.assert_equal(out["o"], [2, 4])
def test_add_input():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
inp_c = graph.make_input_node((2,), np.int32, name="c")
varo = graph.var_filter.name("o").as_unique()
out = F.add(varo, inp_c)
out.name = "o1"
graph.remove_output(varo)
graph.add_output(out)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b, a)
np.testing.assert_equal(out["o1"], ((a + b) * 2 + a).numpy())
def test_add_remove_output():
a = Tensor([1.0, 2.0])
b = Tensor([3.0, 4.0])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2, (a - b)
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model,
arg_names=["a", "b"],
output_names=["o1", "o2"],
optimize_for_inference=False,
)
orig_model.seek(0)
net = Net.load(orig_model)
var_a = net.var_filter.name("a").as_unique()
var_b = net.var_filter.name("b").as_unique()
y1 = (var_a + var_b) * 3
y2 = F.sigmoid(var_a + var_b)
net.remove_output(*net.output_vars)
y1.name = "new_o1"
y2.name = "new_o2"
net.add_output(y1, y2)
modified_model = io.BytesIO()
net.dump(modified_model)
modified_model.seek(0)
g = GraphInference(modified_model)
out = g.run(a.numpy(), b.numpy())
np.testing.assert_equal(out["new_o1"], ((a + b) * 3).numpy())
np.testing.assert_equal(out["new_o2"], (F.sigmoid((a + b))).numpy())
def test_query():
class Model(M.Module):
def __init__(self):
super().__init__()
self.conv1 = M.Conv2d(3, 32, 3)
self.conv2 = M.Conv2d(32, 32, 3)
self.conv3 = M.Conv2d(32, 32, 3)
def forward(self, data):
x = self.conv1(data)
x = self.conv2(x)
x = self.conv3(x)
return x
n = Model()
@trace(symbolic=True, capture_as_const=True)
def fwd(data):
return n(data)
fwd(Tensor(np.random.random((1, 3, 224, 224))))
orig_model = io.BytesIO()
fwd.dump(
orig_model,
arg_names=["data"],
output_names="o",
keep_opr_name=True,
keep_var_name=True,
optimize_for_inference=False,
)
orig_model.seek(0)
graph = Net.load(orig_model)
r = graph.data_providers_filter.as_count()
assert r == 1
opr = graph.get_opr_by_type(Host2DeviceCopy)
assert isinstance(opr, Host2DeviceCopy)
r1 = graph.params_filter.as_count()
assert r1 == 6
r2 = graph.opr_filter.type(N.ConvolutionForward).as_count()
assert r2 == 3
r3 = graph.opr_filter.not_type(N.ConvolutionForward).as_count()
assert r3 == len(graph.all_oprs) - r2
var = graph.var_filter.name("data").as_unique()
r4 = graph.opr_filter.has_input(var).as_count()
assert r4 == 1
r5 = graph.opr_filter.name("data").as_count()
assert r5 == 1
opr = graph.get_opr_by_name("data")
assert isinstance(opr, Host2DeviceCopy)
var = graph.get_var_by_name("data")
assert isinstance(var, VarNode)
r6 = graph.var_filter.name("*bias").as_count()
assert r6 == 3
def test_optimize_for_inference():
@trace(symbolic=True, capture_as_const=True)
def f(x):
return F.exp(x)
orig_model = io.BytesIO()
f(Tensor(5.0))
f.dump(orig_model, optimize_for_inference=False)
orig_model.seek(0)
optimize_model = io.BytesIO()
net = Net.load(orig_model)
net.dump(optimize_model, enable_io16xc32=True)
optimize_model.seek(0)
res = G.load_graph(optimize_model)
computing_input = res.output_vars_list[0].owner.inputs[0]
assert computing_input.dtype == np.float16
def test_reset_batchsize():
@trace(symbolic=True, capture_as_const=True)
def f(x):
return F.exp(x)
orig_model = io.BytesIO()
f(Tensor(np.random.random((3, 3, 224, 224))))
f.dump(orig_model, optimize_for_inference=False)
orig_model.seek(0)
modified_model = io.BytesIO()
net = | Net.load(orig_model) | megengine.utils.network.Network.load |
import io
import numpy as np
import megengine.core.tensor.megbrain_graph as G
import megengine.functional as F
import megengine.module as M
import megengine.utils.network_node as N
from megengine.jit.tracing import trace
from megengine.tensor import Tensor
from megengine.utils.comp_graph_tools import GraphInference
from megengine.utils.network import Network as Net
from megengine.utils.network import as_oprnode, set_symbolic_shape
from megengine.utils.network_node import Host2DeviceCopy, VarNode
def test_metadata():
x = Tensor(0)
@trace(symbolic=True, capture_as_const=True)
def fwd(x):
return x * 2
fwd(x)
orig_model = io.BytesIO()
fwd.dump(orig_model, user_info="test", optimize_for_inference=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": "test",
"graph_modified": False, # False: tracing.dump
"optimized_for_inference": False,
}
orig_model.seek(0)
graph.dump(
orig_model,
user_info={"str": "x", "tensor": x, "module": M.Module, "none": None},
optimize_for_inference=True,
enable_nchw4=True,
enable_ioc16=True,
)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": {"str": "x", "tensor": x, "module": M.Module, "none": None},
"graph_modified": True, # True: Network.dump
"optimized_for_inference": True,
"enable_nchw4": True,
"enable_ioc16": True,
}
orig_model.seek(0)
fwd.dump(orig_model, enable_metadata=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata is None
def test_replace_var():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out = F.mul(vara, varb)
out = F.relu(out)
opnode = list(graph.opr_filter.has_input(vara))
repl_dict = {opnode[0].outputs[0]: out}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [6, 16])
def test_replace_opr():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out1 = F.sub(vara, varb)
out1 = F.relu(out1)
out1 = graph.add_dep_oprs(out1)
orig_opr = graph.opr_filter.has_input(vara).as_unique()
repl_dict = {orig_opr: out1[0].owner}
graph.replace_oprs(repl_dict)
modified_model1 = io.BytesIO()
graph.dump(modified_model1)
modified_model1.seek(0)
load_graph = GraphInference(modified_model1)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [0, 0])
def test_splice_network():
x = F.ones((2,))
y = F.ones((2,))
@trace(symbolic=True, capture_as_const=True)
def fun1(a, b):
return (a + b) * 2
@trace(symbolic=True, capture_as_const=True)
def fun2(a):
return a * 2 - 1
model = io.BytesIO()
fun1(x, y)
fun2(x)
fun1.dump(
model,
arg_names=["net1_i0", "net1_i1"],
output_names=["net1_o0"],
optimize_for_inference=False,
)
model.seek(0)
net1 = Net.load(model)
model.seek(0)
fun2.dump(
model,
arg_names=["net2_i0"],
output_names=["net2_o0"],
optimize_for_inference=False,
)
model.seek(0)
net2 = Net.load(model)
net1.add_output(*net2.output_vars)
var = net1.var_filter.name("net1_i0").as_unique()
repl_var = net2.var_filter.name("net2_o0").as_unique()
net1.replace_vars({var: repl_var})
assert "net1_i0" not in [var.name for var in net1.all_vars]
assert "net2_i0" in [var.name for var in net1.all_vars]
model.seek(0)
net1.dump(model, keep_var_name=2, optimize_for_inference=False)
model.seek(0)
net = Net.load(model)
assert "net1_i0" not in [var.name for var in net.all_vars]
assert "net2_i0" in [var.name for var in net.all_vars]
def test_modify_params():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
param_const = graph.params_filter.as_unique()
param_const.set_value(3)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [12, 18])
def test_make_const():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
const_b = graph.make_const(np.array([0.0, 0.0]), name="b")
varb = graph.var_filter.name("b").as_unique()
repl_dict = {varb: const_b}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a)
np.testing.assert_equal(out["o"], [2, 4])
def test_add_input():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
inp_c = graph.make_input_node((2,), np.int32, name="c")
varo = graph.var_filter.name("o").as_unique()
out = F.add(varo, inp_c)
out.name = "o1"
graph.remove_output(varo)
graph.add_output(out)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b, a)
np.testing.assert_equal(out["o1"], ((a + b) * 2 + a).numpy())
def test_add_remove_output():
a = Tensor([1.0, 2.0])
b = Tensor([3.0, 4.0])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2, (a - b)
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model,
arg_names=["a", "b"],
output_names=["o1", "o2"],
optimize_for_inference=False,
)
orig_model.seek(0)
net = Net.load(orig_model)
var_a = net.var_filter.name("a").as_unique()
var_b = net.var_filter.name("b").as_unique()
y1 = (var_a + var_b) * 3
y2 = F.sigmoid(var_a + var_b)
net.remove_output(*net.output_vars)
y1.name = "new_o1"
y2.name = "new_o2"
net.add_output(y1, y2)
modified_model = io.BytesIO()
net.dump(modified_model)
modified_model.seek(0)
g = GraphInference(modified_model)
out = g.run(a.numpy(), b.numpy())
np.testing.assert_equal(out["new_o1"], ((a + b) * 3).numpy())
np.testing.assert_equal(out["new_o2"], (F.sigmoid((a + b))).numpy())
def test_query():
class Model(M.Module):
def __init__(self):
super().__init__()
self.conv1 = M.Conv2d(3, 32, 3)
self.conv2 = M.Conv2d(32, 32, 3)
self.conv3 = M.Conv2d(32, 32, 3)
def forward(self, data):
x = self.conv1(data)
x = self.conv2(x)
x = self.conv3(x)
return x
n = Model()
@trace(symbolic=True, capture_as_const=True)
def fwd(data):
return n(data)
fwd(Tensor(np.random.random((1, 3, 224, 224))))
orig_model = io.BytesIO()
fwd.dump(
orig_model,
arg_names=["data"],
output_names="o",
keep_opr_name=True,
keep_var_name=True,
optimize_for_inference=False,
)
orig_model.seek(0)
graph = Net.load(orig_model)
r = graph.data_providers_filter.as_count()
assert r == 1
opr = graph.get_opr_by_type(Host2DeviceCopy)
assert isinstance(opr, Host2DeviceCopy)
r1 = graph.params_filter.as_count()
assert r1 == 6
r2 = graph.opr_filter.type(N.ConvolutionForward).as_count()
assert r2 == 3
r3 = graph.opr_filter.not_type(N.ConvolutionForward).as_count()
assert r3 == len(graph.all_oprs) - r2
var = graph.var_filter.name("data").as_unique()
r4 = graph.opr_filter.has_input(var).as_count()
assert r4 == 1
r5 = graph.opr_filter.name("data").as_count()
assert r5 == 1
opr = graph.get_opr_by_name("data")
assert isinstance(opr, Host2DeviceCopy)
var = graph.get_var_by_name("data")
assert isinstance(var, VarNode)
r6 = graph.var_filter.name("*bias").as_count()
assert r6 == 3
def test_optimize_for_inference():
@trace(symbolic=True, capture_as_const=True)
def f(x):
return F.exp(x)
orig_model = io.BytesIO()
f(Tensor(5.0))
f.dump(orig_model, optimize_for_inference=False)
orig_model.seek(0)
optimize_model = io.BytesIO()
net = Net.load(orig_model)
net.dump(optimize_model, enable_io16xc32=True)
optimize_model.seek(0)
res = G.load_graph(optimize_model)
computing_input = res.output_vars_list[0].owner.inputs[0]
assert computing_input.dtype == np.float16
def test_reset_batchsize():
@trace(symbolic=True, capture_as_const=True)
def f(x):
return F.exp(x)
orig_model = io.BytesIO()
f(Tensor(np.random.random((3, 3, 224, 224))))
f.dump(orig_model, optimize_for_inference=False)
orig_model.seek(0)
modified_model = io.BytesIO()
net = Net.load(orig_model)
net.reset_batch_size(1)
net.dump(modified_model, optimize_for_inference=False)
modified_model.seek(0)
net1 = | Net.load(modified_model) | megengine.utils.network.Network.load |
import io
import numpy as np
import megengine.core.tensor.megbrain_graph as G
import megengine.functional as F
import megengine.module as M
import megengine.utils.network_node as N
from megengine.jit.tracing import trace
from megengine.tensor import Tensor
from megengine.utils.comp_graph_tools import GraphInference
from megengine.utils.network import Network as Net
from megengine.utils.network import as_oprnode, set_symbolic_shape
from megengine.utils.network_node import Host2DeviceCopy, VarNode
def test_metadata():
x = Tensor(0)
@trace(symbolic=True, capture_as_const=True)
def fwd(x):
return x * 2
fwd(x)
orig_model = io.BytesIO()
fwd.dump(orig_model, user_info="test", optimize_for_inference=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": "test",
"graph_modified": False, # False: tracing.dump
"optimized_for_inference": False,
}
orig_model.seek(0)
graph.dump(
orig_model,
user_info={"str": "x", "tensor": x, "module": M.Module, "none": None},
optimize_for_inference=True,
enable_nchw4=True,
enable_ioc16=True,
)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": {"str": "x", "tensor": x, "module": M.Module, "none": None},
"graph_modified": True, # True: Network.dump
"optimized_for_inference": True,
"enable_nchw4": True,
"enable_ioc16": True,
}
orig_model.seek(0)
fwd.dump(orig_model, enable_metadata=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata is None
def test_replace_var():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out = F.mul(vara, varb)
out = F.relu(out)
opnode = list(graph.opr_filter.has_input(vara))
repl_dict = {opnode[0].outputs[0]: out}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [6, 16])
def test_replace_opr():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out1 = F.sub(vara, varb)
out1 = F.relu(out1)
out1 = graph.add_dep_oprs(out1)
orig_opr = graph.opr_filter.has_input(vara).as_unique()
repl_dict = {orig_opr: out1[0].owner}
graph.replace_oprs(repl_dict)
modified_model1 = io.BytesIO()
graph.dump(modified_model1)
modified_model1.seek(0)
load_graph = GraphInference(modified_model1)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [0, 0])
def test_splice_network():
x = F.ones((2,))
y = F.ones((2,))
@trace(symbolic=True, capture_as_const=True)
def fun1(a, b):
return (a + b) * 2
@trace(symbolic=True, capture_as_const=True)
def fun2(a):
return a * 2 - 1
model = io.BytesIO()
fun1(x, y)
fun2(x)
fun1.dump(
model,
arg_names=["net1_i0", "net1_i1"],
output_names=["net1_o0"],
optimize_for_inference=False,
)
model.seek(0)
net1 = Net.load(model)
model.seek(0)
fun2.dump(
model,
arg_names=["net2_i0"],
output_names=["net2_o0"],
optimize_for_inference=False,
)
model.seek(0)
net2 = Net.load(model)
net1.add_output(*net2.output_vars)
var = net1.var_filter.name("net1_i0").as_unique()
repl_var = net2.var_filter.name("net2_o0").as_unique()
net1.replace_vars({var: repl_var})
assert "net1_i0" not in [var.name for var in net1.all_vars]
assert "net2_i0" in [var.name for var in net1.all_vars]
model.seek(0)
net1.dump(model, keep_var_name=2, optimize_for_inference=False)
model.seek(0)
net = Net.load(model)
assert "net1_i0" not in [var.name for var in net.all_vars]
assert "net2_i0" in [var.name for var in net.all_vars]
def test_modify_params():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
param_const = graph.params_filter.as_unique()
param_const.set_value(3)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [12, 18])
def test_make_const():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
const_b = graph.make_const(np.array([0.0, 0.0]), name="b")
varb = graph.var_filter.name("b").as_unique()
repl_dict = {varb: const_b}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a)
np.testing.assert_equal(out["o"], [2, 4])
def test_add_input():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
inp_c = graph.make_input_node((2,), np.int32, name="c")
varo = graph.var_filter.name("o").as_unique()
out = F.add(varo, inp_c)
out.name = "o1"
graph.remove_output(varo)
graph.add_output(out)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b, a)
np.testing.assert_equal(out["o1"], ((a + b) * 2 + a).numpy())
def test_add_remove_output():
a = Tensor([1.0, 2.0])
b = Tensor([3.0, 4.0])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2, (a - b)
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model,
arg_names=["a", "b"],
output_names=["o1", "o2"],
optimize_for_inference=False,
)
orig_model.seek(0)
net = Net.load(orig_model)
var_a = net.var_filter.name("a").as_unique()
var_b = net.var_filter.name("b").as_unique()
y1 = (var_a + var_b) * 3
y2 = F.sigmoid(var_a + var_b)
net.remove_output(*net.output_vars)
y1.name = "new_o1"
y2.name = "new_o2"
net.add_output(y1, y2)
modified_model = io.BytesIO()
net.dump(modified_model)
modified_model.seek(0)
g = GraphInference(modified_model)
out = g.run(a.numpy(), b.numpy())
np.testing.assert_equal(out["new_o1"], ((a + b) * 3).numpy())
np.testing.assert_equal(out["new_o2"], (F.sigmoid((a + b))).numpy())
def test_query():
class Model(M.Module):
def __init__(self):
super().__init__()
self.conv1 = M.Conv2d(3, 32, 3)
self.conv2 = M.Conv2d(32, 32, 3)
self.conv3 = M.Conv2d(32, 32, 3)
def forward(self, data):
x = self.conv1(data)
x = self.conv2(x)
x = self.conv3(x)
return x
n = Model()
@trace(symbolic=True, capture_as_const=True)
def fwd(data):
return n(data)
fwd(Tensor(np.random.random((1, 3, 224, 224))))
orig_model = io.BytesIO()
fwd.dump(
orig_model,
arg_names=["data"],
output_names="o",
keep_opr_name=True,
keep_var_name=True,
optimize_for_inference=False,
)
orig_model.seek(0)
graph = Net.load(orig_model)
r = graph.data_providers_filter.as_count()
assert r == 1
opr = graph.get_opr_by_type(Host2DeviceCopy)
assert isinstance(opr, Host2DeviceCopy)
r1 = graph.params_filter.as_count()
assert r1 == 6
r2 = graph.opr_filter.type(N.ConvolutionForward).as_count()
assert r2 == 3
r3 = graph.opr_filter.not_type(N.ConvolutionForward).as_count()
assert r3 == len(graph.all_oprs) - r2
var = graph.var_filter.name("data").as_unique()
r4 = graph.opr_filter.has_input(var).as_count()
assert r4 == 1
r5 = graph.opr_filter.name("data").as_count()
assert r5 == 1
opr = graph.get_opr_by_name("data")
assert isinstance(opr, Host2DeviceCopy)
var = graph.get_var_by_name("data")
assert isinstance(var, VarNode)
r6 = graph.var_filter.name("*bias").as_count()
assert r6 == 3
def test_optimize_for_inference():
@trace(symbolic=True, capture_as_const=True)
def f(x):
return F.exp(x)
orig_model = io.BytesIO()
f(Tensor(5.0))
f.dump(orig_model, optimize_for_inference=False)
orig_model.seek(0)
optimize_model = io.BytesIO()
net = Net.load(orig_model)
net.dump(optimize_model, enable_io16xc32=True)
optimize_model.seek(0)
res = G.load_graph(optimize_model)
computing_input = res.output_vars_list[0].owner.inputs[0]
assert computing_input.dtype == np.float16
def test_reset_batchsize():
@trace(symbolic=True, capture_as_const=True)
def f(x):
return F.exp(x)
orig_model = io.BytesIO()
f(Tensor(np.random.random((3, 3, 224, 224))))
f.dump(orig_model, optimize_for_inference=False)
orig_model.seek(0)
modified_model = io.BytesIO()
net = Net.load(orig_model)
net.reset_batch_size(1)
net.dump(modified_model, optimize_for_inference=False)
modified_model.seek(0)
net1 = Net.load(modified_model)
assert net1.data_providers_filter.as_unique().shape[0] == 1
def test_modify_opr_name():
@ | trace(symbolic=True, capture_as_const=True) | megengine.jit.tracing.trace |
import io
import numpy as np
import megengine.core.tensor.megbrain_graph as G
import megengine.functional as F
import megengine.module as M
import megengine.utils.network_node as N
from megengine.jit.tracing import trace
from megengine.tensor import Tensor
from megengine.utils.comp_graph_tools import GraphInference
from megengine.utils.network import Network as Net
from megengine.utils.network import as_oprnode, set_symbolic_shape
from megengine.utils.network_node import Host2DeviceCopy, VarNode
def test_metadata():
x = Tensor(0)
@trace(symbolic=True, capture_as_const=True)
def fwd(x):
return x * 2
fwd(x)
orig_model = io.BytesIO()
fwd.dump(orig_model, user_info="test", optimize_for_inference=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": "test",
"graph_modified": False, # False: tracing.dump
"optimized_for_inference": False,
}
orig_model.seek(0)
graph.dump(
orig_model,
user_info={"str": "x", "tensor": x, "module": M.Module, "none": None},
optimize_for_inference=True,
enable_nchw4=True,
enable_ioc16=True,
)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": {"str": "x", "tensor": x, "module": M.Module, "none": None},
"graph_modified": True, # True: Network.dump
"optimized_for_inference": True,
"enable_nchw4": True,
"enable_ioc16": True,
}
orig_model.seek(0)
fwd.dump(orig_model, enable_metadata=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata is None
def test_replace_var():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out = F.mul(vara, varb)
out = F.relu(out)
opnode = list(graph.opr_filter.has_input(vara))
repl_dict = {opnode[0].outputs[0]: out}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [6, 16])
def test_replace_opr():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out1 = F.sub(vara, varb)
out1 = F.relu(out1)
out1 = graph.add_dep_oprs(out1)
orig_opr = graph.opr_filter.has_input(vara).as_unique()
repl_dict = {orig_opr: out1[0].owner}
graph.replace_oprs(repl_dict)
modified_model1 = io.BytesIO()
graph.dump(modified_model1)
modified_model1.seek(0)
load_graph = GraphInference(modified_model1)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [0, 0])
def test_splice_network():
x = F.ones((2,))
y = F.ones((2,))
@trace(symbolic=True, capture_as_const=True)
def fun1(a, b):
return (a + b) * 2
@trace(symbolic=True, capture_as_const=True)
def fun2(a):
return a * 2 - 1
model = io.BytesIO()
fun1(x, y)
fun2(x)
fun1.dump(
model,
arg_names=["net1_i0", "net1_i1"],
output_names=["net1_o0"],
optimize_for_inference=False,
)
model.seek(0)
net1 = Net.load(model)
model.seek(0)
fun2.dump(
model,
arg_names=["net2_i0"],
output_names=["net2_o0"],
optimize_for_inference=False,
)
model.seek(0)
net2 = Net.load(model)
net1.add_output(*net2.output_vars)
var = net1.var_filter.name("net1_i0").as_unique()
repl_var = net2.var_filter.name("net2_o0").as_unique()
net1.replace_vars({var: repl_var})
assert "net1_i0" not in [var.name for var in net1.all_vars]
assert "net2_i0" in [var.name for var in net1.all_vars]
model.seek(0)
net1.dump(model, keep_var_name=2, optimize_for_inference=False)
model.seek(0)
net = Net.load(model)
assert "net1_i0" not in [var.name for var in net.all_vars]
assert "net2_i0" in [var.name for var in net.all_vars]
def test_modify_params():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
param_const = graph.params_filter.as_unique()
param_const.set_value(3)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [12, 18])
def test_make_const():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
const_b = graph.make_const(np.array([0.0, 0.0]), name="b")
varb = graph.var_filter.name("b").as_unique()
repl_dict = {varb: const_b}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a)
np.testing.assert_equal(out["o"], [2, 4])
def test_add_input():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
inp_c = graph.make_input_node((2,), np.int32, name="c")
varo = graph.var_filter.name("o").as_unique()
out = F.add(varo, inp_c)
out.name = "o1"
graph.remove_output(varo)
graph.add_output(out)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b, a)
np.testing.assert_equal(out["o1"], ((a + b) * 2 + a).numpy())
def test_add_remove_output():
a = Tensor([1.0, 2.0])
b = Tensor([3.0, 4.0])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2, (a - b)
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model,
arg_names=["a", "b"],
output_names=["o1", "o2"],
optimize_for_inference=False,
)
orig_model.seek(0)
net = Net.load(orig_model)
var_a = net.var_filter.name("a").as_unique()
var_b = net.var_filter.name("b").as_unique()
y1 = (var_a + var_b) * 3
y2 = F.sigmoid(var_a + var_b)
net.remove_output(*net.output_vars)
y1.name = "new_o1"
y2.name = "new_o2"
net.add_output(y1, y2)
modified_model = io.BytesIO()
net.dump(modified_model)
modified_model.seek(0)
g = GraphInference(modified_model)
out = g.run(a.numpy(), b.numpy())
np.testing.assert_equal(out["new_o1"], ((a + b) * 3).numpy())
np.testing.assert_equal(out["new_o2"], (F.sigmoid((a + b))).numpy())
def test_query():
class Model(M.Module):
def __init__(self):
super().__init__()
self.conv1 = M.Conv2d(3, 32, 3)
self.conv2 = M.Conv2d(32, 32, 3)
self.conv3 = M.Conv2d(32, 32, 3)
def forward(self, data):
x = self.conv1(data)
x = self.conv2(x)
x = self.conv3(x)
return x
n = Model()
@trace(symbolic=True, capture_as_const=True)
def fwd(data):
return n(data)
fwd(Tensor(np.random.random((1, 3, 224, 224))))
orig_model = io.BytesIO()
fwd.dump(
orig_model,
arg_names=["data"],
output_names="o",
keep_opr_name=True,
keep_var_name=True,
optimize_for_inference=False,
)
orig_model.seek(0)
graph = Net.load(orig_model)
r = graph.data_providers_filter.as_count()
assert r == 1
opr = graph.get_opr_by_type(Host2DeviceCopy)
assert isinstance(opr, Host2DeviceCopy)
r1 = graph.params_filter.as_count()
assert r1 == 6
r2 = graph.opr_filter.type(N.ConvolutionForward).as_count()
assert r2 == 3
r3 = graph.opr_filter.not_type(N.ConvolutionForward).as_count()
assert r3 == len(graph.all_oprs) - r2
var = graph.var_filter.name("data").as_unique()
r4 = graph.opr_filter.has_input(var).as_count()
assert r4 == 1
r5 = graph.opr_filter.name("data").as_count()
assert r5 == 1
opr = graph.get_opr_by_name("data")
assert isinstance(opr, Host2DeviceCopy)
var = graph.get_var_by_name("data")
assert isinstance(var, VarNode)
r6 = graph.var_filter.name("*bias").as_count()
assert r6 == 3
def test_optimize_for_inference():
@trace(symbolic=True, capture_as_const=True)
def f(x):
return F.exp(x)
orig_model = io.BytesIO()
f(Tensor(5.0))
f.dump(orig_model, optimize_for_inference=False)
orig_model.seek(0)
optimize_model = io.BytesIO()
net = Net.load(orig_model)
net.dump(optimize_model, enable_io16xc32=True)
optimize_model.seek(0)
res = G.load_graph(optimize_model)
computing_input = res.output_vars_list[0].owner.inputs[0]
assert computing_input.dtype == np.float16
def test_reset_batchsize():
@trace(symbolic=True, capture_as_const=True)
def f(x):
return F.exp(x)
orig_model = io.BytesIO()
f(Tensor(np.random.random((3, 3, 224, 224))))
f.dump(orig_model, optimize_for_inference=False)
orig_model.seek(0)
modified_model = io.BytesIO()
net = Net.load(orig_model)
net.reset_batch_size(1)
net.dump(modified_model, optimize_for_inference=False)
modified_model.seek(0)
net1 = Net.load(modified_model)
assert net1.data_providers_filter.as_unique().shape[0] == 1
def test_modify_opr_name():
@trace(symbolic=True, capture_as_const=True)
def f(x):
return F.exp(x)
orig_model = io.BytesIO()
f(Tensor(np.random.random((3, 3, 224, 224))))
f.dump(orig_model, arg_names=["a"], optimize_for_inference=False)
orig_model.seek(0)
modified_model = io.BytesIO()
net = | Net.load(orig_model) | megengine.utils.network.Network.load |
import io
import numpy as np
import megengine.core.tensor.megbrain_graph as G
import megengine.functional as F
import megengine.module as M
import megengine.utils.network_node as N
from megengine.jit.tracing import trace
from megengine.tensor import Tensor
from megengine.utils.comp_graph_tools import GraphInference
from megengine.utils.network import Network as Net
from megengine.utils.network import as_oprnode, set_symbolic_shape
from megengine.utils.network_node import Host2DeviceCopy, VarNode
def test_metadata():
x = Tensor(0)
@trace(symbolic=True, capture_as_const=True)
def fwd(x):
return x * 2
fwd(x)
orig_model = io.BytesIO()
fwd.dump(orig_model, user_info="test", optimize_for_inference=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": "test",
"graph_modified": False, # False: tracing.dump
"optimized_for_inference": False,
}
orig_model.seek(0)
graph.dump(
orig_model,
user_info={"str": "x", "tensor": x, "module": M.Module, "none": None},
optimize_for_inference=True,
enable_nchw4=True,
enable_ioc16=True,
)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": {"str": "x", "tensor": x, "module": M.Module, "none": None},
"graph_modified": True, # True: Network.dump
"optimized_for_inference": True,
"enable_nchw4": True,
"enable_ioc16": True,
}
orig_model.seek(0)
fwd.dump(orig_model, enable_metadata=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata is None
def test_replace_var():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out = F.mul(vara, varb)
out = F.relu(out)
opnode = list(graph.opr_filter.has_input(vara))
repl_dict = {opnode[0].outputs[0]: out}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [6, 16])
def test_replace_opr():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out1 = F.sub(vara, varb)
out1 = F.relu(out1)
out1 = graph.add_dep_oprs(out1)
orig_opr = graph.opr_filter.has_input(vara).as_unique()
repl_dict = {orig_opr: out1[0].owner}
graph.replace_oprs(repl_dict)
modified_model1 = io.BytesIO()
graph.dump(modified_model1)
modified_model1.seek(0)
load_graph = GraphInference(modified_model1)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [0, 0])
def test_splice_network():
x = F.ones((2,))
y = F.ones((2,))
@trace(symbolic=True, capture_as_const=True)
def fun1(a, b):
return (a + b) * 2
@trace(symbolic=True, capture_as_const=True)
def fun2(a):
return a * 2 - 1
model = io.BytesIO()
fun1(x, y)
fun2(x)
fun1.dump(
model,
arg_names=["net1_i0", "net1_i1"],
output_names=["net1_o0"],
optimize_for_inference=False,
)
model.seek(0)
net1 = Net.load(model)
model.seek(0)
fun2.dump(
model,
arg_names=["net2_i0"],
output_names=["net2_o0"],
optimize_for_inference=False,
)
model.seek(0)
net2 = Net.load(model)
net1.add_output(*net2.output_vars)
var = net1.var_filter.name("net1_i0").as_unique()
repl_var = net2.var_filter.name("net2_o0").as_unique()
net1.replace_vars({var: repl_var})
assert "net1_i0" not in [var.name for var in net1.all_vars]
assert "net2_i0" in [var.name for var in net1.all_vars]
model.seek(0)
net1.dump(model, keep_var_name=2, optimize_for_inference=False)
model.seek(0)
net = Net.load(model)
assert "net1_i0" not in [var.name for var in net.all_vars]
assert "net2_i0" in [var.name for var in net.all_vars]
def test_modify_params():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
param_const = graph.params_filter.as_unique()
param_const.set_value(3)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [12, 18])
def test_make_const():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
const_b = graph.make_const(np.array([0.0, 0.0]), name="b")
varb = graph.var_filter.name("b").as_unique()
repl_dict = {varb: const_b}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a)
np.testing.assert_equal(out["o"], [2, 4])
def test_add_input():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
inp_c = graph.make_input_node((2,), np.int32, name="c")
varo = graph.var_filter.name("o").as_unique()
out = F.add(varo, inp_c)
out.name = "o1"
graph.remove_output(varo)
graph.add_output(out)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b, a)
np.testing.assert_equal(out["o1"], ((a + b) * 2 + a).numpy())
def test_add_remove_output():
a = Tensor([1.0, 2.0])
b = Tensor([3.0, 4.0])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2, (a - b)
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model,
arg_names=["a", "b"],
output_names=["o1", "o2"],
optimize_for_inference=False,
)
orig_model.seek(0)
net = Net.load(orig_model)
var_a = net.var_filter.name("a").as_unique()
var_b = net.var_filter.name("b").as_unique()
y1 = (var_a + var_b) * 3
y2 = F.sigmoid(var_a + var_b)
net.remove_output(*net.output_vars)
y1.name = "new_o1"
y2.name = "new_o2"
net.add_output(y1, y2)
modified_model = io.BytesIO()
net.dump(modified_model)
modified_model.seek(0)
g = GraphInference(modified_model)
out = g.run(a.numpy(), b.numpy())
np.testing.assert_equal(out["new_o1"], ((a + b) * 3).numpy())
np.testing.assert_equal(out["new_o2"], (F.sigmoid((a + b))).numpy())
def test_query():
class Model(M.Module):
def __init__(self):
super().__init__()
self.conv1 = M.Conv2d(3, 32, 3)
self.conv2 = M.Conv2d(32, 32, 3)
self.conv3 = M.Conv2d(32, 32, 3)
def forward(self, data):
x = self.conv1(data)
x = self.conv2(x)
x = self.conv3(x)
return x
n = Model()
@trace(symbolic=True, capture_as_const=True)
def fwd(data):
return n(data)
fwd(Tensor(np.random.random((1, 3, 224, 224))))
orig_model = io.BytesIO()
fwd.dump(
orig_model,
arg_names=["data"],
output_names="o",
keep_opr_name=True,
keep_var_name=True,
optimize_for_inference=False,
)
orig_model.seek(0)
graph = Net.load(orig_model)
r = graph.data_providers_filter.as_count()
assert r == 1
opr = graph.get_opr_by_type(Host2DeviceCopy)
assert isinstance(opr, Host2DeviceCopy)
r1 = graph.params_filter.as_count()
assert r1 == 6
r2 = graph.opr_filter.type(N.ConvolutionForward).as_count()
assert r2 == 3
r3 = graph.opr_filter.not_type(N.ConvolutionForward).as_count()
assert r3 == len(graph.all_oprs) - r2
var = graph.var_filter.name("data").as_unique()
r4 = graph.opr_filter.has_input(var).as_count()
assert r4 == 1
r5 = graph.opr_filter.name("data").as_count()
assert r5 == 1
opr = graph.get_opr_by_name("data")
assert isinstance(opr, Host2DeviceCopy)
var = graph.get_var_by_name("data")
assert isinstance(var, VarNode)
r6 = graph.var_filter.name("*bias").as_count()
assert r6 == 3
def test_optimize_for_inference():
@trace(symbolic=True, capture_as_const=True)
def f(x):
return F.exp(x)
orig_model = io.BytesIO()
f(Tensor(5.0))
f.dump(orig_model, optimize_for_inference=False)
orig_model.seek(0)
optimize_model = io.BytesIO()
net = Net.load(orig_model)
net.dump(optimize_model, enable_io16xc32=True)
optimize_model.seek(0)
res = G.load_graph(optimize_model)
computing_input = res.output_vars_list[0].owner.inputs[0]
assert computing_input.dtype == np.float16
def test_reset_batchsize():
@trace(symbolic=True, capture_as_const=True)
def f(x):
return F.exp(x)
orig_model = io.BytesIO()
f(Tensor(np.random.random((3, 3, 224, 224))))
f.dump(orig_model, optimize_for_inference=False)
orig_model.seek(0)
modified_model = io.BytesIO()
net = Net.load(orig_model)
net.reset_batch_size(1)
net.dump(modified_model, optimize_for_inference=False)
modified_model.seek(0)
net1 = Net.load(modified_model)
assert net1.data_providers_filter.as_unique().shape[0] == 1
def test_modify_opr_name():
@trace(symbolic=True, capture_as_const=True)
def f(x):
return F.exp(x)
orig_model = io.BytesIO()
f(Tensor(np.random.random((3, 3, 224, 224))))
f.dump(orig_model, arg_names=["a"], optimize_for_inference=False)
orig_model.seek(0)
modified_model = io.BytesIO()
net = Net.load(orig_model)
net.modify_opr_names("net")
net.modify_opr_names(lambda x: "net1." + x)
net.dump(modified_model, optimize_for_inference=False)
modified_model.seek(0)
net1 = | Net.load(modified_model) | megengine.utils.network.Network.load |
import io
import numpy as np
import megengine.core.tensor.megbrain_graph as G
import megengine.functional as F
import megengine.module as M
import megengine.utils.network_node as N
from megengine.jit.tracing import trace
from megengine.tensor import Tensor
from megengine.utils.comp_graph_tools import GraphInference
from megengine.utils.network import Network as Net
from megengine.utils.network import as_oprnode, set_symbolic_shape
from megengine.utils.network_node import Host2DeviceCopy, VarNode
def test_metadata():
x = Tensor(0)
@trace(symbolic=True, capture_as_const=True)
def fwd(x):
return x * 2
fwd(x)
orig_model = io.BytesIO()
fwd.dump(orig_model, user_info="test", optimize_for_inference=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": "test",
"graph_modified": False, # False: tracing.dump
"optimized_for_inference": False,
}
orig_model.seek(0)
graph.dump(
orig_model,
user_info={"str": "x", "tensor": x, "module": M.Module, "none": None},
optimize_for_inference=True,
enable_nchw4=True,
enable_ioc16=True,
)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": {"str": "x", "tensor": x, "module": M.Module, "none": None},
"graph_modified": True, # True: Network.dump
"optimized_for_inference": True,
"enable_nchw4": True,
"enable_ioc16": True,
}
orig_model.seek(0)
fwd.dump(orig_model, enable_metadata=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata is None
def test_replace_var():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out = F.mul(vara, varb)
out = F.relu(out)
opnode = list(graph.opr_filter.has_input(vara))
repl_dict = {opnode[0].outputs[0]: out}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [6, 16])
def test_replace_opr():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out1 = F.sub(vara, varb)
out1 = F.relu(out1)
out1 = graph.add_dep_oprs(out1)
orig_opr = graph.opr_filter.has_input(vara).as_unique()
repl_dict = {orig_opr: out1[0].owner}
graph.replace_oprs(repl_dict)
modified_model1 = io.BytesIO()
graph.dump(modified_model1)
modified_model1.seek(0)
load_graph = GraphInference(modified_model1)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [0, 0])
def test_splice_network():
x = F.ones((2,))
y = F.ones((2,))
@trace(symbolic=True, capture_as_const=True)
def fun1(a, b):
return (a + b) * 2
@trace(symbolic=True, capture_as_const=True)
def fun2(a):
return a * 2 - 1
model = io.BytesIO()
fun1(x, y)
fun2(x)
fun1.dump(
model,
arg_names=["net1_i0", "net1_i1"],
output_names=["net1_o0"],
optimize_for_inference=False,
)
model.seek(0)
net1 = Net.load(model)
model.seek(0)
fun2.dump(
model,
arg_names=["net2_i0"],
output_names=["net2_o0"],
optimize_for_inference=False,
)
model.seek(0)
net2 = Net.load(model)
net1.add_output(*net2.output_vars)
var = net1.var_filter.name("net1_i0").as_unique()
repl_var = net2.var_filter.name("net2_o0").as_unique()
net1.replace_vars({var: repl_var})
assert "net1_i0" not in [var.name for var in net1.all_vars]
assert "net2_i0" in [var.name for var in net1.all_vars]
model.seek(0)
net1.dump(model, keep_var_name=2, optimize_for_inference=False)
model.seek(0)
net = Net.load(model)
assert "net1_i0" not in [var.name for var in net.all_vars]
assert "net2_i0" in [var.name for var in net.all_vars]
def test_modify_params():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
param_const = graph.params_filter.as_unique()
param_const.set_value(3)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [12, 18])
def test_make_const():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
const_b = graph.make_const(np.array([0.0, 0.0]), name="b")
varb = graph.var_filter.name("b").as_unique()
repl_dict = {varb: const_b}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a)
np.testing.assert_equal(out["o"], [2, 4])
def test_add_input():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
inp_c = graph.make_input_node((2,), np.int32, name="c")
varo = graph.var_filter.name("o").as_unique()
out = F.add(varo, inp_c)
out.name = "o1"
graph.remove_output(varo)
graph.add_output(out)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b, a)
np.testing.assert_equal(out["o1"], ((a + b) * 2 + a).numpy())
def test_add_remove_output():
a = Tensor([1.0, 2.0])
b = Tensor([3.0, 4.0])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2, (a - b)
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model,
arg_names=["a", "b"],
output_names=["o1", "o2"],
optimize_for_inference=False,
)
orig_model.seek(0)
net = Net.load(orig_model)
var_a = net.var_filter.name("a").as_unique()
var_b = net.var_filter.name("b").as_unique()
y1 = (var_a + var_b) * 3
y2 = F.sigmoid(var_a + var_b)
net.remove_output(*net.output_vars)
y1.name = "new_o1"
y2.name = "new_o2"
net.add_output(y1, y2)
modified_model = io.BytesIO()
net.dump(modified_model)
modified_model.seek(0)
g = GraphInference(modified_model)
out = g.run(a.numpy(), b.numpy())
np.testing.assert_equal(out["new_o1"], ((a + b) * 3).numpy())
np.testing.assert_equal(out["new_o2"], (F.sigmoid((a + b))).numpy())
def test_query():
class Model(M.Module):
def __init__(self):
super().__init__()
self.conv1 = M.Conv2d(3, 32, 3)
self.conv2 = M.Conv2d(32, 32, 3)
self.conv3 = M.Conv2d(32, 32, 3)
def forward(self, data):
x = self.conv1(data)
x = self.conv2(x)
x = self.conv3(x)
return x
n = Model()
@trace(symbolic=True, capture_as_const=True)
def fwd(data):
return n(data)
fwd(Tensor(np.random.random((1, 3, 224, 224))))
orig_model = io.BytesIO()
fwd.dump(
orig_model,
arg_names=["data"],
output_names="o",
keep_opr_name=True,
keep_var_name=True,
optimize_for_inference=False,
)
orig_model.seek(0)
graph = Net.load(orig_model)
r = graph.data_providers_filter.as_count()
assert r == 1
opr = graph.get_opr_by_type(Host2DeviceCopy)
assert isinstance(opr, Host2DeviceCopy)
r1 = graph.params_filter.as_count()
assert r1 == 6
r2 = graph.opr_filter.type(N.ConvolutionForward).as_count()
assert r2 == 3
r3 = graph.opr_filter.not_type(N.ConvolutionForward).as_count()
assert r3 == len(graph.all_oprs) - r2
var = graph.var_filter.name("data").as_unique()
r4 = graph.opr_filter.has_input(var).as_count()
assert r4 == 1
r5 = graph.opr_filter.name("data").as_count()
assert r5 == 1
opr = graph.get_opr_by_name("data")
assert isinstance(opr, Host2DeviceCopy)
var = graph.get_var_by_name("data")
assert isinstance(var, VarNode)
r6 = graph.var_filter.name("*bias").as_count()
assert r6 == 3
def test_optimize_for_inference():
@trace(symbolic=True, capture_as_const=True)
def f(x):
return F.exp(x)
orig_model = io.BytesIO()
f(Tensor(5.0))
f.dump(orig_model, optimize_for_inference=False)
orig_model.seek(0)
optimize_model = io.BytesIO()
net = Net.load(orig_model)
net.dump(optimize_model, enable_io16xc32=True)
optimize_model.seek(0)
res = G.load_graph(optimize_model)
computing_input = res.output_vars_list[0].owner.inputs[0]
assert computing_input.dtype == np.float16
def test_reset_batchsize():
@trace(symbolic=True, capture_as_const=True)
def f(x):
return F.exp(x)
orig_model = io.BytesIO()
f(Tensor(np.random.random((3, 3, 224, 224))))
f.dump(orig_model, optimize_for_inference=False)
orig_model.seek(0)
modified_model = io.BytesIO()
net = Net.load(orig_model)
net.reset_batch_size(1)
net.dump(modified_model, optimize_for_inference=False)
modified_model.seek(0)
net1 = Net.load(modified_model)
assert net1.data_providers_filter.as_unique().shape[0] == 1
def test_modify_opr_name():
@trace(symbolic=True, capture_as_const=True)
def f(x):
return F.exp(x)
orig_model = io.BytesIO()
f(Tensor(np.random.random((3, 3, 224, 224))))
f.dump(orig_model, arg_names=["a"], optimize_for_inference=False)
orig_model.seek(0)
modified_model = io.BytesIO()
net = Net.load(orig_model)
net.modify_opr_names("net")
net.modify_opr_names(lambda x: "net1." + x)
net.dump(modified_model, optimize_for_inference=False)
modified_model.seek(0)
net1 = Net.load(modified_model)
assert net1.data_providers_filter.as_unique().name == "net1.net.a"
def test_dump_cond_take():
a = | Tensor([1.0, 2.0]) | megengine.tensor.Tensor |
import io
import numpy as np
import megengine.core.tensor.megbrain_graph as G
import megengine.functional as F
import megengine.module as M
import megengine.utils.network_node as N
from megengine.jit.tracing import trace
from megengine.tensor import Tensor
from megengine.utils.comp_graph_tools import GraphInference
from megengine.utils.network import Network as Net
from megengine.utils.network import as_oprnode, set_symbolic_shape
from megengine.utils.network_node import Host2DeviceCopy, VarNode
def test_metadata():
x = Tensor(0)
@trace(symbolic=True, capture_as_const=True)
def fwd(x):
return x * 2
fwd(x)
orig_model = io.BytesIO()
fwd.dump(orig_model, user_info="test", optimize_for_inference=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": "test",
"graph_modified": False, # False: tracing.dump
"optimized_for_inference": False,
}
orig_model.seek(0)
graph.dump(
orig_model,
user_info={"str": "x", "tensor": x, "module": M.Module, "none": None},
optimize_for_inference=True,
enable_nchw4=True,
enable_ioc16=True,
)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": {"str": "x", "tensor": x, "module": M.Module, "none": None},
"graph_modified": True, # True: Network.dump
"optimized_for_inference": True,
"enable_nchw4": True,
"enable_ioc16": True,
}
orig_model.seek(0)
fwd.dump(orig_model, enable_metadata=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata is None
def test_replace_var():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out = F.mul(vara, varb)
out = F.relu(out)
opnode = list(graph.opr_filter.has_input(vara))
repl_dict = {opnode[0].outputs[0]: out}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [6, 16])
def test_replace_opr():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out1 = F.sub(vara, varb)
out1 = F.relu(out1)
out1 = graph.add_dep_oprs(out1)
orig_opr = graph.opr_filter.has_input(vara).as_unique()
repl_dict = {orig_opr: out1[0].owner}
graph.replace_oprs(repl_dict)
modified_model1 = io.BytesIO()
graph.dump(modified_model1)
modified_model1.seek(0)
load_graph = GraphInference(modified_model1)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [0, 0])
def test_splice_network():
x = F.ones((2,))
y = F.ones((2,))
@trace(symbolic=True, capture_as_const=True)
def fun1(a, b):
return (a + b) * 2
@trace(symbolic=True, capture_as_const=True)
def fun2(a):
return a * 2 - 1
model = io.BytesIO()
fun1(x, y)
fun2(x)
fun1.dump(
model,
arg_names=["net1_i0", "net1_i1"],
output_names=["net1_o0"],
optimize_for_inference=False,
)
model.seek(0)
net1 = Net.load(model)
model.seek(0)
fun2.dump(
model,
arg_names=["net2_i0"],
output_names=["net2_o0"],
optimize_for_inference=False,
)
model.seek(0)
net2 = Net.load(model)
net1.add_output(*net2.output_vars)
var = net1.var_filter.name("net1_i0").as_unique()
repl_var = net2.var_filter.name("net2_o0").as_unique()
net1.replace_vars({var: repl_var})
assert "net1_i0" not in [var.name for var in net1.all_vars]
assert "net2_i0" in [var.name for var in net1.all_vars]
model.seek(0)
net1.dump(model, keep_var_name=2, optimize_for_inference=False)
model.seek(0)
net = Net.load(model)
assert "net1_i0" not in [var.name for var in net.all_vars]
assert "net2_i0" in [var.name for var in net.all_vars]
def test_modify_params():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
param_const = graph.params_filter.as_unique()
param_const.set_value(3)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [12, 18])
def test_make_const():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
const_b = graph.make_const(np.array([0.0, 0.0]), name="b")
varb = graph.var_filter.name("b").as_unique()
repl_dict = {varb: const_b}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a)
np.testing.assert_equal(out["o"], [2, 4])
def test_add_input():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
inp_c = graph.make_input_node((2,), np.int32, name="c")
varo = graph.var_filter.name("o").as_unique()
out = F.add(varo, inp_c)
out.name = "o1"
graph.remove_output(varo)
graph.add_output(out)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b, a)
np.testing.assert_equal(out["o1"], ((a + b) * 2 + a).numpy())
def test_add_remove_output():
a = Tensor([1.0, 2.0])
b = Tensor([3.0, 4.0])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2, (a - b)
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model,
arg_names=["a", "b"],
output_names=["o1", "o2"],
optimize_for_inference=False,
)
orig_model.seek(0)
net = Net.load(orig_model)
var_a = net.var_filter.name("a").as_unique()
var_b = net.var_filter.name("b").as_unique()
y1 = (var_a + var_b) * 3
y2 = F.sigmoid(var_a + var_b)
net.remove_output(*net.output_vars)
y1.name = "new_o1"
y2.name = "new_o2"
net.add_output(y1, y2)
modified_model = io.BytesIO()
net.dump(modified_model)
modified_model.seek(0)
g = GraphInference(modified_model)
out = g.run(a.numpy(), b.numpy())
np.testing.assert_equal(out["new_o1"], ((a + b) * 3).numpy())
np.testing.assert_equal(out["new_o2"], (F.sigmoid((a + b))).numpy())
def test_query():
class Model(M.Module):
def __init__(self):
super().__init__()
self.conv1 = M.Conv2d(3, 32, 3)
self.conv2 = M.Conv2d(32, 32, 3)
self.conv3 = M.Conv2d(32, 32, 3)
def forward(self, data):
x = self.conv1(data)
x = self.conv2(x)
x = self.conv3(x)
return x
n = Model()
@trace(symbolic=True, capture_as_const=True)
def fwd(data):
return n(data)
fwd(Tensor(np.random.random((1, 3, 224, 224))))
orig_model = io.BytesIO()
fwd.dump(
orig_model,
arg_names=["data"],
output_names="o",
keep_opr_name=True,
keep_var_name=True,
optimize_for_inference=False,
)
orig_model.seek(0)
graph = Net.load(orig_model)
r = graph.data_providers_filter.as_count()
assert r == 1
opr = graph.get_opr_by_type(Host2DeviceCopy)
assert isinstance(opr, Host2DeviceCopy)
r1 = graph.params_filter.as_count()
assert r1 == 6
r2 = graph.opr_filter.type(N.ConvolutionForward).as_count()
assert r2 == 3
r3 = graph.opr_filter.not_type(N.ConvolutionForward).as_count()
assert r3 == len(graph.all_oprs) - r2
var = graph.var_filter.name("data").as_unique()
r4 = graph.opr_filter.has_input(var).as_count()
assert r4 == 1
r5 = graph.opr_filter.name("data").as_count()
assert r5 == 1
opr = graph.get_opr_by_name("data")
assert isinstance(opr, Host2DeviceCopy)
var = graph.get_var_by_name("data")
assert isinstance(var, VarNode)
r6 = graph.var_filter.name("*bias").as_count()
assert r6 == 3
def test_optimize_for_inference():
@trace(symbolic=True, capture_as_const=True)
def f(x):
return F.exp(x)
orig_model = io.BytesIO()
f(Tensor(5.0))
f.dump(orig_model, optimize_for_inference=False)
orig_model.seek(0)
optimize_model = io.BytesIO()
net = Net.load(orig_model)
net.dump(optimize_model, enable_io16xc32=True)
optimize_model.seek(0)
res = G.load_graph(optimize_model)
computing_input = res.output_vars_list[0].owner.inputs[0]
assert computing_input.dtype == np.float16
def test_reset_batchsize():
@trace(symbolic=True, capture_as_const=True)
def f(x):
return F.exp(x)
orig_model = io.BytesIO()
f(Tensor(np.random.random((3, 3, 224, 224))))
f.dump(orig_model, optimize_for_inference=False)
orig_model.seek(0)
modified_model = io.BytesIO()
net = Net.load(orig_model)
net.reset_batch_size(1)
net.dump(modified_model, optimize_for_inference=False)
modified_model.seek(0)
net1 = Net.load(modified_model)
assert net1.data_providers_filter.as_unique().shape[0] == 1
def test_modify_opr_name():
@trace(symbolic=True, capture_as_const=True)
def f(x):
return F.exp(x)
orig_model = io.BytesIO()
f(Tensor(np.random.random((3, 3, 224, 224))))
f.dump(orig_model, arg_names=["a"], optimize_for_inference=False)
orig_model.seek(0)
modified_model = io.BytesIO()
net = Net.load(orig_model)
net.modify_opr_names("net")
net.modify_opr_names(lambda x: "net1." + x)
net.dump(modified_model, optimize_for_inference=False)
modified_model.seek(0)
net1 = Net.load(modified_model)
assert net1.data_providers_filter.as_unique().name == "net1.net.a"
def test_dump_cond_take():
a = Tensor([1.0, 2.0])
@ | trace(symbolic=True, capture_as_const=True) | megengine.jit.tracing.trace |
import io
import numpy as np
import megengine.core.tensor.megbrain_graph as G
import megengine.functional as F
import megengine.module as M
import megengine.utils.network_node as N
from megengine.jit.tracing import trace
from megengine.tensor import Tensor
from megengine.utils.comp_graph_tools import GraphInference
from megengine.utils.network import Network as Net
from megengine.utils.network import as_oprnode, set_symbolic_shape
from megengine.utils.network_node import Host2DeviceCopy, VarNode
def test_metadata():
x = Tensor(0)
@trace(symbolic=True, capture_as_const=True)
def fwd(x):
return x * 2
fwd(x)
orig_model = io.BytesIO()
fwd.dump(orig_model, user_info="test", optimize_for_inference=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": "test",
"graph_modified": False, # False: tracing.dump
"optimized_for_inference": False,
}
orig_model.seek(0)
graph.dump(
orig_model,
user_info={"str": "x", "tensor": x, "module": M.Module, "none": None},
optimize_for_inference=True,
enable_nchw4=True,
enable_ioc16=True,
)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": {"str": "x", "tensor": x, "module": M.Module, "none": None},
"graph_modified": True, # True: Network.dump
"optimized_for_inference": True,
"enable_nchw4": True,
"enable_ioc16": True,
}
orig_model.seek(0)
fwd.dump(orig_model, enable_metadata=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata is None
def test_replace_var():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out = F.mul(vara, varb)
out = F.relu(out)
opnode = list(graph.opr_filter.has_input(vara))
repl_dict = {opnode[0].outputs[0]: out}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [6, 16])
def test_replace_opr():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out1 = F.sub(vara, varb)
out1 = F.relu(out1)
out1 = graph.add_dep_oprs(out1)
orig_opr = graph.opr_filter.has_input(vara).as_unique()
repl_dict = {orig_opr: out1[0].owner}
graph.replace_oprs(repl_dict)
modified_model1 = io.BytesIO()
graph.dump(modified_model1)
modified_model1.seek(0)
load_graph = GraphInference(modified_model1)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [0, 0])
def test_splice_network():
x = F.ones((2,))
y = F.ones((2,))
@trace(symbolic=True, capture_as_const=True)
def fun1(a, b):
return (a + b) * 2
@trace(symbolic=True, capture_as_const=True)
def fun2(a):
return a * 2 - 1
model = io.BytesIO()
fun1(x, y)
fun2(x)
fun1.dump(
model,
arg_names=["net1_i0", "net1_i1"],
output_names=["net1_o0"],
optimize_for_inference=False,
)
model.seek(0)
net1 = Net.load(model)
model.seek(0)
fun2.dump(
model,
arg_names=["net2_i0"],
output_names=["net2_o0"],
optimize_for_inference=False,
)
model.seek(0)
net2 = Net.load(model)
net1.add_output(*net2.output_vars)
var = net1.var_filter.name("net1_i0").as_unique()
repl_var = net2.var_filter.name("net2_o0").as_unique()
net1.replace_vars({var: repl_var})
assert "net1_i0" not in [var.name for var in net1.all_vars]
assert "net2_i0" in [var.name for var in net1.all_vars]
model.seek(0)
net1.dump(model, keep_var_name=2, optimize_for_inference=False)
model.seek(0)
net = Net.load(model)
assert "net1_i0" not in [var.name for var in net.all_vars]
assert "net2_i0" in [var.name for var in net.all_vars]
def test_modify_params():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
param_const = graph.params_filter.as_unique()
param_const.set_value(3)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [12, 18])
def test_make_const():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
const_b = graph.make_const(np.array([0.0, 0.0]), name="b")
varb = graph.var_filter.name("b").as_unique()
repl_dict = {varb: const_b}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a)
np.testing.assert_equal(out["o"], [2, 4])
def test_add_input():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
inp_c = graph.make_input_node((2,), np.int32, name="c")
varo = graph.var_filter.name("o").as_unique()
out = F.add(varo, inp_c)
out.name = "o1"
graph.remove_output(varo)
graph.add_output(out)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b, a)
np.testing.assert_equal(out["o1"], ((a + b) * 2 + a).numpy())
def test_add_remove_output():
a = Tensor([1.0, 2.0])
b = Tensor([3.0, 4.0])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2, (a - b)
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model,
arg_names=["a", "b"],
output_names=["o1", "o2"],
optimize_for_inference=False,
)
orig_model.seek(0)
net = Net.load(orig_model)
var_a = net.var_filter.name("a").as_unique()
var_b = net.var_filter.name("b").as_unique()
y1 = (var_a + var_b) * 3
y2 = F.sigmoid(var_a + var_b)
net.remove_output(*net.output_vars)
y1.name = "new_o1"
y2.name = "new_o2"
net.add_output(y1, y2)
modified_model = io.BytesIO()
net.dump(modified_model)
modified_model.seek(0)
g = GraphInference(modified_model)
out = g.run(a.numpy(), b.numpy())
np.testing.assert_equal(out["new_o1"], ((a + b) * 3).numpy())
np.testing.assert_equal(out["new_o2"], (F.sigmoid((a + b))).numpy())
def test_query():
class Model(M.Module):
def __init__(self):
super().__init__()
self.conv1 = M.Conv2d(3, 32, 3)
self.conv2 = M.Conv2d(32, 32, 3)
self.conv3 = M.Conv2d(32, 32, 3)
def forward(self, data):
x = self.conv1(data)
x = self.conv2(x)
x = self.conv3(x)
return x
n = Model()
@trace(symbolic=True, capture_as_const=True)
def fwd(data):
return n(data)
fwd(Tensor(np.random.random((1, 3, 224, 224))))
orig_model = io.BytesIO()
fwd.dump(
orig_model,
arg_names=["data"],
output_names="o",
keep_opr_name=True,
keep_var_name=True,
optimize_for_inference=False,
)
orig_model.seek(0)
graph = Net.load(orig_model)
r = graph.data_providers_filter.as_count()
assert r == 1
opr = graph.get_opr_by_type(Host2DeviceCopy)
assert isinstance(opr, Host2DeviceCopy)
r1 = graph.params_filter.as_count()
assert r1 == 6
r2 = graph.opr_filter.type(N.ConvolutionForward).as_count()
assert r2 == 3
r3 = graph.opr_filter.not_type(N.ConvolutionForward).as_count()
assert r3 == len(graph.all_oprs) - r2
var = graph.var_filter.name("data").as_unique()
r4 = graph.opr_filter.has_input(var).as_count()
assert r4 == 1
r5 = graph.opr_filter.name("data").as_count()
assert r5 == 1
opr = graph.get_opr_by_name("data")
assert isinstance(opr, Host2DeviceCopy)
var = graph.get_var_by_name("data")
assert isinstance(var, VarNode)
r6 = graph.var_filter.name("*bias").as_count()
assert r6 == 3
def test_optimize_for_inference():
@trace(symbolic=True, capture_as_const=True)
def f(x):
return F.exp(x)
orig_model = io.BytesIO()
f(Tensor(5.0))
f.dump(orig_model, optimize_for_inference=False)
orig_model.seek(0)
optimize_model = io.BytesIO()
net = Net.load(orig_model)
net.dump(optimize_model, enable_io16xc32=True)
optimize_model.seek(0)
res = G.load_graph(optimize_model)
computing_input = res.output_vars_list[0].owner.inputs[0]
assert computing_input.dtype == np.float16
def test_reset_batchsize():
@trace(symbolic=True, capture_as_const=True)
def f(x):
return F.exp(x)
orig_model = io.BytesIO()
f(Tensor(np.random.random((3, 3, 224, 224))))
f.dump(orig_model, optimize_for_inference=False)
orig_model.seek(0)
modified_model = io.BytesIO()
net = Net.load(orig_model)
net.reset_batch_size(1)
net.dump(modified_model, optimize_for_inference=False)
modified_model.seek(0)
net1 = Net.load(modified_model)
assert net1.data_providers_filter.as_unique().shape[0] == 1
def test_modify_opr_name():
@trace(symbolic=True, capture_as_const=True)
def f(x):
return F.exp(x)
orig_model = io.BytesIO()
f(Tensor(np.random.random((3, 3, 224, 224))))
f.dump(orig_model, arg_names=["a"], optimize_for_inference=False)
orig_model.seek(0)
modified_model = io.BytesIO()
net = Net.load(orig_model)
net.modify_opr_names("net")
net.modify_opr_names(lambda x: "net1." + x)
net.dump(modified_model, optimize_for_inference=False)
modified_model.seek(0)
net1 = Net.load(modified_model)
assert net1.data_providers_filter.as_unique().name == "net1.net.a"
def test_dump_cond_take():
a = Tensor([1.0, 2.0])
@trace(symbolic=True, capture_as_const=True)
def fwd(a):
return F.cond_take(a > 1, a)
fwd(a)
orig_model = io.BytesIO()
fwd.dump(
orig_model,
arg_names=["a"],
output_names=["o1", "o2"],
optimize_for_inference=False,
)
orig_model.seek(0)
net = | Net.load(orig_model) | megengine.utils.network.Network.load |
import io
import numpy as np
import megengine.core.tensor.megbrain_graph as G
import megengine.functional as F
import megengine.module as M
import megengine.utils.network_node as N
from megengine.jit.tracing import trace
from megengine.tensor import Tensor
from megengine.utils.comp_graph_tools import GraphInference
from megengine.utils.network import Network as Net
from megengine.utils.network import as_oprnode, set_symbolic_shape
from megengine.utils.network_node import Host2DeviceCopy, VarNode
def test_metadata():
x = Tensor(0)
@trace(symbolic=True, capture_as_const=True)
def fwd(x):
return x * 2
fwd(x)
orig_model = io.BytesIO()
fwd.dump(orig_model, user_info="test", optimize_for_inference=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": "test",
"graph_modified": False, # False: tracing.dump
"optimized_for_inference": False,
}
orig_model.seek(0)
graph.dump(
orig_model,
user_info={"str": "x", "tensor": x, "module": M.Module, "none": None},
optimize_for_inference=True,
enable_nchw4=True,
enable_ioc16=True,
)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": {"str": "x", "tensor": x, "module": M.Module, "none": None},
"graph_modified": True, # True: Network.dump
"optimized_for_inference": True,
"enable_nchw4": True,
"enable_ioc16": True,
}
orig_model.seek(0)
fwd.dump(orig_model, enable_metadata=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata is None
def test_replace_var():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out = F.mul(vara, varb)
out = F.relu(out)
opnode = list(graph.opr_filter.has_input(vara))
repl_dict = {opnode[0].outputs[0]: out}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [6, 16])
def test_replace_opr():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out1 = F.sub(vara, varb)
out1 = F.relu(out1)
out1 = graph.add_dep_oprs(out1)
orig_opr = graph.opr_filter.has_input(vara).as_unique()
repl_dict = {orig_opr: out1[0].owner}
graph.replace_oprs(repl_dict)
modified_model1 = io.BytesIO()
graph.dump(modified_model1)
modified_model1.seek(0)
load_graph = GraphInference(modified_model1)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [0, 0])
def test_splice_network():
x = F.ones((2,))
y = F.ones((2,))
@trace(symbolic=True, capture_as_const=True)
def fun1(a, b):
return (a + b) * 2
@trace(symbolic=True, capture_as_const=True)
def fun2(a):
return a * 2 - 1
model = io.BytesIO()
fun1(x, y)
fun2(x)
fun1.dump(
model,
arg_names=["net1_i0", "net1_i1"],
output_names=["net1_o0"],
optimize_for_inference=False,
)
model.seek(0)
net1 = Net.load(model)
model.seek(0)
fun2.dump(
model,
arg_names=["net2_i0"],
output_names=["net2_o0"],
optimize_for_inference=False,
)
model.seek(0)
net2 = Net.load(model)
net1.add_output(*net2.output_vars)
var = net1.var_filter.name("net1_i0").as_unique()
repl_var = net2.var_filter.name("net2_o0").as_unique()
net1.replace_vars({var: repl_var})
assert "net1_i0" not in [var.name for var in net1.all_vars]
assert "net2_i0" in [var.name for var in net1.all_vars]
model.seek(0)
net1.dump(model, keep_var_name=2, optimize_for_inference=False)
model.seek(0)
net = Net.load(model)
assert "net1_i0" not in [var.name for var in net.all_vars]
assert "net2_i0" in [var.name for var in net.all_vars]
def test_modify_params():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
param_const = graph.params_filter.as_unique()
param_const.set_value(3)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [12, 18])
def test_make_const():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
const_b = graph.make_const(np.array([0.0, 0.0]), name="b")
varb = graph.var_filter.name("b").as_unique()
repl_dict = {varb: const_b}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a)
np.testing.assert_equal(out["o"], [2, 4])
def test_add_input():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
inp_c = graph.make_input_node((2,), np.int32, name="c")
varo = graph.var_filter.name("o").as_unique()
out = F.add(varo, inp_c)
out.name = "o1"
graph.remove_output(varo)
graph.add_output(out)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b, a)
np.testing.assert_equal(out["o1"], ((a + b) * 2 + a).numpy())
def test_add_remove_output():
a = Tensor([1.0, 2.0])
b = Tensor([3.0, 4.0])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2, (a - b)
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model,
arg_names=["a", "b"],
output_names=["o1", "o2"],
optimize_for_inference=False,
)
orig_model.seek(0)
net = Net.load(orig_model)
var_a = net.var_filter.name("a").as_unique()
var_b = net.var_filter.name("b").as_unique()
y1 = (var_a + var_b) * 3
y2 = F.sigmoid(var_a + var_b)
net.remove_output(*net.output_vars)
y1.name = "new_o1"
y2.name = "new_o2"
net.add_output(y1, y2)
modified_model = io.BytesIO()
net.dump(modified_model)
modified_model.seek(0)
g = GraphInference(modified_model)
out = g.run(a.numpy(), b.numpy())
np.testing.assert_equal(out["new_o1"], ((a + b) * 3).numpy())
np.testing.assert_equal(out["new_o2"], (F.sigmoid((a + b))).numpy())
def test_query():
class Model(M.Module):
def __init__(self):
super().__init__()
self.conv1 = M.Conv2d(3, 32, 3)
self.conv2 = M.Conv2d(32, 32, 3)
self.conv3 = M.Conv2d(32, 32, 3)
def forward(self, data):
x = self.conv1(data)
x = self.conv2(x)
x = self.conv3(x)
return x
n = Model()
@trace(symbolic=True, capture_as_const=True)
def fwd(data):
return n(data)
fwd(Tensor(np.random.random((1, 3, 224, 224))))
orig_model = io.BytesIO()
fwd.dump(
orig_model,
arg_names=["data"],
output_names="o",
keep_opr_name=True,
keep_var_name=True,
optimize_for_inference=False,
)
orig_model.seek(0)
graph = Net.load(orig_model)
r = graph.data_providers_filter.as_count()
assert r == 1
opr = graph.get_opr_by_type(Host2DeviceCopy)
assert isinstance(opr, Host2DeviceCopy)
r1 = graph.params_filter.as_count()
assert r1 == 6
r2 = graph.opr_filter.type(N.ConvolutionForward).as_count()
assert r2 == 3
r3 = graph.opr_filter.not_type(N.ConvolutionForward).as_count()
assert r3 == len(graph.all_oprs) - r2
var = graph.var_filter.name("data").as_unique()
r4 = graph.opr_filter.has_input(var).as_count()
assert r4 == 1
r5 = graph.opr_filter.name("data").as_count()
assert r5 == 1
opr = graph.get_opr_by_name("data")
assert isinstance(opr, Host2DeviceCopy)
var = graph.get_var_by_name("data")
assert isinstance(var, VarNode)
r6 = graph.var_filter.name("*bias").as_count()
assert r6 == 3
def test_optimize_for_inference():
@trace(symbolic=True, capture_as_const=True)
def f(x):
return F.exp(x)
orig_model = io.BytesIO()
f(Tensor(5.0))
f.dump(orig_model, optimize_for_inference=False)
orig_model.seek(0)
optimize_model = io.BytesIO()
net = Net.load(orig_model)
net.dump(optimize_model, enable_io16xc32=True)
optimize_model.seek(0)
res = G.load_graph(optimize_model)
computing_input = res.output_vars_list[0].owner.inputs[0]
assert computing_input.dtype == np.float16
def test_reset_batchsize():
@trace(symbolic=True, capture_as_const=True)
def f(x):
return F.exp(x)
orig_model = io.BytesIO()
f(Tensor(np.random.random((3, 3, 224, 224))))
f.dump(orig_model, optimize_for_inference=False)
orig_model.seek(0)
modified_model = io.BytesIO()
net = Net.load(orig_model)
net.reset_batch_size(1)
net.dump(modified_model, optimize_for_inference=False)
modified_model.seek(0)
net1 = Net.load(modified_model)
assert net1.data_providers_filter.as_unique().shape[0] == 1
def test_modify_opr_name():
@trace(symbolic=True, capture_as_const=True)
def f(x):
return F.exp(x)
orig_model = io.BytesIO()
f(Tensor(np.random.random((3, 3, 224, 224))))
f.dump(orig_model, arg_names=["a"], optimize_for_inference=False)
orig_model.seek(0)
modified_model = io.BytesIO()
net = Net.load(orig_model)
net.modify_opr_names("net")
net.modify_opr_names(lambda x: "net1." + x)
net.dump(modified_model, optimize_for_inference=False)
modified_model.seek(0)
net1 = Net.load(modified_model)
assert net1.data_providers_filter.as_unique().name == "net1.net.a"
def test_dump_cond_take():
a = Tensor([1.0, 2.0])
@trace(symbolic=True, capture_as_const=True)
def fwd(a):
return F.cond_take(a > 1, a)
fwd(a)
orig_model = io.BytesIO()
fwd.dump(
orig_model,
arg_names=["a"],
output_names=["o1", "o2"],
optimize_for_inference=False,
)
orig_model.seek(0)
net = Net.load(orig_model)
var_a = net.input_vars[0]
val, idx = | F.cond_take(var_a > 1, var_a) | megengine.functional.cond_take |
import io
import numpy as np
import megengine.core.tensor.megbrain_graph as G
import megengine.functional as F
import megengine.module as M
import megengine.utils.network_node as N
from megengine.jit.tracing import trace
from megengine.tensor import Tensor
from megengine.utils.comp_graph_tools import GraphInference
from megengine.utils.network import Network as Net
from megengine.utils.network import as_oprnode, set_symbolic_shape
from megengine.utils.network_node import Host2DeviceCopy, VarNode
def test_metadata():
x = Tensor(0)
@trace(symbolic=True, capture_as_const=True)
def fwd(x):
return x * 2
fwd(x)
orig_model = io.BytesIO()
fwd.dump(orig_model, user_info="test", optimize_for_inference=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": "test",
"graph_modified": False, # False: tracing.dump
"optimized_for_inference": False,
}
orig_model.seek(0)
graph.dump(
orig_model,
user_info={"str": "x", "tensor": x, "module": M.Module, "none": None},
optimize_for_inference=True,
enable_nchw4=True,
enable_ioc16=True,
)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": {"str": "x", "tensor": x, "module": M.Module, "none": None},
"graph_modified": True, # True: Network.dump
"optimized_for_inference": True,
"enable_nchw4": True,
"enable_ioc16": True,
}
orig_model.seek(0)
fwd.dump(orig_model, enable_metadata=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata is None
def test_replace_var():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out = F.mul(vara, varb)
out = F.relu(out)
opnode = list(graph.opr_filter.has_input(vara))
repl_dict = {opnode[0].outputs[0]: out}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [6, 16])
def test_replace_opr():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out1 = F.sub(vara, varb)
out1 = F.relu(out1)
out1 = graph.add_dep_oprs(out1)
orig_opr = graph.opr_filter.has_input(vara).as_unique()
repl_dict = {orig_opr: out1[0].owner}
graph.replace_oprs(repl_dict)
modified_model1 = io.BytesIO()
graph.dump(modified_model1)
modified_model1.seek(0)
load_graph = GraphInference(modified_model1)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [0, 0])
def test_splice_network():
x = F.ones((2,))
y = F.ones((2,))
@trace(symbolic=True, capture_as_const=True)
def fun1(a, b):
return (a + b) * 2
@trace(symbolic=True, capture_as_const=True)
def fun2(a):
return a * 2 - 1
model = io.BytesIO()
fun1(x, y)
fun2(x)
fun1.dump(
model,
arg_names=["net1_i0", "net1_i1"],
output_names=["net1_o0"],
optimize_for_inference=False,
)
model.seek(0)
net1 = Net.load(model)
model.seek(0)
fun2.dump(
model,
arg_names=["net2_i0"],
output_names=["net2_o0"],
optimize_for_inference=False,
)
model.seek(0)
net2 = Net.load(model)
net1.add_output(*net2.output_vars)
var = net1.var_filter.name("net1_i0").as_unique()
repl_var = net2.var_filter.name("net2_o0").as_unique()
net1.replace_vars({var: repl_var})
assert "net1_i0" not in [var.name for var in net1.all_vars]
assert "net2_i0" in [var.name for var in net1.all_vars]
model.seek(0)
net1.dump(model, keep_var_name=2, optimize_for_inference=False)
model.seek(0)
net = Net.load(model)
assert "net1_i0" not in [var.name for var in net.all_vars]
assert "net2_i0" in [var.name for var in net.all_vars]
def test_modify_params():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
param_const = graph.params_filter.as_unique()
param_const.set_value(3)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [12, 18])
def test_make_const():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
const_b = graph.make_const(np.array([0.0, 0.0]), name="b")
varb = graph.var_filter.name("b").as_unique()
repl_dict = {varb: const_b}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a)
np.testing.assert_equal(out["o"], [2, 4])
def test_add_input():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
inp_c = graph.make_input_node((2,), np.int32, name="c")
varo = graph.var_filter.name("o").as_unique()
out = F.add(varo, inp_c)
out.name = "o1"
graph.remove_output(varo)
graph.add_output(out)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b, a)
np.testing.assert_equal(out["o1"], ((a + b) * 2 + a).numpy())
def test_add_remove_output():
a = Tensor([1.0, 2.0])
b = Tensor([3.0, 4.0])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2, (a - b)
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model,
arg_names=["a", "b"],
output_names=["o1", "o2"],
optimize_for_inference=False,
)
orig_model.seek(0)
net = Net.load(orig_model)
var_a = net.var_filter.name("a").as_unique()
var_b = net.var_filter.name("b").as_unique()
y1 = (var_a + var_b) * 3
y2 = F.sigmoid(var_a + var_b)
net.remove_output(*net.output_vars)
y1.name = "new_o1"
y2.name = "new_o2"
net.add_output(y1, y2)
modified_model = io.BytesIO()
net.dump(modified_model)
modified_model.seek(0)
g = GraphInference(modified_model)
out = g.run(a.numpy(), b.numpy())
np.testing.assert_equal(out["new_o1"], ((a + b) * 3).numpy())
np.testing.assert_equal(out["new_o2"], (F.sigmoid((a + b))).numpy())
def test_query():
class Model(M.Module):
def __init__(self):
super().__init__()
self.conv1 = M.Conv2d(3, 32, 3)
self.conv2 = M.Conv2d(32, 32, 3)
self.conv3 = M.Conv2d(32, 32, 3)
def forward(self, data):
x = self.conv1(data)
x = self.conv2(x)
x = self.conv3(x)
return x
n = Model()
@trace(symbolic=True, capture_as_const=True)
def fwd(data):
return n(data)
fwd(Tensor(np.random.random((1, 3, 224, 224))))
orig_model = io.BytesIO()
fwd.dump(
orig_model,
arg_names=["data"],
output_names="o",
keep_opr_name=True,
keep_var_name=True,
optimize_for_inference=False,
)
orig_model.seek(0)
graph = Net.load(orig_model)
r = graph.data_providers_filter.as_count()
assert r == 1
opr = graph.get_opr_by_type(Host2DeviceCopy)
assert isinstance(opr, Host2DeviceCopy)
r1 = graph.params_filter.as_count()
assert r1 == 6
r2 = graph.opr_filter.type(N.ConvolutionForward).as_count()
assert r2 == 3
r3 = graph.opr_filter.not_type(N.ConvolutionForward).as_count()
assert r3 == len(graph.all_oprs) - r2
var = graph.var_filter.name("data").as_unique()
r4 = graph.opr_filter.has_input(var).as_count()
assert r4 == 1
r5 = graph.opr_filter.name("data").as_count()
assert r5 == 1
opr = graph.get_opr_by_name("data")
assert isinstance(opr, Host2DeviceCopy)
var = graph.get_var_by_name("data")
assert isinstance(var, VarNode)
r6 = graph.var_filter.name("*bias").as_count()
assert r6 == 3
def test_optimize_for_inference():
@trace(symbolic=True, capture_as_const=True)
def f(x):
return F.exp(x)
orig_model = io.BytesIO()
f(Tensor(5.0))
f.dump(orig_model, optimize_for_inference=False)
orig_model.seek(0)
optimize_model = io.BytesIO()
net = Net.load(orig_model)
net.dump(optimize_model, enable_io16xc32=True)
optimize_model.seek(0)
res = G.load_graph(optimize_model)
computing_input = res.output_vars_list[0].owner.inputs[0]
assert computing_input.dtype == np.float16
def test_reset_batchsize():
@trace(symbolic=True, capture_as_const=True)
def f(x):
return F.exp(x)
orig_model = io.BytesIO()
f(Tensor(np.random.random((3, 3, 224, 224))))
f.dump(orig_model, optimize_for_inference=False)
orig_model.seek(0)
modified_model = io.BytesIO()
net = Net.load(orig_model)
net.reset_batch_size(1)
net.dump(modified_model, optimize_for_inference=False)
modified_model.seek(0)
net1 = Net.load(modified_model)
assert net1.data_providers_filter.as_unique().shape[0] == 1
def test_modify_opr_name():
@trace(symbolic=True, capture_as_const=True)
def f(x):
return F.exp(x)
orig_model = io.BytesIO()
f(Tensor(np.random.random((3, 3, 224, 224))))
f.dump(orig_model, arg_names=["a"], optimize_for_inference=False)
orig_model.seek(0)
modified_model = io.BytesIO()
net = Net.load(orig_model)
net.modify_opr_names("net")
net.modify_opr_names(lambda x: "net1." + x)
net.dump(modified_model, optimize_for_inference=False)
modified_model.seek(0)
net1 = Net.load(modified_model)
assert net1.data_providers_filter.as_unique().name == "net1.net.a"
def test_dump_cond_take():
a = Tensor([1.0, 2.0])
@trace(symbolic=True, capture_as_const=True)
def fwd(a):
return F.cond_take(a > 1, a)
fwd(a)
orig_model = io.BytesIO()
fwd.dump(
orig_model,
arg_names=["a"],
output_names=["o1", "o2"],
optimize_for_inference=False,
)
orig_model.seek(0)
net = Net.load(orig_model)
var_a = net.input_vars[0]
val, idx = F.cond_take(var_a > 1, var_a)
net.remove_output(*net.output_vars)
val.name = "value"
idx.name = "index"
net.add_output(val, idx)
modified_model = io.BytesIO()
net.dump(modified_model)
modified_model.seek(0)
g = | GraphInference(modified_model) | megengine.utils.comp_graph_tools.GraphInference |
import io
import numpy as np
import megengine.core.tensor.megbrain_graph as G
import megengine.functional as F
import megengine.module as M
import megengine.utils.network_node as N
from megengine.jit.tracing import trace
from megengine.tensor import Tensor
from megengine.utils.comp_graph_tools import GraphInference
from megengine.utils.network import Network as Net
from megengine.utils.network import as_oprnode, set_symbolic_shape
from megengine.utils.network_node import Host2DeviceCopy, VarNode
def test_metadata():
x = Tensor(0)
@trace(symbolic=True, capture_as_const=True)
def fwd(x):
return x * 2
fwd(x)
orig_model = io.BytesIO()
fwd.dump(orig_model, user_info="test", optimize_for_inference=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": "test",
"graph_modified": False, # False: tracing.dump
"optimized_for_inference": False,
}
orig_model.seek(0)
graph.dump(
orig_model,
user_info={"str": "x", "tensor": x, "module": M.Module, "none": None},
optimize_for_inference=True,
enable_nchw4=True,
enable_ioc16=True,
)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": {"str": "x", "tensor": x, "module": M.Module, "none": None},
"graph_modified": True, # True: Network.dump
"optimized_for_inference": True,
"enable_nchw4": True,
"enable_ioc16": True,
}
orig_model.seek(0)
fwd.dump(orig_model, enable_metadata=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata is None
def test_replace_var():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out = F.mul(vara, varb)
out = F.relu(out)
opnode = list(graph.opr_filter.has_input(vara))
repl_dict = {opnode[0].outputs[0]: out}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [6, 16])
def test_replace_opr():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out1 = F.sub(vara, varb)
out1 = F.relu(out1)
out1 = graph.add_dep_oprs(out1)
orig_opr = graph.opr_filter.has_input(vara).as_unique()
repl_dict = {orig_opr: out1[0].owner}
graph.replace_oprs(repl_dict)
modified_model1 = io.BytesIO()
graph.dump(modified_model1)
modified_model1.seek(0)
load_graph = GraphInference(modified_model1)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [0, 0])
def test_splice_network():
x = F.ones((2,))
y = F.ones((2,))
@trace(symbolic=True, capture_as_const=True)
def fun1(a, b):
return (a + b) * 2
@trace(symbolic=True, capture_as_const=True)
def fun2(a):
return a * 2 - 1
model = io.BytesIO()
fun1(x, y)
fun2(x)
fun1.dump(
model,
arg_names=["net1_i0", "net1_i1"],
output_names=["net1_o0"],
optimize_for_inference=False,
)
model.seek(0)
net1 = Net.load(model)
model.seek(0)
fun2.dump(
model,
arg_names=["net2_i0"],
output_names=["net2_o0"],
optimize_for_inference=False,
)
model.seek(0)
net2 = Net.load(model)
net1.add_output(*net2.output_vars)
var = net1.var_filter.name("net1_i0").as_unique()
repl_var = net2.var_filter.name("net2_o0").as_unique()
net1.replace_vars({var: repl_var})
assert "net1_i0" not in [var.name for var in net1.all_vars]
assert "net2_i0" in [var.name for var in net1.all_vars]
model.seek(0)
net1.dump(model, keep_var_name=2, optimize_for_inference=False)
model.seek(0)
net = Net.load(model)
assert "net1_i0" not in [var.name for var in net.all_vars]
assert "net2_i0" in [var.name for var in net.all_vars]
def test_modify_params():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
param_const = graph.params_filter.as_unique()
param_const.set_value(3)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [12, 18])
def test_make_const():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
const_b = graph.make_const(np.array([0.0, 0.0]), name="b")
varb = graph.var_filter.name("b").as_unique()
repl_dict = {varb: const_b}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a)
np.testing.assert_equal(out["o"], [2, 4])
def test_add_input():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
inp_c = graph.make_input_node((2,), np.int32, name="c")
varo = graph.var_filter.name("o").as_unique()
out = F.add(varo, inp_c)
out.name = "o1"
graph.remove_output(varo)
graph.add_output(out)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b, a)
np.testing.assert_equal(out["o1"], ((a + b) * 2 + a).numpy())
def test_add_remove_output():
a = Tensor([1.0, 2.0])
b = Tensor([3.0, 4.0])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2, (a - b)
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model,
arg_names=["a", "b"],
output_names=["o1", "o2"],
optimize_for_inference=False,
)
orig_model.seek(0)
net = Net.load(orig_model)
var_a = net.var_filter.name("a").as_unique()
var_b = net.var_filter.name("b").as_unique()
y1 = (var_a + var_b) * 3
y2 = F.sigmoid(var_a + var_b)
net.remove_output(*net.output_vars)
y1.name = "new_o1"
y2.name = "new_o2"
net.add_output(y1, y2)
modified_model = io.BytesIO()
net.dump(modified_model)
modified_model.seek(0)
g = GraphInference(modified_model)
out = g.run(a.numpy(), b.numpy())
np.testing.assert_equal(out["new_o1"], ((a + b) * 3).numpy())
np.testing.assert_equal(out["new_o2"], (F.sigmoid((a + b))).numpy())
def test_query():
class Model(M.Module):
def __init__(self):
super().__init__()
self.conv1 = M.Conv2d(3, 32, 3)
self.conv2 = M.Conv2d(32, 32, 3)
self.conv3 = M.Conv2d(32, 32, 3)
def forward(self, data):
x = self.conv1(data)
x = self.conv2(x)
x = self.conv3(x)
return x
n = Model()
@trace(symbolic=True, capture_as_const=True)
def fwd(data):
return n(data)
fwd(Tensor(np.random.random((1, 3, 224, 224))))
orig_model = io.BytesIO()
fwd.dump(
orig_model,
arg_names=["data"],
output_names="o",
keep_opr_name=True,
keep_var_name=True,
optimize_for_inference=False,
)
orig_model.seek(0)
graph = Net.load(orig_model)
r = graph.data_providers_filter.as_count()
assert r == 1
opr = graph.get_opr_by_type(Host2DeviceCopy)
assert isinstance(opr, Host2DeviceCopy)
r1 = graph.params_filter.as_count()
assert r1 == 6
r2 = graph.opr_filter.type(N.ConvolutionForward).as_count()
assert r2 == 3
r3 = graph.opr_filter.not_type(N.ConvolutionForward).as_count()
assert r3 == len(graph.all_oprs) - r2
var = graph.var_filter.name("data").as_unique()
r4 = graph.opr_filter.has_input(var).as_count()
assert r4 == 1
r5 = graph.opr_filter.name("data").as_count()
assert r5 == 1
opr = graph.get_opr_by_name("data")
assert isinstance(opr, Host2DeviceCopy)
var = graph.get_var_by_name("data")
assert isinstance(var, VarNode)
r6 = graph.var_filter.name("*bias").as_count()
assert r6 == 3
def test_optimize_for_inference():
@trace(symbolic=True, capture_as_const=True)
def f(x):
return F.exp(x)
orig_model = io.BytesIO()
f(Tensor(5.0))
f.dump(orig_model, optimize_for_inference=False)
orig_model.seek(0)
optimize_model = io.BytesIO()
net = Net.load(orig_model)
net.dump(optimize_model, enable_io16xc32=True)
optimize_model.seek(0)
res = G.load_graph(optimize_model)
computing_input = res.output_vars_list[0].owner.inputs[0]
assert computing_input.dtype == np.float16
def test_reset_batchsize():
@trace(symbolic=True, capture_as_const=True)
def f(x):
return F.exp(x)
orig_model = io.BytesIO()
f(Tensor(np.random.random((3, 3, 224, 224))))
f.dump(orig_model, optimize_for_inference=False)
orig_model.seek(0)
modified_model = io.BytesIO()
net = Net.load(orig_model)
net.reset_batch_size(1)
net.dump(modified_model, optimize_for_inference=False)
modified_model.seek(0)
net1 = Net.load(modified_model)
assert net1.data_providers_filter.as_unique().shape[0] == 1
def test_modify_opr_name():
@trace(symbolic=True, capture_as_const=True)
def f(x):
return F.exp(x)
orig_model = io.BytesIO()
f(Tensor(np.random.random((3, 3, 224, 224))))
f.dump(orig_model, arg_names=["a"], optimize_for_inference=False)
orig_model.seek(0)
modified_model = io.BytesIO()
net = Net.load(orig_model)
net.modify_opr_names("net")
net.modify_opr_names(lambda x: "net1." + x)
net.dump(modified_model, optimize_for_inference=False)
modified_model.seek(0)
net1 = Net.load(modified_model)
assert net1.data_providers_filter.as_unique().name == "net1.net.a"
def test_dump_cond_take():
a = Tensor([1.0, 2.0])
@trace(symbolic=True, capture_as_const=True)
def fwd(a):
return F.cond_take(a > 1, a)
fwd(a)
orig_model = io.BytesIO()
fwd.dump(
orig_model,
arg_names=["a"],
output_names=["o1", "o2"],
optimize_for_inference=False,
)
orig_model.seek(0)
net = Net.load(orig_model)
var_a = net.input_vars[0]
val, idx = F.cond_take(var_a > 1, var_a)
net.remove_output(*net.output_vars)
val.name = "value"
idx.name = "index"
net.add_output(val, idx)
modified_model = io.BytesIO()
net.dump(modified_model)
modified_model.seek(0)
g = GraphInference(modified_model)
out = g.run(a.numpy())
data = a.numpy()
mask = a.numpy() > 1
np.testing.assert_equal(out["index"], np.where(mask.reshape(-1))[0])
np.testing.assert_equal(out["value"], data[mask])
def test_set_symbolic_shape():
a = | Tensor([1.0, 2.0]) | megengine.tensor.Tensor |
import io
import numpy as np
import megengine.core.tensor.megbrain_graph as G
import megengine.functional as F
import megengine.module as M
import megengine.utils.network_node as N
from megengine.jit.tracing import trace
from megengine.tensor import Tensor
from megengine.utils.comp_graph_tools import GraphInference
from megengine.utils.network import Network as Net
from megengine.utils.network import as_oprnode, set_symbolic_shape
from megengine.utils.network_node import Host2DeviceCopy, VarNode
def test_metadata():
x = Tensor(0)
@trace(symbolic=True, capture_as_const=True)
def fwd(x):
return x * 2
fwd(x)
orig_model = io.BytesIO()
fwd.dump(orig_model, user_info="test", optimize_for_inference=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": "test",
"graph_modified": False, # False: tracing.dump
"optimized_for_inference": False,
}
orig_model.seek(0)
graph.dump(
orig_model,
user_info={"str": "x", "tensor": x, "module": M.Module, "none": None},
optimize_for_inference=True,
enable_nchw4=True,
enable_ioc16=True,
)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": {"str": "x", "tensor": x, "module": M.Module, "none": None},
"graph_modified": True, # True: Network.dump
"optimized_for_inference": True,
"enable_nchw4": True,
"enable_ioc16": True,
}
orig_model.seek(0)
fwd.dump(orig_model, enable_metadata=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata is None
def test_replace_var():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out = F.mul(vara, varb)
out = F.relu(out)
opnode = list(graph.opr_filter.has_input(vara))
repl_dict = {opnode[0].outputs[0]: out}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [6, 16])
def test_replace_opr():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out1 = F.sub(vara, varb)
out1 = F.relu(out1)
out1 = graph.add_dep_oprs(out1)
orig_opr = graph.opr_filter.has_input(vara).as_unique()
repl_dict = {orig_opr: out1[0].owner}
graph.replace_oprs(repl_dict)
modified_model1 = io.BytesIO()
graph.dump(modified_model1)
modified_model1.seek(0)
load_graph = GraphInference(modified_model1)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [0, 0])
def test_splice_network():
x = F.ones((2,))
y = F.ones((2,))
@trace(symbolic=True, capture_as_const=True)
def fun1(a, b):
return (a + b) * 2
@trace(symbolic=True, capture_as_const=True)
def fun2(a):
return a * 2 - 1
model = io.BytesIO()
fun1(x, y)
fun2(x)
fun1.dump(
model,
arg_names=["net1_i0", "net1_i1"],
output_names=["net1_o0"],
optimize_for_inference=False,
)
model.seek(0)
net1 = Net.load(model)
model.seek(0)
fun2.dump(
model,
arg_names=["net2_i0"],
output_names=["net2_o0"],
optimize_for_inference=False,
)
model.seek(0)
net2 = Net.load(model)
net1.add_output(*net2.output_vars)
var = net1.var_filter.name("net1_i0").as_unique()
repl_var = net2.var_filter.name("net2_o0").as_unique()
net1.replace_vars({var: repl_var})
assert "net1_i0" not in [var.name for var in net1.all_vars]
assert "net2_i0" in [var.name for var in net1.all_vars]
model.seek(0)
net1.dump(model, keep_var_name=2, optimize_for_inference=False)
model.seek(0)
net = Net.load(model)
assert "net1_i0" not in [var.name for var in net.all_vars]
assert "net2_i0" in [var.name for var in net.all_vars]
def test_modify_params():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
param_const = graph.params_filter.as_unique()
param_const.set_value(3)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [12, 18])
def test_make_const():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
const_b = graph.make_const(np.array([0.0, 0.0]), name="b")
varb = graph.var_filter.name("b").as_unique()
repl_dict = {varb: const_b}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a)
np.testing.assert_equal(out["o"], [2, 4])
def test_add_input():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
inp_c = graph.make_input_node((2,), np.int32, name="c")
varo = graph.var_filter.name("o").as_unique()
out = F.add(varo, inp_c)
out.name = "o1"
graph.remove_output(varo)
graph.add_output(out)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b, a)
np.testing.assert_equal(out["o1"], ((a + b) * 2 + a).numpy())
def test_add_remove_output():
a = Tensor([1.0, 2.0])
b = Tensor([3.0, 4.0])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2, (a - b)
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model,
arg_names=["a", "b"],
output_names=["o1", "o2"],
optimize_for_inference=False,
)
orig_model.seek(0)
net = Net.load(orig_model)
var_a = net.var_filter.name("a").as_unique()
var_b = net.var_filter.name("b").as_unique()
y1 = (var_a + var_b) * 3
y2 = F.sigmoid(var_a + var_b)
net.remove_output(*net.output_vars)
y1.name = "new_o1"
y2.name = "new_o2"
net.add_output(y1, y2)
modified_model = io.BytesIO()
net.dump(modified_model)
modified_model.seek(0)
g = GraphInference(modified_model)
out = g.run(a.numpy(), b.numpy())
np.testing.assert_equal(out["new_o1"], ((a + b) * 3).numpy())
np.testing.assert_equal(out["new_o2"], (F.sigmoid((a + b))).numpy())
def test_query():
class Model(M.Module):
def __init__(self):
super().__init__()
self.conv1 = M.Conv2d(3, 32, 3)
self.conv2 = M.Conv2d(32, 32, 3)
self.conv3 = M.Conv2d(32, 32, 3)
def forward(self, data):
x = self.conv1(data)
x = self.conv2(x)
x = self.conv3(x)
return x
n = Model()
@trace(symbolic=True, capture_as_const=True)
def fwd(data):
return n(data)
fwd(Tensor(np.random.random((1, 3, 224, 224))))
orig_model = io.BytesIO()
fwd.dump(
orig_model,
arg_names=["data"],
output_names="o",
keep_opr_name=True,
keep_var_name=True,
optimize_for_inference=False,
)
orig_model.seek(0)
graph = Net.load(orig_model)
r = graph.data_providers_filter.as_count()
assert r == 1
opr = graph.get_opr_by_type(Host2DeviceCopy)
assert isinstance(opr, Host2DeviceCopy)
r1 = graph.params_filter.as_count()
assert r1 == 6
r2 = graph.opr_filter.type(N.ConvolutionForward).as_count()
assert r2 == 3
r3 = graph.opr_filter.not_type(N.ConvolutionForward).as_count()
assert r3 == len(graph.all_oprs) - r2
var = graph.var_filter.name("data").as_unique()
r4 = graph.opr_filter.has_input(var).as_count()
assert r4 == 1
r5 = graph.opr_filter.name("data").as_count()
assert r5 == 1
opr = graph.get_opr_by_name("data")
assert isinstance(opr, Host2DeviceCopy)
var = graph.get_var_by_name("data")
assert isinstance(var, VarNode)
r6 = graph.var_filter.name("*bias").as_count()
assert r6 == 3
def test_optimize_for_inference():
@trace(symbolic=True, capture_as_const=True)
def f(x):
return F.exp(x)
orig_model = io.BytesIO()
f(Tensor(5.0))
f.dump(orig_model, optimize_for_inference=False)
orig_model.seek(0)
optimize_model = io.BytesIO()
net = Net.load(orig_model)
net.dump(optimize_model, enable_io16xc32=True)
optimize_model.seek(0)
res = G.load_graph(optimize_model)
computing_input = res.output_vars_list[0].owner.inputs[0]
assert computing_input.dtype == np.float16
def test_reset_batchsize():
@trace(symbolic=True, capture_as_const=True)
def f(x):
return F.exp(x)
orig_model = io.BytesIO()
f(Tensor(np.random.random((3, 3, 224, 224))))
f.dump(orig_model, optimize_for_inference=False)
orig_model.seek(0)
modified_model = io.BytesIO()
net = Net.load(orig_model)
net.reset_batch_size(1)
net.dump(modified_model, optimize_for_inference=False)
modified_model.seek(0)
net1 = Net.load(modified_model)
assert net1.data_providers_filter.as_unique().shape[0] == 1
def test_modify_opr_name():
@trace(symbolic=True, capture_as_const=True)
def f(x):
return F.exp(x)
orig_model = io.BytesIO()
f(Tensor(np.random.random((3, 3, 224, 224))))
f.dump(orig_model, arg_names=["a"], optimize_for_inference=False)
orig_model.seek(0)
modified_model = io.BytesIO()
net = Net.load(orig_model)
net.modify_opr_names("net")
net.modify_opr_names(lambda x: "net1." + x)
net.dump(modified_model, optimize_for_inference=False)
modified_model.seek(0)
net1 = Net.load(modified_model)
assert net1.data_providers_filter.as_unique().name == "net1.net.a"
def test_dump_cond_take():
a = Tensor([1.0, 2.0])
@trace(symbolic=True, capture_as_const=True)
def fwd(a):
return F.cond_take(a > 1, a)
fwd(a)
orig_model = io.BytesIO()
fwd.dump(
orig_model,
arg_names=["a"],
output_names=["o1", "o2"],
optimize_for_inference=False,
)
orig_model.seek(0)
net = Net.load(orig_model)
var_a = net.input_vars[0]
val, idx = F.cond_take(var_a > 1, var_a)
net.remove_output(*net.output_vars)
val.name = "value"
idx.name = "index"
net.add_output(val, idx)
modified_model = io.BytesIO()
net.dump(modified_model)
modified_model.seek(0)
g = GraphInference(modified_model)
out = g.run(a.numpy())
data = a.numpy()
mask = a.numpy() > 1
np.testing.assert_equal(out["index"], np.where(mask.reshape(-1))[0])
np.testing.assert_equal(out["value"], data[mask])
def test_set_symbolic_shape():
a = Tensor([1.0, 2.0])
@ | trace(symbolic=True, capture_as_const=True) | megengine.jit.tracing.trace |
import io
import numpy as np
import megengine.core.tensor.megbrain_graph as G
import megengine.functional as F
import megengine.module as M
import megengine.utils.network_node as N
from megengine.jit.tracing import trace
from megengine.tensor import Tensor
from megengine.utils.comp_graph_tools import GraphInference
from megengine.utils.network import Network as Net
from megengine.utils.network import as_oprnode, set_symbolic_shape
from megengine.utils.network_node import Host2DeviceCopy, VarNode
def test_metadata():
x = Tensor(0)
@trace(symbolic=True, capture_as_const=True)
def fwd(x):
return x * 2
fwd(x)
orig_model = io.BytesIO()
fwd.dump(orig_model, user_info="test", optimize_for_inference=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": "test",
"graph_modified": False, # False: tracing.dump
"optimized_for_inference": False,
}
orig_model.seek(0)
graph.dump(
orig_model,
user_info={"str": "x", "tensor": x, "module": M.Module, "none": None},
optimize_for_inference=True,
enable_nchw4=True,
enable_ioc16=True,
)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": {"str": "x", "tensor": x, "module": M.Module, "none": None},
"graph_modified": True, # True: Network.dump
"optimized_for_inference": True,
"enable_nchw4": True,
"enable_ioc16": True,
}
orig_model.seek(0)
fwd.dump(orig_model, enable_metadata=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata is None
def test_replace_var():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out = F.mul(vara, varb)
out = F.relu(out)
opnode = list(graph.opr_filter.has_input(vara))
repl_dict = {opnode[0].outputs[0]: out}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [6, 16])
def test_replace_opr():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out1 = F.sub(vara, varb)
out1 = F.relu(out1)
out1 = graph.add_dep_oprs(out1)
orig_opr = graph.opr_filter.has_input(vara).as_unique()
repl_dict = {orig_opr: out1[0].owner}
graph.replace_oprs(repl_dict)
modified_model1 = io.BytesIO()
graph.dump(modified_model1)
modified_model1.seek(0)
load_graph = GraphInference(modified_model1)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [0, 0])
def test_splice_network():
x = F.ones((2,))
y = F.ones((2,))
@trace(symbolic=True, capture_as_const=True)
def fun1(a, b):
return (a + b) * 2
@trace(symbolic=True, capture_as_const=True)
def fun2(a):
return a * 2 - 1
model = io.BytesIO()
fun1(x, y)
fun2(x)
fun1.dump(
model,
arg_names=["net1_i0", "net1_i1"],
output_names=["net1_o0"],
optimize_for_inference=False,
)
model.seek(0)
net1 = Net.load(model)
model.seek(0)
fun2.dump(
model,
arg_names=["net2_i0"],
output_names=["net2_o0"],
optimize_for_inference=False,
)
model.seek(0)
net2 = Net.load(model)
net1.add_output(*net2.output_vars)
var = net1.var_filter.name("net1_i0").as_unique()
repl_var = net2.var_filter.name("net2_o0").as_unique()
net1.replace_vars({var: repl_var})
assert "net1_i0" not in [var.name for var in net1.all_vars]
assert "net2_i0" in [var.name for var in net1.all_vars]
model.seek(0)
net1.dump(model, keep_var_name=2, optimize_for_inference=False)
model.seek(0)
net = Net.load(model)
assert "net1_i0" not in [var.name for var in net.all_vars]
assert "net2_i0" in [var.name for var in net.all_vars]
def test_modify_params():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
param_const = graph.params_filter.as_unique()
param_const.set_value(3)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [12, 18])
def test_make_const():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
const_b = graph.make_const(np.array([0.0, 0.0]), name="b")
varb = graph.var_filter.name("b").as_unique()
repl_dict = {varb: const_b}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a)
np.testing.assert_equal(out["o"], [2, 4])
def test_add_input():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
inp_c = graph.make_input_node((2,), np.int32, name="c")
varo = graph.var_filter.name("o").as_unique()
out = F.add(varo, inp_c)
out.name = "o1"
graph.remove_output(varo)
graph.add_output(out)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b, a)
np.testing.assert_equal(out["o1"], ((a + b) * 2 + a).numpy())
def test_add_remove_output():
a = Tensor([1.0, 2.0])
b = Tensor([3.0, 4.0])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2, (a - b)
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model,
arg_names=["a", "b"],
output_names=["o1", "o2"],
optimize_for_inference=False,
)
orig_model.seek(0)
net = Net.load(orig_model)
var_a = net.var_filter.name("a").as_unique()
var_b = net.var_filter.name("b").as_unique()
y1 = (var_a + var_b) * 3
y2 = F.sigmoid(var_a + var_b)
net.remove_output(*net.output_vars)
y1.name = "new_o1"
y2.name = "new_o2"
net.add_output(y1, y2)
modified_model = io.BytesIO()
net.dump(modified_model)
modified_model.seek(0)
g = GraphInference(modified_model)
out = g.run(a.numpy(), b.numpy())
np.testing.assert_equal(out["new_o1"], ((a + b) * 3).numpy())
np.testing.assert_equal(out["new_o2"], (F.sigmoid((a + b))).numpy())
def test_query():
class Model(M.Module):
def __init__(self):
super().__init__()
self.conv1 = M.Conv2d(3, 32, 3)
self.conv2 = M.Conv2d(32, 32, 3)
self.conv3 = M.Conv2d(32, 32, 3)
def forward(self, data):
x = self.conv1(data)
x = self.conv2(x)
x = self.conv3(x)
return x
n = Model()
@trace(symbolic=True, capture_as_const=True)
def fwd(data):
return n(data)
fwd(Tensor(np.random.random((1, 3, 224, 224))))
orig_model = io.BytesIO()
fwd.dump(
orig_model,
arg_names=["data"],
output_names="o",
keep_opr_name=True,
keep_var_name=True,
optimize_for_inference=False,
)
orig_model.seek(0)
graph = Net.load(orig_model)
r = graph.data_providers_filter.as_count()
assert r == 1
opr = graph.get_opr_by_type(Host2DeviceCopy)
assert isinstance(opr, Host2DeviceCopy)
r1 = graph.params_filter.as_count()
assert r1 == 6
r2 = graph.opr_filter.type(N.ConvolutionForward).as_count()
assert r2 == 3
r3 = graph.opr_filter.not_type(N.ConvolutionForward).as_count()
assert r3 == len(graph.all_oprs) - r2
var = graph.var_filter.name("data").as_unique()
r4 = graph.opr_filter.has_input(var).as_count()
assert r4 == 1
r5 = graph.opr_filter.name("data").as_count()
assert r5 == 1
opr = graph.get_opr_by_name("data")
assert isinstance(opr, Host2DeviceCopy)
var = graph.get_var_by_name("data")
assert isinstance(var, VarNode)
r6 = graph.var_filter.name("*bias").as_count()
assert r6 == 3
def test_optimize_for_inference():
@trace(symbolic=True, capture_as_const=True)
def f(x):
return F.exp(x)
orig_model = io.BytesIO()
f(Tensor(5.0))
f.dump(orig_model, optimize_for_inference=False)
orig_model.seek(0)
optimize_model = io.BytesIO()
net = Net.load(orig_model)
net.dump(optimize_model, enable_io16xc32=True)
optimize_model.seek(0)
res = G.load_graph(optimize_model)
computing_input = res.output_vars_list[0].owner.inputs[0]
assert computing_input.dtype == np.float16
def test_reset_batchsize():
@trace(symbolic=True, capture_as_const=True)
def f(x):
return F.exp(x)
orig_model = io.BytesIO()
f(Tensor(np.random.random((3, 3, 224, 224))))
f.dump(orig_model, optimize_for_inference=False)
orig_model.seek(0)
modified_model = io.BytesIO()
net = Net.load(orig_model)
net.reset_batch_size(1)
net.dump(modified_model, optimize_for_inference=False)
modified_model.seek(0)
net1 = Net.load(modified_model)
assert net1.data_providers_filter.as_unique().shape[0] == 1
def test_modify_opr_name():
@trace(symbolic=True, capture_as_const=True)
def f(x):
return F.exp(x)
orig_model = io.BytesIO()
f(Tensor(np.random.random((3, 3, 224, 224))))
f.dump(orig_model, arg_names=["a"], optimize_for_inference=False)
orig_model.seek(0)
modified_model = io.BytesIO()
net = Net.load(orig_model)
net.modify_opr_names("net")
net.modify_opr_names(lambda x: "net1." + x)
net.dump(modified_model, optimize_for_inference=False)
modified_model.seek(0)
net1 = Net.load(modified_model)
assert net1.data_providers_filter.as_unique().name == "net1.net.a"
def test_dump_cond_take():
a = Tensor([1.0, 2.0])
@trace(symbolic=True, capture_as_const=True)
def fwd(a):
return F.cond_take(a > 1, a)
fwd(a)
orig_model = io.BytesIO()
fwd.dump(
orig_model,
arg_names=["a"],
output_names=["o1", "o2"],
optimize_for_inference=False,
)
orig_model.seek(0)
net = Net.load(orig_model)
var_a = net.input_vars[0]
val, idx = F.cond_take(var_a > 1, var_a)
net.remove_output(*net.output_vars)
val.name = "value"
idx.name = "index"
net.add_output(val, idx)
modified_model = io.BytesIO()
net.dump(modified_model)
modified_model.seek(0)
g = GraphInference(modified_model)
out = g.run(a.numpy())
data = a.numpy()
mask = a.numpy() > 1
np.testing.assert_equal(out["index"], np.where(mask.reshape(-1))[0])
np.testing.assert_equal(out["value"], data[mask])
def test_set_symbolic_shape():
a = Tensor([1.0, 2.0])
@trace(symbolic=True, capture_as_const=True)
def fwd(a):
return F.relu(a * 2)
fwd(a)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a"], output_names=["o"], optimize_for_inference=False,
)
orig_model.seek(0)
net = | Net.load(orig_model) | megengine.utils.network.Network.load |
import io
import numpy as np
import megengine.core.tensor.megbrain_graph as G
import megengine.functional as F
import megengine.module as M
import megengine.utils.network_node as N
from megengine.jit.tracing import trace
from megengine.tensor import Tensor
from megengine.utils.comp_graph_tools import GraphInference
from megengine.utils.network import Network as Net
from megengine.utils.network import as_oprnode, set_symbolic_shape
from megengine.utils.network_node import Host2DeviceCopy, VarNode
def test_metadata():
x = Tensor(0)
@trace(symbolic=True, capture_as_const=True)
def fwd(x):
return x * 2
fwd(x)
orig_model = io.BytesIO()
fwd.dump(orig_model, user_info="test", optimize_for_inference=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": "test",
"graph_modified": False, # False: tracing.dump
"optimized_for_inference": False,
}
orig_model.seek(0)
graph.dump(
orig_model,
user_info={"str": "x", "tensor": x, "module": M.Module, "none": None},
optimize_for_inference=True,
enable_nchw4=True,
enable_ioc16=True,
)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": {"str": "x", "tensor": x, "module": M.Module, "none": None},
"graph_modified": True, # True: Network.dump
"optimized_for_inference": True,
"enable_nchw4": True,
"enable_ioc16": True,
}
orig_model.seek(0)
fwd.dump(orig_model, enable_metadata=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata is None
def test_replace_var():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out = F.mul(vara, varb)
out = F.relu(out)
opnode = list(graph.opr_filter.has_input(vara))
repl_dict = {opnode[0].outputs[0]: out}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [6, 16])
def test_replace_opr():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out1 = F.sub(vara, varb)
out1 = F.relu(out1)
out1 = graph.add_dep_oprs(out1)
orig_opr = graph.opr_filter.has_input(vara).as_unique()
repl_dict = {orig_opr: out1[0].owner}
graph.replace_oprs(repl_dict)
modified_model1 = io.BytesIO()
graph.dump(modified_model1)
modified_model1.seek(0)
load_graph = GraphInference(modified_model1)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [0, 0])
def test_splice_network():
x = F.ones((2,))
y = F.ones((2,))
@trace(symbolic=True, capture_as_const=True)
def fun1(a, b):
return (a + b) * 2
@trace(symbolic=True, capture_as_const=True)
def fun2(a):
return a * 2 - 1
model = io.BytesIO()
fun1(x, y)
fun2(x)
fun1.dump(
model,
arg_names=["net1_i0", "net1_i1"],
output_names=["net1_o0"],
optimize_for_inference=False,
)
model.seek(0)
net1 = Net.load(model)
model.seek(0)
fun2.dump(
model,
arg_names=["net2_i0"],
output_names=["net2_o0"],
optimize_for_inference=False,
)
model.seek(0)
net2 = Net.load(model)
net1.add_output(*net2.output_vars)
var = net1.var_filter.name("net1_i0").as_unique()
repl_var = net2.var_filter.name("net2_o0").as_unique()
net1.replace_vars({var: repl_var})
assert "net1_i0" not in [var.name for var in net1.all_vars]
assert "net2_i0" in [var.name for var in net1.all_vars]
model.seek(0)
net1.dump(model, keep_var_name=2, optimize_for_inference=False)
model.seek(0)
net = Net.load(model)
assert "net1_i0" not in [var.name for var in net.all_vars]
assert "net2_i0" in [var.name for var in net.all_vars]
def test_modify_params():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
param_const = graph.params_filter.as_unique()
param_const.set_value(3)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [12, 18])
def test_make_const():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
const_b = graph.make_const(np.array([0.0, 0.0]), name="b")
varb = graph.var_filter.name("b").as_unique()
repl_dict = {varb: const_b}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a)
np.testing.assert_equal(out["o"], [2, 4])
def test_add_input():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
inp_c = graph.make_input_node((2,), np.int32, name="c")
varo = graph.var_filter.name("o").as_unique()
out = F.add(varo, inp_c)
out.name = "o1"
graph.remove_output(varo)
graph.add_output(out)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b, a)
np.testing.assert_equal(out["o1"], ((a + b) * 2 + a).numpy())
def test_add_remove_output():
a = Tensor([1.0, 2.0])
b = Tensor([3.0, 4.0])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2, (a - b)
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model,
arg_names=["a", "b"],
output_names=["o1", "o2"],
optimize_for_inference=False,
)
orig_model.seek(0)
net = Net.load(orig_model)
var_a = net.var_filter.name("a").as_unique()
var_b = net.var_filter.name("b").as_unique()
y1 = (var_a + var_b) * 3
y2 = F.sigmoid(var_a + var_b)
net.remove_output(*net.output_vars)
y1.name = "new_o1"
y2.name = "new_o2"
net.add_output(y1, y2)
modified_model = io.BytesIO()
net.dump(modified_model)
modified_model.seek(0)
g = GraphInference(modified_model)
out = g.run(a.numpy(), b.numpy())
np.testing.assert_equal(out["new_o1"], ((a + b) * 3).numpy())
np.testing.assert_equal(out["new_o2"], (F.sigmoid((a + b))).numpy())
def test_query():
class Model(M.Module):
def __init__(self):
super().__init__()
self.conv1 = M.Conv2d(3, 32, 3)
self.conv2 = M.Conv2d(32, 32, 3)
self.conv3 = M.Conv2d(32, 32, 3)
def forward(self, data):
x = self.conv1(data)
x = self.conv2(x)
x = self.conv3(x)
return x
n = Model()
@trace(symbolic=True, capture_as_const=True)
def fwd(data):
return n(data)
fwd(Tensor(np.random.random((1, 3, 224, 224))))
orig_model = io.BytesIO()
fwd.dump(
orig_model,
arg_names=["data"],
output_names="o",
keep_opr_name=True,
keep_var_name=True,
optimize_for_inference=False,
)
orig_model.seek(0)
graph = Net.load(orig_model)
r = graph.data_providers_filter.as_count()
assert r == 1
opr = graph.get_opr_by_type(Host2DeviceCopy)
assert isinstance(opr, Host2DeviceCopy)
r1 = graph.params_filter.as_count()
assert r1 == 6
r2 = graph.opr_filter.type(N.ConvolutionForward).as_count()
assert r2 == 3
r3 = graph.opr_filter.not_type(N.ConvolutionForward).as_count()
assert r3 == len(graph.all_oprs) - r2
var = graph.var_filter.name("data").as_unique()
r4 = graph.opr_filter.has_input(var).as_count()
assert r4 == 1
r5 = graph.opr_filter.name("data").as_count()
assert r5 == 1
opr = graph.get_opr_by_name("data")
assert isinstance(opr, Host2DeviceCopy)
var = graph.get_var_by_name("data")
assert isinstance(var, VarNode)
r6 = graph.var_filter.name("*bias").as_count()
assert r6 == 3
def test_optimize_for_inference():
@trace(symbolic=True, capture_as_const=True)
def f(x):
return F.exp(x)
orig_model = io.BytesIO()
f(Tensor(5.0))
f.dump(orig_model, optimize_for_inference=False)
orig_model.seek(0)
optimize_model = io.BytesIO()
net = Net.load(orig_model)
net.dump(optimize_model, enable_io16xc32=True)
optimize_model.seek(0)
res = G.load_graph(optimize_model)
computing_input = res.output_vars_list[0].owner.inputs[0]
assert computing_input.dtype == np.float16
def test_reset_batchsize():
@trace(symbolic=True, capture_as_const=True)
def f(x):
return F.exp(x)
orig_model = io.BytesIO()
f(Tensor(np.random.random((3, 3, 224, 224))))
f.dump(orig_model, optimize_for_inference=False)
orig_model.seek(0)
modified_model = io.BytesIO()
net = Net.load(orig_model)
net.reset_batch_size(1)
net.dump(modified_model, optimize_for_inference=False)
modified_model.seek(0)
net1 = Net.load(modified_model)
assert net1.data_providers_filter.as_unique().shape[0] == 1
def test_modify_opr_name():
@trace(symbolic=True, capture_as_const=True)
def f(x):
return F.exp(x)
orig_model = io.BytesIO()
f(Tensor(np.random.random((3, 3, 224, 224))))
f.dump(orig_model, arg_names=["a"], optimize_for_inference=False)
orig_model.seek(0)
modified_model = io.BytesIO()
net = Net.load(orig_model)
net.modify_opr_names("net")
net.modify_opr_names(lambda x: "net1." + x)
net.dump(modified_model, optimize_for_inference=False)
modified_model.seek(0)
net1 = Net.load(modified_model)
assert net1.data_providers_filter.as_unique().name == "net1.net.a"
def test_dump_cond_take():
a = Tensor([1.0, 2.0])
@trace(symbolic=True, capture_as_const=True)
def fwd(a):
return F.cond_take(a > 1, a)
fwd(a)
orig_model = io.BytesIO()
fwd.dump(
orig_model,
arg_names=["a"],
output_names=["o1", "o2"],
optimize_for_inference=False,
)
orig_model.seek(0)
net = Net.load(orig_model)
var_a = net.input_vars[0]
val, idx = F.cond_take(var_a > 1, var_a)
net.remove_output(*net.output_vars)
val.name = "value"
idx.name = "index"
net.add_output(val, idx)
modified_model = io.BytesIO()
net.dump(modified_model)
modified_model.seek(0)
g = GraphInference(modified_model)
out = g.run(a.numpy())
data = a.numpy()
mask = a.numpy() > 1
np.testing.assert_equal(out["index"], np.where(mask.reshape(-1))[0])
np.testing.assert_equal(out["value"], data[mask])
def test_set_symbolic_shape():
a = Tensor([1.0, 2.0])
@trace(symbolic=True, capture_as_const=True)
def fwd(a):
return F.relu(a * 2)
fwd(a)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a"], output_names=["o"], optimize_for_inference=False,
)
orig_model.seek(0)
net = Net.load(orig_model)
var_a = net.input_vars[0]
saved_symbolic_shape = | set_symbolic_shape(True) | megengine.utils.network.set_symbolic_shape |
import io
import numpy as np
import megengine.core.tensor.megbrain_graph as G
import megengine.functional as F
import megengine.module as M
import megengine.utils.network_node as N
from megengine.jit.tracing import trace
from megengine.tensor import Tensor
from megengine.utils.comp_graph_tools import GraphInference
from megengine.utils.network import Network as Net
from megengine.utils.network import as_oprnode, set_symbolic_shape
from megengine.utils.network_node import Host2DeviceCopy, VarNode
def test_metadata():
x = Tensor(0)
@trace(symbolic=True, capture_as_const=True)
def fwd(x):
return x * 2
fwd(x)
orig_model = io.BytesIO()
fwd.dump(orig_model, user_info="test", optimize_for_inference=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": "test",
"graph_modified": False, # False: tracing.dump
"optimized_for_inference": False,
}
orig_model.seek(0)
graph.dump(
orig_model,
user_info={"str": "x", "tensor": x, "module": M.Module, "none": None},
optimize_for_inference=True,
enable_nchw4=True,
enable_ioc16=True,
)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": {"str": "x", "tensor": x, "module": M.Module, "none": None},
"graph_modified": True, # True: Network.dump
"optimized_for_inference": True,
"enable_nchw4": True,
"enable_ioc16": True,
}
orig_model.seek(0)
fwd.dump(orig_model, enable_metadata=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata is None
def test_replace_var():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out = F.mul(vara, varb)
out = F.relu(out)
opnode = list(graph.opr_filter.has_input(vara))
repl_dict = {opnode[0].outputs[0]: out}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [6, 16])
def test_replace_opr():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out1 = F.sub(vara, varb)
out1 = F.relu(out1)
out1 = graph.add_dep_oprs(out1)
orig_opr = graph.opr_filter.has_input(vara).as_unique()
repl_dict = {orig_opr: out1[0].owner}
graph.replace_oprs(repl_dict)
modified_model1 = io.BytesIO()
graph.dump(modified_model1)
modified_model1.seek(0)
load_graph = GraphInference(modified_model1)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [0, 0])
def test_splice_network():
x = F.ones((2,))
y = F.ones((2,))
@trace(symbolic=True, capture_as_const=True)
def fun1(a, b):
return (a + b) * 2
@trace(symbolic=True, capture_as_const=True)
def fun2(a):
return a * 2 - 1
model = io.BytesIO()
fun1(x, y)
fun2(x)
fun1.dump(
model,
arg_names=["net1_i0", "net1_i1"],
output_names=["net1_o0"],
optimize_for_inference=False,
)
model.seek(0)
net1 = Net.load(model)
model.seek(0)
fun2.dump(
model,
arg_names=["net2_i0"],
output_names=["net2_o0"],
optimize_for_inference=False,
)
model.seek(0)
net2 = Net.load(model)
net1.add_output(*net2.output_vars)
var = net1.var_filter.name("net1_i0").as_unique()
repl_var = net2.var_filter.name("net2_o0").as_unique()
net1.replace_vars({var: repl_var})
assert "net1_i0" not in [var.name for var in net1.all_vars]
assert "net2_i0" in [var.name for var in net1.all_vars]
model.seek(0)
net1.dump(model, keep_var_name=2, optimize_for_inference=False)
model.seek(0)
net = Net.load(model)
assert "net1_i0" not in [var.name for var in net.all_vars]
assert "net2_i0" in [var.name for var in net.all_vars]
def test_modify_params():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
param_const = graph.params_filter.as_unique()
param_const.set_value(3)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [12, 18])
def test_make_const():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
const_b = graph.make_const(np.array([0.0, 0.0]), name="b")
varb = graph.var_filter.name("b").as_unique()
repl_dict = {varb: const_b}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a)
np.testing.assert_equal(out["o"], [2, 4])
def test_add_input():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
inp_c = graph.make_input_node((2,), np.int32, name="c")
varo = graph.var_filter.name("o").as_unique()
out = F.add(varo, inp_c)
out.name = "o1"
graph.remove_output(varo)
graph.add_output(out)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b, a)
np.testing.assert_equal(out["o1"], ((a + b) * 2 + a).numpy())
def test_add_remove_output():
a = Tensor([1.0, 2.0])
b = Tensor([3.0, 4.0])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2, (a - b)
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model,
arg_names=["a", "b"],
output_names=["o1", "o2"],
optimize_for_inference=False,
)
orig_model.seek(0)
net = Net.load(orig_model)
var_a = net.var_filter.name("a").as_unique()
var_b = net.var_filter.name("b").as_unique()
y1 = (var_a + var_b) * 3
y2 = F.sigmoid(var_a + var_b)
net.remove_output(*net.output_vars)
y1.name = "new_o1"
y2.name = "new_o2"
net.add_output(y1, y2)
modified_model = io.BytesIO()
net.dump(modified_model)
modified_model.seek(0)
g = GraphInference(modified_model)
out = g.run(a.numpy(), b.numpy())
np.testing.assert_equal(out["new_o1"], ((a + b) * 3).numpy())
np.testing.assert_equal(out["new_o2"], (F.sigmoid((a + b))).numpy())
def test_query():
class Model(M.Module):
def __init__(self):
super().__init__()
self.conv1 = M.Conv2d(3, 32, 3)
self.conv2 = M.Conv2d(32, 32, 3)
self.conv3 = M.Conv2d(32, 32, 3)
def forward(self, data):
x = self.conv1(data)
x = self.conv2(x)
x = self.conv3(x)
return x
n = Model()
@trace(symbolic=True, capture_as_const=True)
def fwd(data):
return n(data)
fwd(Tensor(np.random.random((1, 3, 224, 224))))
orig_model = io.BytesIO()
fwd.dump(
orig_model,
arg_names=["data"],
output_names="o",
keep_opr_name=True,
keep_var_name=True,
optimize_for_inference=False,
)
orig_model.seek(0)
graph = Net.load(orig_model)
r = graph.data_providers_filter.as_count()
assert r == 1
opr = graph.get_opr_by_type(Host2DeviceCopy)
assert isinstance(opr, Host2DeviceCopy)
r1 = graph.params_filter.as_count()
assert r1 == 6
r2 = graph.opr_filter.type(N.ConvolutionForward).as_count()
assert r2 == 3
r3 = graph.opr_filter.not_type(N.ConvolutionForward).as_count()
assert r3 == len(graph.all_oprs) - r2
var = graph.var_filter.name("data").as_unique()
r4 = graph.opr_filter.has_input(var).as_count()
assert r4 == 1
r5 = graph.opr_filter.name("data").as_count()
assert r5 == 1
opr = graph.get_opr_by_name("data")
assert isinstance(opr, Host2DeviceCopy)
var = graph.get_var_by_name("data")
assert isinstance(var, VarNode)
r6 = graph.var_filter.name("*bias").as_count()
assert r6 == 3
def test_optimize_for_inference():
@trace(symbolic=True, capture_as_const=True)
def f(x):
return F.exp(x)
orig_model = io.BytesIO()
f(Tensor(5.0))
f.dump(orig_model, optimize_for_inference=False)
orig_model.seek(0)
optimize_model = io.BytesIO()
net = Net.load(orig_model)
net.dump(optimize_model, enable_io16xc32=True)
optimize_model.seek(0)
res = G.load_graph(optimize_model)
computing_input = res.output_vars_list[0].owner.inputs[0]
assert computing_input.dtype == np.float16
def test_reset_batchsize():
@trace(symbolic=True, capture_as_const=True)
def f(x):
return F.exp(x)
orig_model = io.BytesIO()
f(Tensor(np.random.random((3, 3, 224, 224))))
f.dump(orig_model, optimize_for_inference=False)
orig_model.seek(0)
modified_model = io.BytesIO()
net = Net.load(orig_model)
net.reset_batch_size(1)
net.dump(modified_model, optimize_for_inference=False)
modified_model.seek(0)
net1 = Net.load(modified_model)
assert net1.data_providers_filter.as_unique().shape[0] == 1
def test_modify_opr_name():
@trace(symbolic=True, capture_as_const=True)
def f(x):
return F.exp(x)
orig_model = io.BytesIO()
f(Tensor(np.random.random((3, 3, 224, 224))))
f.dump(orig_model, arg_names=["a"], optimize_for_inference=False)
orig_model.seek(0)
modified_model = io.BytesIO()
net = Net.load(orig_model)
net.modify_opr_names("net")
net.modify_opr_names(lambda x: "net1." + x)
net.dump(modified_model, optimize_for_inference=False)
modified_model.seek(0)
net1 = Net.load(modified_model)
assert net1.data_providers_filter.as_unique().name == "net1.net.a"
def test_dump_cond_take():
a = Tensor([1.0, 2.0])
@trace(symbolic=True, capture_as_const=True)
def fwd(a):
return F.cond_take(a > 1, a)
fwd(a)
orig_model = io.BytesIO()
fwd.dump(
orig_model,
arg_names=["a"],
output_names=["o1", "o2"],
optimize_for_inference=False,
)
orig_model.seek(0)
net = Net.load(orig_model)
var_a = net.input_vars[0]
val, idx = F.cond_take(var_a > 1, var_a)
net.remove_output(*net.output_vars)
val.name = "value"
idx.name = "index"
net.add_output(val, idx)
modified_model = io.BytesIO()
net.dump(modified_model)
modified_model.seek(0)
g = GraphInference(modified_model)
out = g.run(a.numpy())
data = a.numpy()
mask = a.numpy() > 1
np.testing.assert_equal(out["index"], np.where(mask.reshape(-1))[0])
np.testing.assert_equal(out["value"], data[mask])
def test_set_symbolic_shape():
a = Tensor([1.0, 2.0])
@trace(symbolic=True, capture_as_const=True)
def fwd(a):
return F.relu(a * 2)
fwd(a)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a"], output_names=["o"], optimize_for_inference=False,
)
orig_model.seek(0)
net = Net.load(orig_model)
var_a = net.input_vars[0]
saved_symbolic_shape = set_symbolic_shape(True)
assert isinstance(var_a.shape, VarNode)
| set_symbolic_shape(False) | megengine.utils.network.set_symbolic_shape |
import io
import numpy as np
import megengine.core.tensor.megbrain_graph as G
import megengine.functional as F
import megengine.module as M
import megengine.utils.network_node as N
from megengine.jit.tracing import trace
from megengine.tensor import Tensor
from megengine.utils.comp_graph_tools import GraphInference
from megengine.utils.network import Network as Net
from megengine.utils.network import as_oprnode, set_symbolic_shape
from megengine.utils.network_node import Host2DeviceCopy, VarNode
def test_metadata():
x = Tensor(0)
@trace(symbolic=True, capture_as_const=True)
def fwd(x):
return x * 2
fwd(x)
orig_model = io.BytesIO()
fwd.dump(orig_model, user_info="test", optimize_for_inference=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": "test",
"graph_modified": False, # False: tracing.dump
"optimized_for_inference": False,
}
orig_model.seek(0)
graph.dump(
orig_model,
user_info={"str": "x", "tensor": x, "module": M.Module, "none": None},
optimize_for_inference=True,
enable_nchw4=True,
enable_ioc16=True,
)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": {"str": "x", "tensor": x, "module": M.Module, "none": None},
"graph_modified": True, # True: Network.dump
"optimized_for_inference": True,
"enable_nchw4": True,
"enable_ioc16": True,
}
orig_model.seek(0)
fwd.dump(orig_model, enable_metadata=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata is None
def test_replace_var():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out = F.mul(vara, varb)
out = F.relu(out)
opnode = list(graph.opr_filter.has_input(vara))
repl_dict = {opnode[0].outputs[0]: out}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [6, 16])
def test_replace_opr():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out1 = F.sub(vara, varb)
out1 = F.relu(out1)
out1 = graph.add_dep_oprs(out1)
orig_opr = graph.opr_filter.has_input(vara).as_unique()
repl_dict = {orig_opr: out1[0].owner}
graph.replace_oprs(repl_dict)
modified_model1 = io.BytesIO()
graph.dump(modified_model1)
modified_model1.seek(0)
load_graph = GraphInference(modified_model1)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [0, 0])
def test_splice_network():
x = F.ones((2,))
y = F.ones((2,))
@trace(symbolic=True, capture_as_const=True)
def fun1(a, b):
return (a + b) * 2
@trace(symbolic=True, capture_as_const=True)
def fun2(a):
return a * 2 - 1
model = io.BytesIO()
fun1(x, y)
fun2(x)
fun1.dump(
model,
arg_names=["net1_i0", "net1_i1"],
output_names=["net1_o0"],
optimize_for_inference=False,
)
model.seek(0)
net1 = Net.load(model)
model.seek(0)
fun2.dump(
model,
arg_names=["net2_i0"],
output_names=["net2_o0"],
optimize_for_inference=False,
)
model.seek(0)
net2 = Net.load(model)
net1.add_output(*net2.output_vars)
var = net1.var_filter.name("net1_i0").as_unique()
repl_var = net2.var_filter.name("net2_o0").as_unique()
net1.replace_vars({var: repl_var})
assert "net1_i0" not in [var.name for var in net1.all_vars]
assert "net2_i0" in [var.name for var in net1.all_vars]
model.seek(0)
net1.dump(model, keep_var_name=2, optimize_for_inference=False)
model.seek(0)
net = Net.load(model)
assert "net1_i0" not in [var.name for var in net.all_vars]
assert "net2_i0" in [var.name for var in net.all_vars]
def test_modify_params():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
param_const = graph.params_filter.as_unique()
param_const.set_value(3)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [12, 18])
def test_make_const():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
const_b = graph.make_const(np.array([0.0, 0.0]), name="b")
varb = graph.var_filter.name("b").as_unique()
repl_dict = {varb: const_b}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a)
np.testing.assert_equal(out["o"], [2, 4])
def test_add_input():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
inp_c = graph.make_input_node((2,), np.int32, name="c")
varo = graph.var_filter.name("o").as_unique()
out = F.add(varo, inp_c)
out.name = "o1"
graph.remove_output(varo)
graph.add_output(out)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b, a)
np.testing.assert_equal(out["o1"], ((a + b) * 2 + a).numpy())
def test_add_remove_output():
a = Tensor([1.0, 2.0])
b = Tensor([3.0, 4.0])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2, (a - b)
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model,
arg_names=["a", "b"],
output_names=["o1", "o2"],
optimize_for_inference=False,
)
orig_model.seek(0)
net = Net.load(orig_model)
var_a = net.var_filter.name("a").as_unique()
var_b = net.var_filter.name("b").as_unique()
y1 = (var_a + var_b) * 3
y2 = F.sigmoid(var_a + var_b)
net.remove_output(*net.output_vars)
y1.name = "new_o1"
y2.name = "new_o2"
net.add_output(y1, y2)
modified_model = io.BytesIO()
net.dump(modified_model)
modified_model.seek(0)
g = GraphInference(modified_model)
out = g.run(a.numpy(), b.numpy())
np.testing.assert_equal(out["new_o1"], ((a + b) * 3).numpy())
np.testing.assert_equal(out["new_o2"], (F.sigmoid((a + b))).numpy())
def test_query():
class Model(M.Module):
def __init__(self):
super().__init__()
self.conv1 = M.Conv2d(3, 32, 3)
self.conv2 = M.Conv2d(32, 32, 3)
self.conv3 = M.Conv2d(32, 32, 3)
def forward(self, data):
x = self.conv1(data)
x = self.conv2(x)
x = self.conv3(x)
return x
n = Model()
@trace(symbolic=True, capture_as_const=True)
def fwd(data):
return n(data)
fwd(Tensor(np.random.random((1, 3, 224, 224))))
orig_model = io.BytesIO()
fwd.dump(
orig_model,
arg_names=["data"],
output_names="o",
keep_opr_name=True,
keep_var_name=True,
optimize_for_inference=False,
)
orig_model.seek(0)
graph = Net.load(orig_model)
r = graph.data_providers_filter.as_count()
assert r == 1
opr = graph.get_opr_by_type(Host2DeviceCopy)
assert isinstance(opr, Host2DeviceCopy)
r1 = graph.params_filter.as_count()
assert r1 == 6
r2 = graph.opr_filter.type(N.ConvolutionForward).as_count()
assert r2 == 3
r3 = graph.opr_filter.not_type(N.ConvolutionForward).as_count()
assert r3 == len(graph.all_oprs) - r2
var = graph.var_filter.name("data").as_unique()
r4 = graph.opr_filter.has_input(var).as_count()
assert r4 == 1
r5 = graph.opr_filter.name("data").as_count()
assert r5 == 1
opr = graph.get_opr_by_name("data")
assert isinstance(opr, Host2DeviceCopy)
var = graph.get_var_by_name("data")
assert isinstance(var, VarNode)
r6 = graph.var_filter.name("*bias").as_count()
assert r6 == 3
def test_optimize_for_inference():
@trace(symbolic=True, capture_as_const=True)
def f(x):
return F.exp(x)
orig_model = io.BytesIO()
f(Tensor(5.0))
f.dump(orig_model, optimize_for_inference=False)
orig_model.seek(0)
optimize_model = io.BytesIO()
net = Net.load(orig_model)
net.dump(optimize_model, enable_io16xc32=True)
optimize_model.seek(0)
res = G.load_graph(optimize_model)
computing_input = res.output_vars_list[0].owner.inputs[0]
assert computing_input.dtype == np.float16
def test_reset_batchsize():
@trace(symbolic=True, capture_as_const=True)
def f(x):
return F.exp(x)
orig_model = io.BytesIO()
f(Tensor(np.random.random((3, 3, 224, 224))))
f.dump(orig_model, optimize_for_inference=False)
orig_model.seek(0)
modified_model = io.BytesIO()
net = Net.load(orig_model)
net.reset_batch_size(1)
net.dump(modified_model, optimize_for_inference=False)
modified_model.seek(0)
net1 = Net.load(modified_model)
assert net1.data_providers_filter.as_unique().shape[0] == 1
def test_modify_opr_name():
@trace(symbolic=True, capture_as_const=True)
def f(x):
return F.exp(x)
orig_model = io.BytesIO()
f(Tensor(np.random.random((3, 3, 224, 224))))
f.dump(orig_model, arg_names=["a"], optimize_for_inference=False)
orig_model.seek(0)
modified_model = io.BytesIO()
net = Net.load(orig_model)
net.modify_opr_names("net")
net.modify_opr_names(lambda x: "net1." + x)
net.dump(modified_model, optimize_for_inference=False)
modified_model.seek(0)
net1 = Net.load(modified_model)
assert net1.data_providers_filter.as_unique().name == "net1.net.a"
def test_dump_cond_take():
a = Tensor([1.0, 2.0])
@trace(symbolic=True, capture_as_const=True)
def fwd(a):
return F.cond_take(a > 1, a)
fwd(a)
orig_model = io.BytesIO()
fwd.dump(
orig_model,
arg_names=["a"],
output_names=["o1", "o2"],
optimize_for_inference=False,
)
orig_model.seek(0)
net = Net.load(orig_model)
var_a = net.input_vars[0]
val, idx = F.cond_take(var_a > 1, var_a)
net.remove_output(*net.output_vars)
val.name = "value"
idx.name = "index"
net.add_output(val, idx)
modified_model = io.BytesIO()
net.dump(modified_model)
modified_model.seek(0)
g = GraphInference(modified_model)
out = g.run(a.numpy())
data = a.numpy()
mask = a.numpy() > 1
np.testing.assert_equal(out["index"], np.where(mask.reshape(-1))[0])
np.testing.assert_equal(out["value"], data[mask])
def test_set_symbolic_shape():
a = Tensor([1.0, 2.0])
@trace(symbolic=True, capture_as_const=True)
def fwd(a):
return F.relu(a * 2)
fwd(a)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a"], output_names=["o"], optimize_for_inference=False,
)
orig_model.seek(0)
net = Net.load(orig_model)
var_a = net.input_vars[0]
saved_symbolic_shape = set_symbolic_shape(True)
assert isinstance(var_a.shape, VarNode)
set_symbolic_shape(False)
assert var_a.shape == var_a.partial_shape
| set_symbolic_shape(saved_symbolic_shape) | megengine.utils.network.set_symbolic_shape |
import io
import numpy as np
import megengine.core.tensor.megbrain_graph as G
import megengine.functional as F
import megengine.module as M
import megengine.utils.network_node as N
from megengine.jit.tracing import trace
from megengine.tensor import Tensor
from megengine.utils.comp_graph_tools import GraphInference
from megengine.utils.network import Network as Net
from megengine.utils.network import as_oprnode, set_symbolic_shape
from megengine.utils.network_node import Host2DeviceCopy, VarNode
def test_metadata():
x = Tensor(0)
@trace(symbolic=True, capture_as_const=True)
def fwd(x):
return x * 2
fwd(x)
orig_model = io.BytesIO()
fwd.dump(orig_model, user_info="test", optimize_for_inference=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": "test",
"graph_modified": False, # False: tracing.dump
"optimized_for_inference": False,
}
orig_model.seek(0)
graph.dump(
orig_model,
user_info={"str": "x", "tensor": x, "module": M.Module, "none": None},
optimize_for_inference=True,
enable_nchw4=True,
enable_ioc16=True,
)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": {"str": "x", "tensor": x, "module": M.Module, "none": None},
"graph_modified": True, # True: Network.dump
"optimized_for_inference": True,
"enable_nchw4": True,
"enable_ioc16": True,
}
orig_model.seek(0)
fwd.dump(orig_model, enable_metadata=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata is None
def test_replace_var():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out = F.mul(vara, varb)
out = F.relu(out)
opnode = list(graph.opr_filter.has_input(vara))
repl_dict = {opnode[0].outputs[0]: out}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [6, 16])
def test_replace_opr():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out1 = F.sub(vara, varb)
out1 = F.relu(out1)
out1 = graph.add_dep_oprs(out1)
orig_opr = graph.opr_filter.has_input(vara).as_unique()
repl_dict = {orig_opr: out1[0].owner}
graph.replace_oprs(repl_dict)
modified_model1 = io.BytesIO()
graph.dump(modified_model1)
modified_model1.seek(0)
load_graph = GraphInference(modified_model1)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [0, 0])
def test_splice_network():
x = F.ones((2,))
y = F.ones((2,))
@trace(symbolic=True, capture_as_const=True)
def fun1(a, b):
return (a + b) * 2
@trace(symbolic=True, capture_as_const=True)
def fun2(a):
return a * 2 - 1
model = io.BytesIO()
fun1(x, y)
fun2(x)
fun1.dump(
model,
arg_names=["net1_i0", "net1_i1"],
output_names=["net1_o0"],
optimize_for_inference=False,
)
model.seek(0)
net1 = Net.load(model)
model.seek(0)
fun2.dump(
model,
arg_names=["net2_i0"],
output_names=["net2_o0"],
optimize_for_inference=False,
)
model.seek(0)
net2 = Net.load(model)
net1.add_output(*net2.output_vars)
var = net1.var_filter.name("net1_i0").as_unique()
repl_var = net2.var_filter.name("net2_o0").as_unique()
net1.replace_vars({var: repl_var})
assert "net1_i0" not in [var.name for var in net1.all_vars]
assert "net2_i0" in [var.name for var in net1.all_vars]
model.seek(0)
net1.dump(model, keep_var_name=2, optimize_for_inference=False)
model.seek(0)
net = Net.load(model)
assert "net1_i0" not in [var.name for var in net.all_vars]
assert "net2_i0" in [var.name for var in net.all_vars]
def test_modify_params():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
param_const = graph.params_filter.as_unique()
param_const.set_value(3)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [12, 18])
def test_make_const():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
const_b = graph.make_const(np.array([0.0, 0.0]), name="b")
varb = graph.var_filter.name("b").as_unique()
repl_dict = {varb: const_b}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a)
np.testing.assert_equal(out["o"], [2, 4])
def test_add_input():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
inp_c = graph.make_input_node((2,), np.int32, name="c")
varo = graph.var_filter.name("o").as_unique()
out = F.add(varo, inp_c)
out.name = "o1"
graph.remove_output(varo)
graph.add_output(out)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b, a)
np.testing.assert_equal(out["o1"], ((a + b) * 2 + a).numpy())
def test_add_remove_output():
a = Tensor([1.0, 2.0])
b = Tensor([3.0, 4.0])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2, (a - b)
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model,
arg_names=["a", "b"],
output_names=["o1", "o2"],
optimize_for_inference=False,
)
orig_model.seek(0)
net = Net.load(orig_model)
var_a = net.var_filter.name("a").as_unique()
var_b = net.var_filter.name("b").as_unique()
y1 = (var_a + var_b) * 3
y2 = F.sigmoid(var_a + var_b)
net.remove_output(*net.output_vars)
y1.name = "new_o1"
y2.name = "new_o2"
net.add_output(y1, y2)
modified_model = io.BytesIO()
net.dump(modified_model)
modified_model.seek(0)
g = GraphInference(modified_model)
out = g.run(a.numpy(), b.numpy())
np.testing.assert_equal(out["new_o1"], ((a + b) * 3).numpy())
np.testing.assert_equal(out["new_o2"], (F.sigmoid((a + b))).numpy())
def test_query():
class Model(M.Module):
def __init__(self):
super().__init__()
self.conv1 = M.Conv2d(3, 32, 3)
self.conv2 = M.Conv2d(32, 32, 3)
self.conv3 = M.Conv2d(32, 32, 3)
def forward(self, data):
x = self.conv1(data)
x = self.conv2(x)
x = self.conv3(x)
return x
n = Model()
@trace(symbolic=True, capture_as_const=True)
def fwd(data):
return n(data)
fwd(Tensor(np.random.random((1, 3, 224, 224))))
orig_model = io.BytesIO()
fwd.dump(
orig_model,
arg_names=["data"],
output_names="o",
keep_opr_name=True,
keep_var_name=True,
optimize_for_inference=False,
)
orig_model.seek(0)
graph = Net.load(orig_model)
r = graph.data_providers_filter.as_count()
assert r == 1
opr = graph.get_opr_by_type(Host2DeviceCopy)
assert isinstance(opr, Host2DeviceCopy)
r1 = graph.params_filter.as_count()
assert r1 == 6
r2 = graph.opr_filter.type(N.ConvolutionForward).as_count()
assert r2 == 3
r3 = graph.opr_filter.not_type(N.ConvolutionForward).as_count()
assert r3 == len(graph.all_oprs) - r2
var = graph.var_filter.name("data").as_unique()
r4 = graph.opr_filter.has_input(var).as_count()
assert r4 == 1
r5 = graph.opr_filter.name("data").as_count()
assert r5 == 1
opr = graph.get_opr_by_name("data")
assert isinstance(opr, Host2DeviceCopy)
var = graph.get_var_by_name("data")
assert isinstance(var, VarNode)
r6 = graph.var_filter.name("*bias").as_count()
assert r6 == 3
def test_optimize_for_inference():
@trace(symbolic=True, capture_as_const=True)
def f(x):
return | F.exp(x) | megengine.functional.exp |
import io
import numpy as np
import megengine.core.tensor.megbrain_graph as G
import megengine.functional as F
import megengine.module as M
import megengine.utils.network_node as N
from megengine.jit.tracing import trace
from megengine.tensor import Tensor
from megengine.utils.comp_graph_tools import GraphInference
from megengine.utils.network import Network as Net
from megengine.utils.network import as_oprnode, set_symbolic_shape
from megengine.utils.network_node import Host2DeviceCopy, VarNode
def test_metadata():
x = Tensor(0)
@trace(symbolic=True, capture_as_const=True)
def fwd(x):
return x * 2
fwd(x)
orig_model = io.BytesIO()
fwd.dump(orig_model, user_info="test", optimize_for_inference=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": "test",
"graph_modified": False, # False: tracing.dump
"optimized_for_inference": False,
}
orig_model.seek(0)
graph.dump(
orig_model,
user_info={"str": "x", "tensor": x, "module": M.Module, "none": None},
optimize_for_inference=True,
enable_nchw4=True,
enable_ioc16=True,
)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": {"str": "x", "tensor": x, "module": M.Module, "none": None},
"graph_modified": True, # True: Network.dump
"optimized_for_inference": True,
"enable_nchw4": True,
"enable_ioc16": True,
}
orig_model.seek(0)
fwd.dump(orig_model, enable_metadata=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata is None
def test_replace_var():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out = F.mul(vara, varb)
out = F.relu(out)
opnode = list(graph.opr_filter.has_input(vara))
repl_dict = {opnode[0].outputs[0]: out}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [6, 16])
def test_replace_opr():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out1 = F.sub(vara, varb)
out1 = F.relu(out1)
out1 = graph.add_dep_oprs(out1)
orig_opr = graph.opr_filter.has_input(vara).as_unique()
repl_dict = {orig_opr: out1[0].owner}
graph.replace_oprs(repl_dict)
modified_model1 = io.BytesIO()
graph.dump(modified_model1)
modified_model1.seek(0)
load_graph = GraphInference(modified_model1)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [0, 0])
def test_splice_network():
x = F.ones((2,))
y = F.ones((2,))
@trace(symbolic=True, capture_as_const=True)
def fun1(a, b):
return (a + b) * 2
@trace(symbolic=True, capture_as_const=True)
def fun2(a):
return a * 2 - 1
model = io.BytesIO()
fun1(x, y)
fun2(x)
fun1.dump(
model,
arg_names=["net1_i0", "net1_i1"],
output_names=["net1_o0"],
optimize_for_inference=False,
)
model.seek(0)
net1 = Net.load(model)
model.seek(0)
fun2.dump(
model,
arg_names=["net2_i0"],
output_names=["net2_o0"],
optimize_for_inference=False,
)
model.seek(0)
net2 = Net.load(model)
net1.add_output(*net2.output_vars)
var = net1.var_filter.name("net1_i0").as_unique()
repl_var = net2.var_filter.name("net2_o0").as_unique()
net1.replace_vars({var: repl_var})
assert "net1_i0" not in [var.name for var in net1.all_vars]
assert "net2_i0" in [var.name for var in net1.all_vars]
model.seek(0)
net1.dump(model, keep_var_name=2, optimize_for_inference=False)
model.seek(0)
net = Net.load(model)
assert "net1_i0" not in [var.name for var in net.all_vars]
assert "net2_i0" in [var.name for var in net.all_vars]
def test_modify_params():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
param_const = graph.params_filter.as_unique()
param_const.set_value(3)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [12, 18])
def test_make_const():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
const_b = graph.make_const(np.array([0.0, 0.0]), name="b")
varb = graph.var_filter.name("b").as_unique()
repl_dict = {varb: const_b}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a)
np.testing.assert_equal(out["o"], [2, 4])
def test_add_input():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
inp_c = graph.make_input_node((2,), np.int32, name="c")
varo = graph.var_filter.name("o").as_unique()
out = F.add(varo, inp_c)
out.name = "o1"
graph.remove_output(varo)
graph.add_output(out)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b, a)
np.testing.assert_equal(out["o1"], ((a + b) * 2 + a).numpy())
def test_add_remove_output():
a = Tensor([1.0, 2.0])
b = Tensor([3.0, 4.0])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2, (a - b)
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model,
arg_names=["a", "b"],
output_names=["o1", "o2"],
optimize_for_inference=False,
)
orig_model.seek(0)
net = Net.load(orig_model)
var_a = net.var_filter.name("a").as_unique()
var_b = net.var_filter.name("b").as_unique()
y1 = (var_a + var_b) * 3
y2 = F.sigmoid(var_a + var_b)
net.remove_output(*net.output_vars)
y1.name = "new_o1"
y2.name = "new_o2"
net.add_output(y1, y2)
modified_model = io.BytesIO()
net.dump(modified_model)
modified_model.seek(0)
g = GraphInference(modified_model)
out = g.run(a.numpy(), b.numpy())
np.testing.assert_equal(out["new_o1"], ((a + b) * 3).numpy())
np.testing.assert_equal(out["new_o2"], (F.sigmoid((a + b))).numpy())
def test_query():
class Model(M.Module):
def __init__(self):
super().__init__()
self.conv1 = M.Conv2d(3, 32, 3)
self.conv2 = M.Conv2d(32, 32, 3)
self.conv3 = M.Conv2d(32, 32, 3)
def forward(self, data):
x = self.conv1(data)
x = self.conv2(x)
x = self.conv3(x)
return x
n = Model()
@trace(symbolic=True, capture_as_const=True)
def fwd(data):
return n(data)
fwd(Tensor(np.random.random((1, 3, 224, 224))))
orig_model = io.BytesIO()
fwd.dump(
orig_model,
arg_names=["data"],
output_names="o",
keep_opr_name=True,
keep_var_name=True,
optimize_for_inference=False,
)
orig_model.seek(0)
graph = Net.load(orig_model)
r = graph.data_providers_filter.as_count()
assert r == 1
opr = graph.get_opr_by_type(Host2DeviceCopy)
assert isinstance(opr, Host2DeviceCopy)
r1 = graph.params_filter.as_count()
assert r1 == 6
r2 = graph.opr_filter.type(N.ConvolutionForward).as_count()
assert r2 == 3
r3 = graph.opr_filter.not_type(N.ConvolutionForward).as_count()
assert r3 == len(graph.all_oprs) - r2
var = graph.var_filter.name("data").as_unique()
r4 = graph.opr_filter.has_input(var).as_count()
assert r4 == 1
r5 = graph.opr_filter.name("data").as_count()
assert r5 == 1
opr = graph.get_opr_by_name("data")
assert isinstance(opr, Host2DeviceCopy)
var = graph.get_var_by_name("data")
assert isinstance(var, VarNode)
r6 = graph.var_filter.name("*bias").as_count()
assert r6 == 3
def test_optimize_for_inference():
@trace(symbolic=True, capture_as_const=True)
def f(x):
return F.exp(x)
orig_model = io.BytesIO()
f( | Tensor(5.0) | megengine.tensor.Tensor |
import io
import numpy as np
import megengine.core.tensor.megbrain_graph as G
import megengine.functional as F
import megengine.module as M
import megengine.utils.network_node as N
from megengine.jit.tracing import trace
from megengine.tensor import Tensor
from megengine.utils.comp_graph_tools import GraphInference
from megengine.utils.network import Network as Net
from megengine.utils.network import as_oprnode, set_symbolic_shape
from megengine.utils.network_node import Host2DeviceCopy, VarNode
def test_metadata():
x = Tensor(0)
@trace(symbolic=True, capture_as_const=True)
def fwd(x):
return x * 2
fwd(x)
orig_model = io.BytesIO()
fwd.dump(orig_model, user_info="test", optimize_for_inference=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": "test",
"graph_modified": False, # False: tracing.dump
"optimized_for_inference": False,
}
orig_model.seek(0)
graph.dump(
orig_model,
user_info={"str": "x", "tensor": x, "module": M.Module, "none": None},
optimize_for_inference=True,
enable_nchw4=True,
enable_ioc16=True,
)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": {"str": "x", "tensor": x, "module": M.Module, "none": None},
"graph_modified": True, # True: Network.dump
"optimized_for_inference": True,
"enable_nchw4": True,
"enable_ioc16": True,
}
orig_model.seek(0)
fwd.dump(orig_model, enable_metadata=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata is None
def test_replace_var():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out = F.mul(vara, varb)
out = F.relu(out)
opnode = list(graph.opr_filter.has_input(vara))
repl_dict = {opnode[0].outputs[0]: out}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [6, 16])
def test_replace_opr():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out1 = F.sub(vara, varb)
out1 = F.relu(out1)
out1 = graph.add_dep_oprs(out1)
orig_opr = graph.opr_filter.has_input(vara).as_unique()
repl_dict = {orig_opr: out1[0].owner}
graph.replace_oprs(repl_dict)
modified_model1 = io.BytesIO()
graph.dump(modified_model1)
modified_model1.seek(0)
load_graph = GraphInference(modified_model1)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [0, 0])
def test_splice_network():
x = F.ones((2,))
y = F.ones((2,))
@trace(symbolic=True, capture_as_const=True)
def fun1(a, b):
return (a + b) * 2
@trace(symbolic=True, capture_as_const=True)
def fun2(a):
return a * 2 - 1
model = io.BytesIO()
fun1(x, y)
fun2(x)
fun1.dump(
model,
arg_names=["net1_i0", "net1_i1"],
output_names=["net1_o0"],
optimize_for_inference=False,
)
model.seek(0)
net1 = Net.load(model)
model.seek(0)
fun2.dump(
model,
arg_names=["net2_i0"],
output_names=["net2_o0"],
optimize_for_inference=False,
)
model.seek(0)
net2 = Net.load(model)
net1.add_output(*net2.output_vars)
var = net1.var_filter.name("net1_i0").as_unique()
repl_var = net2.var_filter.name("net2_o0").as_unique()
net1.replace_vars({var: repl_var})
assert "net1_i0" not in [var.name for var in net1.all_vars]
assert "net2_i0" in [var.name for var in net1.all_vars]
model.seek(0)
net1.dump(model, keep_var_name=2, optimize_for_inference=False)
model.seek(0)
net = Net.load(model)
assert "net1_i0" not in [var.name for var in net.all_vars]
assert "net2_i0" in [var.name for var in net.all_vars]
def test_modify_params():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
param_const = graph.params_filter.as_unique()
param_const.set_value(3)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [12, 18])
def test_make_const():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
const_b = graph.make_const(np.array([0.0, 0.0]), name="b")
varb = graph.var_filter.name("b").as_unique()
repl_dict = {varb: const_b}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a)
np.testing.assert_equal(out["o"], [2, 4])
def test_add_input():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
inp_c = graph.make_input_node((2,), np.int32, name="c")
varo = graph.var_filter.name("o").as_unique()
out = F.add(varo, inp_c)
out.name = "o1"
graph.remove_output(varo)
graph.add_output(out)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b, a)
np.testing.assert_equal(out["o1"], ((a + b) * 2 + a).numpy())
def test_add_remove_output():
a = Tensor([1.0, 2.0])
b = Tensor([3.0, 4.0])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2, (a - b)
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model,
arg_names=["a", "b"],
output_names=["o1", "o2"],
optimize_for_inference=False,
)
orig_model.seek(0)
net = Net.load(orig_model)
var_a = net.var_filter.name("a").as_unique()
var_b = net.var_filter.name("b").as_unique()
y1 = (var_a + var_b) * 3
y2 = F.sigmoid(var_a + var_b)
net.remove_output(*net.output_vars)
y1.name = "new_o1"
y2.name = "new_o2"
net.add_output(y1, y2)
modified_model = io.BytesIO()
net.dump(modified_model)
modified_model.seek(0)
g = GraphInference(modified_model)
out = g.run(a.numpy(), b.numpy())
np.testing.assert_equal(out["new_o1"], ((a + b) * 3).numpy())
np.testing.assert_equal(out["new_o2"], (F.sigmoid((a + b))).numpy())
def test_query():
class Model(M.Module):
def __init__(self):
super().__init__()
self.conv1 = M.Conv2d(3, 32, 3)
self.conv2 = M.Conv2d(32, 32, 3)
self.conv3 = M.Conv2d(32, 32, 3)
def forward(self, data):
x = self.conv1(data)
x = self.conv2(x)
x = self.conv3(x)
return x
n = Model()
@trace(symbolic=True, capture_as_const=True)
def fwd(data):
return n(data)
fwd(Tensor(np.random.random((1, 3, 224, 224))))
orig_model = io.BytesIO()
fwd.dump(
orig_model,
arg_names=["data"],
output_names="o",
keep_opr_name=True,
keep_var_name=True,
optimize_for_inference=False,
)
orig_model.seek(0)
graph = Net.load(orig_model)
r = graph.data_providers_filter.as_count()
assert r == 1
opr = graph.get_opr_by_type(Host2DeviceCopy)
assert isinstance(opr, Host2DeviceCopy)
r1 = graph.params_filter.as_count()
assert r1 == 6
r2 = graph.opr_filter.type(N.ConvolutionForward).as_count()
assert r2 == 3
r3 = graph.opr_filter.not_type(N.ConvolutionForward).as_count()
assert r3 == len(graph.all_oprs) - r2
var = graph.var_filter.name("data").as_unique()
r4 = graph.opr_filter.has_input(var).as_count()
assert r4 == 1
r5 = graph.opr_filter.name("data").as_count()
assert r5 == 1
opr = graph.get_opr_by_name("data")
assert isinstance(opr, Host2DeviceCopy)
var = graph.get_var_by_name("data")
assert isinstance(var, VarNode)
r6 = graph.var_filter.name("*bias").as_count()
assert r6 == 3
def test_optimize_for_inference():
@trace(symbolic=True, capture_as_const=True)
def f(x):
return F.exp(x)
orig_model = io.BytesIO()
f(Tensor(5.0))
f.dump(orig_model, optimize_for_inference=False)
orig_model.seek(0)
optimize_model = io.BytesIO()
net = Net.load(orig_model)
net.dump(optimize_model, enable_io16xc32=True)
optimize_model.seek(0)
res = G.load_graph(optimize_model)
computing_input = res.output_vars_list[0].owner.inputs[0]
assert computing_input.dtype == np.float16
def test_reset_batchsize():
@trace(symbolic=True, capture_as_const=True)
def f(x):
return | F.exp(x) | megengine.functional.exp |
import io
import numpy as np
import megengine.core.tensor.megbrain_graph as G
import megengine.functional as F
import megengine.module as M
import megengine.utils.network_node as N
from megengine.jit.tracing import trace
from megengine.tensor import Tensor
from megengine.utils.comp_graph_tools import GraphInference
from megengine.utils.network import Network as Net
from megengine.utils.network import as_oprnode, set_symbolic_shape
from megengine.utils.network_node import Host2DeviceCopy, VarNode
def test_metadata():
x = Tensor(0)
@trace(symbolic=True, capture_as_const=True)
def fwd(x):
return x * 2
fwd(x)
orig_model = io.BytesIO()
fwd.dump(orig_model, user_info="test", optimize_for_inference=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": "test",
"graph_modified": False, # False: tracing.dump
"optimized_for_inference": False,
}
orig_model.seek(0)
graph.dump(
orig_model,
user_info={"str": "x", "tensor": x, "module": M.Module, "none": None},
optimize_for_inference=True,
enable_nchw4=True,
enable_ioc16=True,
)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": {"str": "x", "tensor": x, "module": M.Module, "none": None},
"graph_modified": True, # True: Network.dump
"optimized_for_inference": True,
"enable_nchw4": True,
"enable_ioc16": True,
}
orig_model.seek(0)
fwd.dump(orig_model, enable_metadata=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata is None
def test_replace_var():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out = F.mul(vara, varb)
out = F.relu(out)
opnode = list(graph.opr_filter.has_input(vara))
repl_dict = {opnode[0].outputs[0]: out}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [6, 16])
def test_replace_opr():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out1 = F.sub(vara, varb)
out1 = F.relu(out1)
out1 = graph.add_dep_oprs(out1)
orig_opr = graph.opr_filter.has_input(vara).as_unique()
repl_dict = {orig_opr: out1[0].owner}
graph.replace_oprs(repl_dict)
modified_model1 = io.BytesIO()
graph.dump(modified_model1)
modified_model1.seek(0)
load_graph = GraphInference(modified_model1)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [0, 0])
def test_splice_network():
x = F.ones((2,))
y = F.ones((2,))
@trace(symbolic=True, capture_as_const=True)
def fun1(a, b):
return (a + b) * 2
@trace(symbolic=True, capture_as_const=True)
def fun2(a):
return a * 2 - 1
model = io.BytesIO()
fun1(x, y)
fun2(x)
fun1.dump(
model,
arg_names=["net1_i0", "net1_i1"],
output_names=["net1_o0"],
optimize_for_inference=False,
)
model.seek(0)
net1 = Net.load(model)
model.seek(0)
fun2.dump(
model,
arg_names=["net2_i0"],
output_names=["net2_o0"],
optimize_for_inference=False,
)
model.seek(0)
net2 = Net.load(model)
net1.add_output(*net2.output_vars)
var = net1.var_filter.name("net1_i0").as_unique()
repl_var = net2.var_filter.name("net2_o0").as_unique()
net1.replace_vars({var: repl_var})
assert "net1_i0" not in [var.name for var in net1.all_vars]
assert "net2_i0" in [var.name for var in net1.all_vars]
model.seek(0)
net1.dump(model, keep_var_name=2, optimize_for_inference=False)
model.seek(0)
net = Net.load(model)
assert "net1_i0" not in [var.name for var in net.all_vars]
assert "net2_i0" in [var.name for var in net.all_vars]
def test_modify_params():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
param_const = graph.params_filter.as_unique()
param_const.set_value(3)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [12, 18])
def test_make_const():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
const_b = graph.make_const(np.array([0.0, 0.0]), name="b")
varb = graph.var_filter.name("b").as_unique()
repl_dict = {varb: const_b}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a)
np.testing.assert_equal(out["o"], [2, 4])
def test_add_input():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
inp_c = graph.make_input_node((2,), np.int32, name="c")
varo = graph.var_filter.name("o").as_unique()
out = F.add(varo, inp_c)
out.name = "o1"
graph.remove_output(varo)
graph.add_output(out)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b, a)
np.testing.assert_equal(out["o1"], ((a + b) * 2 + a).numpy())
def test_add_remove_output():
a = Tensor([1.0, 2.0])
b = Tensor([3.0, 4.0])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2, (a - b)
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model,
arg_names=["a", "b"],
output_names=["o1", "o2"],
optimize_for_inference=False,
)
orig_model.seek(0)
net = Net.load(orig_model)
var_a = net.var_filter.name("a").as_unique()
var_b = net.var_filter.name("b").as_unique()
y1 = (var_a + var_b) * 3
y2 = F.sigmoid(var_a + var_b)
net.remove_output(*net.output_vars)
y1.name = "new_o1"
y2.name = "new_o2"
net.add_output(y1, y2)
modified_model = io.BytesIO()
net.dump(modified_model)
modified_model.seek(0)
g = GraphInference(modified_model)
out = g.run(a.numpy(), b.numpy())
np.testing.assert_equal(out["new_o1"], ((a + b) * 3).numpy())
np.testing.assert_equal(out["new_o2"], (F.sigmoid((a + b))).numpy())
def test_query():
class Model(M.Module):
def __init__(self):
super().__init__()
self.conv1 = M.Conv2d(3, 32, 3)
self.conv2 = M.Conv2d(32, 32, 3)
self.conv3 = M.Conv2d(32, 32, 3)
def forward(self, data):
x = self.conv1(data)
x = self.conv2(x)
x = self.conv3(x)
return x
n = Model()
@trace(symbolic=True, capture_as_const=True)
def fwd(data):
return n(data)
fwd(Tensor(np.random.random((1, 3, 224, 224))))
orig_model = io.BytesIO()
fwd.dump(
orig_model,
arg_names=["data"],
output_names="o",
keep_opr_name=True,
keep_var_name=True,
optimize_for_inference=False,
)
orig_model.seek(0)
graph = Net.load(orig_model)
r = graph.data_providers_filter.as_count()
assert r == 1
opr = graph.get_opr_by_type(Host2DeviceCopy)
assert isinstance(opr, Host2DeviceCopy)
r1 = graph.params_filter.as_count()
assert r1 == 6
r2 = graph.opr_filter.type(N.ConvolutionForward).as_count()
assert r2 == 3
r3 = graph.opr_filter.not_type(N.ConvolutionForward).as_count()
assert r3 == len(graph.all_oprs) - r2
var = graph.var_filter.name("data").as_unique()
r4 = graph.opr_filter.has_input(var).as_count()
assert r4 == 1
r5 = graph.opr_filter.name("data").as_count()
assert r5 == 1
opr = graph.get_opr_by_name("data")
assert isinstance(opr, Host2DeviceCopy)
var = graph.get_var_by_name("data")
assert isinstance(var, VarNode)
r6 = graph.var_filter.name("*bias").as_count()
assert r6 == 3
def test_optimize_for_inference():
@trace(symbolic=True, capture_as_const=True)
def f(x):
return F.exp(x)
orig_model = io.BytesIO()
f(Tensor(5.0))
f.dump(orig_model, optimize_for_inference=False)
orig_model.seek(0)
optimize_model = io.BytesIO()
net = Net.load(orig_model)
net.dump(optimize_model, enable_io16xc32=True)
optimize_model.seek(0)
res = G.load_graph(optimize_model)
computing_input = res.output_vars_list[0].owner.inputs[0]
assert computing_input.dtype == np.float16
def test_reset_batchsize():
@trace(symbolic=True, capture_as_const=True)
def f(x):
return F.exp(x)
orig_model = io.BytesIO()
f(Tensor(np.random.random((3, 3, 224, 224))))
f.dump(orig_model, optimize_for_inference=False)
orig_model.seek(0)
modified_model = io.BytesIO()
net = Net.load(orig_model)
net.reset_batch_size(1)
net.dump(modified_model, optimize_for_inference=False)
modified_model.seek(0)
net1 = Net.load(modified_model)
assert net1.data_providers_filter.as_unique().shape[0] == 1
def test_modify_opr_name():
@trace(symbolic=True, capture_as_const=True)
def f(x):
return | F.exp(x) | megengine.functional.exp |
import io
import numpy as np
import megengine.core.tensor.megbrain_graph as G
import megengine.functional as F
import megengine.module as M
import megengine.utils.network_node as N
from megengine.jit.tracing import trace
from megengine.tensor import Tensor
from megengine.utils.comp_graph_tools import GraphInference
from megengine.utils.network import Network as Net
from megengine.utils.network import as_oprnode, set_symbolic_shape
from megengine.utils.network_node import Host2DeviceCopy, VarNode
def test_metadata():
x = Tensor(0)
@trace(symbolic=True, capture_as_const=True)
def fwd(x):
return x * 2
fwd(x)
orig_model = io.BytesIO()
fwd.dump(orig_model, user_info="test", optimize_for_inference=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": "test",
"graph_modified": False, # False: tracing.dump
"optimized_for_inference": False,
}
orig_model.seek(0)
graph.dump(
orig_model,
user_info={"str": "x", "tensor": x, "module": M.Module, "none": None},
optimize_for_inference=True,
enable_nchw4=True,
enable_ioc16=True,
)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": {"str": "x", "tensor": x, "module": M.Module, "none": None},
"graph_modified": True, # True: Network.dump
"optimized_for_inference": True,
"enable_nchw4": True,
"enable_ioc16": True,
}
orig_model.seek(0)
fwd.dump(orig_model, enable_metadata=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata is None
def test_replace_var():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out = F.mul(vara, varb)
out = F.relu(out)
opnode = list(graph.opr_filter.has_input(vara))
repl_dict = {opnode[0].outputs[0]: out}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [6, 16])
def test_replace_opr():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out1 = F.sub(vara, varb)
out1 = F.relu(out1)
out1 = graph.add_dep_oprs(out1)
orig_opr = graph.opr_filter.has_input(vara).as_unique()
repl_dict = {orig_opr: out1[0].owner}
graph.replace_oprs(repl_dict)
modified_model1 = io.BytesIO()
graph.dump(modified_model1)
modified_model1.seek(0)
load_graph = GraphInference(modified_model1)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [0, 0])
def test_splice_network():
x = F.ones((2,))
y = F.ones((2,))
@trace(symbolic=True, capture_as_const=True)
def fun1(a, b):
return (a + b) * 2
@trace(symbolic=True, capture_as_const=True)
def fun2(a):
return a * 2 - 1
model = io.BytesIO()
fun1(x, y)
fun2(x)
fun1.dump(
model,
arg_names=["net1_i0", "net1_i1"],
output_names=["net1_o0"],
optimize_for_inference=False,
)
model.seek(0)
net1 = Net.load(model)
model.seek(0)
fun2.dump(
model,
arg_names=["net2_i0"],
output_names=["net2_o0"],
optimize_for_inference=False,
)
model.seek(0)
net2 = Net.load(model)
net1.add_output(*net2.output_vars)
var = net1.var_filter.name("net1_i0").as_unique()
repl_var = net2.var_filter.name("net2_o0").as_unique()
net1.replace_vars({var: repl_var})
assert "net1_i0" not in [var.name for var in net1.all_vars]
assert "net2_i0" in [var.name for var in net1.all_vars]
model.seek(0)
net1.dump(model, keep_var_name=2, optimize_for_inference=False)
model.seek(0)
net = Net.load(model)
assert "net1_i0" not in [var.name for var in net.all_vars]
assert "net2_i0" in [var.name for var in net.all_vars]
def test_modify_params():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
param_const = graph.params_filter.as_unique()
param_const.set_value(3)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [12, 18])
def test_make_const():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
const_b = graph.make_const(np.array([0.0, 0.0]), name="b")
varb = graph.var_filter.name("b").as_unique()
repl_dict = {varb: const_b}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a)
np.testing.assert_equal(out["o"], [2, 4])
def test_add_input():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
inp_c = graph.make_input_node((2,), np.int32, name="c")
varo = graph.var_filter.name("o").as_unique()
out = F.add(varo, inp_c)
out.name = "o1"
graph.remove_output(varo)
graph.add_output(out)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b, a)
np.testing.assert_equal(out["o1"], ((a + b) * 2 + a).numpy())
def test_add_remove_output():
a = Tensor([1.0, 2.0])
b = Tensor([3.0, 4.0])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2, (a - b)
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model,
arg_names=["a", "b"],
output_names=["o1", "o2"],
optimize_for_inference=False,
)
orig_model.seek(0)
net = Net.load(orig_model)
var_a = net.var_filter.name("a").as_unique()
var_b = net.var_filter.name("b").as_unique()
y1 = (var_a + var_b) * 3
y2 = F.sigmoid(var_a + var_b)
net.remove_output(*net.output_vars)
y1.name = "new_o1"
y2.name = "new_o2"
net.add_output(y1, y2)
modified_model = io.BytesIO()
net.dump(modified_model)
modified_model.seek(0)
g = GraphInference(modified_model)
out = g.run(a.numpy(), b.numpy())
np.testing.assert_equal(out["new_o1"], ((a + b) * 3).numpy())
np.testing.assert_equal(out["new_o2"], (F.sigmoid((a + b))).numpy())
def test_query():
class Model(M.Module):
def __init__(self):
super().__init__()
self.conv1 = M.Conv2d(3, 32, 3)
self.conv2 = M.Conv2d(32, 32, 3)
self.conv3 = M.Conv2d(32, 32, 3)
def forward(self, data):
x = self.conv1(data)
x = self.conv2(x)
x = self.conv3(x)
return x
n = Model()
@trace(symbolic=True, capture_as_const=True)
def fwd(data):
return n(data)
fwd(Tensor(np.random.random((1, 3, 224, 224))))
orig_model = io.BytesIO()
fwd.dump(
orig_model,
arg_names=["data"],
output_names="o",
keep_opr_name=True,
keep_var_name=True,
optimize_for_inference=False,
)
orig_model.seek(0)
graph = Net.load(orig_model)
r = graph.data_providers_filter.as_count()
assert r == 1
opr = graph.get_opr_by_type(Host2DeviceCopy)
assert isinstance(opr, Host2DeviceCopy)
r1 = graph.params_filter.as_count()
assert r1 == 6
r2 = graph.opr_filter.type(N.ConvolutionForward).as_count()
assert r2 == 3
r3 = graph.opr_filter.not_type(N.ConvolutionForward).as_count()
assert r3 == len(graph.all_oprs) - r2
var = graph.var_filter.name("data").as_unique()
r4 = graph.opr_filter.has_input(var).as_count()
assert r4 == 1
r5 = graph.opr_filter.name("data").as_count()
assert r5 == 1
opr = graph.get_opr_by_name("data")
assert isinstance(opr, Host2DeviceCopy)
var = graph.get_var_by_name("data")
assert isinstance(var, VarNode)
r6 = graph.var_filter.name("*bias").as_count()
assert r6 == 3
def test_optimize_for_inference():
@trace(symbolic=True, capture_as_const=True)
def f(x):
return F.exp(x)
orig_model = io.BytesIO()
f(Tensor(5.0))
f.dump(orig_model, optimize_for_inference=False)
orig_model.seek(0)
optimize_model = io.BytesIO()
net = Net.load(orig_model)
net.dump(optimize_model, enable_io16xc32=True)
optimize_model.seek(0)
res = G.load_graph(optimize_model)
computing_input = res.output_vars_list[0].owner.inputs[0]
assert computing_input.dtype == np.float16
def test_reset_batchsize():
@trace(symbolic=True, capture_as_const=True)
def f(x):
return F.exp(x)
orig_model = io.BytesIO()
f(Tensor(np.random.random((3, 3, 224, 224))))
f.dump(orig_model, optimize_for_inference=False)
orig_model.seek(0)
modified_model = io.BytesIO()
net = Net.load(orig_model)
net.reset_batch_size(1)
net.dump(modified_model, optimize_for_inference=False)
modified_model.seek(0)
net1 = Net.load(modified_model)
assert net1.data_providers_filter.as_unique().shape[0] == 1
def test_modify_opr_name():
@trace(symbolic=True, capture_as_const=True)
def f(x):
return F.exp(x)
orig_model = io.BytesIO()
f(Tensor(np.random.random((3, 3, 224, 224))))
f.dump(orig_model, arg_names=["a"], optimize_for_inference=False)
orig_model.seek(0)
modified_model = io.BytesIO()
net = Net.load(orig_model)
net.modify_opr_names("net")
net.modify_opr_names(lambda x: "net1." + x)
net.dump(modified_model, optimize_for_inference=False)
modified_model.seek(0)
net1 = Net.load(modified_model)
assert net1.data_providers_filter.as_unique().name == "net1.net.a"
def test_dump_cond_take():
a = Tensor([1.0, 2.0])
@trace(symbolic=True, capture_as_const=True)
def fwd(a):
return | F.cond_take(a > 1, a) | megengine.functional.cond_take |
import io
import numpy as np
import megengine.core.tensor.megbrain_graph as G
import megengine.functional as F
import megengine.module as M
import megengine.utils.network_node as N
from megengine.jit.tracing import trace
from megengine.tensor import Tensor
from megengine.utils.comp_graph_tools import GraphInference
from megengine.utils.network import Network as Net
from megengine.utils.network import as_oprnode, set_symbolic_shape
from megengine.utils.network_node import Host2DeviceCopy, VarNode
def test_metadata():
x = Tensor(0)
@trace(symbolic=True, capture_as_const=True)
def fwd(x):
return x * 2
fwd(x)
orig_model = io.BytesIO()
fwd.dump(orig_model, user_info="test", optimize_for_inference=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": "test",
"graph_modified": False, # False: tracing.dump
"optimized_for_inference": False,
}
orig_model.seek(0)
graph.dump(
orig_model,
user_info={"str": "x", "tensor": x, "module": M.Module, "none": None},
optimize_for_inference=True,
enable_nchw4=True,
enable_ioc16=True,
)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": {"str": "x", "tensor": x, "module": M.Module, "none": None},
"graph_modified": True, # True: Network.dump
"optimized_for_inference": True,
"enable_nchw4": True,
"enable_ioc16": True,
}
orig_model.seek(0)
fwd.dump(orig_model, enable_metadata=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata is None
def test_replace_var():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out = F.mul(vara, varb)
out = F.relu(out)
opnode = list(graph.opr_filter.has_input(vara))
repl_dict = {opnode[0].outputs[0]: out}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [6, 16])
def test_replace_opr():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out1 = F.sub(vara, varb)
out1 = F.relu(out1)
out1 = graph.add_dep_oprs(out1)
orig_opr = graph.opr_filter.has_input(vara).as_unique()
repl_dict = {orig_opr: out1[0].owner}
graph.replace_oprs(repl_dict)
modified_model1 = io.BytesIO()
graph.dump(modified_model1)
modified_model1.seek(0)
load_graph = GraphInference(modified_model1)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [0, 0])
def test_splice_network():
x = F.ones((2,))
y = F.ones((2,))
@trace(symbolic=True, capture_as_const=True)
def fun1(a, b):
return (a + b) * 2
@trace(symbolic=True, capture_as_const=True)
def fun2(a):
return a * 2 - 1
model = io.BytesIO()
fun1(x, y)
fun2(x)
fun1.dump(
model,
arg_names=["net1_i0", "net1_i1"],
output_names=["net1_o0"],
optimize_for_inference=False,
)
model.seek(0)
net1 = Net.load(model)
model.seek(0)
fun2.dump(
model,
arg_names=["net2_i0"],
output_names=["net2_o0"],
optimize_for_inference=False,
)
model.seek(0)
net2 = Net.load(model)
net1.add_output(*net2.output_vars)
var = net1.var_filter.name("net1_i0").as_unique()
repl_var = net2.var_filter.name("net2_o0").as_unique()
net1.replace_vars({var: repl_var})
assert "net1_i0" not in [var.name for var in net1.all_vars]
assert "net2_i0" in [var.name for var in net1.all_vars]
model.seek(0)
net1.dump(model, keep_var_name=2, optimize_for_inference=False)
model.seek(0)
net = Net.load(model)
assert "net1_i0" not in [var.name for var in net.all_vars]
assert "net2_i0" in [var.name for var in net.all_vars]
def test_modify_params():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
param_const = graph.params_filter.as_unique()
param_const.set_value(3)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [12, 18])
def test_make_const():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
const_b = graph.make_const(np.array([0.0, 0.0]), name="b")
varb = graph.var_filter.name("b").as_unique()
repl_dict = {varb: const_b}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a)
np.testing.assert_equal(out["o"], [2, 4])
def test_add_input():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
inp_c = graph.make_input_node((2,), np.int32, name="c")
varo = graph.var_filter.name("o").as_unique()
out = F.add(varo, inp_c)
out.name = "o1"
graph.remove_output(varo)
graph.add_output(out)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b, a)
np.testing.assert_equal(out["o1"], ((a + b) * 2 + a).numpy())
def test_add_remove_output():
a = Tensor([1.0, 2.0])
b = Tensor([3.0, 4.0])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2, (a - b)
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model,
arg_names=["a", "b"],
output_names=["o1", "o2"],
optimize_for_inference=False,
)
orig_model.seek(0)
net = Net.load(orig_model)
var_a = net.var_filter.name("a").as_unique()
var_b = net.var_filter.name("b").as_unique()
y1 = (var_a + var_b) * 3
y2 = F.sigmoid(var_a + var_b)
net.remove_output(*net.output_vars)
y1.name = "new_o1"
y2.name = "new_o2"
net.add_output(y1, y2)
modified_model = io.BytesIO()
net.dump(modified_model)
modified_model.seek(0)
g = GraphInference(modified_model)
out = g.run(a.numpy(), b.numpy())
np.testing.assert_equal(out["new_o1"], ((a + b) * 3).numpy())
np.testing.assert_equal(out["new_o2"], (F.sigmoid((a + b))).numpy())
def test_query():
class Model(M.Module):
def __init__(self):
super().__init__()
self.conv1 = M.Conv2d(3, 32, 3)
self.conv2 = M.Conv2d(32, 32, 3)
self.conv3 = M.Conv2d(32, 32, 3)
def forward(self, data):
x = self.conv1(data)
x = self.conv2(x)
x = self.conv3(x)
return x
n = Model()
@trace(symbolic=True, capture_as_const=True)
def fwd(data):
return n(data)
fwd(Tensor(np.random.random((1, 3, 224, 224))))
orig_model = io.BytesIO()
fwd.dump(
orig_model,
arg_names=["data"],
output_names="o",
keep_opr_name=True,
keep_var_name=True,
optimize_for_inference=False,
)
orig_model.seek(0)
graph = Net.load(orig_model)
r = graph.data_providers_filter.as_count()
assert r == 1
opr = graph.get_opr_by_type(Host2DeviceCopy)
assert isinstance(opr, Host2DeviceCopy)
r1 = graph.params_filter.as_count()
assert r1 == 6
r2 = graph.opr_filter.type(N.ConvolutionForward).as_count()
assert r2 == 3
r3 = graph.opr_filter.not_type(N.ConvolutionForward).as_count()
assert r3 == len(graph.all_oprs) - r2
var = graph.var_filter.name("data").as_unique()
r4 = graph.opr_filter.has_input(var).as_count()
assert r4 == 1
r5 = graph.opr_filter.name("data").as_count()
assert r5 == 1
opr = graph.get_opr_by_name("data")
assert isinstance(opr, Host2DeviceCopy)
var = graph.get_var_by_name("data")
assert isinstance(var, VarNode)
r6 = graph.var_filter.name("*bias").as_count()
assert r6 == 3
def test_optimize_for_inference():
@trace(symbolic=True, capture_as_const=True)
def f(x):
return F.exp(x)
orig_model = io.BytesIO()
f(Tensor(5.0))
f.dump(orig_model, optimize_for_inference=False)
orig_model.seek(0)
optimize_model = io.BytesIO()
net = Net.load(orig_model)
net.dump(optimize_model, enable_io16xc32=True)
optimize_model.seek(0)
res = G.load_graph(optimize_model)
computing_input = res.output_vars_list[0].owner.inputs[0]
assert computing_input.dtype == np.float16
def test_reset_batchsize():
@trace(symbolic=True, capture_as_const=True)
def f(x):
return F.exp(x)
orig_model = io.BytesIO()
f(Tensor(np.random.random((3, 3, 224, 224))))
f.dump(orig_model, optimize_for_inference=False)
orig_model.seek(0)
modified_model = io.BytesIO()
net = Net.load(orig_model)
net.reset_batch_size(1)
net.dump(modified_model, optimize_for_inference=False)
modified_model.seek(0)
net1 = Net.load(modified_model)
assert net1.data_providers_filter.as_unique().shape[0] == 1
def test_modify_opr_name():
@trace(symbolic=True, capture_as_const=True)
def f(x):
return F.exp(x)
orig_model = io.BytesIO()
f(Tensor(np.random.random((3, 3, 224, 224))))
f.dump(orig_model, arg_names=["a"], optimize_for_inference=False)
orig_model.seek(0)
modified_model = io.BytesIO()
net = Net.load(orig_model)
net.modify_opr_names("net")
net.modify_opr_names(lambda x: "net1." + x)
net.dump(modified_model, optimize_for_inference=False)
modified_model.seek(0)
net1 = Net.load(modified_model)
assert net1.data_providers_filter.as_unique().name == "net1.net.a"
def test_dump_cond_take():
a = Tensor([1.0, 2.0])
@trace(symbolic=True, capture_as_const=True)
def fwd(a):
return F.cond_take(a > 1, a)
fwd(a)
orig_model = io.BytesIO()
fwd.dump(
orig_model,
arg_names=["a"],
output_names=["o1", "o2"],
optimize_for_inference=False,
)
orig_model.seek(0)
net = Net.load(orig_model)
var_a = net.input_vars[0]
val, idx = F.cond_take(var_a > 1, var_a)
net.remove_output(*net.output_vars)
val.name = "value"
idx.name = "index"
net.add_output(val, idx)
modified_model = io.BytesIO()
net.dump(modified_model)
modified_model.seek(0)
g = GraphInference(modified_model)
out = g.run(a.numpy())
data = a.numpy()
mask = a.numpy() > 1
np.testing.assert_equal(out["index"], np.where(mask.reshape(-1))[0])
np.testing.assert_equal(out["value"], data[mask])
def test_set_symbolic_shape():
a = Tensor([1.0, 2.0])
@trace(symbolic=True, capture_as_const=True)
def fwd(a):
return | F.relu(a * 2) | megengine.functional.relu |
import io
import numpy as np
import megengine.core.tensor.megbrain_graph as G
import megengine.functional as F
import megengine.module as M
import megengine.utils.network_node as N
from megengine.jit.tracing import trace
from megengine.tensor import Tensor
from megengine.utils.comp_graph_tools import GraphInference
from megengine.utils.network import Network as Net
from megengine.utils.network import as_oprnode, set_symbolic_shape
from megengine.utils.network_node import Host2DeviceCopy, VarNode
def test_metadata():
x = Tensor(0)
@trace(symbolic=True, capture_as_const=True)
def fwd(x):
return x * 2
fwd(x)
orig_model = io.BytesIO()
fwd.dump(orig_model, user_info="test", optimize_for_inference=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": "test",
"graph_modified": False, # False: tracing.dump
"optimized_for_inference": False,
}
orig_model.seek(0)
graph.dump(
orig_model,
user_info={"str": "x", "tensor": x, "module": M.Module, "none": None},
optimize_for_inference=True,
enable_nchw4=True,
enable_ioc16=True,
)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": {"str": "x", "tensor": x, "module": M.Module, "none": None},
"graph_modified": True, # True: Network.dump
"optimized_for_inference": True,
"enable_nchw4": True,
"enable_ioc16": True,
}
orig_model.seek(0)
fwd.dump(orig_model, enable_metadata=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata is None
def test_replace_var():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out = F.mul(vara, varb)
out = F.relu(out)
opnode = list(graph.opr_filter.has_input(vara))
repl_dict = {opnode[0].outputs[0]: out}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [6, 16])
def test_replace_opr():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out1 = F.sub(vara, varb)
out1 = F.relu(out1)
out1 = graph.add_dep_oprs(out1)
orig_opr = graph.opr_filter.has_input(vara).as_unique()
repl_dict = {orig_opr: out1[0].owner}
graph.replace_oprs(repl_dict)
modified_model1 = io.BytesIO()
graph.dump(modified_model1)
modified_model1.seek(0)
load_graph = GraphInference(modified_model1)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [0, 0])
def test_splice_network():
x = F.ones((2,))
y = F.ones((2,))
@trace(symbolic=True, capture_as_const=True)
def fun1(a, b):
return (a + b) * 2
@trace(symbolic=True, capture_as_const=True)
def fun2(a):
return a * 2 - 1
model = io.BytesIO()
fun1(x, y)
fun2(x)
fun1.dump(
model,
arg_names=["net1_i0", "net1_i1"],
output_names=["net1_o0"],
optimize_for_inference=False,
)
model.seek(0)
net1 = Net.load(model)
model.seek(0)
fun2.dump(
model,
arg_names=["net2_i0"],
output_names=["net2_o0"],
optimize_for_inference=False,
)
model.seek(0)
net2 = Net.load(model)
net1.add_output(*net2.output_vars)
var = net1.var_filter.name("net1_i0").as_unique()
repl_var = net2.var_filter.name("net2_o0").as_unique()
net1.replace_vars({var: repl_var})
assert "net1_i0" not in [var.name for var in net1.all_vars]
assert "net2_i0" in [var.name for var in net1.all_vars]
model.seek(0)
net1.dump(model, keep_var_name=2, optimize_for_inference=False)
model.seek(0)
net = Net.load(model)
assert "net1_i0" not in [var.name for var in net.all_vars]
assert "net2_i0" in [var.name for var in net.all_vars]
def test_modify_params():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
param_const = graph.params_filter.as_unique()
param_const.set_value(3)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [12, 18])
def test_make_const():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
const_b = graph.make_const(np.array([0.0, 0.0]), name="b")
varb = graph.var_filter.name("b").as_unique()
repl_dict = {varb: const_b}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a)
np.testing.assert_equal(out["o"], [2, 4])
def test_add_input():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
inp_c = graph.make_input_node((2,), np.int32, name="c")
varo = graph.var_filter.name("o").as_unique()
out = F.add(varo, inp_c)
out.name = "o1"
graph.remove_output(varo)
graph.add_output(out)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b, a)
np.testing.assert_equal(out["o1"], ((a + b) * 2 + a).numpy())
def test_add_remove_output():
a = Tensor([1.0, 2.0])
b = Tensor([3.0, 4.0])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2, (a - b)
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model,
arg_names=["a", "b"],
output_names=["o1", "o2"],
optimize_for_inference=False,
)
orig_model.seek(0)
net = Net.load(orig_model)
var_a = net.var_filter.name("a").as_unique()
var_b = net.var_filter.name("b").as_unique()
y1 = (var_a + var_b) * 3
y2 = F.sigmoid(var_a + var_b)
net.remove_output(*net.output_vars)
y1.name = "new_o1"
y2.name = "new_o2"
net.add_output(y1, y2)
modified_model = io.BytesIO()
net.dump(modified_model)
modified_model.seek(0)
g = GraphInference(modified_model)
out = g.run(a.numpy(), b.numpy())
np.testing.assert_equal(out["new_o1"], ((a + b) * 3).numpy())
np.testing.assert_equal(out["new_o2"], (F.sigmoid((a + b))).numpy())
def test_query():
class Model(M.Module):
def __init__(self):
super().__init__()
self.conv1 = | M.Conv2d(3, 32, 3) | megengine.module.Conv2d |
import io
import numpy as np
import megengine.core.tensor.megbrain_graph as G
import megengine.functional as F
import megengine.module as M
import megengine.utils.network_node as N
from megengine.jit.tracing import trace
from megengine.tensor import Tensor
from megengine.utils.comp_graph_tools import GraphInference
from megengine.utils.network import Network as Net
from megengine.utils.network import as_oprnode, set_symbolic_shape
from megengine.utils.network_node import Host2DeviceCopy, VarNode
def test_metadata():
x = Tensor(0)
@trace(symbolic=True, capture_as_const=True)
def fwd(x):
return x * 2
fwd(x)
orig_model = io.BytesIO()
fwd.dump(orig_model, user_info="test", optimize_for_inference=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": "test",
"graph_modified": False, # False: tracing.dump
"optimized_for_inference": False,
}
orig_model.seek(0)
graph.dump(
orig_model,
user_info={"str": "x", "tensor": x, "module": M.Module, "none": None},
optimize_for_inference=True,
enable_nchw4=True,
enable_ioc16=True,
)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": {"str": "x", "tensor": x, "module": M.Module, "none": None},
"graph_modified": True, # True: Network.dump
"optimized_for_inference": True,
"enable_nchw4": True,
"enable_ioc16": True,
}
orig_model.seek(0)
fwd.dump(orig_model, enable_metadata=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata is None
def test_replace_var():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out = F.mul(vara, varb)
out = F.relu(out)
opnode = list(graph.opr_filter.has_input(vara))
repl_dict = {opnode[0].outputs[0]: out}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [6, 16])
def test_replace_opr():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out1 = F.sub(vara, varb)
out1 = F.relu(out1)
out1 = graph.add_dep_oprs(out1)
orig_opr = graph.opr_filter.has_input(vara).as_unique()
repl_dict = {orig_opr: out1[0].owner}
graph.replace_oprs(repl_dict)
modified_model1 = io.BytesIO()
graph.dump(modified_model1)
modified_model1.seek(0)
load_graph = GraphInference(modified_model1)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [0, 0])
def test_splice_network():
x = F.ones((2,))
y = F.ones((2,))
@trace(symbolic=True, capture_as_const=True)
def fun1(a, b):
return (a + b) * 2
@trace(symbolic=True, capture_as_const=True)
def fun2(a):
return a * 2 - 1
model = io.BytesIO()
fun1(x, y)
fun2(x)
fun1.dump(
model,
arg_names=["net1_i0", "net1_i1"],
output_names=["net1_o0"],
optimize_for_inference=False,
)
model.seek(0)
net1 = Net.load(model)
model.seek(0)
fun2.dump(
model,
arg_names=["net2_i0"],
output_names=["net2_o0"],
optimize_for_inference=False,
)
model.seek(0)
net2 = Net.load(model)
net1.add_output(*net2.output_vars)
var = net1.var_filter.name("net1_i0").as_unique()
repl_var = net2.var_filter.name("net2_o0").as_unique()
net1.replace_vars({var: repl_var})
assert "net1_i0" not in [var.name for var in net1.all_vars]
assert "net2_i0" in [var.name for var in net1.all_vars]
model.seek(0)
net1.dump(model, keep_var_name=2, optimize_for_inference=False)
model.seek(0)
net = Net.load(model)
assert "net1_i0" not in [var.name for var in net.all_vars]
assert "net2_i0" in [var.name for var in net.all_vars]
def test_modify_params():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
param_const = graph.params_filter.as_unique()
param_const.set_value(3)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [12, 18])
def test_make_const():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
const_b = graph.make_const(np.array([0.0, 0.0]), name="b")
varb = graph.var_filter.name("b").as_unique()
repl_dict = {varb: const_b}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a)
np.testing.assert_equal(out["o"], [2, 4])
def test_add_input():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
inp_c = graph.make_input_node((2,), np.int32, name="c")
varo = graph.var_filter.name("o").as_unique()
out = F.add(varo, inp_c)
out.name = "o1"
graph.remove_output(varo)
graph.add_output(out)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b, a)
np.testing.assert_equal(out["o1"], ((a + b) * 2 + a).numpy())
def test_add_remove_output():
a = Tensor([1.0, 2.0])
b = Tensor([3.0, 4.0])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2, (a - b)
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model,
arg_names=["a", "b"],
output_names=["o1", "o2"],
optimize_for_inference=False,
)
orig_model.seek(0)
net = Net.load(orig_model)
var_a = net.var_filter.name("a").as_unique()
var_b = net.var_filter.name("b").as_unique()
y1 = (var_a + var_b) * 3
y2 = F.sigmoid(var_a + var_b)
net.remove_output(*net.output_vars)
y1.name = "new_o1"
y2.name = "new_o2"
net.add_output(y1, y2)
modified_model = io.BytesIO()
net.dump(modified_model)
modified_model.seek(0)
g = GraphInference(modified_model)
out = g.run(a.numpy(), b.numpy())
np.testing.assert_equal(out["new_o1"], ((a + b) * 3).numpy())
np.testing.assert_equal(out["new_o2"], (F.sigmoid((a + b))).numpy())
def test_query():
class Model(M.Module):
def __init__(self):
super().__init__()
self.conv1 = M.Conv2d(3, 32, 3)
self.conv2 = | M.Conv2d(32, 32, 3) | megengine.module.Conv2d |
import io
import numpy as np
import megengine.core.tensor.megbrain_graph as G
import megengine.functional as F
import megengine.module as M
import megengine.utils.network_node as N
from megengine.jit.tracing import trace
from megengine.tensor import Tensor
from megengine.utils.comp_graph_tools import GraphInference
from megengine.utils.network import Network as Net
from megengine.utils.network import as_oprnode, set_symbolic_shape
from megengine.utils.network_node import Host2DeviceCopy, VarNode
def test_metadata():
x = Tensor(0)
@trace(symbolic=True, capture_as_const=True)
def fwd(x):
return x * 2
fwd(x)
orig_model = io.BytesIO()
fwd.dump(orig_model, user_info="test", optimize_for_inference=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": "test",
"graph_modified": False, # False: tracing.dump
"optimized_for_inference": False,
}
orig_model.seek(0)
graph.dump(
orig_model,
user_info={"str": "x", "tensor": x, "module": M.Module, "none": None},
optimize_for_inference=True,
enable_nchw4=True,
enable_ioc16=True,
)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata == {
"user_info": {"str": "x", "tensor": x, "module": M.Module, "none": None},
"graph_modified": True, # True: Network.dump
"optimized_for_inference": True,
"enable_nchw4": True,
"enable_ioc16": True,
}
orig_model.seek(0)
fwd.dump(orig_model, enable_metadata=False)
orig_model.seek(0)
graph = Net.load(orig_model)
assert graph.metadata is None
def test_replace_var():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out = F.mul(vara, varb)
out = F.relu(out)
opnode = list(graph.opr_filter.has_input(vara))
repl_dict = {opnode[0].outputs[0]: out}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [6, 16])
def test_replace_opr():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
vara = graph.var_filter.name("a").as_unique()
varb = graph.var_filter.name("b").as_unique()
out1 = F.sub(vara, varb)
out1 = F.relu(out1)
out1 = graph.add_dep_oprs(out1)
orig_opr = graph.opr_filter.has_input(vara).as_unique()
repl_dict = {orig_opr: out1[0].owner}
graph.replace_oprs(repl_dict)
modified_model1 = io.BytesIO()
graph.dump(modified_model1)
modified_model1.seek(0)
load_graph = GraphInference(modified_model1)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [0, 0])
def test_splice_network():
x = F.ones((2,))
y = F.ones((2,))
@trace(symbolic=True, capture_as_const=True)
def fun1(a, b):
return (a + b) * 2
@trace(symbolic=True, capture_as_const=True)
def fun2(a):
return a * 2 - 1
model = io.BytesIO()
fun1(x, y)
fun2(x)
fun1.dump(
model,
arg_names=["net1_i0", "net1_i1"],
output_names=["net1_o0"],
optimize_for_inference=False,
)
model.seek(0)
net1 = Net.load(model)
model.seek(0)
fun2.dump(
model,
arg_names=["net2_i0"],
output_names=["net2_o0"],
optimize_for_inference=False,
)
model.seek(0)
net2 = Net.load(model)
net1.add_output(*net2.output_vars)
var = net1.var_filter.name("net1_i0").as_unique()
repl_var = net2.var_filter.name("net2_o0").as_unique()
net1.replace_vars({var: repl_var})
assert "net1_i0" not in [var.name for var in net1.all_vars]
assert "net2_i0" in [var.name for var in net1.all_vars]
model.seek(0)
net1.dump(model, keep_var_name=2, optimize_for_inference=False)
model.seek(0)
net = Net.load(model)
assert "net1_i0" not in [var.name for var in net.all_vars]
assert "net2_i0" in [var.name for var in net.all_vars]
def test_modify_params():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
param_const = graph.params_filter.as_unique()
param_const.set_value(3)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b)
np.testing.assert_equal(out["o"], [12, 18])
def test_make_const():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
const_b = graph.make_const(np.array([0.0, 0.0]), name="b")
varb = graph.var_filter.name("b").as_unique()
repl_dict = {varb: const_b}
graph.replace_vars(repl_dict)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a)
np.testing.assert_equal(out["o"], [2, 4])
def test_add_input():
a = Tensor([1, 2])
b = Tensor([3, 4])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
)
orig_model.seek(0)
graph = Net.load(orig_model)
inp_c = graph.make_input_node((2,), np.int32, name="c")
varo = graph.var_filter.name("o").as_unique()
out = F.add(varo, inp_c)
out.name = "o1"
graph.remove_output(varo)
graph.add_output(out)
modified_model = io.BytesIO()
graph.dump(modified_model)
modified_model.seek(0)
load_graph = GraphInference(modified_model)
out = load_graph.run(a, b, a)
np.testing.assert_equal(out["o1"], ((a + b) * 2 + a).numpy())
def test_add_remove_output():
a = Tensor([1.0, 2.0])
b = Tensor([3.0, 4.0])
@trace(symbolic=True, capture_as_const=True)
def fwd(a, b):
return (a + b) * 2, (a - b)
fwd(a, b)
orig_model = io.BytesIO()
fwd.dump(
orig_model,
arg_names=["a", "b"],
output_names=["o1", "o2"],
optimize_for_inference=False,
)
orig_model.seek(0)
net = Net.load(orig_model)
var_a = net.var_filter.name("a").as_unique()
var_b = net.var_filter.name("b").as_unique()
y1 = (var_a + var_b) * 3
y2 = F.sigmoid(var_a + var_b)
net.remove_output(*net.output_vars)
y1.name = "new_o1"
y2.name = "new_o2"
net.add_output(y1, y2)
modified_model = io.BytesIO()
net.dump(modified_model)
modified_model.seek(0)
g = GraphInference(modified_model)
out = g.run(a.numpy(), b.numpy())
np.testing.assert_equal(out["new_o1"], ((a + b) * 3).numpy())
np.testing.assert_equal(out["new_o2"], (F.sigmoid((a + b))).numpy())
def test_query():
class Model(M.Module):
def __init__(self):
super().__init__()
self.conv1 = M.Conv2d(3, 32, 3)
self.conv2 = M.Conv2d(32, 32, 3)
self.conv3 = | M.Conv2d(32, 32, 3) | megengine.module.Conv2d |
import math
import megengine.module as M
import megengine.functional as F
class PositionEncodingSine(M.Module):
"""
This is a sinusoidal position encoding that generalized to 2-dimensional images
"""
def __init__(self, d_model, max_shape=(256, 256)):
"""
Args:
max_shape (tuple): for 1/8 featmap, the max length of 256 corresponds to 2048 pixels
"""
super().__init__()
pe = | F.zeros((d_model, *max_shape)) | megengine.functional.zeros |
import math
import megengine.module as M
import megengine.functional as F
class PositionEncodingSine(M.Module):
"""
This is a sinusoidal position encoding that generalized to 2-dimensional images
"""
def __init__(self, d_model, max_shape=(256, 256)):
"""
Args:
max_shape (tuple): for 1/8 featmap, the max length of 256 corresponds to 2048 pixels
"""
super().__init__()
pe = F.zeros((d_model, *max_shape))
y_position = F.expand_dims(F.cumsum(F.ones(max_shape), 0), 0)
x_position = F.expand_dims(F.cumsum(F.ones(max_shape), 1), 0)
div_term = F.exp(
F.arange(0, d_model // 2, 2) * (-math.log(10000.0) / d_model // 2)
)
div_term = | F.expand_dims(div_term, (1, 2)) | megengine.functional.expand_dims |
import math
import megengine.module as M
import megengine.functional as F
class PositionEncodingSine(M.Module):
"""
This is a sinusoidal position encoding that generalized to 2-dimensional images
"""
def __init__(self, d_model, max_shape=(256, 256)):
"""
Args:
max_shape (tuple): for 1/8 featmap, the max length of 256 corresponds to 2048 pixels
"""
super().__init__()
pe = F.zeros((d_model, *max_shape))
y_position = F.expand_dims(F.cumsum(F.ones(max_shape), 0), 0)
x_position = F.expand_dims(F.cumsum(F.ones(max_shape), 1), 0)
div_term = F.exp(
F.arange(0, d_model // 2, 2) * (-math.log(10000.0) / d_model // 2)
)
div_term = F.expand_dims(div_term, (1, 2)) # [C//4, 1, 1]
pe[0::4, :, :] = | F.sin(x_position * div_term) | megengine.functional.sin |
import math
import megengine.module as M
import megengine.functional as F
class PositionEncodingSine(M.Module):
"""
This is a sinusoidal position encoding that generalized to 2-dimensional images
"""
def __init__(self, d_model, max_shape=(256, 256)):
"""
Args:
max_shape (tuple): for 1/8 featmap, the max length of 256 corresponds to 2048 pixels
"""
super().__init__()
pe = F.zeros((d_model, *max_shape))
y_position = F.expand_dims(F.cumsum(F.ones(max_shape), 0), 0)
x_position = F.expand_dims(F.cumsum(F.ones(max_shape), 1), 0)
div_term = F.exp(
F.arange(0, d_model // 2, 2) * (-math.log(10000.0) / d_model // 2)
)
div_term = F.expand_dims(div_term, (1, 2)) # [C//4, 1, 1]
pe[0::4, :, :] = F.sin(x_position * div_term)
pe[1::4, :, :] = | F.cos(x_position * div_term) | megengine.functional.cos |
import math
import megengine.module as M
import megengine.functional as F
class PositionEncodingSine(M.Module):
"""
This is a sinusoidal position encoding that generalized to 2-dimensional images
"""
def __init__(self, d_model, max_shape=(256, 256)):
"""
Args:
max_shape (tuple): for 1/8 featmap, the max length of 256 corresponds to 2048 pixels
"""
super().__init__()
pe = F.zeros((d_model, *max_shape))
y_position = F.expand_dims(F.cumsum(F.ones(max_shape), 0), 0)
x_position = F.expand_dims(F.cumsum(F.ones(max_shape), 1), 0)
div_term = F.exp(
F.arange(0, d_model // 2, 2) * (-math.log(10000.0) / d_model // 2)
)
div_term = F.expand_dims(div_term, (1, 2)) # [C//4, 1, 1]
pe[0::4, :, :] = F.sin(x_position * div_term)
pe[1::4, :, :] = F.cos(x_position * div_term)
pe[2::4, :, :] = | F.sin(y_position * div_term) | megengine.functional.sin |
import math
import megengine.module as M
import megengine.functional as F
class PositionEncodingSine(M.Module):
"""
This is a sinusoidal position encoding that generalized to 2-dimensional images
"""
def __init__(self, d_model, max_shape=(256, 256)):
"""
Args:
max_shape (tuple): for 1/8 featmap, the max length of 256 corresponds to 2048 pixels
"""
super().__init__()
pe = F.zeros((d_model, *max_shape))
y_position = F.expand_dims(F.cumsum(F.ones(max_shape), 0), 0)
x_position = F.expand_dims(F.cumsum(F.ones(max_shape), 1), 0)
div_term = F.exp(
F.arange(0, d_model // 2, 2) * (-math.log(10000.0) / d_model // 2)
)
div_term = F.expand_dims(div_term, (1, 2)) # [C//4, 1, 1]
pe[0::4, :, :] = F.sin(x_position * div_term)
pe[1::4, :, :] = F.cos(x_position * div_term)
pe[2::4, :, :] = F.sin(y_position * div_term)
pe[3::4, :, :] = | F.cos(y_position * div_term) | megengine.functional.cos |
import math
import megengine.module as M
import megengine.functional as F
class PositionEncodingSine(M.Module):
"""
This is a sinusoidal position encoding that generalized to 2-dimensional images
"""
def __init__(self, d_model, max_shape=(256, 256)):
"""
Args:
max_shape (tuple): for 1/8 featmap, the max length of 256 corresponds to 2048 pixels
"""
super().__init__()
pe = F.zeros((d_model, *max_shape))
y_position = F.expand_dims(F.cumsum(F.ones(max_shape), 0), 0)
x_position = F.expand_dims(F.cumsum(F.ones(max_shape), 1), 0)
div_term = F.exp(
F.arange(0, d_model // 2, 2) * (-math.log(10000.0) / d_model // 2)
)
div_term = F.expand_dims(div_term, (1, 2)) # [C//4, 1, 1]
pe[0::4, :, :] = F.sin(x_position * div_term)
pe[1::4, :, :] = F.cos(x_position * div_term)
pe[2::4, :, :] = F.sin(y_position * div_term)
pe[3::4, :, :] = F.cos(y_position * div_term)
self.pe = | F.expand_dims(pe, 0) | megengine.functional.expand_dims |
import math
import megengine.module as M
import megengine.functional as F
class PositionEncodingSine(M.Module):
"""
This is a sinusoidal position encoding that generalized to 2-dimensional images
"""
def __init__(self, d_model, max_shape=(256, 256)):
"""
Args:
max_shape (tuple): for 1/8 featmap, the max length of 256 corresponds to 2048 pixels
"""
super().__init__()
pe = F.zeros((d_model, *max_shape))
y_position = F.expand_dims(F.cumsum( | F.ones(max_shape) | megengine.functional.ones |
import math
import megengine.module as M
import megengine.functional as F
class PositionEncodingSine(M.Module):
"""
This is a sinusoidal position encoding that generalized to 2-dimensional images
"""
def __init__(self, d_model, max_shape=(256, 256)):
"""
Args:
max_shape (tuple): for 1/8 featmap, the max length of 256 corresponds to 2048 pixels
"""
super().__init__()
pe = F.zeros((d_model, *max_shape))
y_position = F.expand_dims(F.cumsum(F.ones(max_shape), 0), 0)
x_position = F.expand_dims(F.cumsum( | F.ones(max_shape) | megengine.functional.ones |
import math
import megengine.module as M
import megengine.functional as F
class PositionEncodingSine(M.Module):
"""
This is a sinusoidal position encoding that generalized to 2-dimensional images
"""
def __init__(self, d_model, max_shape=(256, 256)):
"""
Args:
max_shape (tuple): for 1/8 featmap, the max length of 256 corresponds to 2048 pixels
"""
super().__init__()
pe = F.zeros((d_model, *max_shape))
y_position = F.expand_dims(F.cumsum(F.ones(max_shape), 0), 0)
x_position = F.expand_dims(F.cumsum(F.ones(max_shape), 1), 0)
div_term = F.exp(
| F.arange(0, d_model // 2, 2) | megengine.functional.arange |
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
# Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
import cv2
import megengine.functional as F
import numpy as np
__all__ = [
"preprocess",
"postprocess",
]
def preprocess(image, input_size, mean, std, swap=(2, 0, 1)):
if len(image.shape) == 3:
padded_img = np.ones((input_size[0], input_size[1], 3)) * 114.0
else:
padded_img = np.ones(input_size) * 114.0
img = np.array(image)
r = min(input_size[0] / img.shape[0], input_size[1] / img.shape[1])
resized_img = cv2.resize(
img,
(int(img.shape[1] * r), int(img.shape[0] * r)),
interpolation=cv2.INTER_LINEAR,
).astype(np.float32)
padded_img[: int(img.shape[0] * r), : int(img.shape[1] * r)] = resized_img
image = padded_img
image = image.astype(np.float32)
image = image[:, :, ::-1]
image /= 255.0
if mean is not None:
image -= mean
if std is not None:
image /= std
image = image.transpose(swap)
image = np.ascontiguousarray(image, dtype=np.float32)
return image, r
def postprocess(prediction, num_classes, conf_thre=0.7, nms_thre=0.45):
box_corner = | F.zeros_like(prediction) | megengine.functional.zeros_like |
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
# Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
import cv2
import megengine.functional as F
import numpy as np
__all__ = [
"preprocess",
"postprocess",
]
def preprocess(image, input_size, mean, std, swap=(2, 0, 1)):
if len(image.shape) == 3:
padded_img = np.ones((input_size[0], input_size[1], 3)) * 114.0
else:
padded_img = np.ones(input_size) * 114.0
img = np.array(image)
r = min(input_size[0] / img.shape[0], input_size[1] / img.shape[1])
resized_img = cv2.resize(
img,
(int(img.shape[1] * r), int(img.shape[0] * r)),
interpolation=cv2.INTER_LINEAR,
).astype(np.float32)
padded_img[: int(img.shape[0] * r), : int(img.shape[1] * r)] = resized_img
image = padded_img
image = image.astype(np.float32)
image = image[:, :, ::-1]
image /= 255.0
if mean is not None:
image -= mean
if std is not None:
image /= std
image = image.transpose(swap)
image = np.ascontiguousarray(image, dtype=np.float32)
return image, r
def postprocess(prediction, num_classes, conf_thre=0.7, nms_thre=0.45):
box_corner = F.zeros_like(prediction)
box_corner[:, :, 0] = prediction[:, :, 0] - prediction[:, :, 2] / 2
box_corner[:, :, 1] = prediction[:, :, 1] - prediction[:, :, 3] / 2
box_corner[:, :, 2] = prediction[:, :, 0] + prediction[:, :, 2] / 2
box_corner[:, :, 3] = prediction[:, :, 1] + prediction[:, :, 3] / 2
prediction[:, :, :4] = box_corner[:, :, :4]
output = [None for _ in range(len(prediction))]
for i, image_pred in enumerate(prediction):
# If none are remaining => process next image
if not image_pred.shape[0]:
continue
# Get score and class with highest confidence
class_conf = F.max(image_pred[:, 5 : 5 + num_classes], 1, keepdims=True)
class_pred = F.argmax(image_pred[:, 5 : 5 + num_classes], 1, keepdims=True)
class_conf_squeeze = | F.squeeze(class_conf) | megengine.functional.squeeze |
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
# Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
import cv2
import megengine.functional as F
import numpy as np
__all__ = [
"preprocess",
"postprocess",
]
def preprocess(image, input_size, mean, std, swap=(2, 0, 1)):
if len(image.shape) == 3:
padded_img = np.ones((input_size[0], input_size[1], 3)) * 114.0
else:
padded_img = np.ones(input_size) * 114.0
img = np.array(image)
r = min(input_size[0] / img.shape[0], input_size[1] / img.shape[1])
resized_img = cv2.resize(
img,
(int(img.shape[1] * r), int(img.shape[0] * r)),
interpolation=cv2.INTER_LINEAR,
).astype(np.float32)
padded_img[: int(img.shape[0] * r), : int(img.shape[1] * r)] = resized_img
image = padded_img
image = image.astype(np.float32)
image = image[:, :, ::-1]
image /= 255.0
if mean is not None:
image -= mean
if std is not None:
image /= std
image = image.transpose(swap)
image = np.ascontiguousarray(image, dtype=np.float32)
return image, r
def postprocess(prediction, num_classes, conf_thre=0.7, nms_thre=0.45):
box_corner = F.zeros_like(prediction)
box_corner[:, :, 0] = prediction[:, :, 0] - prediction[:, :, 2] / 2
box_corner[:, :, 1] = prediction[:, :, 1] - prediction[:, :, 3] / 2
box_corner[:, :, 2] = prediction[:, :, 0] + prediction[:, :, 2] / 2
box_corner[:, :, 3] = prediction[:, :, 1] + prediction[:, :, 3] / 2
prediction[:, :, :4] = box_corner[:, :, :4]
output = [None for _ in range(len(prediction))]
for i, image_pred in enumerate(prediction):
# If none are remaining => process next image
if not image_pred.shape[0]:
continue
# Get score and class with highest confidence
class_conf = F.max(image_pred[:, 5 : 5 + num_classes], 1, keepdims=True)
class_pred = F.argmax(image_pred[:, 5 : 5 + num_classes], 1, keepdims=True)
class_conf_squeeze = F.squeeze(class_conf)
conf_mask = image_pred[:, 4] * class_conf_squeeze >= conf_thre
detections = | F.concat((image_pred[:, :5], class_conf, class_pred), 1) | megengine.functional.concat |
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
# Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
import cv2
import megengine.functional as F
import numpy as np
__all__ = [
"preprocess",
"postprocess",
]
def preprocess(image, input_size, mean, std, swap=(2, 0, 1)):
if len(image.shape) == 3:
padded_img = np.ones((input_size[0], input_size[1], 3)) * 114.0
else:
padded_img = np.ones(input_size) * 114.0
img = np.array(image)
r = min(input_size[0] / img.shape[0], input_size[1] / img.shape[1])
resized_img = cv2.resize(
img,
(int(img.shape[1] * r), int(img.shape[0] * r)),
interpolation=cv2.INTER_LINEAR,
).astype(np.float32)
padded_img[: int(img.shape[0] * r), : int(img.shape[1] * r)] = resized_img
image = padded_img
image = image.astype(np.float32)
image = image[:, :, ::-1]
image /= 255.0
if mean is not None:
image -= mean
if std is not None:
image /= std
image = image.transpose(swap)
image = np.ascontiguousarray(image, dtype=np.float32)
return image, r
def postprocess(prediction, num_classes, conf_thre=0.7, nms_thre=0.45):
box_corner = F.zeros_like(prediction)
box_corner[:, :, 0] = prediction[:, :, 0] - prediction[:, :, 2] / 2
box_corner[:, :, 1] = prediction[:, :, 1] - prediction[:, :, 3] / 2
box_corner[:, :, 2] = prediction[:, :, 0] + prediction[:, :, 2] / 2
box_corner[:, :, 3] = prediction[:, :, 1] + prediction[:, :, 3] / 2
prediction[:, :, :4] = box_corner[:, :, :4]
output = [None for _ in range(len(prediction))]
for i, image_pred in enumerate(prediction):
# If none are remaining => process next image
if not image_pred.shape[0]:
continue
# Get score and class with highest confidence
class_conf = F.max(image_pred[:, 5 : 5 + num_classes], 1, keepdims=True)
class_pred = F.argmax(image_pred[:, 5 : 5 + num_classes], 1, keepdims=True)
class_conf_squeeze = F.squeeze(class_conf)
conf_mask = image_pred[:, 4] * class_conf_squeeze >= conf_thre
detections = F.concat((image_pred[:, :5], class_conf, class_pred), 1)
detections = detections[conf_mask]
if not detections.shape[0]:
continue
nms_out_index = F.vision.nms(
detections[:, :4], detections[:, 4] * detections[:, 5], nms_thre,
)
detections = detections[nms_out_index]
if output[i] is None:
output[i] = detections
else:
output[i] = | F.concat((output[i], detections)) | megengine.functional.concat |
import argparse
import megengine.core.tensor.megbrain_graph as G
import megengine.utils.comp_graph_tools as cgtools
from megengine.core._imperative_rt import make_h2d
def change_batch_and_dump(inp_file, oup_file):
cg, _, outputs = | G.load_graph(inp_file) | megengine.core.tensor.megbrain_graph.load_graph |
import argparse
import megengine.core.tensor.megbrain_graph as G
import megengine.utils.comp_graph_tools as cgtools
from megengine.core._imperative_rt import make_h2d
def change_batch_and_dump(inp_file, oup_file):
cg, _, outputs = G.load_graph(inp_file)
inputs = | cgtools.get_dep_vars(outputs[0], "Host2DeviceCopy") | megengine.utils.comp_graph_tools.get_dep_vars |
import argparse
import megengine.core.tensor.megbrain_graph as G
import megengine.utils.comp_graph_tools as cgtools
from megengine.core._imperative_rt import make_h2d
def change_batch_and_dump(inp_file, oup_file):
cg, _, outputs = G.load_graph(inp_file)
inputs = cgtools.get_dep_vars(outputs[0], "Host2DeviceCopy")
replace_dict = {}
for var in inputs:
n_shape = list(var.shape)
n_shape[0] = 1
new_input = make_h2d(cg, "xpux", var.dtype, n_shape, var.name)
replace_dict[var] = new_input
new_outputs = | cgtools.replace_vars(outputs, replace_dict) | megengine.utils.comp_graph_tools.replace_vars |
import argparse
import megengine.core.tensor.megbrain_graph as G
import megengine.utils.comp_graph_tools as cgtools
from megengine.core._imperative_rt import make_h2d
def change_batch_and_dump(inp_file, oup_file):
cg, _, outputs = G.load_graph(inp_file)
inputs = cgtools.get_dep_vars(outputs[0], "Host2DeviceCopy")
replace_dict = {}
for var in inputs:
n_shape = list(var.shape)
n_shape[0] = 1
new_input = | make_h2d(cg, "xpux", var.dtype, n_shape, var.name) | megengine.core._imperative_rt.make_h2d |
import os
import math
import numpy as np
import six
import megengine._internal as mgb
from enum import Enum
from py_proto import mace_pb2
from transform import base_converter
from transform.base_converter import PoolingType
from transform.base_converter import ActivationType
from transform.base_converter import EltwiseType
from transform.base_converter import FrameworkType
from transform.base_converter import ReduceType
from transform.base_converter import DataFormat
from transform.base_converter import MaceOp
from transform.base_converter import MaceKeyword
from transform.base_converter import ConverterUtil
from transform.base_converter import RoundMode
from utils.util import mace_check
mge_kernel_h_str = "window_h"
mge_kernel_w_str = "window_w"
mge_stride_h_str = "stride_h"
mge_stride_w_str = "stride_w"
mge_pad_h_str = "pad_h"
mge_pad_w_str = "pad_w"
mge_dilate_h_str = "dilate_h"
mge_dilate_w_str = "dilate_w"
MGESupportedOps = [
"AxisAddRemove",
"BatchNormForward",
"Concat",
"ConvolutionForward",
"ConvolutionBackwardData",
"Dimshuffle",
"Elemwise",
"GetVarShape",
"Host2DeviceCopy",
"Identity",
"MarkNoBroadcastElemwise",
"MatrixMul",
"PoolingForward",
"Reduce",
"Reshape",
"SharedDeviceTensor",
"Subtensor",
]
MGEOpType = Enum("MGEOpType", [(op, op) for op in MGESupportedOps], type=str)
def get_symvar_value(mge_symvar):
if mge_symvar.inferred_value is not None:
val = mge_symvar.inferred_value
else:
cg = mge_symvar.owner_graph
func = cg.compile_outonly(mge_symvar)
val = func()
return val
def is_consumer_group_conv(mge_symvar, var2oprs, map_oprs):
consumer_ids = var2oprs[mge_symvar.id]
n_consumers = len(consumer_ids)
for consumer_id in consumer_ids:
consumer_op = map_oprs[consumer_id[0]]
if (mgb.cgtools.get_opr_type(consumer_op)
in ("ConvolutionForward", "ConvolutionBackwardData")
and consumer_op.params["sparse"] == "GROUP"):
mace_check(n_consumers == 1,
"This tensor should only feed depthwise conv/deconv")
return True
return False
class MegengineConverter(base_converter.ConverterInterface):
"""A class for convert megengine dumped model to mace model."""
compute_format_type = {
"NCHW": DataFormat.NCHW,
"NHWC": DataFormat.NHWC,
"DEFAULT": DataFormat.NCHW,
}
reduce_math_type = {
"SUM": ReduceType.SUM,
"PROD": ReduceType.PROD,
"MIN": ReduceType.MIN,
"MAX": ReduceType.MAX,
}
# SQE_DIFF, CLIP, SIGN maybe needed
eltwise_type = {
"ADD": EltwiseType.SUM,
"SUB": EltwiseType.SUB,
"MUL": EltwiseType.PROD,
"TRUE_DIV": EltwiseType.DIV,
"MIN": EltwiseType.MIN,
"MAX": EltwiseType.MAX,
"NEGATE": EltwiseType.NEG,
"ABS": EltwiseType.ABS,
"POW": EltwiseType.POW,
"EQ": EltwiseType.EQUAL,
"FLOOR_DIV": EltwiseType.FLOOR_DIV,
"EXP": EltwiseType.POW,
}
activation_type = {
"RELU": ActivationType.RELU,
"TANH": ActivationType.TANH,
"SIGMOID": ActivationType.SIGMOID,
}
def __init__(self, option, src_model_file):
self._op_converters = {
MGEOpType.AxisAddRemove.name: self.convert_axisaddrm,
MGEOpType.BatchNormForward.name: self.convert_batchnorm,
MGEOpType.Concat.name: self.convert_concat,
MGEOpType.ConvolutionForward.name: self.convert_conv2d,
MGEOpType.ConvolutionBackwardData.name: self.convert_deconv2d,
MGEOpType.Dimshuffle.name: self.convert_dimshuffle,
MGEOpType.Elemwise.name: self.convert_elemwise,
MGEOpType.GetVarShape.name: self.convert_shape,
MGEOpType.Host2DeviceCopy.name: self.convert_nop,
MGEOpType.Identity.name: self.convert_identity,
MGEOpType.MarkNoBroadcastElemwise.name: self.convert_identity,
MGEOpType.MatrixMul.name: self.convert_matmul,
MGEOpType.PoolingForward.name: self.convert_pooling,
MGEOpType.Reduce.name: self.convert_reduce,
MGEOpType.Reshape.name: self.convert_reshape,
MGEOpType.SharedDeviceTensor.name: self.convert_nop,
MGEOpType.Subtensor.name: self.convert_subtensor,
}
self._option = option
self._mace_net_def = mace_pb2.NetDef()
ConverterUtil.set_filter_format(self._mace_net_def, DataFormat.OIHW)
ConverterUtil.add_data_format_arg(self._mace_net_def, DataFormat.NCHW)
cg, _, outputs = | mgb.load_comp_graph_from_file(src_model_file) | megengine._internal.load_comp_graph_from_file |
import os
import math
import numpy as np
import six
import megengine._internal as mgb
from enum import Enum
from py_proto import mace_pb2
from transform import base_converter
from transform.base_converter import PoolingType
from transform.base_converter import ActivationType
from transform.base_converter import EltwiseType
from transform.base_converter import FrameworkType
from transform.base_converter import ReduceType
from transform.base_converter import DataFormat
from transform.base_converter import MaceOp
from transform.base_converter import MaceKeyword
from transform.base_converter import ConverterUtil
from transform.base_converter import RoundMode
from utils.util import mace_check
mge_kernel_h_str = "window_h"
mge_kernel_w_str = "window_w"
mge_stride_h_str = "stride_h"
mge_stride_w_str = "stride_w"
mge_pad_h_str = "pad_h"
mge_pad_w_str = "pad_w"
mge_dilate_h_str = "dilate_h"
mge_dilate_w_str = "dilate_w"
MGESupportedOps = [
"AxisAddRemove",
"BatchNormForward",
"Concat",
"ConvolutionForward",
"ConvolutionBackwardData",
"Dimshuffle",
"Elemwise",
"GetVarShape",
"Host2DeviceCopy",
"Identity",
"MarkNoBroadcastElemwise",
"MatrixMul",
"PoolingForward",
"Reduce",
"Reshape",
"SharedDeviceTensor",
"Subtensor",
]
MGEOpType = Enum("MGEOpType", [(op, op) for op in MGESupportedOps], type=str)
def get_symvar_value(mge_symvar):
if mge_symvar.inferred_value is not None:
val = mge_symvar.inferred_value
else:
cg = mge_symvar.owner_graph
func = cg.compile_outonly(mge_symvar)
val = func()
return val
def is_consumer_group_conv(mge_symvar, var2oprs, map_oprs):
consumer_ids = var2oprs[mge_symvar.id]
n_consumers = len(consumer_ids)
for consumer_id in consumer_ids:
consumer_op = map_oprs[consumer_id[0]]
if (mgb.cgtools.get_opr_type(consumer_op)
in ("ConvolutionForward", "ConvolutionBackwardData")
and consumer_op.params["sparse"] == "GROUP"):
mace_check(n_consumers == 1,
"This tensor should only feed depthwise conv/deconv")
return True
return False
class MegengineConverter(base_converter.ConverterInterface):
"""A class for convert megengine dumped model to mace model."""
compute_format_type = {
"NCHW": DataFormat.NCHW,
"NHWC": DataFormat.NHWC,
"DEFAULT": DataFormat.NCHW,
}
reduce_math_type = {
"SUM": ReduceType.SUM,
"PROD": ReduceType.PROD,
"MIN": ReduceType.MIN,
"MAX": ReduceType.MAX,
}
# SQE_DIFF, CLIP, SIGN maybe needed
eltwise_type = {
"ADD": EltwiseType.SUM,
"SUB": EltwiseType.SUB,
"MUL": EltwiseType.PROD,
"TRUE_DIV": EltwiseType.DIV,
"MIN": EltwiseType.MIN,
"MAX": EltwiseType.MAX,
"NEGATE": EltwiseType.NEG,
"ABS": EltwiseType.ABS,
"POW": EltwiseType.POW,
"EQ": EltwiseType.EQUAL,
"FLOOR_DIV": EltwiseType.FLOOR_DIV,
"EXP": EltwiseType.POW,
}
activation_type = {
"RELU": ActivationType.RELU,
"TANH": ActivationType.TANH,
"SIGMOID": ActivationType.SIGMOID,
}
def __init__(self, option, src_model_file):
self._op_converters = {
MGEOpType.AxisAddRemove.name: self.convert_axisaddrm,
MGEOpType.BatchNormForward.name: self.convert_batchnorm,
MGEOpType.Concat.name: self.convert_concat,
MGEOpType.ConvolutionForward.name: self.convert_conv2d,
MGEOpType.ConvolutionBackwardData.name: self.convert_deconv2d,
MGEOpType.Dimshuffle.name: self.convert_dimshuffle,
MGEOpType.Elemwise.name: self.convert_elemwise,
MGEOpType.GetVarShape.name: self.convert_shape,
MGEOpType.Host2DeviceCopy.name: self.convert_nop,
MGEOpType.Identity.name: self.convert_identity,
MGEOpType.MarkNoBroadcastElemwise.name: self.convert_identity,
MGEOpType.MatrixMul.name: self.convert_matmul,
MGEOpType.PoolingForward.name: self.convert_pooling,
MGEOpType.Reduce.name: self.convert_reduce,
MGEOpType.Reshape.name: self.convert_reshape,
MGEOpType.SharedDeviceTensor.name: self.convert_nop,
MGEOpType.Subtensor.name: self.convert_subtensor,
}
self._option = option
self._mace_net_def = mace_pb2.NetDef()
ConverterUtil.set_filter_format(self._mace_net_def, DataFormat.OIHW)
ConverterUtil.add_data_format_arg(self._mace_net_def, DataFormat.NCHW)
cg, _, outputs = mgb.load_comp_graph_from_file(src_model_file)
map_oprs, _, var2oprs, *_ = | mgb.cgtools.graph_traversal(outputs) | megengine._internal.cgtools.graph_traversal |
import os
import math
import numpy as np
import six
import megengine._internal as mgb
from enum import Enum
from py_proto import mace_pb2
from transform import base_converter
from transform.base_converter import PoolingType
from transform.base_converter import ActivationType
from transform.base_converter import EltwiseType
from transform.base_converter import FrameworkType
from transform.base_converter import ReduceType
from transform.base_converter import DataFormat
from transform.base_converter import MaceOp
from transform.base_converter import MaceKeyword
from transform.base_converter import ConverterUtil
from transform.base_converter import RoundMode
from utils.util import mace_check
mge_kernel_h_str = "window_h"
mge_kernel_w_str = "window_w"
mge_stride_h_str = "stride_h"
mge_stride_w_str = "stride_w"
mge_pad_h_str = "pad_h"
mge_pad_w_str = "pad_w"
mge_dilate_h_str = "dilate_h"
mge_dilate_w_str = "dilate_w"
MGESupportedOps = [
"AxisAddRemove",
"BatchNormForward",
"Concat",
"ConvolutionForward",
"ConvolutionBackwardData",
"Dimshuffle",
"Elemwise",
"GetVarShape",
"Host2DeviceCopy",
"Identity",
"MarkNoBroadcastElemwise",
"MatrixMul",
"PoolingForward",
"Reduce",
"Reshape",
"SharedDeviceTensor",
"Subtensor",
]
MGEOpType = Enum("MGEOpType", [(op, op) for op in MGESupportedOps], type=str)
def get_symvar_value(mge_symvar):
if mge_symvar.inferred_value is not None:
val = mge_symvar.inferred_value
else:
cg = mge_symvar.owner_graph
func = cg.compile_outonly(mge_symvar)
val = func()
return val
def is_consumer_group_conv(mge_symvar, var2oprs, map_oprs):
consumer_ids = var2oprs[mge_symvar.id]
n_consumers = len(consumer_ids)
for consumer_id in consumer_ids:
consumer_op = map_oprs[consumer_id[0]]
if (mgb.cgtools.get_opr_type(consumer_op)
in ("ConvolutionForward", "ConvolutionBackwardData")
and consumer_op.params["sparse"] == "GROUP"):
mace_check(n_consumers == 1,
"This tensor should only feed depthwise conv/deconv")
return True
return False
class MegengineConverter(base_converter.ConverterInterface):
"""A class for convert megengine dumped model to mace model."""
compute_format_type = {
"NCHW": DataFormat.NCHW,
"NHWC": DataFormat.NHWC,
"DEFAULT": DataFormat.NCHW,
}
reduce_math_type = {
"SUM": ReduceType.SUM,
"PROD": ReduceType.PROD,
"MIN": ReduceType.MIN,
"MAX": ReduceType.MAX,
}
# SQE_DIFF, CLIP, SIGN maybe needed
eltwise_type = {
"ADD": EltwiseType.SUM,
"SUB": EltwiseType.SUB,
"MUL": EltwiseType.PROD,
"TRUE_DIV": EltwiseType.DIV,
"MIN": EltwiseType.MIN,
"MAX": EltwiseType.MAX,
"NEGATE": EltwiseType.NEG,
"ABS": EltwiseType.ABS,
"POW": EltwiseType.POW,
"EQ": EltwiseType.EQUAL,
"FLOOR_DIV": EltwiseType.FLOOR_DIV,
"EXP": EltwiseType.POW,
}
activation_type = {
"RELU": ActivationType.RELU,
"TANH": ActivationType.TANH,
"SIGMOID": ActivationType.SIGMOID,
}
def __init__(self, option, src_model_file):
self._op_converters = {
MGEOpType.AxisAddRemove.name: self.convert_axisaddrm,
MGEOpType.BatchNormForward.name: self.convert_batchnorm,
MGEOpType.Concat.name: self.convert_concat,
MGEOpType.ConvolutionForward.name: self.convert_conv2d,
MGEOpType.ConvolutionBackwardData.name: self.convert_deconv2d,
MGEOpType.Dimshuffle.name: self.convert_dimshuffle,
MGEOpType.Elemwise.name: self.convert_elemwise,
MGEOpType.GetVarShape.name: self.convert_shape,
MGEOpType.Host2DeviceCopy.name: self.convert_nop,
MGEOpType.Identity.name: self.convert_identity,
MGEOpType.MarkNoBroadcastElemwise.name: self.convert_identity,
MGEOpType.MatrixMul.name: self.convert_matmul,
MGEOpType.PoolingForward.name: self.convert_pooling,
MGEOpType.Reduce.name: self.convert_reduce,
MGEOpType.Reshape.name: self.convert_reshape,
MGEOpType.SharedDeviceTensor.name: self.convert_nop,
MGEOpType.Subtensor.name: self.convert_subtensor,
}
self._option = option
self._mace_net_def = mace_pb2.NetDef()
ConverterUtil.set_filter_format(self._mace_net_def, DataFormat.OIHW)
ConverterUtil.add_data_format_arg(self._mace_net_def, DataFormat.NCHW)
cg, _, outputs = mgb.load_comp_graph_from_file(src_model_file)
map_oprs, _, var2oprs, *_ = mgb.cgtools.graph_traversal(outputs)
# prune second input of reshape
# because it introduces several ops, may increase the overhead
operators = | mgb.cgtools.get_oprs_seq(outputs, prune_reshape=True) | megengine._internal.cgtools.get_oprs_seq |
import os
import math
import numpy as np
import six
import megengine._internal as mgb
from enum import Enum
from py_proto import mace_pb2
from transform import base_converter
from transform.base_converter import PoolingType
from transform.base_converter import ActivationType
from transform.base_converter import EltwiseType
from transform.base_converter import FrameworkType
from transform.base_converter import ReduceType
from transform.base_converter import DataFormat
from transform.base_converter import MaceOp
from transform.base_converter import MaceKeyword
from transform.base_converter import ConverterUtil
from transform.base_converter import RoundMode
from utils.util import mace_check
mge_kernel_h_str = "window_h"
mge_kernel_w_str = "window_w"
mge_stride_h_str = "stride_h"
mge_stride_w_str = "stride_w"
mge_pad_h_str = "pad_h"
mge_pad_w_str = "pad_w"
mge_dilate_h_str = "dilate_h"
mge_dilate_w_str = "dilate_w"
MGESupportedOps = [
"AxisAddRemove",
"BatchNormForward",
"Concat",
"ConvolutionForward",
"ConvolutionBackwardData",
"Dimshuffle",
"Elemwise",
"GetVarShape",
"Host2DeviceCopy",
"Identity",
"MarkNoBroadcastElemwise",
"MatrixMul",
"PoolingForward",
"Reduce",
"Reshape",
"SharedDeviceTensor",
"Subtensor",
]
MGEOpType = Enum("MGEOpType", [(op, op) for op in MGESupportedOps], type=str)
def get_symvar_value(mge_symvar):
if mge_symvar.inferred_value is not None:
val = mge_symvar.inferred_value
else:
cg = mge_symvar.owner_graph
func = cg.compile_outonly(mge_symvar)
val = func()
return val
def is_consumer_group_conv(mge_symvar, var2oprs, map_oprs):
consumer_ids = var2oprs[mge_symvar.id]
n_consumers = len(consumer_ids)
for consumer_id in consumer_ids:
consumer_op = map_oprs[consumer_id[0]]
if (mgb.cgtools.get_opr_type(consumer_op)
in ("ConvolutionForward", "ConvolutionBackwardData")
and consumer_op.params["sparse"] == "GROUP"):
mace_check(n_consumers == 1,
"This tensor should only feed depthwise conv/deconv")
return True
return False
class MegengineConverter(base_converter.ConverterInterface):
"""A class for convert megengine dumped model to mace model."""
compute_format_type = {
"NCHW": DataFormat.NCHW,
"NHWC": DataFormat.NHWC,
"DEFAULT": DataFormat.NCHW,
}
reduce_math_type = {
"SUM": ReduceType.SUM,
"PROD": ReduceType.PROD,
"MIN": ReduceType.MIN,
"MAX": ReduceType.MAX,
}
# SQE_DIFF, CLIP, SIGN maybe needed
eltwise_type = {
"ADD": EltwiseType.SUM,
"SUB": EltwiseType.SUB,
"MUL": EltwiseType.PROD,
"TRUE_DIV": EltwiseType.DIV,
"MIN": EltwiseType.MIN,
"MAX": EltwiseType.MAX,
"NEGATE": EltwiseType.NEG,
"ABS": EltwiseType.ABS,
"POW": EltwiseType.POW,
"EQ": EltwiseType.EQUAL,
"FLOOR_DIV": EltwiseType.FLOOR_DIV,
"EXP": EltwiseType.POW,
}
activation_type = {
"RELU": ActivationType.RELU,
"TANH": ActivationType.TANH,
"SIGMOID": ActivationType.SIGMOID,
}
def __init__(self, option, src_model_file):
self._op_converters = {
MGEOpType.AxisAddRemove.name: self.convert_axisaddrm,
MGEOpType.BatchNormForward.name: self.convert_batchnorm,
MGEOpType.Concat.name: self.convert_concat,
MGEOpType.ConvolutionForward.name: self.convert_conv2d,
MGEOpType.ConvolutionBackwardData.name: self.convert_deconv2d,
MGEOpType.Dimshuffle.name: self.convert_dimshuffle,
MGEOpType.Elemwise.name: self.convert_elemwise,
MGEOpType.GetVarShape.name: self.convert_shape,
MGEOpType.Host2DeviceCopy.name: self.convert_nop,
MGEOpType.Identity.name: self.convert_identity,
MGEOpType.MarkNoBroadcastElemwise.name: self.convert_identity,
MGEOpType.MatrixMul.name: self.convert_matmul,
MGEOpType.PoolingForward.name: self.convert_pooling,
MGEOpType.Reduce.name: self.convert_reduce,
MGEOpType.Reshape.name: self.convert_reshape,
MGEOpType.SharedDeviceTensor.name: self.convert_nop,
MGEOpType.Subtensor.name: self.convert_subtensor,
}
self._option = option
self._mace_net_def = mace_pb2.NetDef()
ConverterUtil.set_filter_format(self._mace_net_def, DataFormat.OIHW)
ConverterUtil.add_data_format_arg(self._mace_net_def, DataFormat.NCHW)
cg, _, outputs = mgb.load_comp_graph_from_file(src_model_file)
map_oprs, _, var2oprs, *_ = mgb.cgtools.graph_traversal(outputs)
# prune second input of reshape
# because it introduces several ops, may increase the overhead
operators = mgb.cgtools.get_oprs_seq(outputs, prune_reshape=True)
self._mge_cg = cg
self._mge_operators = operators
self._mge_map_oprs = map_oprs
self._mge_var2oprs = var2oprs
self._skip_tensors = set()
self._bn_statistis_tensors = {}
def run(self):
self.convert_ops()
self.replace_input_output_tensor_name()
return self._mace_net_def
# only change the input/output tensor name for whole model
def replace_input_output_tensor_name(self):
for op in self._mace_net_def.op:
for i in six.moves.range(len(op.input)):
if "," in op.input[i]:
op_name = op.input[i]
op_name = op_name.replace(",", "#")
if (op_name in self._option.input_nodes or
op_name in self._option.output_nodes):
op.input[i] = op_name
for i in six.moves.range(len(op.output)):
if "," in op.output[i]:
op_name = op.output[i]
op_name = op_name.replace(",", "#")
if op_name in self._option.output_nodes:
op.output[i] = op_name
# this method will be called by convert_conv2d/deconv2d and convert_pooling
@staticmethod
def add_stride_pad_kernel_arg(params, op_def):
stride = [params[mge_stride_h_str], params[mge_stride_w_str]]
pad = [params[mge_pad_h_str] * 2, params[mge_pad_w_str] * 2]
strides_arg = op_def.arg.add()
strides_arg.name = MaceKeyword.mace_strides_str
strides_arg.ints.extend(stride)
padding_arg = op_def.arg.add()
padding_arg.name = MaceKeyword.mace_padding_values_str
padding_arg.ints.extend(pad)
if op_def.type == MaceOp.Pooling.name:
kernel = [params[mge_kernel_h_str], params[mge_kernel_w_str]]
kernels_arg = op_def.arg.add()
kernels_arg.name = MaceKeyword.mace_kernel_str
kernels_arg.ints.extend(kernel)
if op_def.type in (MaceOp.Conv2D.name, MaceOp.DepthwiseConv2d.name,
MaceOp.Deconv2D.name,
MaceOp.DepthwiseDeconv2d.name):
dilation = [params[mge_dilate_h_str], params[mge_dilate_w_str]]
dilation_arg = op_def.arg.add()
dilation_arg.name = MaceKeyword.mace_dilations_str
dilation_arg.ints.extend(dilation)
def convert_ops(self):
for mge_op in self._mge_operators:
opr_type = mgb.cgtools.get_opr_type(mge_op)
# some reshape operators provide data for batchnorm
if opr_type == "Reshape":
output = mge_op.outputs[0]
next_ops = self._mge_var2oprs[output.id]
if len(next_ops) == 1:
(next_op_id, _) = next_ops[0]
next_op = self._mge_map_oprs[next_op_id]
if mgb.cgtools.get_opr_type(next_op) == "BatchNormForward":
self._skip_tensors.update(
[inp.name for inp in mge_op.inputs])
# using output name to address input symbol var
self._bn_statistis_tensors[mge_op.outputs[0].name] = \
mge_op.inputs[0]
# skip this reshape op
continue
self._op_converters[opr_type](mge_op)
self.convert_tensors()
def add_tensor(self, name, shape, data_type, value):
tensor = self._mace_net_def.tensors.add()
tensor.name = name
tensor.dims.extend(list(shape))
tensor.data_type = data_type
if data_type == mace_pb2.DT_INT32:
tensor.int32_data.extend(value)
else:
tensor.float_data.extend(value)
# convert all pre-calculated and constant tensors
def convert_tensors(self):
for mge_op in self._mge_operators:
type_opr = mgb.cgtools.get_opr_type(mge_op)
# all tensors generated by SharedDeviceTensor op
if type_opr == "SharedDeviceTensor":
output = mge_op.outputs[0]
if output.name not in self._skip_tensors:
nshape = output.imm_shape
# tensor used for depthwise conv/deconv should be reshaped
for_group_conv = is_consumer_group_conv(
output, self._mge_var2oprs, self._mge_map_oprs
)
if for_group_conv:
nshape = (
1,
output.imm_shape[0],
output.imm_shape[3],
output.imm_shape[4],
)
self.add_tensor(
output.name,
nshape,
mace_pb2.DT_FLOAT,
get_symvar_value(output).flatten())
else:
# handle all constant values
for const_tensor in mge_op.inputs:
if (const_tensor.inferred_value is not None
and const_tensor.name not in self._skip_tensors):
self.add_tensor(
const_tensor.name,
const_tensor.imm_shape,
mace_pb2.DT_INT32,
const_tensor.inferred_value.flatten())
def convert_nop(self, mge_op):
pass
def convert_general_op(self, mge_op):
op = self._mace_net_def.op.add()
op.name = mge_op.name
op.type = | mgb.cgtools.get_opr_type(mge_op) | megengine._internal.cgtools.get_opr_type |
import os
import math
import numpy as np
import six
import megengine._internal as mgb
from enum import Enum
from py_proto import mace_pb2
from transform import base_converter
from transform.base_converter import PoolingType
from transform.base_converter import ActivationType
from transform.base_converter import EltwiseType
from transform.base_converter import FrameworkType
from transform.base_converter import ReduceType
from transform.base_converter import DataFormat
from transform.base_converter import MaceOp
from transform.base_converter import MaceKeyword
from transform.base_converter import ConverterUtil
from transform.base_converter import RoundMode
from utils.util import mace_check
mge_kernel_h_str = "window_h"
mge_kernel_w_str = "window_w"
mge_stride_h_str = "stride_h"
mge_stride_w_str = "stride_w"
mge_pad_h_str = "pad_h"
mge_pad_w_str = "pad_w"
mge_dilate_h_str = "dilate_h"
mge_dilate_w_str = "dilate_w"
MGESupportedOps = [
"AxisAddRemove",
"BatchNormForward",
"Concat",
"ConvolutionForward",
"ConvolutionBackwardData",
"Dimshuffle",
"Elemwise",
"GetVarShape",
"Host2DeviceCopy",
"Identity",
"MarkNoBroadcastElemwise",
"MatrixMul",
"PoolingForward",
"Reduce",
"Reshape",
"SharedDeviceTensor",
"Subtensor",
]
MGEOpType = Enum("MGEOpType", [(op, op) for op in MGESupportedOps], type=str)
def get_symvar_value(mge_symvar):
if mge_symvar.inferred_value is not None:
val = mge_symvar.inferred_value
else:
cg = mge_symvar.owner_graph
func = cg.compile_outonly(mge_symvar)
val = func()
return val
def is_consumer_group_conv(mge_symvar, var2oprs, map_oprs):
consumer_ids = var2oprs[mge_symvar.id]
n_consumers = len(consumer_ids)
for consumer_id in consumer_ids:
consumer_op = map_oprs[consumer_id[0]]
if (mgb.cgtools.get_opr_type(consumer_op)
in ("ConvolutionForward", "ConvolutionBackwardData")
and consumer_op.params["sparse"] == "GROUP"):
mace_check(n_consumers == 1,
"This tensor should only feed depthwise conv/deconv")
return True
return False
class MegengineConverter(base_converter.ConverterInterface):
"""A class for convert megengine dumped model to mace model."""
compute_format_type = {
"NCHW": DataFormat.NCHW,
"NHWC": DataFormat.NHWC,
"DEFAULT": DataFormat.NCHW,
}
reduce_math_type = {
"SUM": ReduceType.SUM,
"PROD": ReduceType.PROD,
"MIN": ReduceType.MIN,
"MAX": ReduceType.MAX,
}
# SQE_DIFF, CLIP, SIGN maybe needed
eltwise_type = {
"ADD": EltwiseType.SUM,
"SUB": EltwiseType.SUB,
"MUL": EltwiseType.PROD,
"TRUE_DIV": EltwiseType.DIV,
"MIN": EltwiseType.MIN,
"MAX": EltwiseType.MAX,
"NEGATE": EltwiseType.NEG,
"ABS": EltwiseType.ABS,
"POW": EltwiseType.POW,
"EQ": EltwiseType.EQUAL,
"FLOOR_DIV": EltwiseType.FLOOR_DIV,
"EXP": EltwiseType.POW,
}
activation_type = {
"RELU": ActivationType.RELU,
"TANH": ActivationType.TANH,
"SIGMOID": ActivationType.SIGMOID,
}
def __init__(self, option, src_model_file):
self._op_converters = {
MGEOpType.AxisAddRemove.name: self.convert_axisaddrm,
MGEOpType.BatchNormForward.name: self.convert_batchnorm,
MGEOpType.Concat.name: self.convert_concat,
MGEOpType.ConvolutionForward.name: self.convert_conv2d,
MGEOpType.ConvolutionBackwardData.name: self.convert_deconv2d,
MGEOpType.Dimshuffle.name: self.convert_dimshuffle,
MGEOpType.Elemwise.name: self.convert_elemwise,
MGEOpType.GetVarShape.name: self.convert_shape,
MGEOpType.Host2DeviceCopy.name: self.convert_nop,
MGEOpType.Identity.name: self.convert_identity,
MGEOpType.MarkNoBroadcastElemwise.name: self.convert_identity,
MGEOpType.MatrixMul.name: self.convert_matmul,
MGEOpType.PoolingForward.name: self.convert_pooling,
MGEOpType.Reduce.name: self.convert_reduce,
MGEOpType.Reshape.name: self.convert_reshape,
MGEOpType.SharedDeviceTensor.name: self.convert_nop,
MGEOpType.Subtensor.name: self.convert_subtensor,
}
self._option = option
self._mace_net_def = mace_pb2.NetDef()
ConverterUtil.set_filter_format(self._mace_net_def, DataFormat.OIHW)
ConverterUtil.add_data_format_arg(self._mace_net_def, DataFormat.NCHW)
cg, _, outputs = mgb.load_comp_graph_from_file(src_model_file)
map_oprs, _, var2oprs, *_ = mgb.cgtools.graph_traversal(outputs)
# prune second input of reshape
# because it introduces several ops, may increase the overhead
operators = mgb.cgtools.get_oprs_seq(outputs, prune_reshape=True)
self._mge_cg = cg
self._mge_operators = operators
self._mge_map_oprs = map_oprs
self._mge_var2oprs = var2oprs
self._skip_tensors = set()
self._bn_statistis_tensors = {}
def run(self):
self.convert_ops()
self.replace_input_output_tensor_name()
return self._mace_net_def
# only change the input/output tensor name for whole model
def replace_input_output_tensor_name(self):
for op in self._mace_net_def.op:
for i in six.moves.range(len(op.input)):
if "," in op.input[i]:
op_name = op.input[i]
op_name = op_name.replace(",", "#")
if (op_name in self._option.input_nodes or
op_name in self._option.output_nodes):
op.input[i] = op_name
for i in six.moves.range(len(op.output)):
if "," in op.output[i]:
op_name = op.output[i]
op_name = op_name.replace(",", "#")
if op_name in self._option.output_nodes:
op.output[i] = op_name
# this method will be called by convert_conv2d/deconv2d and convert_pooling
@staticmethod
def add_stride_pad_kernel_arg(params, op_def):
stride = [params[mge_stride_h_str], params[mge_stride_w_str]]
pad = [params[mge_pad_h_str] * 2, params[mge_pad_w_str] * 2]
strides_arg = op_def.arg.add()
strides_arg.name = MaceKeyword.mace_strides_str
strides_arg.ints.extend(stride)
padding_arg = op_def.arg.add()
padding_arg.name = MaceKeyword.mace_padding_values_str
padding_arg.ints.extend(pad)
if op_def.type == MaceOp.Pooling.name:
kernel = [params[mge_kernel_h_str], params[mge_kernel_w_str]]
kernels_arg = op_def.arg.add()
kernels_arg.name = MaceKeyword.mace_kernel_str
kernels_arg.ints.extend(kernel)
if op_def.type in (MaceOp.Conv2D.name, MaceOp.DepthwiseConv2d.name,
MaceOp.Deconv2D.name,
MaceOp.DepthwiseDeconv2d.name):
dilation = [params[mge_dilate_h_str], params[mge_dilate_w_str]]
dilation_arg = op_def.arg.add()
dilation_arg.name = MaceKeyword.mace_dilations_str
dilation_arg.ints.extend(dilation)
def convert_ops(self):
for mge_op in self._mge_operators:
opr_type = | mgb.cgtools.get_opr_type(mge_op) | megengine._internal.cgtools.get_opr_type |
import os
import math
import numpy as np
import six
import megengine._internal as mgb
from enum import Enum
from py_proto import mace_pb2
from transform import base_converter
from transform.base_converter import PoolingType
from transform.base_converter import ActivationType
from transform.base_converter import EltwiseType
from transform.base_converter import FrameworkType
from transform.base_converter import ReduceType
from transform.base_converter import DataFormat
from transform.base_converter import MaceOp
from transform.base_converter import MaceKeyword
from transform.base_converter import ConverterUtil
from transform.base_converter import RoundMode
from utils.util import mace_check
mge_kernel_h_str = "window_h"
mge_kernel_w_str = "window_w"
mge_stride_h_str = "stride_h"
mge_stride_w_str = "stride_w"
mge_pad_h_str = "pad_h"
mge_pad_w_str = "pad_w"
mge_dilate_h_str = "dilate_h"
mge_dilate_w_str = "dilate_w"
MGESupportedOps = [
"AxisAddRemove",
"BatchNormForward",
"Concat",
"ConvolutionForward",
"ConvolutionBackwardData",
"Dimshuffle",
"Elemwise",
"GetVarShape",
"Host2DeviceCopy",
"Identity",
"MarkNoBroadcastElemwise",
"MatrixMul",
"PoolingForward",
"Reduce",
"Reshape",
"SharedDeviceTensor",
"Subtensor",
]
MGEOpType = Enum("MGEOpType", [(op, op) for op in MGESupportedOps], type=str)
def get_symvar_value(mge_symvar):
if mge_symvar.inferred_value is not None:
val = mge_symvar.inferred_value
else:
cg = mge_symvar.owner_graph
func = cg.compile_outonly(mge_symvar)
val = func()
return val
def is_consumer_group_conv(mge_symvar, var2oprs, map_oprs):
consumer_ids = var2oprs[mge_symvar.id]
n_consumers = len(consumer_ids)
for consumer_id in consumer_ids:
consumer_op = map_oprs[consumer_id[0]]
if (mgb.cgtools.get_opr_type(consumer_op)
in ("ConvolutionForward", "ConvolutionBackwardData")
and consumer_op.params["sparse"] == "GROUP"):
mace_check(n_consumers == 1,
"This tensor should only feed depthwise conv/deconv")
return True
return False
class MegengineConverter(base_converter.ConverterInterface):
"""A class for convert megengine dumped model to mace model."""
compute_format_type = {
"NCHW": DataFormat.NCHW,
"NHWC": DataFormat.NHWC,
"DEFAULT": DataFormat.NCHW,
}
reduce_math_type = {
"SUM": ReduceType.SUM,
"PROD": ReduceType.PROD,
"MIN": ReduceType.MIN,
"MAX": ReduceType.MAX,
}
# SQE_DIFF, CLIP, SIGN maybe needed
eltwise_type = {
"ADD": EltwiseType.SUM,
"SUB": EltwiseType.SUB,
"MUL": EltwiseType.PROD,
"TRUE_DIV": EltwiseType.DIV,
"MIN": EltwiseType.MIN,
"MAX": EltwiseType.MAX,
"NEGATE": EltwiseType.NEG,
"ABS": EltwiseType.ABS,
"POW": EltwiseType.POW,
"EQ": EltwiseType.EQUAL,
"FLOOR_DIV": EltwiseType.FLOOR_DIV,
"EXP": EltwiseType.POW,
}
activation_type = {
"RELU": ActivationType.RELU,
"TANH": ActivationType.TANH,
"SIGMOID": ActivationType.SIGMOID,
}
def __init__(self, option, src_model_file):
self._op_converters = {
MGEOpType.AxisAddRemove.name: self.convert_axisaddrm,
MGEOpType.BatchNormForward.name: self.convert_batchnorm,
MGEOpType.Concat.name: self.convert_concat,
MGEOpType.ConvolutionForward.name: self.convert_conv2d,
MGEOpType.ConvolutionBackwardData.name: self.convert_deconv2d,
MGEOpType.Dimshuffle.name: self.convert_dimshuffle,
MGEOpType.Elemwise.name: self.convert_elemwise,
MGEOpType.GetVarShape.name: self.convert_shape,
MGEOpType.Host2DeviceCopy.name: self.convert_nop,
MGEOpType.Identity.name: self.convert_identity,
MGEOpType.MarkNoBroadcastElemwise.name: self.convert_identity,
MGEOpType.MatrixMul.name: self.convert_matmul,
MGEOpType.PoolingForward.name: self.convert_pooling,
MGEOpType.Reduce.name: self.convert_reduce,
MGEOpType.Reshape.name: self.convert_reshape,
MGEOpType.SharedDeviceTensor.name: self.convert_nop,
MGEOpType.Subtensor.name: self.convert_subtensor,
}
self._option = option
self._mace_net_def = mace_pb2.NetDef()
ConverterUtil.set_filter_format(self._mace_net_def, DataFormat.OIHW)
ConverterUtil.add_data_format_arg(self._mace_net_def, DataFormat.NCHW)
cg, _, outputs = mgb.load_comp_graph_from_file(src_model_file)
map_oprs, _, var2oprs, *_ = mgb.cgtools.graph_traversal(outputs)
# prune second input of reshape
# because it introduces several ops, may increase the overhead
operators = mgb.cgtools.get_oprs_seq(outputs, prune_reshape=True)
self._mge_cg = cg
self._mge_operators = operators
self._mge_map_oprs = map_oprs
self._mge_var2oprs = var2oprs
self._skip_tensors = set()
self._bn_statistis_tensors = {}
def run(self):
self.convert_ops()
self.replace_input_output_tensor_name()
return self._mace_net_def
# only change the input/output tensor name for whole model
def replace_input_output_tensor_name(self):
for op in self._mace_net_def.op:
for i in six.moves.range(len(op.input)):
if "," in op.input[i]:
op_name = op.input[i]
op_name = op_name.replace(",", "#")
if (op_name in self._option.input_nodes or
op_name in self._option.output_nodes):
op.input[i] = op_name
for i in six.moves.range(len(op.output)):
if "," in op.output[i]:
op_name = op.output[i]
op_name = op_name.replace(",", "#")
if op_name in self._option.output_nodes:
op.output[i] = op_name
# this method will be called by convert_conv2d/deconv2d and convert_pooling
@staticmethod
def add_stride_pad_kernel_arg(params, op_def):
stride = [params[mge_stride_h_str], params[mge_stride_w_str]]
pad = [params[mge_pad_h_str] * 2, params[mge_pad_w_str] * 2]
strides_arg = op_def.arg.add()
strides_arg.name = MaceKeyword.mace_strides_str
strides_arg.ints.extend(stride)
padding_arg = op_def.arg.add()
padding_arg.name = MaceKeyword.mace_padding_values_str
padding_arg.ints.extend(pad)
if op_def.type == MaceOp.Pooling.name:
kernel = [params[mge_kernel_h_str], params[mge_kernel_w_str]]
kernels_arg = op_def.arg.add()
kernels_arg.name = MaceKeyword.mace_kernel_str
kernels_arg.ints.extend(kernel)
if op_def.type in (MaceOp.Conv2D.name, MaceOp.DepthwiseConv2d.name,
MaceOp.Deconv2D.name,
MaceOp.DepthwiseDeconv2d.name):
dilation = [params[mge_dilate_h_str], params[mge_dilate_w_str]]
dilation_arg = op_def.arg.add()
dilation_arg.name = MaceKeyword.mace_dilations_str
dilation_arg.ints.extend(dilation)
def convert_ops(self):
for mge_op in self._mge_operators:
opr_type = mgb.cgtools.get_opr_type(mge_op)
# some reshape operators provide data for batchnorm
if opr_type == "Reshape":
output = mge_op.outputs[0]
next_ops = self._mge_var2oprs[output.id]
if len(next_ops) == 1:
(next_op_id, _) = next_ops[0]
next_op = self._mge_map_oprs[next_op_id]
if mgb.cgtools.get_opr_type(next_op) == "BatchNormForward":
self._skip_tensors.update(
[inp.name for inp in mge_op.inputs])
# using output name to address input symbol var
self._bn_statistis_tensors[mge_op.outputs[0].name] = \
mge_op.inputs[0]
# skip this reshape op
continue
self._op_converters[opr_type](mge_op)
self.convert_tensors()
def add_tensor(self, name, shape, data_type, value):
tensor = self._mace_net_def.tensors.add()
tensor.name = name
tensor.dims.extend(list(shape))
tensor.data_type = data_type
if data_type == mace_pb2.DT_INT32:
tensor.int32_data.extend(value)
else:
tensor.float_data.extend(value)
# convert all pre-calculated and constant tensors
def convert_tensors(self):
for mge_op in self._mge_operators:
type_opr = | mgb.cgtools.get_opr_type(mge_op) | megengine._internal.cgtools.get_opr_type |
import os
import math
import numpy as np
import six
import megengine._internal as mgb
from enum import Enum
from py_proto import mace_pb2
from transform import base_converter
from transform.base_converter import PoolingType
from transform.base_converter import ActivationType
from transform.base_converter import EltwiseType
from transform.base_converter import FrameworkType
from transform.base_converter import ReduceType
from transform.base_converter import DataFormat
from transform.base_converter import MaceOp
from transform.base_converter import MaceKeyword
from transform.base_converter import ConverterUtil
from transform.base_converter import RoundMode
from utils.util import mace_check
mge_kernel_h_str = "window_h"
mge_kernel_w_str = "window_w"
mge_stride_h_str = "stride_h"
mge_stride_w_str = "stride_w"
mge_pad_h_str = "pad_h"
mge_pad_w_str = "pad_w"
mge_dilate_h_str = "dilate_h"
mge_dilate_w_str = "dilate_w"
MGESupportedOps = [
"AxisAddRemove",
"BatchNormForward",
"Concat",
"ConvolutionForward",
"ConvolutionBackwardData",
"Dimshuffle",
"Elemwise",
"GetVarShape",
"Host2DeviceCopy",
"Identity",
"MarkNoBroadcastElemwise",
"MatrixMul",
"PoolingForward",
"Reduce",
"Reshape",
"SharedDeviceTensor",
"Subtensor",
]
MGEOpType = Enum("MGEOpType", [(op, op) for op in MGESupportedOps], type=str)
def get_symvar_value(mge_symvar):
if mge_symvar.inferred_value is not None:
val = mge_symvar.inferred_value
else:
cg = mge_symvar.owner_graph
func = cg.compile_outonly(mge_symvar)
val = func()
return val
def is_consumer_group_conv(mge_symvar, var2oprs, map_oprs):
consumer_ids = var2oprs[mge_symvar.id]
n_consumers = len(consumer_ids)
for consumer_id in consumer_ids:
consumer_op = map_oprs[consumer_id[0]]
if ( | mgb.cgtools.get_opr_type(consumer_op) | megengine._internal.cgtools.get_opr_type |
import os
import math
import numpy as np
import six
import megengine._internal as mgb
from enum import Enum
from py_proto import mace_pb2
from transform import base_converter
from transform.base_converter import PoolingType
from transform.base_converter import ActivationType
from transform.base_converter import EltwiseType
from transform.base_converter import FrameworkType
from transform.base_converter import ReduceType
from transform.base_converter import DataFormat
from transform.base_converter import MaceOp
from transform.base_converter import MaceKeyword
from transform.base_converter import ConverterUtil
from transform.base_converter import RoundMode
from utils.util import mace_check
mge_kernel_h_str = "window_h"
mge_kernel_w_str = "window_w"
mge_stride_h_str = "stride_h"
mge_stride_w_str = "stride_w"
mge_pad_h_str = "pad_h"
mge_pad_w_str = "pad_w"
mge_dilate_h_str = "dilate_h"
mge_dilate_w_str = "dilate_w"
MGESupportedOps = [
"AxisAddRemove",
"BatchNormForward",
"Concat",
"ConvolutionForward",
"ConvolutionBackwardData",
"Dimshuffle",
"Elemwise",
"GetVarShape",
"Host2DeviceCopy",
"Identity",
"MarkNoBroadcastElemwise",
"MatrixMul",
"PoolingForward",
"Reduce",
"Reshape",
"SharedDeviceTensor",
"Subtensor",
]
MGEOpType = Enum("MGEOpType", [(op, op) for op in MGESupportedOps], type=str)
def get_symvar_value(mge_symvar):
if mge_symvar.inferred_value is not None:
val = mge_symvar.inferred_value
else:
cg = mge_symvar.owner_graph
func = cg.compile_outonly(mge_symvar)
val = func()
return val
def is_consumer_group_conv(mge_symvar, var2oprs, map_oprs):
consumer_ids = var2oprs[mge_symvar.id]
n_consumers = len(consumer_ids)
for consumer_id in consumer_ids:
consumer_op = map_oprs[consumer_id[0]]
if (mgb.cgtools.get_opr_type(consumer_op)
in ("ConvolutionForward", "ConvolutionBackwardData")
and consumer_op.params["sparse"] == "GROUP"):
mace_check(n_consumers == 1,
"This tensor should only feed depthwise conv/deconv")
return True
return False
class MegengineConverter(base_converter.ConverterInterface):
"""A class for convert megengine dumped model to mace model."""
compute_format_type = {
"NCHW": DataFormat.NCHW,
"NHWC": DataFormat.NHWC,
"DEFAULT": DataFormat.NCHW,
}
reduce_math_type = {
"SUM": ReduceType.SUM,
"PROD": ReduceType.PROD,
"MIN": ReduceType.MIN,
"MAX": ReduceType.MAX,
}
# SQE_DIFF, CLIP, SIGN maybe needed
eltwise_type = {
"ADD": EltwiseType.SUM,
"SUB": EltwiseType.SUB,
"MUL": EltwiseType.PROD,
"TRUE_DIV": EltwiseType.DIV,
"MIN": EltwiseType.MIN,
"MAX": EltwiseType.MAX,
"NEGATE": EltwiseType.NEG,
"ABS": EltwiseType.ABS,
"POW": EltwiseType.POW,
"EQ": EltwiseType.EQUAL,
"FLOOR_DIV": EltwiseType.FLOOR_DIV,
"EXP": EltwiseType.POW,
}
activation_type = {
"RELU": ActivationType.RELU,
"TANH": ActivationType.TANH,
"SIGMOID": ActivationType.SIGMOID,
}
def __init__(self, option, src_model_file):
self._op_converters = {
MGEOpType.AxisAddRemove.name: self.convert_axisaddrm,
MGEOpType.BatchNormForward.name: self.convert_batchnorm,
MGEOpType.Concat.name: self.convert_concat,
MGEOpType.ConvolutionForward.name: self.convert_conv2d,
MGEOpType.ConvolutionBackwardData.name: self.convert_deconv2d,
MGEOpType.Dimshuffle.name: self.convert_dimshuffle,
MGEOpType.Elemwise.name: self.convert_elemwise,
MGEOpType.GetVarShape.name: self.convert_shape,
MGEOpType.Host2DeviceCopy.name: self.convert_nop,
MGEOpType.Identity.name: self.convert_identity,
MGEOpType.MarkNoBroadcastElemwise.name: self.convert_identity,
MGEOpType.MatrixMul.name: self.convert_matmul,
MGEOpType.PoolingForward.name: self.convert_pooling,
MGEOpType.Reduce.name: self.convert_reduce,
MGEOpType.Reshape.name: self.convert_reshape,
MGEOpType.SharedDeviceTensor.name: self.convert_nop,
MGEOpType.Subtensor.name: self.convert_subtensor,
}
self._option = option
self._mace_net_def = mace_pb2.NetDef()
ConverterUtil.set_filter_format(self._mace_net_def, DataFormat.OIHW)
ConverterUtil.add_data_format_arg(self._mace_net_def, DataFormat.NCHW)
cg, _, outputs = mgb.load_comp_graph_from_file(src_model_file)
map_oprs, _, var2oprs, *_ = mgb.cgtools.graph_traversal(outputs)
# prune second input of reshape
# because it introduces several ops, may increase the overhead
operators = mgb.cgtools.get_oprs_seq(outputs, prune_reshape=True)
self._mge_cg = cg
self._mge_operators = operators
self._mge_map_oprs = map_oprs
self._mge_var2oprs = var2oprs
self._skip_tensors = set()
self._bn_statistis_tensors = {}
def run(self):
self.convert_ops()
self.replace_input_output_tensor_name()
return self._mace_net_def
# only change the input/output tensor name for whole model
def replace_input_output_tensor_name(self):
for op in self._mace_net_def.op:
for i in six.moves.range(len(op.input)):
if "," in op.input[i]:
op_name = op.input[i]
op_name = op_name.replace(",", "#")
if (op_name in self._option.input_nodes or
op_name in self._option.output_nodes):
op.input[i] = op_name
for i in six.moves.range(len(op.output)):
if "," in op.output[i]:
op_name = op.output[i]
op_name = op_name.replace(",", "#")
if op_name in self._option.output_nodes:
op.output[i] = op_name
# this method will be called by convert_conv2d/deconv2d and convert_pooling
@staticmethod
def add_stride_pad_kernel_arg(params, op_def):
stride = [params[mge_stride_h_str], params[mge_stride_w_str]]
pad = [params[mge_pad_h_str] * 2, params[mge_pad_w_str] * 2]
strides_arg = op_def.arg.add()
strides_arg.name = MaceKeyword.mace_strides_str
strides_arg.ints.extend(stride)
padding_arg = op_def.arg.add()
padding_arg.name = MaceKeyword.mace_padding_values_str
padding_arg.ints.extend(pad)
if op_def.type == MaceOp.Pooling.name:
kernel = [params[mge_kernel_h_str], params[mge_kernel_w_str]]
kernels_arg = op_def.arg.add()
kernels_arg.name = MaceKeyword.mace_kernel_str
kernels_arg.ints.extend(kernel)
if op_def.type in (MaceOp.Conv2D.name, MaceOp.DepthwiseConv2d.name,
MaceOp.Deconv2D.name,
MaceOp.DepthwiseDeconv2d.name):
dilation = [params[mge_dilate_h_str], params[mge_dilate_w_str]]
dilation_arg = op_def.arg.add()
dilation_arg.name = MaceKeyword.mace_dilations_str
dilation_arg.ints.extend(dilation)
def convert_ops(self):
for mge_op in self._mge_operators:
opr_type = mgb.cgtools.get_opr_type(mge_op)
# some reshape operators provide data for batchnorm
if opr_type == "Reshape":
output = mge_op.outputs[0]
next_ops = self._mge_var2oprs[output.id]
if len(next_ops) == 1:
(next_op_id, _) = next_ops[0]
next_op = self._mge_map_oprs[next_op_id]
if | mgb.cgtools.get_opr_type(next_op) | megengine._internal.cgtools.get_opr_type |
# Copyright (c) Megvii, Inc. and its affiliates.
import megengine as mge
import megengine.functional as F
import megengine.module as M
from .resnet import BasicBlock
class STN(M.Module):
"""spatial transformer networks from
`"Spatial Transformer Networks" <https://arxiv.org/pdf/1506.02025.pdf>`_
some detailed implements are highly simplified while good performance maintained
"""
def __init__(self, input_size=112):
assert input_size == 112, f"expected input_size == 112, got {input_size}"
super().__init__()
self.input_size = input_size
self.stem = M.Sequential(
M.Conv2d(3, 8, kernel_size=3, stride=2, padding=1, bias=False),
M.BatchNorm2d(8),
M.ReLU(),
M.MaxPool2d(kernel_size=2, stride=2),
BasicBlock(8, 16),
BasicBlock(16, 32, stride=2),
BasicBlock(32, 64, stride=2),
)
self.fc = | M.Linear(64, 9) | megengine.module.Linear |
# Copyright (c) Megvii, Inc. and its affiliates.
import megengine as mge
import megengine.functional as F
import megengine.module as M
from .resnet import BasicBlock
class STN(M.Module):
"""spatial transformer networks from
`"Spatial Transformer Networks" <https://arxiv.org/pdf/1506.02025.pdf>`_
some detailed implements are highly simplified while good performance maintained
"""
def __init__(self, input_size=112):
assert input_size == 112, f"expected input_size == 112, got {input_size}"
super().__init__()
self.input_size = input_size
self.stem = M.Sequential(
M.Conv2d(3, 8, kernel_size=3, stride=2, padding=1, bias=False),
M.BatchNorm2d(8),
M.ReLU(),
M.MaxPool2d(kernel_size=2, stride=2),
BasicBlock(8, 16),
BasicBlock(16, 32, stride=2),
BasicBlock(32, 64, stride=2),
)
self.fc = M.Linear(64, 9)
def _get_transformed_image(self, image, mat3x3):
"""apply perspective transform to the image
note: there is NO need to guarantee the bottom right element equals 1
Args:
image (Tensor): input images (shape: n * 3 * 112 * 112)
mat3x3 (Tensor): perspective matrix (shape: n * 3 * 3)
Returns:
transformed_image (Tensor): perspectively transformed image
"""
s = self.input_size
transformed_image = | F.warp_perspective(image, mat3x3, [s, s]) | megengine.functional.warp_perspective |
# Copyright (c) Megvii, Inc. and its affiliates.
import megengine as mge
import megengine.functional as F
import megengine.module as M
from .resnet import BasicBlock
class STN(M.Module):
"""spatial transformer networks from
`"Spatial Transformer Networks" <https://arxiv.org/pdf/1506.02025.pdf>`_
some detailed implements are highly simplified while good performance maintained
"""
def __init__(self, input_size=112):
assert input_size == 112, f"expected input_size == 112, got {input_size}"
super().__init__()
self.input_size = input_size
self.stem = M.Sequential(
M.Conv2d(3, 8, kernel_size=3, stride=2, padding=1, bias=False),
M.BatchNorm2d(8),
M.ReLU(),
M.MaxPool2d(kernel_size=2, stride=2),
BasicBlock(8, 16),
BasicBlock(16, 32, stride=2),
BasicBlock(32, 64, stride=2),
)
self.fc = M.Linear(64, 9)
def _get_transformed_image(self, image, mat3x3):
"""apply perspective transform to the image
note: there is NO need to guarantee the bottom right element equals 1
Args:
image (Tensor): input images (shape: n * 3 * 112 * 112)
mat3x3 (Tensor): perspective matrix (shape: n * 3 * 3)
Returns:
transformed_image (Tensor): perspectively transformed image
"""
s = self.input_size
transformed_image = F.warp_perspective(image, mat3x3, [s, s])
return transformed_image
def _get_mat3x3(self, image):
"""get perspective matrix used in the transformation
note: there are only 8 degrees of freedom in a perspective matrix, while the output matrix has 9 variables.
Args:
image (Tensor): input images (shape: n * 3 * 112 * 112)
Returns:
mat3x3 (Tensor): perspective matrix (shape: n * 3 * 3)
"""
x = self.stem(image)
x = | F.avg_pool2d(x, 7) | megengine.functional.avg_pool2d |
# Copyright (c) Megvii, Inc. and its affiliates.
import megengine as mge
import megengine.functional as F
import megengine.module as M
from .resnet import BasicBlock
class STN(M.Module):
"""spatial transformer networks from
`"Spatial Transformer Networks" <https://arxiv.org/pdf/1506.02025.pdf>`_
some detailed implements are highly simplified while good performance maintained
"""
def __init__(self, input_size=112):
assert input_size == 112, f"expected input_size == 112, got {input_size}"
super().__init__()
self.input_size = input_size
self.stem = M.Sequential(
M.Conv2d(3, 8, kernel_size=3, stride=2, padding=1, bias=False),
M.BatchNorm2d(8),
M.ReLU(),
M.MaxPool2d(kernel_size=2, stride=2),
BasicBlock(8, 16),
BasicBlock(16, 32, stride=2),
BasicBlock(32, 64, stride=2),
)
self.fc = M.Linear(64, 9)
def _get_transformed_image(self, image, mat3x3):
"""apply perspective transform to the image
note: there is NO need to guarantee the bottom right element equals 1
Args:
image (Tensor): input images (shape: n * 3 * 112 * 112)
mat3x3 (Tensor): perspective matrix (shape: n * 3 * 3)
Returns:
transformed_image (Tensor): perspectively transformed image
"""
s = self.input_size
transformed_image = F.warp_perspective(image, mat3x3, [s, s])
return transformed_image
def _get_mat3x3(self, image):
"""get perspective matrix used in the transformation
note: there are only 8 degrees of freedom in a perspective matrix, while the output matrix has 9 variables.
Args:
image (Tensor): input images (shape: n * 3 * 112 * 112)
Returns:
mat3x3 (Tensor): perspective matrix (shape: n * 3 * 3)
"""
x = self.stem(image)
x = F.avg_pool2d(x, 7)
x = | F.flatten(x, 1) | megengine.functional.flatten |
# Copyright (c) Megvii, Inc. and its affiliates.
import megengine as mge
import megengine.functional as F
import megengine.module as M
from .resnet import BasicBlock
class STN(M.Module):
"""spatial transformer networks from
`"Spatial Transformer Networks" <https://arxiv.org/pdf/1506.02025.pdf>`_
some detailed implements are highly simplified while good performance maintained
"""
def __init__(self, input_size=112):
assert input_size == 112, f"expected input_size == 112, got {input_size}"
super().__init__()
self.input_size = input_size
self.stem = M.Sequential(
M.Conv2d(3, 8, kernel_size=3, stride=2, padding=1, bias=False),
M.BatchNorm2d(8),
M.ReLU(),
M.MaxPool2d(kernel_size=2, stride=2),
BasicBlock(8, 16),
BasicBlock(16, 32, stride=2),
BasicBlock(32, 64, stride=2),
)
self.fc = M.Linear(64, 9)
def _get_transformed_image(self, image, mat3x3):
"""apply perspective transform to the image
note: there is NO need to guarantee the bottom right element equals 1
Args:
image (Tensor): input images (shape: n * 3 * 112 * 112)
mat3x3 (Tensor): perspective matrix (shape: n * 3 * 3)
Returns:
transformed_image (Tensor): perspectively transformed image
"""
s = self.input_size
transformed_image = F.warp_perspective(image, mat3x3, [s, s])
return transformed_image
def _get_mat3x3(self, image):
"""get perspective matrix used in the transformation
note: there are only 8 degrees of freedom in a perspective matrix, while the output matrix has 9 variables.
Args:
image (Tensor): input images (shape: n * 3 * 112 * 112)
Returns:
mat3x3 (Tensor): perspective matrix (shape: n * 3 * 3)
"""
x = self.stem(image)
x = F.avg_pool2d(x, 7)
x = F.flatten(x, 1)
x = self.fc(x)
s = self.input_size
# 0.01 here is a magic number. it aims to maintain identity transform at early stage of training
residual = x.reshape(-1, 3, 3) * 0.01
base = mge.tensor([[1, 0, 0], [0, 1, 0], [0, 0, 1]]).astype("float32")
base = | F.broadcast_to(base, residual.shape) | megengine.functional.broadcast_to |
# Copyright (c) Megvii, Inc. and its affiliates.
import megengine as mge
import megengine.functional as F
import megengine.module as M
from .resnet import BasicBlock
class STN(M.Module):
"""spatial transformer networks from
`"Spatial Transformer Networks" <https://arxiv.org/pdf/1506.02025.pdf>`_
some detailed implements are highly simplified while good performance maintained
"""
def __init__(self, input_size=112):
assert input_size == 112, f"expected input_size == 112, got {input_size}"
super().__init__()
self.input_size = input_size
self.stem = M.Sequential(
M.Conv2d(3, 8, kernel_size=3, stride=2, padding=1, bias=False),
M.BatchNorm2d(8),
M.ReLU(),
M.MaxPool2d(kernel_size=2, stride=2),
BasicBlock(8, 16),
BasicBlock(16, 32, stride=2),
BasicBlock(32, 64, stride=2),
)
self.fc = M.Linear(64, 9)
def _get_transformed_image(self, image, mat3x3):
"""apply perspective transform to the image
note: there is NO need to guarantee the bottom right element equals 1
Args:
image (Tensor): input images (shape: n * 3 * 112 * 112)
mat3x3 (Tensor): perspective matrix (shape: n * 3 * 3)
Returns:
transformed_image (Tensor): perspectively transformed image
"""
s = self.input_size
transformed_image = F.warp_perspective(image, mat3x3, [s, s])
return transformed_image
def _get_mat3x3(self, image):
"""get perspective matrix used in the transformation
note: there are only 8 degrees of freedom in a perspective matrix, while the output matrix has 9 variables.
Args:
image (Tensor): input images (shape: n * 3 * 112 * 112)
Returns:
mat3x3 (Tensor): perspective matrix (shape: n * 3 * 3)
"""
x = self.stem(image)
x = F.avg_pool2d(x, 7)
x = F.flatten(x, 1)
x = self.fc(x)
s = self.input_size
# 0.01 here is a magic number. it aims to maintain identity transform at early stage of training
residual = x.reshape(-1, 3, 3) * 0.01
base = mge.tensor([[1, 0, 0], [0, 1, 0], [0, 0, 1]]).astype("float32")
base = F.broadcast_to(base, residual.shape)
left_scale = mge.tensor([[s, 0, 0], [0, s, 0], [0, 0, 1]]).astype("float32")
left_scale = | F.broadcast_to(left_scale, residual.shape) | megengine.functional.broadcast_to |
# Copyright (c) Megvii, Inc. and its affiliates.
import megengine as mge
import megengine.functional as F
import megengine.module as M
from .resnet import BasicBlock
class STN(M.Module):
"""spatial transformer networks from
`"Spatial Transformer Networks" <https://arxiv.org/pdf/1506.02025.pdf>`_
some detailed implements are highly simplified while good performance maintained
"""
def __init__(self, input_size=112):
assert input_size == 112, f"expected input_size == 112, got {input_size}"
super().__init__()
self.input_size = input_size
self.stem = M.Sequential(
M.Conv2d(3, 8, kernel_size=3, stride=2, padding=1, bias=False),
M.BatchNorm2d(8),
M.ReLU(),
M.MaxPool2d(kernel_size=2, stride=2),
BasicBlock(8, 16),
BasicBlock(16, 32, stride=2),
BasicBlock(32, 64, stride=2),
)
self.fc = M.Linear(64, 9)
def _get_transformed_image(self, image, mat3x3):
"""apply perspective transform to the image
note: there is NO need to guarantee the bottom right element equals 1
Args:
image (Tensor): input images (shape: n * 3 * 112 * 112)
mat3x3 (Tensor): perspective matrix (shape: n * 3 * 3)
Returns:
transformed_image (Tensor): perspectively transformed image
"""
s = self.input_size
transformed_image = F.warp_perspective(image, mat3x3, [s, s])
return transformed_image
def _get_mat3x3(self, image):
"""get perspective matrix used in the transformation
note: there are only 8 degrees of freedom in a perspective matrix, while the output matrix has 9 variables.
Args:
image (Tensor): input images (shape: n * 3 * 112 * 112)
Returns:
mat3x3 (Tensor): perspective matrix (shape: n * 3 * 3)
"""
x = self.stem(image)
x = F.avg_pool2d(x, 7)
x = F.flatten(x, 1)
x = self.fc(x)
s = self.input_size
# 0.01 here is a magic number. it aims to maintain identity transform at early stage of training
residual = x.reshape(-1, 3, 3) * 0.01
base = mge.tensor([[1, 0, 0], [0, 1, 0], [0, 0, 1]]).astype("float32")
base = F.broadcast_to(base, residual.shape)
left_scale = mge.tensor([[s, 0, 0], [0, s, 0], [0, 0, 1]]).astype("float32")
left_scale = F.broadcast_to(left_scale, residual.shape)
right_scale = mge.tensor([[1 / s, 0, 0], [0, 1 / s, 0], [0, 0, 1]]).astype("float32")
right_scale = | F.broadcast_to(right_scale, residual.shape) | megengine.functional.broadcast_to |
# Copyright (c) Megvii, Inc. and its affiliates.
import megengine as mge
import megengine.functional as F
import megengine.module as M
from .resnet import BasicBlock
class STN(M.Module):
"""spatial transformer networks from
`"Spatial Transformer Networks" <https://arxiv.org/pdf/1506.02025.pdf>`_
some detailed implements are highly simplified while good performance maintained
"""
def __init__(self, input_size=112):
assert input_size == 112, f"expected input_size == 112, got {input_size}"
super().__init__()
self.input_size = input_size
self.stem = M.Sequential(
| M.Conv2d(3, 8, kernel_size=3, stride=2, padding=1, bias=False) | megengine.module.Conv2d |
# Copyright (c) Megvii, Inc. and its affiliates.
import megengine as mge
import megengine.functional as F
import megengine.module as M
from .resnet import BasicBlock
class STN(M.Module):
"""spatial transformer networks from
`"Spatial Transformer Networks" <https://arxiv.org/pdf/1506.02025.pdf>`_
some detailed implements are highly simplified while good performance maintained
"""
def __init__(self, input_size=112):
assert input_size == 112, f"expected input_size == 112, got {input_size}"
super().__init__()
self.input_size = input_size
self.stem = M.Sequential(
M.Conv2d(3, 8, kernel_size=3, stride=2, padding=1, bias=False),
| M.BatchNorm2d(8) | megengine.module.BatchNorm2d |
# Copyright (c) Megvii, Inc. and its affiliates.
import megengine as mge
import megengine.functional as F
import megengine.module as M
from .resnet import BasicBlock
class STN(M.Module):
"""spatial transformer networks from
`"Spatial Transformer Networks" <https://arxiv.org/pdf/1506.02025.pdf>`_
some detailed implements are highly simplified while good performance maintained
"""
def __init__(self, input_size=112):
assert input_size == 112, f"expected input_size == 112, got {input_size}"
super().__init__()
self.input_size = input_size
self.stem = M.Sequential(
M.Conv2d(3, 8, kernel_size=3, stride=2, padding=1, bias=False),
M.BatchNorm2d(8),
| M.ReLU() | megengine.module.ReLU |
# Copyright (c) Megvii, Inc. and its affiliates.
import megengine as mge
import megengine.functional as F
import megengine.module as M
from .resnet import BasicBlock
class STN(M.Module):
"""spatial transformer networks from
`"Spatial Transformer Networks" <https://arxiv.org/pdf/1506.02025.pdf>`_
some detailed implements are highly simplified while good performance maintained
"""
def __init__(self, input_size=112):
assert input_size == 112, f"expected input_size == 112, got {input_size}"
super().__init__()
self.input_size = input_size
self.stem = M.Sequential(
M.Conv2d(3, 8, kernel_size=3, stride=2, padding=1, bias=False),
M.BatchNorm2d(8),
M.ReLU(),
| M.MaxPool2d(kernel_size=2, stride=2) | megengine.module.MaxPool2d |
# Copyright (c) Megvii, Inc. and its affiliates.
import megengine as mge
import megengine.functional as F
import megengine.module as M
from .resnet import BasicBlock
class STN(M.Module):
"""spatial transformer networks from
`"Spatial Transformer Networks" <https://arxiv.org/pdf/1506.02025.pdf>`_
some detailed implements are highly simplified while good performance maintained
"""
def __init__(self, input_size=112):
assert input_size == 112, f"expected input_size == 112, got {input_size}"
super().__init__()
self.input_size = input_size
self.stem = M.Sequential(
M.Conv2d(3, 8, kernel_size=3, stride=2, padding=1, bias=False),
M.BatchNorm2d(8),
M.ReLU(),
M.MaxPool2d(kernel_size=2, stride=2),
BasicBlock(8, 16),
BasicBlock(16, 32, stride=2),
BasicBlock(32, 64, stride=2),
)
self.fc = M.Linear(64, 9)
def _get_transformed_image(self, image, mat3x3):
"""apply perspective transform to the image
note: there is NO need to guarantee the bottom right element equals 1
Args:
image (Tensor): input images (shape: n * 3 * 112 * 112)
mat3x3 (Tensor): perspective matrix (shape: n * 3 * 3)
Returns:
transformed_image (Tensor): perspectively transformed image
"""
s = self.input_size
transformed_image = F.warp_perspective(image, mat3x3, [s, s])
return transformed_image
def _get_mat3x3(self, image):
"""get perspective matrix used in the transformation
note: there are only 8 degrees of freedom in a perspective matrix, while the output matrix has 9 variables.
Args:
image (Tensor): input images (shape: n * 3 * 112 * 112)
Returns:
mat3x3 (Tensor): perspective matrix (shape: n * 3 * 3)
"""
x = self.stem(image)
x = F.avg_pool2d(x, 7)
x = F.flatten(x, 1)
x = self.fc(x)
s = self.input_size
# 0.01 here is a magic number. it aims to maintain identity transform at early stage of training
residual = x.reshape(-1, 3, 3) * 0.01
base = mge.tensor([[1, 0, 0], [0, 1, 0], [0, 0, 1]]).astype("float32")
base = F.broadcast_to(base, residual.shape)
left_scale = mge.tensor([[s, 0, 0], [0, s, 0], [0, 0, 1]]).astype("float32")
left_scale = F.broadcast_to(left_scale, residual.shape)
right_scale = mge.tensor([[1 / s, 0, 0], [0, 1 / s, 0], [0, 0, 1]]).astype("float32")
right_scale = F.broadcast_to(right_scale, residual.shape)
mat3x3 = F.matmul(left_scale, | F.matmul(base + residual, right_scale) | megengine.functional.matmul |
# Copyright (c) Megvii, Inc. and its affiliates.
import megengine as mge
import megengine.functional as F
import megengine.module as M
from .resnet import BasicBlock
class STN(M.Module):
"""spatial transformer networks from
`"Spatial Transformer Networks" <https://arxiv.org/pdf/1506.02025.pdf>`_
some detailed implements are highly simplified while good performance maintained
"""
def __init__(self, input_size=112):
assert input_size == 112, f"expected input_size == 112, got {input_size}"
super().__init__()
self.input_size = input_size
self.stem = M.Sequential(
M.Conv2d(3, 8, kernel_size=3, stride=2, padding=1, bias=False),
M.BatchNorm2d(8),
M.ReLU(),
M.MaxPool2d(kernel_size=2, stride=2),
BasicBlock(8, 16),
BasicBlock(16, 32, stride=2),
BasicBlock(32, 64, stride=2),
)
self.fc = M.Linear(64, 9)
def _get_transformed_image(self, image, mat3x3):
"""apply perspective transform to the image
note: there is NO need to guarantee the bottom right element equals 1
Args:
image (Tensor): input images (shape: n * 3 * 112 * 112)
mat3x3 (Tensor): perspective matrix (shape: n * 3 * 3)
Returns:
transformed_image (Tensor): perspectively transformed image
"""
s = self.input_size
transformed_image = F.warp_perspective(image, mat3x3, [s, s])
return transformed_image
def _get_mat3x3(self, image):
"""get perspective matrix used in the transformation
note: there are only 8 degrees of freedom in a perspective matrix, while the output matrix has 9 variables.
Args:
image (Tensor): input images (shape: n * 3 * 112 * 112)
Returns:
mat3x3 (Tensor): perspective matrix (shape: n * 3 * 3)
"""
x = self.stem(image)
x = F.avg_pool2d(x, 7)
x = F.flatten(x, 1)
x = self.fc(x)
s = self.input_size
# 0.01 here is a magic number. it aims to maintain identity transform at early stage of training
residual = x.reshape(-1, 3, 3) * 0.01
base = | mge.tensor([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) | megengine.tensor |
# Copyright (c) Megvii, Inc. and its affiliates.
import megengine as mge
import megengine.functional as F
import megengine.module as M
from .resnet import BasicBlock
class STN(M.Module):
"""spatial transformer networks from
`"Spatial Transformer Networks" <https://arxiv.org/pdf/1506.02025.pdf>`_
some detailed implements are highly simplified while good performance maintained
"""
def __init__(self, input_size=112):
assert input_size == 112, f"expected input_size == 112, got {input_size}"
super().__init__()
self.input_size = input_size
self.stem = M.Sequential(
M.Conv2d(3, 8, kernel_size=3, stride=2, padding=1, bias=False),
M.BatchNorm2d(8),
M.ReLU(),
M.MaxPool2d(kernel_size=2, stride=2),
BasicBlock(8, 16),
BasicBlock(16, 32, stride=2),
BasicBlock(32, 64, stride=2),
)
self.fc = M.Linear(64, 9)
def _get_transformed_image(self, image, mat3x3):
"""apply perspective transform to the image
note: there is NO need to guarantee the bottom right element equals 1
Args:
image (Tensor): input images (shape: n * 3 * 112 * 112)
mat3x3 (Tensor): perspective matrix (shape: n * 3 * 3)
Returns:
transformed_image (Tensor): perspectively transformed image
"""
s = self.input_size
transformed_image = F.warp_perspective(image, mat3x3, [s, s])
return transformed_image
def _get_mat3x3(self, image):
"""get perspective matrix used in the transformation
note: there are only 8 degrees of freedom in a perspective matrix, while the output matrix has 9 variables.
Args:
image (Tensor): input images (shape: n * 3 * 112 * 112)
Returns:
mat3x3 (Tensor): perspective matrix (shape: n * 3 * 3)
"""
x = self.stem(image)
x = F.avg_pool2d(x, 7)
x = F.flatten(x, 1)
x = self.fc(x)
s = self.input_size
# 0.01 here is a magic number. it aims to maintain identity transform at early stage of training
residual = x.reshape(-1, 3, 3) * 0.01
base = mge.tensor([[1, 0, 0], [0, 1, 0], [0, 0, 1]]).astype("float32")
base = F.broadcast_to(base, residual.shape)
left_scale = | mge.tensor([[s, 0, 0], [0, s, 0], [0, 0, 1]]) | megengine.tensor |
# Copyright (c) Megvii, Inc. and its affiliates.
import megengine as mge
import megengine.functional as F
import megengine.module as M
from .resnet import BasicBlock
class STN(M.Module):
"""spatial transformer networks from
`"Spatial Transformer Networks" <https://arxiv.org/pdf/1506.02025.pdf>`_
some detailed implements are highly simplified while good performance maintained
"""
def __init__(self, input_size=112):
assert input_size == 112, f"expected input_size == 112, got {input_size}"
super().__init__()
self.input_size = input_size
self.stem = M.Sequential(
M.Conv2d(3, 8, kernel_size=3, stride=2, padding=1, bias=False),
M.BatchNorm2d(8),
M.ReLU(),
M.MaxPool2d(kernel_size=2, stride=2),
BasicBlock(8, 16),
BasicBlock(16, 32, stride=2),
BasicBlock(32, 64, stride=2),
)
self.fc = M.Linear(64, 9)
def _get_transformed_image(self, image, mat3x3):
"""apply perspective transform to the image
note: there is NO need to guarantee the bottom right element equals 1
Args:
image (Tensor): input images (shape: n * 3 * 112 * 112)
mat3x3 (Tensor): perspective matrix (shape: n * 3 * 3)
Returns:
transformed_image (Tensor): perspectively transformed image
"""
s = self.input_size
transformed_image = F.warp_perspective(image, mat3x3, [s, s])
return transformed_image
def _get_mat3x3(self, image):
"""get perspective matrix used in the transformation
note: there are only 8 degrees of freedom in a perspective matrix, while the output matrix has 9 variables.
Args:
image (Tensor): input images (shape: n * 3 * 112 * 112)
Returns:
mat3x3 (Tensor): perspective matrix (shape: n * 3 * 3)
"""
x = self.stem(image)
x = F.avg_pool2d(x, 7)
x = F.flatten(x, 1)
x = self.fc(x)
s = self.input_size
# 0.01 here is a magic number. it aims to maintain identity transform at early stage of training
residual = x.reshape(-1, 3, 3) * 0.01
base = mge.tensor([[1, 0, 0], [0, 1, 0], [0, 0, 1]]).astype("float32")
base = F.broadcast_to(base, residual.shape)
left_scale = mge.tensor([[s, 0, 0], [0, s, 0], [0, 0, 1]]).astype("float32")
left_scale = F.broadcast_to(left_scale, residual.shape)
right_scale = | mge.tensor([[1 / s, 0, 0], [0, 1 / s, 0], [0, 0, 1]]) | megengine.tensor |
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import numpy as np
import megengine as mge
import megengine.functional as F
import megengine.module as M
from megengine.core import tensor
def test_mge_81():
np.random.seed(0)
N, D = 3, 4
x = mge.Parameter(value=np.random.normal(size=(N, D)).astype(np.float32))
y = mge.Parameter(value=np.random.normal(size=(N, D)).astype(np.float32))
z = mge.Parameter(value=np.random.normal(size=(N, D)).astype(np.float32))
a = x * y
b = a + z
c = | F.sum(b) | megengine.functional.sum |
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import numpy as np
import megengine as mge
import megengine.functional as F
import megengine.module as M
from megengine.core import tensor
def test_mge_81():
np.random.seed(0)
N, D = 3, 4
x = mge.Parameter(value=np.random.normal(size=(N, D)).astype(np.float32))
y = mge.Parameter(value=np.random.normal(size=(N, D)).astype(np.float32))
z = mge.Parameter(value=np.random.normal(size=(N, D)).astype(np.float32))
a = x * y
b = a + z
c = F.sum(b)
grad_x = | F.grad(c, x, use_virtual_grad=False) | megengine.functional.grad |
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import numpy as np
import megengine as mge
import megengine.functional as F
import megengine.module as M
from megengine.core import tensor
def test_mge_81():
np.random.seed(0)
N, D = 3, 4
x = mge.Parameter(value=np.random.normal(size=(N, D)).astype(np.float32))
y = mge.Parameter(value=np.random.normal(size=(N, D)).astype(np.float32))
z = mge.Parameter(value=np.random.normal(size=(N, D)).astype(np.float32))
a = x * y
b = a + z
c = F.sum(b)
grad_x = F.grad(c, x, use_virtual_grad=False)
grad_y = | F.grad(c, y, use_virtual_grad=False) | megengine.functional.grad |
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import numpy as np
import megengine as mge
import megengine.functional as F
import megengine.module as M
from megengine.core import tensor
def test_mge_81():
np.random.seed(0)
N, D = 3, 4
x = mge.Parameter(value=np.random.normal(size=(N, D)).astype(np.float32))
y = mge.Parameter(value=np.random.normal(size=(N, D)).astype(np.float32))
z = mge.Parameter(value=np.random.normal(size=(N, D)).astype(np.float32))
a = x * y
b = a + z
c = F.sum(b)
grad_x = F.grad(c, x, use_virtual_grad=False)
grad_y = F.grad(c, y, use_virtual_grad=False)
grad_z = | F.grad(c, z, use_virtual_grad=False) | megengine.functional.grad |
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import numpy as np
import megengine as mge
import megengine.functional as F
import megengine.module as M
from megengine.core import tensor
def test_mge_81():
np.random.seed(0)
N, D = 3, 4
x = mge.Parameter(value=np.random.normal(size=(N, D)).astype(np.float32))
y = mge.Parameter(value=np.random.normal(size=(N, D)).astype(np.float32))
z = mge.Parameter(value=np.random.normal(size=(N, D)).astype(np.float32))
a = x * y
b = a + z
c = F.sum(b)
grad_x = F.grad(c, x, use_virtual_grad=False)
grad_y = F.grad(c, y, use_virtual_grad=False)
grad_z = F.grad(c, z, use_virtual_grad=False)
print(grad_x.numpy())
print(grad_y.numpy())
print(grad_z.numpy())
m = | M.BatchNorm2d(4) | megengine.module.BatchNorm2d |
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import numpy as np
import megengine as mge
import megengine.functional as F
import megengine.module as M
from megengine.core import tensor
def test_mge_81():
np.random.seed(0)
N, D = 3, 4
x = mge.Parameter(value=np.random.normal(size=(N, D)).astype(np.float32))
y = mge.Parameter(value=np.random.normal(size=(N, D)).astype(np.float32))
z = mge.Parameter(value=np.random.normal(size=(N, D)).astype(np.float32))
a = x * y
b = a + z
c = F.sum(b)
grad_x = F.grad(c, x, use_virtual_grad=False)
grad_y = F.grad(c, y, use_virtual_grad=False)
grad_z = F.grad(c, z, use_virtual_grad=False)
print(grad_x.numpy())
print(grad_y.numpy())
print(grad_z.numpy())
m = M.BatchNorm2d(4)
input = tensor(np.zeros((64, 4, 32, 32), dtype=np.float32))
_ = m(input)
m = | M.BatchNorm2d(4, affine=False) | megengine.module.BatchNorm2d |
# -*- coding: utf-8 -*-
# MIT License
#
# Copyright (c) 2020 <NAME>
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files
# (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge,
# publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so,
# subject to the following conditions:
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#
# This repo is licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import math
import collections
import megengine.module as nn
import megengine.functional as F
from model.nn_upsample import NeuralUpsampler, FlowMaskEstimator
from common.utils import flow_warp, upsample2d_flow_as
def conv(inp, out, k=3, s=1, d=1, isReLU=True):
if isReLU:
ret = nn.Sequential(nn.Conv2d(inp, out, k, s, padding=((k - 1) * d) // 2, dilation=d, bias=True), nn.LeakyReLU(0.1))
else:
ret = nn.Sequential(nn.Conv2d(inp, out, k, s, padding=((k - 1) * d) // 2, dilation=d, bias=True))
return ret
class ContextNetwork(nn.Module):
def __init__(self, ch_in):
super(ContextNetwork, self).__init__()
self.convs = nn.Sequential(conv(ch_in, 128, 3, 1, 1), conv(128, 128, 3, 1, 2), conv(128, 128, 3, 1, 4), conv(128, 96, 3, 1, 8),
conv(96, 64, 3, 1, 16), conv(64, 32, 3, 1, 1), conv(32, 2, isReLU=False))
def forward(self, x):
return self.convs(x)
class FlowEstimator(nn.Module):
def __init__(self, ch_in):
super(FlowEstimator, self).__init__()
self.conv1 = conv(ch_in, 128)
self.conv2 = conv(128, 128)
self.conv3 = conv(128 + 128, 96)
self.conv4 = conv(96 + 128, 64)
self.conv5 = conv(96 + 64, 32)
# channels of the second last layer
self.feat_dim = 32
self.predict_flow = conv(64 + 32, 2, isReLU=False)
def forward(self, x):
x1 = self.conv1(x)
x2 = self.conv2(x1)
x3 = self.conv3(F.concat([x1, x2], axis=1))
x4 = self.conv4(F.concat([x2, x3], axis=1))
x5 = self.conv5(F.concat([x3, x4], axis=1))
flow = self.predict_flow(F.concat([x4, x5], axis=1))
return x5, flow
class CostVolume(nn.Module):
def __init__(self, d=4, *args, **kwargs):
super(CostVolume, self).__init__()
self.d = d
self.out_dim = 2 * self.d + 1
self.pad_size = self.d
def forward(self, x1, x2):
_, _, H, W = x1.shape
x2 = | F.nn.pad(x2, ((0, 0), (0, 0), (self.pad_size, self.pad_size), (self.pad_size, self.pad_size))) | megengine.functional.nn.pad |
# -*- coding: utf-8 -*-
# MIT License
#
# Copyright (c) 2020 <NAME>
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files
# (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge,
# publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so,
# subject to the following conditions:
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#
# This repo is licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import math
import collections
import megengine.module as nn
import megengine.functional as F
from model.nn_upsample import NeuralUpsampler, FlowMaskEstimator
from common.utils import flow_warp, upsample2d_flow_as
def conv(inp, out, k=3, s=1, d=1, isReLU=True):
if isReLU:
ret = nn.Sequential(nn.Conv2d(inp, out, k, s, padding=((k - 1) * d) // 2, dilation=d, bias=True), nn.LeakyReLU(0.1))
else:
ret = nn.Sequential(nn.Conv2d(inp, out, k, s, padding=((k - 1) * d) // 2, dilation=d, bias=True))
return ret
class ContextNetwork(nn.Module):
def __init__(self, ch_in):
super(ContextNetwork, self).__init__()
self.convs = nn.Sequential(conv(ch_in, 128, 3, 1, 1), conv(128, 128, 3, 1, 2), conv(128, 128, 3, 1, 4), conv(128, 96, 3, 1, 8),
conv(96, 64, 3, 1, 16), conv(64, 32, 3, 1, 1), conv(32, 2, isReLU=False))
def forward(self, x):
return self.convs(x)
class FlowEstimator(nn.Module):
def __init__(self, ch_in):
super(FlowEstimator, self).__init__()
self.conv1 = conv(ch_in, 128)
self.conv2 = conv(128, 128)
self.conv3 = conv(128 + 128, 96)
self.conv4 = conv(96 + 128, 64)
self.conv5 = conv(96 + 64, 32)
# channels of the second last layer
self.feat_dim = 32
self.predict_flow = conv(64 + 32, 2, isReLU=False)
def forward(self, x):
x1 = self.conv1(x)
x2 = self.conv2(x1)
x3 = self.conv3(F.concat([x1, x2], axis=1))
x4 = self.conv4(F.concat([x2, x3], axis=1))
x5 = self.conv5(F.concat([x3, x4], axis=1))
flow = self.predict_flow(F.concat([x4, x5], axis=1))
return x5, flow
class CostVolume(nn.Module):
def __init__(self, d=4, *args, **kwargs):
super(CostVolume, self).__init__()
self.d = d
self.out_dim = 2 * self.d + 1
self.pad_size = self.d
def forward(self, x1, x2):
_, _, H, W = x1.shape
x2 = F.nn.pad(x2, ((0, 0), (0, 0), (self.pad_size, self.pad_size), (self.pad_size, self.pad_size)))
cv = []
for i in range(self.out_dim):
for j in range(self.out_dim):
cost = x1 * x2[:, :, i:(i + H), j:(j + W)]
cost = F.mean(cost, 1, keepdims=True)
cv.append(cost)
return | F.concat(cv, 1) | megengine.functional.concat |
# -*- coding: utf-8 -*-
# MIT License
#
# Copyright (c) 2020 <NAME>
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files
# (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge,
# publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so,
# subject to the following conditions:
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#
# This repo is licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import math
import collections
import megengine.module as nn
import megengine.functional as F
from model.nn_upsample import NeuralUpsampler, FlowMaskEstimator
from common.utils import flow_warp, upsample2d_flow_as
def conv(inp, out, k=3, s=1, d=1, isReLU=True):
if isReLU:
ret = nn.Sequential(nn.Conv2d(inp, out, k, s, padding=((k - 1) * d) // 2, dilation=d, bias=True), nn.LeakyReLU(0.1))
else:
ret = nn.Sequential(nn.Conv2d(inp, out, k, s, padding=((k - 1) * d) // 2, dilation=d, bias=True))
return ret
class ContextNetwork(nn.Module):
def __init__(self, ch_in):
super(ContextNetwork, self).__init__()
self.convs = nn.Sequential(conv(ch_in, 128, 3, 1, 1), conv(128, 128, 3, 1, 2), conv(128, 128, 3, 1, 4), conv(128, 96, 3, 1, 8),
conv(96, 64, 3, 1, 16), conv(64, 32, 3, 1, 1), conv(32, 2, isReLU=False))
def forward(self, x):
return self.convs(x)
class FlowEstimator(nn.Module):
def __init__(self, ch_in):
super(FlowEstimator, self).__init__()
self.conv1 = conv(ch_in, 128)
self.conv2 = conv(128, 128)
self.conv3 = conv(128 + 128, 96)
self.conv4 = conv(96 + 128, 64)
self.conv5 = conv(96 + 64, 32)
# channels of the second last layer
self.feat_dim = 32
self.predict_flow = conv(64 + 32, 2, isReLU=False)
def forward(self, x):
x1 = self.conv1(x)
x2 = self.conv2(x1)
x3 = self.conv3(F.concat([x1, x2], axis=1))
x4 = self.conv4(F.concat([x2, x3], axis=1))
x5 = self.conv5(F.concat([x3, x4], axis=1))
flow = self.predict_flow(F.concat([x4, x5], axis=1))
return x5, flow
class CostVolume(nn.Module):
def __init__(self, d=4, *args, **kwargs):
super(CostVolume, self).__init__()
self.d = d
self.out_dim = 2 * self.d + 1
self.pad_size = self.d
def forward(self, x1, x2):
_, _, H, W = x1.shape
x2 = F.nn.pad(x2, ((0, 0), (0, 0), (self.pad_size, self.pad_size), (self.pad_size, self.pad_size)))
cv = []
for i in range(self.out_dim):
for j in range(self.out_dim):
cost = x1 * x2[:, :, i:(i + H), j:(j + W)]
cost = F.mean(cost, 1, keepdims=True)
cv.append(cost)
return F.concat(cv, 1)
class FeaturePyramidExtractor(nn.Module):
def __init__(self, pyr_chans):
super(FeaturePyramidExtractor, self).__init__()
self.pyr_chans = pyr_chans
self.convs = []
for _, (ch_in, ch_out) in enumerate(zip(pyr_chans[:-1], pyr_chans[1:])):
layer = nn.Sequential(conv(ch_in, ch_out, s=2), conv(ch_out, ch_out))
self.convs.append(layer)
def forward(self, x):
feature_pyramid = []
for conv in self.convs:
x = conv(x)
feature_pyramid.append(x)
return feature_pyramid[::-1]
class GyroFlow(nn.Module):
def __init__(self, params):
super(GyroFlow, self).__init__()
self.leakyRELU = | nn.LeakyReLU(0.1) | megengine.module.LeakyReLU |
# -*- coding: utf-8 -*-
# MIT License
#
# Copyright (c) 2020 <NAME>
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files
# (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge,
# publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so,
# subject to the following conditions:
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#
# This repo is licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import math
import collections
import megengine.module as nn
import megengine.functional as F
from model.nn_upsample import NeuralUpsampler, FlowMaskEstimator
from common.utils import flow_warp, upsample2d_flow_as
def conv(inp, out, k=3, s=1, d=1, isReLU=True):
if isReLU:
ret = nn.Sequential(nn.Conv2d(inp, out, k, s, padding=((k - 1) * d) // 2, dilation=d, bias=True), nn.LeakyReLU(0.1))
else:
ret = nn.Sequential(nn.Conv2d(inp, out, k, s, padding=((k - 1) * d) // 2, dilation=d, bias=True))
return ret
class ContextNetwork(nn.Module):
def __init__(self, ch_in):
super(ContextNetwork, self).__init__()
self.convs = nn.Sequential(conv(ch_in, 128, 3, 1, 1), conv(128, 128, 3, 1, 2), conv(128, 128, 3, 1, 4), conv(128, 96, 3, 1, 8),
conv(96, 64, 3, 1, 16), conv(64, 32, 3, 1, 1), conv(32, 2, isReLU=False))
def forward(self, x):
return self.convs(x)
class FlowEstimator(nn.Module):
def __init__(self, ch_in):
super(FlowEstimator, self).__init__()
self.conv1 = conv(ch_in, 128)
self.conv2 = conv(128, 128)
self.conv3 = conv(128 + 128, 96)
self.conv4 = conv(96 + 128, 64)
self.conv5 = conv(96 + 64, 32)
# channels of the second last layer
self.feat_dim = 32
self.predict_flow = conv(64 + 32, 2, isReLU=False)
def forward(self, x):
x1 = self.conv1(x)
x2 = self.conv2(x1)
x3 = self.conv3(F.concat([x1, x2], axis=1))
x4 = self.conv4(F.concat([x2, x3], axis=1))
x5 = self.conv5(F.concat([x3, x4], axis=1))
flow = self.predict_flow(F.concat([x4, x5], axis=1))
return x5, flow
class CostVolume(nn.Module):
def __init__(self, d=4, *args, **kwargs):
super(CostVolume, self).__init__()
self.d = d
self.out_dim = 2 * self.d + 1
self.pad_size = self.d
def forward(self, x1, x2):
_, _, H, W = x1.shape
x2 = F.nn.pad(x2, ((0, 0), (0, 0), (self.pad_size, self.pad_size), (self.pad_size, self.pad_size)))
cv = []
for i in range(self.out_dim):
for j in range(self.out_dim):
cost = x1 * x2[:, :, i:(i + H), j:(j + W)]
cost = F.mean(cost, 1, keepdims=True)
cv.append(cost)
return F.concat(cv, 1)
class FeaturePyramidExtractor(nn.Module):
def __init__(self, pyr_chans):
super(FeaturePyramidExtractor, self).__init__()
self.pyr_chans = pyr_chans
self.convs = []
for _, (ch_in, ch_out) in enumerate(zip(pyr_chans[:-1], pyr_chans[1:])):
layer = nn.Sequential(conv(ch_in, ch_out, s=2), conv(ch_out, ch_out))
self.convs.append(layer)
def forward(self, x):
feature_pyramid = []
for conv in self.convs:
x = conv(x)
feature_pyramid.append(x)
return feature_pyramid[::-1]
class GyroFlow(nn.Module):
def __init__(self, params):
super(GyroFlow, self).__init__()
self.leakyRELU = nn.LeakyReLU(0.1)
self.upsample = params.upsample
self.with_bk = True
self.pyr_chans = [3, 16, 32, 64, 96, 128, 192]
self.feature_pyramid_extractor = FeaturePyramidExtractor(self.pyr_chans)
# correlation range
self.d = 4
self.output_level = 4
# cost volume
self.cost_volume = CostVolume(d=self.d)
self.cv_dim = (self.d * 2 + 1)**2
self.upsampler = NeuralUpsampler()
self.ch_inp = 32 + self.cv_dim + 2
self.flow_estimator = FlowEstimator(self.ch_inp)
self.context_net = ContextNetwork(self.flow_estimator.feat_dim + 2)
self.conv_1x1 = list([
conv(192, 32, k=1, s=1, d=1),
conv(128, 32, k=1, s=1, d=1),
conv(96, 32, k=1, s=1, d=1),
conv(64, 32, k=1, s=1, d=1),
conv(32, 32, k=1, s=1, d=1)
])
self.with_gyro_field = True
self.flow_predictor = FlowMaskEstimator(4, (8, 16, 32, 16, 8), 2)
self.mask_predictor = FlowMaskEstimator(64, (32, 32, 32, 16, 8), 1)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.msra_normal_(m.weight, a=math.sqrt(5))
if m.bias is not None:
fan_in, _ = nn.init.calculate_fan_in_and_fan_out(m.weight)
bound = 1 / math.sqrt(fan_in)
nn.init.uniform_(m.bias, -bound, bound)
def generate_fused_flow(self, x1, x2):
input_feature = | F.concat((x1, x2), axis=1) | megengine.functional.concat |
# -*- coding: utf-8 -*-
# MIT License
#
# Copyright (c) 2020 <NAME>
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files
# (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge,
# publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so,
# subject to the following conditions:
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#
# This repo is licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import math
import collections
import megengine.module as nn
import megengine.functional as F
from model.nn_upsample import NeuralUpsampler, FlowMaskEstimator
from common.utils import flow_warp, upsample2d_flow_as
def conv(inp, out, k=3, s=1, d=1, isReLU=True):
if isReLU:
ret = nn.Sequential(nn.Conv2d(inp, out, k, s, padding=((k - 1) * d) // 2, dilation=d, bias=True), nn.LeakyReLU(0.1))
else:
ret = nn.Sequential(nn.Conv2d(inp, out, k, s, padding=((k - 1) * d) // 2, dilation=d, bias=True))
return ret
class ContextNetwork(nn.Module):
def __init__(self, ch_in):
super(ContextNetwork, self).__init__()
self.convs = nn.Sequential(conv(ch_in, 128, 3, 1, 1), conv(128, 128, 3, 1, 2), conv(128, 128, 3, 1, 4), conv(128, 96, 3, 1, 8),
conv(96, 64, 3, 1, 16), conv(64, 32, 3, 1, 1), conv(32, 2, isReLU=False))
def forward(self, x):
return self.convs(x)
class FlowEstimator(nn.Module):
def __init__(self, ch_in):
super(FlowEstimator, self).__init__()
self.conv1 = conv(ch_in, 128)
self.conv2 = conv(128, 128)
self.conv3 = conv(128 + 128, 96)
self.conv4 = conv(96 + 128, 64)
self.conv5 = conv(96 + 64, 32)
# channels of the second last layer
self.feat_dim = 32
self.predict_flow = conv(64 + 32, 2, isReLU=False)
def forward(self, x):
x1 = self.conv1(x)
x2 = self.conv2(x1)
x3 = self.conv3(F.concat([x1, x2], axis=1))
x4 = self.conv4(F.concat([x2, x3], axis=1))
x5 = self.conv5(F.concat([x3, x4], axis=1))
flow = self.predict_flow(F.concat([x4, x5], axis=1))
return x5, flow
class CostVolume(nn.Module):
def __init__(self, d=4, *args, **kwargs):
super(CostVolume, self).__init__()
self.d = d
self.out_dim = 2 * self.d + 1
self.pad_size = self.d
def forward(self, x1, x2):
_, _, H, W = x1.shape
x2 = F.nn.pad(x2, ((0, 0), (0, 0), (self.pad_size, self.pad_size), (self.pad_size, self.pad_size)))
cv = []
for i in range(self.out_dim):
for j in range(self.out_dim):
cost = x1 * x2[:, :, i:(i + H), j:(j + W)]
cost = F.mean(cost, 1, keepdims=True)
cv.append(cost)
return F.concat(cv, 1)
class FeaturePyramidExtractor(nn.Module):
def __init__(self, pyr_chans):
super(FeaturePyramidExtractor, self).__init__()
self.pyr_chans = pyr_chans
self.convs = []
for _, (ch_in, ch_out) in enumerate(zip(pyr_chans[:-1], pyr_chans[1:])):
layer = nn.Sequential(conv(ch_in, ch_out, s=2), conv(ch_out, ch_out))
self.convs.append(layer)
def forward(self, x):
feature_pyramid = []
for conv in self.convs:
x = conv(x)
feature_pyramid.append(x)
return feature_pyramid[::-1]
class GyroFlow(nn.Module):
def __init__(self, params):
super(GyroFlow, self).__init__()
self.leakyRELU = nn.LeakyReLU(0.1)
self.upsample = params.upsample
self.with_bk = True
self.pyr_chans = [3, 16, 32, 64, 96, 128, 192]
self.feature_pyramid_extractor = FeaturePyramidExtractor(self.pyr_chans)
# correlation range
self.d = 4
self.output_level = 4
# cost volume
self.cost_volume = CostVolume(d=self.d)
self.cv_dim = (self.d * 2 + 1)**2
self.upsampler = NeuralUpsampler()
self.ch_inp = 32 + self.cv_dim + 2
self.flow_estimator = FlowEstimator(self.ch_inp)
self.context_net = ContextNetwork(self.flow_estimator.feat_dim + 2)
self.conv_1x1 = list([
conv(192, 32, k=1, s=1, d=1),
conv(128, 32, k=1, s=1, d=1),
conv(96, 32, k=1, s=1, d=1),
conv(64, 32, k=1, s=1, d=1),
conv(32, 32, k=1, s=1, d=1)
])
self.with_gyro_field = True
self.flow_predictor = FlowMaskEstimator(4, (8, 16, 32, 16, 8), 2)
self.mask_predictor = FlowMaskEstimator(64, (32, 32, 32, 16, 8), 1)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.msra_normal_(m.weight, a=math.sqrt(5))
if m.bias is not None:
fan_in, _ = nn.init.calculate_fan_in_and_fan_out(m.weight)
bound = 1 / math.sqrt(fan_in)
nn.init.uniform_(m.bias, -bound, bound)
def generate_fused_flow(self, x1, x2):
input_feature = F.concat((x1, x2), axis=1)
flow = self.flow_predictor(input_feature)[1]
assert flow.shape[1] == 2
return flow
def generate_map(self, x1, x2):
input_feature = | F.concat((x1, x2), axis=1) | megengine.functional.concat |
# -*- coding: utf-8 -*-
# MIT License
#
# Copyright (c) 2020 <NAME>
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files
# (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge,
# publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so,
# subject to the following conditions:
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#
# This repo is licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import math
import collections
import megengine.module as nn
import megengine.functional as F
from model.nn_upsample import NeuralUpsampler, FlowMaskEstimator
from common.utils import flow_warp, upsample2d_flow_as
def conv(inp, out, k=3, s=1, d=1, isReLU=True):
if isReLU:
ret = nn.Sequential(nn.Conv2d(inp, out, k, s, padding=((k - 1) * d) // 2, dilation=d, bias=True), nn.LeakyReLU(0.1))
else:
ret = nn.Sequential(nn.Conv2d(inp, out, k, s, padding=((k - 1) * d) // 2, dilation=d, bias=True))
return ret
class ContextNetwork(nn.Module):
def __init__(self, ch_in):
super(ContextNetwork, self).__init__()
self.convs = nn.Sequential(conv(ch_in, 128, 3, 1, 1), conv(128, 128, 3, 1, 2), conv(128, 128, 3, 1, 4), conv(128, 96, 3, 1, 8),
conv(96, 64, 3, 1, 16), conv(64, 32, 3, 1, 1), conv(32, 2, isReLU=False))
def forward(self, x):
return self.convs(x)
class FlowEstimator(nn.Module):
def __init__(self, ch_in):
super(FlowEstimator, self).__init__()
self.conv1 = conv(ch_in, 128)
self.conv2 = conv(128, 128)
self.conv3 = conv(128 + 128, 96)
self.conv4 = conv(96 + 128, 64)
self.conv5 = conv(96 + 64, 32)
# channels of the second last layer
self.feat_dim = 32
self.predict_flow = conv(64 + 32, 2, isReLU=False)
def forward(self, x):
x1 = self.conv1(x)
x2 = self.conv2(x1)
x3 = self.conv3(F.concat([x1, x2], axis=1))
x4 = self.conv4(F.concat([x2, x3], axis=1))
x5 = self.conv5(F.concat([x3, x4], axis=1))
flow = self.predict_flow(F.concat([x4, x5], axis=1))
return x5, flow
class CostVolume(nn.Module):
def __init__(self, d=4, *args, **kwargs):
super(CostVolume, self).__init__()
self.d = d
self.out_dim = 2 * self.d + 1
self.pad_size = self.d
def forward(self, x1, x2):
_, _, H, W = x1.shape
x2 = F.nn.pad(x2, ((0, 0), (0, 0), (self.pad_size, self.pad_size), (self.pad_size, self.pad_size)))
cv = []
for i in range(self.out_dim):
for j in range(self.out_dim):
cost = x1 * x2[:, :, i:(i + H), j:(j + W)]
cost = F.mean(cost, 1, keepdims=True)
cv.append(cost)
return F.concat(cv, 1)
class FeaturePyramidExtractor(nn.Module):
def __init__(self, pyr_chans):
super(FeaturePyramidExtractor, self).__init__()
self.pyr_chans = pyr_chans
self.convs = []
for _, (ch_in, ch_out) in enumerate(zip(pyr_chans[:-1], pyr_chans[1:])):
layer = nn.Sequential(conv(ch_in, ch_out, s=2), conv(ch_out, ch_out))
self.convs.append(layer)
def forward(self, x):
feature_pyramid = []
for conv in self.convs:
x = conv(x)
feature_pyramid.append(x)
return feature_pyramid[::-1]
class GyroFlow(nn.Module):
def __init__(self, params):
super(GyroFlow, self).__init__()
self.leakyRELU = nn.LeakyReLU(0.1)
self.upsample = params.upsample
self.with_bk = True
self.pyr_chans = [3, 16, 32, 64, 96, 128, 192]
self.feature_pyramid_extractor = FeaturePyramidExtractor(self.pyr_chans)
# correlation range
self.d = 4
self.output_level = 4
# cost volume
self.cost_volume = CostVolume(d=self.d)
self.cv_dim = (self.d * 2 + 1)**2
self.upsampler = NeuralUpsampler()
self.ch_inp = 32 + self.cv_dim + 2
self.flow_estimator = FlowEstimator(self.ch_inp)
self.context_net = ContextNetwork(self.flow_estimator.feat_dim + 2)
self.conv_1x1 = list([
conv(192, 32, k=1, s=1, d=1),
conv(128, 32, k=1, s=1, d=1),
conv(96, 32, k=1, s=1, d=1),
conv(64, 32, k=1, s=1, d=1),
conv(32, 32, k=1, s=1, d=1)
])
self.with_gyro_field = True
self.flow_predictor = FlowMaskEstimator(4, (8, 16, 32, 16, 8), 2)
self.mask_predictor = FlowMaskEstimator(64, (32, 32, 32, 16, 8), 1)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.msra_normal_(m.weight, a=math.sqrt(5))
if m.bias is not None:
fan_in, _ = nn.init.calculate_fan_in_and_fan_out(m.weight)
bound = 1 / math.sqrt(fan_in)
nn.init.uniform_(m.bias, -bound, bound)
def generate_fused_flow(self, x1, x2):
input_feature = F.concat((x1, x2), axis=1)
flow = self.flow_predictor(input_feature)[1]
assert flow.shape[1] == 2
return flow
def generate_map(self, x1, x2):
input_feature = F.concat((x1, x2), axis=1)
out = self.mask_predictor(input_feature)[1]
mask = | F.sigmoid(out) | megengine.functional.sigmoid |
# -*- coding: utf-8 -*-
# MIT License
#
# Copyright (c) 2020 <NAME>
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files
# (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge,
# publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so,
# subject to the following conditions:
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#
# This repo is licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import math
import collections
import megengine.module as nn
import megengine.functional as F
from model.nn_upsample import NeuralUpsampler, FlowMaskEstimator
from common.utils import flow_warp, upsample2d_flow_as
def conv(inp, out, k=3, s=1, d=1, isReLU=True):
if isReLU:
ret = nn.Sequential(nn.Conv2d(inp, out, k, s, padding=((k - 1) * d) // 2, dilation=d, bias=True), nn.LeakyReLU(0.1))
else:
ret = nn.Sequential(nn.Conv2d(inp, out, k, s, padding=((k - 1) * d) // 2, dilation=d, bias=True))
return ret
class ContextNetwork(nn.Module):
def __init__(self, ch_in):
super(ContextNetwork, self).__init__()
self.convs = nn.Sequential(conv(ch_in, 128, 3, 1, 1), conv(128, 128, 3, 1, 2), conv(128, 128, 3, 1, 4), conv(128, 96, 3, 1, 8),
conv(96, 64, 3, 1, 16), conv(64, 32, 3, 1, 1), conv(32, 2, isReLU=False))
def forward(self, x):
return self.convs(x)
class FlowEstimator(nn.Module):
def __init__(self, ch_in):
super(FlowEstimator, self).__init__()
self.conv1 = conv(ch_in, 128)
self.conv2 = conv(128, 128)
self.conv3 = conv(128 + 128, 96)
self.conv4 = conv(96 + 128, 64)
self.conv5 = conv(96 + 64, 32)
# channels of the second last layer
self.feat_dim = 32
self.predict_flow = conv(64 + 32, 2, isReLU=False)
def forward(self, x):
x1 = self.conv1(x)
x2 = self.conv2(x1)
x3 = self.conv3(F.concat([x1, x2], axis=1))
x4 = self.conv4(F.concat([x2, x3], axis=1))
x5 = self.conv5(F.concat([x3, x4], axis=1))
flow = self.predict_flow(F.concat([x4, x5], axis=1))
return x5, flow
class CostVolume(nn.Module):
def __init__(self, d=4, *args, **kwargs):
super(CostVolume, self).__init__()
self.d = d
self.out_dim = 2 * self.d + 1
self.pad_size = self.d
def forward(self, x1, x2):
_, _, H, W = x1.shape
x2 = F.nn.pad(x2, ((0, 0), (0, 0), (self.pad_size, self.pad_size), (self.pad_size, self.pad_size)))
cv = []
for i in range(self.out_dim):
for j in range(self.out_dim):
cost = x1 * x2[:, :, i:(i + H), j:(j + W)]
cost = F.mean(cost, 1, keepdims=True)
cv.append(cost)
return F.concat(cv, 1)
class FeaturePyramidExtractor(nn.Module):
def __init__(self, pyr_chans):
super(FeaturePyramidExtractor, self).__init__()
self.pyr_chans = pyr_chans
self.convs = []
for _, (ch_in, ch_out) in enumerate(zip(pyr_chans[:-1], pyr_chans[1:])):
layer = nn.Sequential(conv(ch_in, ch_out, s=2), conv(ch_out, ch_out))
self.convs.append(layer)
def forward(self, x):
feature_pyramid = []
for conv in self.convs:
x = conv(x)
feature_pyramid.append(x)
return feature_pyramid[::-1]
class GyroFlow(nn.Module):
def __init__(self, params):
super(GyroFlow, self).__init__()
self.leakyRELU = nn.LeakyReLU(0.1)
self.upsample = params.upsample
self.with_bk = True
self.pyr_chans = [3, 16, 32, 64, 96, 128, 192]
self.feature_pyramid_extractor = FeaturePyramidExtractor(self.pyr_chans)
# correlation range
self.d = 4
self.output_level = 4
# cost volume
self.cost_volume = CostVolume(d=self.d)
self.cv_dim = (self.d * 2 + 1)**2
self.upsampler = NeuralUpsampler()
self.ch_inp = 32 + self.cv_dim + 2
self.flow_estimator = FlowEstimator(self.ch_inp)
self.context_net = ContextNetwork(self.flow_estimator.feat_dim + 2)
self.conv_1x1 = list([
conv(192, 32, k=1, s=1, d=1),
conv(128, 32, k=1, s=1, d=1),
conv(96, 32, k=1, s=1, d=1),
conv(64, 32, k=1, s=1, d=1),
conv(32, 32, k=1, s=1, d=1)
])
self.with_gyro_field = True
self.flow_predictor = FlowMaskEstimator(4, (8, 16, 32, 16, 8), 2)
self.mask_predictor = FlowMaskEstimator(64, (32, 32, 32, 16, 8), 1)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.msra_normal_(m.weight, a=math.sqrt(5))
if m.bias is not None:
fan_in, _ = nn.init.calculate_fan_in_and_fan_out(m.weight)
bound = 1 / math.sqrt(fan_in)
nn.init.uniform_(m.bias, -bound, bound)
def generate_fused_flow(self, x1, x2):
input_feature = F.concat((x1, x2), axis=1)
flow = self.flow_predictor(input_feature)[1]
assert flow.shape[1] == 2
return flow
def generate_map(self, x1, x2):
input_feature = F.concat((x1, x2), axis=1)
out = self.mask_predictor(input_feature)[1]
mask = F.sigmoid(out)
assert mask.shape[1] == 1
return mask
def self_guided_fusion_module(self, flow, gyro_field_rsz, x1, x2_warp, layer):
fuse_flow = self.generate_fused_flow(flow, gyro_field_rsz)
mask = self.generate_map(self.conv_1x1[layer](x1), self.conv_1x1[layer](x2_warp))
flow = fuse_flow * mask + gyro_field_rsz * (1 - mask)
return flow
def normalize_features(self, feature_list, normalize, center, moments_across_channels=True, moments_across_images=True):
# Compute feature statistics.
statistics = collections.defaultdict(list)
axes = [1, 2, 3] if moments_across_channels else [2, 3] # [b, c, h, w]
for feature_image in feature_list:
mean = F.mean(feature_image, axis=axes, keepdims=True) # [b,1,1,1] or [b,c,1,1]
variance = F.var(feature_image, axis=axes, keepdims=True) # [b,1,1,1] or [b,c,1,1]
statistics['mean'].append(mean)
statistics['var'].append(variance)
if moments_across_images:
statistics['mean'] = ([F.mean(F.stack(statistics['mean'], axis=0), axis=(0, ))] * len(feature_list))
statistics['var'] = ([F.var(F.stack(statistics['var'], axis=0), axis=(0, ))] * len(feature_list))
statistics['std'] = [F.sqrt(v + 1e-16) for v in statistics['var']]
# Center and normalize features.
if center:
feature_list = [f - mean for f, mean in zip(feature_list, statistics['mean'])]
if normalize:
feature_list = [f / std for f, std in zip(feature_list, statistics['std'])]
return feature_list
def predict_flow(self, x1_pyrs, x2_pyrs, gyro_field=None):
flow_pyrs = []
batch_size, _, h_x1, w_x1 = x1_pyrs[0].shape
dtype = x1_pyrs[0].dtype
flow = | F.zeros((batch_size, 2, h_x1, w_x1), dtype=dtype) | megengine.functional.zeros |
# -*- coding: utf-8 -*-
# MIT License
#
# Copyright (c) 2020 <NAME>
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files
# (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge,
# publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so,
# subject to the following conditions:
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#
# This repo is licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import math
import collections
import megengine.module as nn
import megengine.functional as F
from model.nn_upsample import NeuralUpsampler, FlowMaskEstimator
from common.utils import flow_warp, upsample2d_flow_as
def conv(inp, out, k=3, s=1, d=1, isReLU=True):
if isReLU:
ret = nn.Sequential(nn.Conv2d(inp, out, k, s, padding=((k - 1) * d) // 2, dilation=d, bias=True), | nn.LeakyReLU(0.1) | megengine.module.LeakyReLU |
# -*- coding: utf-8 -*-
# MIT License
#
# Copyright (c) 2020 <NAME>
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files
# (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge,
# publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so,
# subject to the following conditions:
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#
# This repo is licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import math
import collections
import megengine.module as nn
import megengine.functional as F
from model.nn_upsample import NeuralUpsampler, FlowMaskEstimator
from common.utils import flow_warp, upsample2d_flow_as
def conv(inp, out, k=3, s=1, d=1, isReLU=True):
if isReLU:
ret = nn.Sequential(nn.Conv2d(inp, out, k, s, padding=((k - 1) * d) // 2, dilation=d, bias=True), nn.LeakyReLU(0.1))
else:
ret = nn.Sequential(nn.Conv2d(inp, out, k, s, padding=((k - 1) * d) // 2, dilation=d, bias=True))
return ret
class ContextNetwork(nn.Module):
def __init__(self, ch_in):
super(ContextNetwork, self).__init__()
self.convs = nn.Sequential(conv(ch_in, 128, 3, 1, 1), conv(128, 128, 3, 1, 2), conv(128, 128, 3, 1, 4), conv(128, 96, 3, 1, 8),
conv(96, 64, 3, 1, 16), conv(64, 32, 3, 1, 1), conv(32, 2, isReLU=False))
def forward(self, x):
return self.convs(x)
class FlowEstimator(nn.Module):
def __init__(self, ch_in):
super(FlowEstimator, self).__init__()
self.conv1 = conv(ch_in, 128)
self.conv2 = conv(128, 128)
self.conv3 = conv(128 + 128, 96)
self.conv4 = conv(96 + 128, 64)
self.conv5 = conv(96 + 64, 32)
# channels of the second last layer
self.feat_dim = 32
self.predict_flow = conv(64 + 32, 2, isReLU=False)
def forward(self, x):
x1 = self.conv1(x)
x2 = self.conv2(x1)
x3 = self.conv3( | F.concat([x1, x2], axis=1) | megengine.functional.concat |